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A ¢g-EXTENSION OF FELDHEIM’S BILINEAR SUM
FOR JACOBI POLYNOMIALS AND SOME
APPLICATIONS

MIZAN RAHMAN

1. Introduction. The main objective of this paper is to find useful
g-extensions of Feldheim’s [6] bilinear formula for Jacobi polynomials,
namely,

. . p(1 = x)1 = y) p(1 + x)(1 + y)
F4(a1,a2,a+ I; 8+ 1; p , 2 )

(L) =§ K a + B+ 2),Qk +a+ B+ 1)
' K=o (@ + DB+ (e + B+ 2k + a+ B+ 1)

CHRCH NS

SF(ay + koay + ks a+ B+ 2+ 2k p)PEP)PEP(y),

where the Appel function F, is defined by

< (@D m+n®mn m n
12)  Fya bic d;x, y) = “min\e),(d),
(1.2) a(a ¢ X, ») MJIZ=O m!n!(c)m(d)nx g

a;, a,, p are arbitrary complex parameters such that the series on both
sides of (1.1) are convergent, and

(a + l)k

I — x

(1.3) PP =
is the Jacobi polynomial of degree k, (a), being the usual shifted
factorial.

A very general g-analogue of the Jacobi polynomials, known as
g-Wilson polynomials, has been recently discovered by Askey and
Wilson [2]

q ", abedq" ™', aé® qe™
ab, ac, ad

n—1

(14) pn('x; a, b7 c, d) = 4‘D3[ 5 q, CI],

x=c080,0=0=a,n=0,1,2,...,and the parameters q, b, ¢, d are
usually assumed to be real and numerically less than 1. The symbol on the
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right hand side of (1.4) represents a basic hypergeometric series defined
generally by

5

(1.5) r+1‘br[zl’ Zz> cees Zr+l; q, z] _ (@) (a)y - - - (ar+l)kzk
Dyt k=0 (@B - - - (b

where the shifted factorials on the right hand side no longer mean the
same thing as in (1.1), (1.2) or (1.3), rather, they are the so-called g-shifted
factorials defined by

(@), = (a; g)y
(1.6) _{1 . ifk=0

"l -1 —ag)...(0 —ad ) k=1,2,....
Obviously (a; q), is a more distinctive notation for this, but considerations
of economy suggest the adoption of the shorthand notation provided its
meaning is clear in the context. Throughout the paper we shall use (a), to
mean (a; q), unless otherwise mentioned. The parameter ¢ is usually taken
to be numerically less from 1 and the other parameters in (1.5) must

satisfy the convergence requirements of the series.
Askey and Wilson [2] proved the orthogonality of p, (x; a, b, ¢, d)

1
(1.7 f_l w(x; a, b, ¢, d)p,(x; a, b, ¢, d)p,(x; a, b, ¢, d)dx = h,0,,,,
where the weight function is given by
(1.8)  w(x;a, b, c,d) =

“12h0 DG — DA Vh(x —V9g)
h(x; a)h(x; bYh(x; c)h(x; d)

>

1 — x
with
(1.9)  h(x; a) = ﬁo (1 — 2axq + a*¢*) = (ae) (ae™?),,
x =cosl, (A), = lggo A),,

and the normalization constant 4, is given by

(@),(1 — abedq” "Yed), (bd),(be), o,
(abedg™ "), (1 — abedg™ " ')ab),(ac),(ad),

(L11) hy = 27(abed),, 7
(9)00(@D)oo(a€)oo(ad) oo BC ) oo (b ) oo (€ d) o

subject to the restriction that

(1.10) h, = hy

b
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(1.12)  max(|ql, lal, [b], |c, |d] ) < 1.

The basic result that we shall prove in Section 2 is the bilinear

formula
oo An
(1.13)  F(x, ylq) = th—p,,(x; a, b, ¢, dyp,(y; a, b, ¢, d),
n= n
where
ny n n
(1a) A, =m0 o (3) S Auer(ade’uladd'
(abcd),, k=0 (q)i(abedgq™),

(’21) = n(n — 1)/2, and

S A, (deY), (de” ) (de'®), (de”'®)
F , — 2 m m m m m _m
CoN) = & O (e (d/a),

(1.15) |0W9<aa’_lq_m; q'"™/bd, ' "/cd, g™,

(4 —i6

ae® ae " ae'®

— bcgq
, ae”'%; —)
1 ad

with x = cos b,y = cos ®,0 = 4, ® = 7, p an arbitrary parameter and
{4,,} o an arbitrary complex sequence such that the infinite series on
both sides of (1.13) converge. Following [11] we have used the shorthand
notation 4 W, for a very well-poised |,®, series, that is,

r+3Wr+2(a; bl’ b2’ R} br; q, Z)

(116) o [@aVa —ava b, by .. b _ z]
= 8352 | \/a, —\/a, aq/b,, aq/b,, . . ., aq/b, N B

Note that the argument of the W, series in (1.15) is bcg/ad which
reduces to ¢ in the special case ad = bc. This is an important special case
since the corresponding ,®, series is now both very well-poised and
balanced and therefore transformable to another |(®q series of the same
kind by virtue of Bailey’s transformation [4]. Furthermore, as we shall
prove in Section 3, it is in this case that there is another closely related
bilinear formula

oo
(L17) GG ylg) = 2 2 p,(x; a b ¢ d)p,(y; a, b, c. ),

n=0 N,

where
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(be),(ad/t), , B,
My = ho— t n 1—n ’
(ad),(bct), K=o (q)i(betqd")(tq '~ "/ad),
(1.19) ad = be, and
(120)  G(x, ylg) =
(abed)(ac™ 1) (1)o.] (a€?). (be'®)(cte'®) (dte?), |
(a)0(a€ )6 ad) (b ) oo (bt ) oo et )o(ac ™ ool (16701 P) (2?7 P) |
0 Bk(Cdt)kl (t610+1¢‘)k(telo_lq))k|2
K20 (@) (0 gt/ ad)g(ac™ "), (cte®), (dee), )
X 10W9(Cdtqk71; tqk, bctqkil, cailtqk, ce® ce " de'® de™'®; q, q)
(abed)oo(ca ™ '1)oo(1ool (c€)oo(de™®)(ate'®) o (bte?) )
(bd)oo(€d)oo(BC oo A€ )oo(@bl ) oo adt ) oofca™ Moo| (26T ®) (16 1)
[ee] Bk(abt)kl (tei0+i¢’)k(tei0*i¢‘)k'2
x 2 = ) HNY)
K=0 (@ () (qt/be)(ca™ 1)) (ate'®), (bre'), |

X ng(abtqk*l; tqk, adtqk_l, acﬁltqk, ae, ae ", be'®, be'?; q, q).

(1.18)

¢ is assumed to be an arbitrary real parameter and {B, };-, an arbitrary
complex sequence subject to the requirement that the series in (1.17),
(1.18) and (1.20) are all convergent.

In Section 4 we shall deal with the relationship between the bilinear
formulas (1.13) and (1.17), and derive what we consider a proper
g-analogue of (1.1). In Section 5 we shall show how this g-analogue leads
to a Poisson kernel for the g-Wilson polynomials subject only to the
restriction (1.19).

2. Proof of (1.13). We shall start by computing the integral

1 . .
Iy = f w5 @b, ¢, dp,(y; a, b, ¢, d) | (ae ) (de'®) [Pdy.

Since by Sears’ [14] transformation formula for a balanced and
terminating ,®; series

Pa(ys a, b, c, d)

B q ", abcdq"_l, ae'®, ae™® ) ]
@n = 4<I>3[ wb o, ad i 4. q
_ (bd),(be), s [q_", abedq" ™", be'®, be ' ]
" (@, @), @ " ba, be, bd Ak
we get
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_(bd),(be),, 1 < (g ")j(abedq" g’
I, = ——"(ab )
22 ' (ac),(ad), /=0 (q),(ba),(bc);(bd),;

1 ) .
X /hl w(y; aq', bq’, ¢, dg")dy.

Setting m = n = 0 in (1.7) and replacing q, b, d, by aqk, bg’ and dg" "/,
respectively, and simplifying, we obtain

Ik.[ =

(be),(ad)"
(ad)n (ade)n +k+1
(2.3) X (g K h,q" kD

" abedqd" ", g 7K, ad 'q7!
X 4‘1>3[q abq ac qq~k7 1 .4 4|

hy (ab),(ac); (bd),(cd),(ad); 4,

provided 0 = n = k + [, and, 0, otherwise. It is, of course, assumed
that

lgg <1 and max(lal, b, Ic|, |d]) < 1.
A simple transformation of the double sum on the right hand side of
(1.15) gives

SR 1 —ad”'¢""! K| (e 9y 12
Feeolg) = 2 2 Aol (ae)(de)]
2.4

X | (ae'®), (de'®)2/(q)(q),(ab) (ac),
X (aq/d),(bd),(cd)/(dq/a),.

Using (2.3) and simplifying we get

1
/*IW(y; a, b, ¢, )F(x, ylq)p,(y; a, b, ¢, d)dy

(bc)n(‘I) n ( ) mAn+m(adqn)m(‘f,+l)m
d
"0 abeay, P 2, 60 (@), (abedg™),,

_ _ (1)-
& (g ")jlabedg" ™ ) (—=1)/q"\2/ 7
Jj=0 (q)j(ab)j(ac)j(q—m_n)j(aq/d)j
| (aei0)i(dei0)m+"_j|2(ad-lqj-mfn)j_H
@t —(Ag/ @)y (1 = ad ™)

6
© ad” lq21 m— n,q\/‘ _q\/’ aet0qoae Iqj’ qj m— nl+‘.
6*5 \/_ \/_ d— —16 1+} ,d qu+J m=nad” q j s

q 4" J/ad]

(2.5) %
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where the square root is over ad 'g¥ ™"

The (®< series is summable by [16, IV.9] with sum
(ad 1 l+2j m— n) +n—j(a_ld_lq]_m-n)m+n—j
(d 1«9 1+] m— n) (d—le—iﬂql-l-j—m—n)

m+n—j m+n—j

(da q )m+n—j(adq )m+n—j
| ey,

A few more steps of straightforward computation leads to the
connection relation

m+n—j

1
2.6) fﬂ w(y; a, b, ¢, d)F(x, ylq)p,(y; a, b, c, d)dy
' = N, p,(x; a, b, ¢, d),

where A, is given by (1.14).
Let us assume that all the parameters are real and that the sequence
{A,} is such that

oo

2\

n=0
F(x, ylq) is square-integrable, non-negative and even continuous, at least
in any interval

1—2€l§.x,y§1—'2€2, El,€2>0.

Then Mercer’s theorem immediately leads to the bilinear formula (1.13).
(1.13) is, of course, much too general to be useful, so we consider some
important special cases.

Case 1.
= (¢, (abcdd "),/ (ad),(ad),,

p = g; r a non-negative integer.

Here
_ 5 @ D,(abedd "), (be),
"0 (ad),(abed),,
" qn‘r’ abcdqn+r—l )
X (—qad)"q(Z)z‘Dl[ abcdg™ ' & q]
(@ Dulabedg’ D, (o), (7), \ines
= hy (ad), (abed), .. qad)"q'*’(q r—n-

This vanishes unless n = r. Simplifying, we get

(@),(1 — abedgq” ")(be), "
2. = .
@D A h"(abcdq“),,(l - abcdqz"_l)(ad)n(ad) Ons
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This leads to Rahman’s product formula [8, 10]

p,(x;a, b, c,d)p,(y; a,b,c d)

_ (bd),(cd),

= (ac),(ab),(a/d)

@8 (@ alabedg ), | (de”), (de'),['q"
=0 (q),(ad),(ad),(bd),(cd),(da”"),
X wWolad 'q™"; ¢" "/bd, ¢' "/ed, ¢, ae®, ae™
ae®, ae '?; q, beq/ad).
Case 11.
4, = (g ,Quwrgd "), (= ab),(cd),
/(ad),(ad),(—Aw),(»7),, p = ¢;

r a non-negative integer, A, u, », 7 arbitrary constants.
Here we have

(1)

(@ Durrg’ ™), (be), (cd),(—ab),

M Ay, abedyy,
@9 g [T g
R
o (@D Ourrg D, ), (cd)y (b, o ()
(ad), (M), (—#7), (abed ),
1 e

by use of Sears’ formula (2.1). So the corresponding bilinear formula is

3 G D Qurrd ™), (—ab),| (de%),(de),*q"
0 (q),,(ad),,(ad),,(bd),,(—\),,(v7),,(d/a),,

m

X 10W()(ad_lq_"'; q]_'"/bd, ql—m/cd, q ", ae ae™ ",

ae'®, ae™'®; g, beg/ad)
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_ Oy,

— l r
oo,

@10y x 3 (@beda D1 — abedq”™” Yab),(a0),(~ab)y oy
W0 (@u(1 — abedg” ), (bd), (—¥ ),

(7). Aprrg”™ ),
K (abed),

® [f T oA T abg, —cdq” ]
473 abedg™", \ng", —viq" 44

X p,(x;a, b, c, dp,(y;ab,c d).

It wouldn’t appear there is anything special about this formula until we
consider the following special case

4= —d= g b= gtV e~
2.11
(2.11) AN— 1 \gp= gtV = gt

and set ¢® = a.
Then the left hand side of (2.10) reduces to

4(D3[q—r’ qr+a+b+l’ A\/(Fz’ﬂ’ v\/q_e*iﬂ .

B (_qb+l)r(q(1+l)r{_1 ,
_.(v_qa+l) (qb+1)\ )
(2.12) L batbil i0 —if
X 4@3[(1 ’q;aﬂ ‘q’b—l\—/l‘}e_’q\/(;e 5 49 q]
(@), (—q), rp(ab
R (qb+l) —1'P(x; g),
where
P gy = @ dTD,
@19 ! D9, ,
. < ® q—r’ ‘f‘+a+b+l \/‘;‘3 \/§e~10 .
4%¥3 (]a+1, qb+,_q ;495 4

is the continuous g-Jacobi polynomial introduced by the author in [11].
The right hand side of (2.10) simplifies to

————qbf{; E De -1y 2 g1 QPP 9)

where
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@ (=N, @ P(—9),

(D), (@ P,
(r+a+h+]) n*—nr

g(n, r;q) =

2.14) - e N =S
() P 0/ W o’ G
n—r n+trtatb+1 at+l+n _ B+1-+n
><4‘1>3[ qa’+ﬁ+2+2n qa+’|+n _q’h+l+n 5 4 q].

This leads to the projection formula [2]

r

215) PP(x; q) = Z g, 1 QP PAx; q)

n=

which is, of course, a g-extension of an analogous formula given by
Feldheim [6] for Jacobi polynomials.
Case I11.

_ (@), (@), (— a3), (—ay),
(ad),(ad),(— as/abed ), (— qa apaz04/ as),,

n

where a, ..., a5 are arbitrary parameters.
The bilinear sum (1.13) reduces to

(al)m(aZ)m( — a3)m( — a4)m
m=0 (q),(ad),,(ad),,(bd),,(cd),,
| (de),, (de'®),*p"
(_as/abcd )m( —qa1a2a3a4/a5)m(d/a)m
X oWolad 'q™™; ¢' ""/bd, ¢' ""cd, g7, ae'’,

ae " ae'®, ae™'®: q, beg/ad)

(abedq™"),(1 — abedg™ ™ ')(ab),(ac),
n=0 (9),(1 — abedq™"Ycd), (bd),(—as/abed),

(2.16) =

(al)n (az)n( - a3)n( - a4)n
( - qa1a2a3a4/a5)n (abcd )2n

X [ ) alq”’ a2qn’ _a3qn, _a4qn’
453 abcdq™, —q"as/abed, —q¢"" o 0504/ as

x A3) paray

§q,P]

X p,(x; a, b, c, d)p,(y; a, b, c, d),

which is valid provided |p| < 1. One can see, of course, that the cases I and
II are both obtainable from this by specializing the parameters a;, . . ., as
and p. If we replace a; by ¢%, i = 1, ..., 5, specialize a, b, ¢, d according to
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(2.11), and then let ¢ — 1, then (2.16) reduces to Feldheim’s formula (1.1).
In this very formal sense, therefore, (2.16) is a g-analogue of (1.1).
However, it is a pretty useless analogue because, unlike the ,F; function
on the right hand side of (1.1), the ,®, series in (2.16) generally cannot be
transformed even when we set p = ¢ forcing it to be a balanced series,
unless it terminates. Bearing in mind how Bailey’s Poisson kernel for
Jacobi polynomials was deduced [12] from (1.1) by taking

ap=(a+ B+ 2)/2, 0, =a; +1/2,
p V2 =10+ 1" 0< <1,
we may set up an analogous situation by putting
ad = bc,p = g, ) = a3 = bc,
a, = ay = be\/q, a5 = —(be)’qt,
so that (2.16) gives

2.17)

S (—be),, (be ), (—beN/q),| (bea” '), (bea” '), >,
m=0 (@) (bC),n(bc*a™ ), (b*ca™ ), (bea™?),,(beqt),,(beg/1),,
>< |0W9(612b_lc_1q_m ’ ab—2c—lql—m’ ab_lc—-qu_m,

3 . e e -
q ", ae® ae " ae'®, qe

i

® 4 9

o0 (b2C2q—l)n(1 —_ b262q2n_])(ab)n(ac)
2.18) = z
QI8 = A P e o e,

g {(bc\/(?),x—bc\/a)nq(g)(_ beg)"
(beqt), (beq/ 1),

bcq", _bcqn, bcqn+1/2, _bcqn+1/2 ) ]}
X 4q)3[b202q2n, thqn_H, bcqn-H/t 4,9

X pn(x» a, b’ ¢, bca_l)Pn(y; a, b’ ¢, bca—l)‘

The expression within the curly brackets on the right cannot be
expressed as a multiple of the nth power of any parameter for any choice
of 1, so (2.18) does not give a Poisson kernel for the g-Wilson polynomials
p,(x; a, b, c, bca” l), even though the limiting sum, with ¢ — 1, does lead
to Bailey’s formula [3, p. 102].

To obtain a proper g-analogue of (1.1) we first set p = ¢ in (2.16) and
observe that the ,®; series is closely related to another ,®; series of the
same kind through a very useful formula of Bailey [3, p. 69]:

8W7(a9 b’ c, da e,ﬁ q, azqz/bcdqf)
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_ (a9)oaq/de)o(aq/ df )oi(aq/ ¢f )oo
(aq/d)y(aq/ e)o(aq/[)oaq/ def )y,

d, e, f, aq/bc ]
X 4% ag/b, ag/c, defla > 4

(a9)0o(aq/ b€ ) oo(d ) oo(€) ool S oo
(aq/b)oc(aq/ ¢)oo(agq/ d)o(aq/ e)e,

(&q*/ cdef )oo(a’q*/ bdef ),
(aq/[ Yoo\ aq* 1 bedef ) oo(def1 aq) oo

(2.19)

aq/de, aq/df, aq/ef, a>q*/bcdef ]
x 4(1)3[ a*q*/cdef, a*q*/bdef, ag’rdef P4

The formula corresponding to the ,®; series in (2.16) is, then,

8 W7(a50c4‘ lqzn_ ! s as/a4abcd, - abcdqn/a4,

n n n.
g, arq, —a3q; g, as/ o 0,as)

2
_ (osq™ g )oo(ors/ oy ) oo(— s/ oy a300)oo( — a5/ 0304 o
(asq"/ oty ag)oo(@tsq"/ 0p0tg) oo — asq"/ a30q) oo — ats/ ) ay03049" o

(2.20)
aq", g, —asq’, —auq" - ]
x 4¢3[abcdq2", —q'as/abed, —q" ey /as C P

(050" 1 03) 010" )oo020 ool — 234" )s

(abcdqzn)oo(_asq ) (asq ) (aSq )

aabedq” as’
R B vyt B

% Q00 0y abcdoyayaz0,
( _ asq” ) ( as ) ( _ a0a3249" )
azay/ Nagopay 1 s «
o I S as
X e, aaa, 0, aana; g
as’ _asabcdq" asq' "

b b
abcdajonazo, 30 Ajan0z0y

provided |as/ajay05] < 1 when the series are non-terminating. While
neither of the ,®4 series on the right is transformable, the ¢® series on the
left can be transformed to another ¢®; by a limiting case of Bailey’s
formula [3, 8.5(1) ]:

https://doi.org/10.4153/CJM-1985-030-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-030-0

562 MIZAN RAHMAN

gWoa; b, ¢, d, e, f; q, a>q*/bedef)

_ (aq)o(aq/ef Yool 2@/ bedf ) (a°q*/ bede)
 (aq/e)y(aq/f)oa’q/ bedef )o@’ g’ bed ),

X 8W7(a2q/bcd; aq/cd, aq/bd, aq/bc, e, [, q, aq/ef).

2.21)

This is the key to the fact that (2.16) alone cannot be regarded as a
g-analogue of (1.1); we need another bilinear sum with a 4®; which is of
the type that appears in the second term on the right of (2.20). This, then,
is the motivation of considering the kernel G(x, y|q) introduced in (1.17)
and (1.18).

Before we proceed to the next section to do this computation it may be
of interest to point out a special case of (2.16) where the ,®; series can be
summed. Set

a3 = a5, p = abcd/oya,,

and then let a3, @y — 0. The ,®; series becomes a ,®, which can be
summed by Heine’s formula [3, 8.4(3) ], provided

labed/ aya,| < 1,

or the series terminates. Simplifying the result we get

< (o), (@), (de?), (de'®), | (abcd)’"
20 (@),,(ad), (ad),,(bd), (cd), (d/a),,

X l()Wg(adflq*m; ql*m/bd, qlfm/cd, qg ",

aeia, ae ", aeiq’, ae”'®; q, beg/ad)

aay

_ (abcd/ ay)oo(abed/ ay)o,
(abed ) (abcd/ ay0y) o

< (abedg™ "), (1 — abedg™ ™ ")(ab), (ac),(a)),(ay),
x 2 d bed
" (@1 — abedged), e, (29) (L4),

@ a

n

X q(z)(—qd/a)"pn(x; a, b, c,dp,(y;a b,c d).
This is a g-analogue of [12, (3.7) ].

3. Proof of (1.17). The first step is to use the g-integral representation of
pn.(x; a, b, ¢, d) suggested by Al-Salam and Verma [1] and elaborated by
Gasper and Rahman [7, (4.2) ]

Pa(x; a, b, c,d) =
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(cd), (¢ "7 (abcdulq), (bue’®). (bue ),

10 s
(ab), 7 b (bau/q).(beu/ q)o(bdu/ q),
3.1 )
 _(q/w), (a;bu)du,
(abedu/q), \ q /1
where
A(0) = 2ib

41 = @)(@)oo(aC)oo(ad )oo(cd)oo| (b€ D)oo W(x; a, b, ¢, d)’

and the g-integral is defined by

/ Zﬂu)dqu f Zﬂu)dqu - f oS

(3.2) ” oo
S rwdp = aq - g 2 f(ag"q"

Using the symmetry of p,(x; a, b, ¢, d) in b, c and d we now express the
product of the g-Wilson polynomials in terms of a g-integral:

Pa(x; a, b, ¢, d)p,(y; a, b, ¢, d)
_ 56, o), qel;"ﬁ/b (abedu/ q) o (bue®), (bue™ ).
(ab), (ac), ¥ "0 (baul q)ou(beul @)ool bt/ §)o
(3.3) % f‘lew/c (abedv/ q)o(cve'®). (cve '®),
¢ (cav/q)o(cbv/q)o(cdv/ ),
(q/u),(q/v), (azbcuv)nd wud v
(abedu/q), (abedv/q), \ ¢ e

where

B(6, ®) = —4bc[ (9(1 — 9)(9)oo(ad )oo) (ab)oo(a )oolbd )oocd )y

(3.4 R ~
) | (be’a)oo(ce’q))oolzw(x; a, b, c,dyw(y; a, b c,d)] "

Assuming uniform convergence of the series on the right hand side of
(1.17) we have

(3.5 G(x.)lg) = BB, ®) > By

Hk(x5 Y a, b7 c, d)’
k=0 (q)i(bct)(qt/ad),

where
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H (x,y;a b,c, d)
B fqe"”/b (abedu/ q) o (bue®). (bue "), J
" (baulq)(beu/ q)o(bdul @), et
(3.6) /qe""’/f  fabedv/q)o(cre®)oo(cve )
getre T4 (cav/q)oo(cbv/q )o(cdv/q) o,
X 6W5(¢1bcd1f1; q/u, q/v, adq_k/t; q, theuvg“ ™ ?).

Using the sum of the (®5 series [16, IV.9] in (3.6) and simplifying, we
get
Hk(x’ y; a, b: (& d) =
(abed),, /qe_""/b (betug ™) (bue”)o(bue "),
BT (betgh)y, 7 "0 T (bau/q)(beul q)o(bdul q)o,
f qe '/ 4 ‘y_(bctvqk hleve'®)(cve ) (abeduv/ ).,
9% T (cav/ q)(cbv/ q)o(cdv] q)o(betuvgd ),

However, using Al-Salam and Verma’s [1, 7] formula for expressing the
sW5in (2.19) as a g-integral, the integral over » in (3.7) turns out to be

41 — @) (@)oo(@b)oo(ad)oo(bd)o,
2ic sin ® | (ae'®) (be'®) (de'®).
| D)odl*(btg ™" V)o(abdue '*/q)c
(abde™'®)_(btug" e )
X 8W7(abdq—‘e_’¢; q/u, adt'q % ae”®,
be_iq’, de_i(p; q; btuqk_leiq) .

(3.8)

The next important step is to use Nassrallah and Rahman’s [9] integral
representation for an ¢®;:

sWo(abdq 1e_"(l); q/u, adt” 1q_k, ae_iq’, be_iq), de”"q’;
q, btucf B ]eiq’)
(@)oolae”"P)obe ™) oo(de” ") oo(bau/ g)o(bdu/ q)o,
B 27(ad )o(ab)oy(bd Yo(abduq ‘e ),
. (adu/q)(abde By (1) (ba” ' 1g) (bd 1),
(bte "¢,

(3.9) - fl ] w(z; \/@ e 1%/2 1 fad e 1%/2 1 /bd e 12, Vabd ueid)/z)
- d b a q

h(z; \/abd &%)
X /7,92,
h(z; \/b/ad tge'*’?)
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provided

( fab _ |ad /bd)
max — V=, V=] <1
d b a

Using (3.8) and (3.9) in (3.7) and simplifying, we get, with z = cos ¢,
H (x,y;a, b, ¢, d)

_ (@bed)oy g1 = @5
(betgh),,  2ic sin ®

o 1@ Do 1q Vo™ 14" )oo(bd” 14 )

27(ae'®) oo (be'®)oo(de ) oo

(3.10) X /I w(z' H@ e—i‘I)/Z '\/a_d d"i‘l’/Z
-1 ’ d s b y
\/Ej e 12 \/Ed tqkei(b/z)dz
a a

< [ a0 (betugt V) (bue®),,
9’1 (beu/ q)obrue” g 1),

% (bue_io)oo(adu/ Do du
(\/Egl—) uei\p+id>/2/q)oo(m uei(b/z—w/q)oo q

If we now assume ad = bc the last g-integral becomes the sum of
appropriate multiples of the balanced and non-terminating ;®, series
which is summable by Sears’ formula [15]. Thus

f ge”""/b (bctuzf‘ - 1)00(bue"f))oo(bue_"6’)oo du
(3 11) qeia/b (btue_ioqk—l)oo(b\/Eueiq)/z"'i‘ll/q)oo(b%ueiq)/zq_l\ll)oo q
a0~ 9@e | (Yool (ce®) o (z; VVetge %)

2ibsin 0 h(x; tde OW(z; Ve T D)h(z; \fee' 2T

Use of (3.11) in (3.10) yields
H,(x,y;a b, c, bca_')
70— @B Do) (D)ool €)ool (c€ )y
8mbe sin 0 sin ®(ae'®), (be'®) (bca™'e'®),,
(3.12) x U )eoba” 1 )lactd )
(betq")ootg e® ~P)oltghe P71,

1 . b\/c _. o . .
w f—lw(Z; \/Ee 10/2, ;/_e z<1>/2, \/Ee10+ztl>/2’ \/Eelcb/z 10)
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h(z; by/ce® Dh(z; \Jete *2g")
8 a g
L4 —idn .9 en
h(z, \/Ee )h(z, \/Ee )

The integral above is of the type

/1 h(z; Dh(z; —Dh(z; Vq)
U h(z; Mh(z; wh(z; v)

dz.

. h(z; —\/Qh(z; wh(z; Mwpor/w) dz
h(z; p)h(z; o)h(z; T) V-2

Note that the integrand has an overall balance in the parameters; this
property enabled the author recently to express the integral as the sum of
two balanced, very well-poised and non-terminating |,®, series [13].

Use of this formula for the integral in (3.12) gives

2m(bta” N (ctge®) (bea 'tgte®),,
(@oclceP)co(bea e~ )| (ce”)oo(bea™ ')
% | (bca™ 1tqke’ﬂ)ool2
(16 Yoolba™ ' 1q Yoch (x: 1qe™)
o { (b0)oo(be)oe(1q ool et e ")
(ac” oo(ae™ M) oo(bca™ 1g )oolbea™ '1gl e ),
X I()Wg(bczcz‘ltqk_l; tqk, bctqk‘l, ca‘ltqk,

ce®, ce ™ beca 'e'®, bea e '®; ¢, q)

(ab)oo(b¢) ool (cew)oo(bca B 1e"(l))c><>
(bta™No(ca” Vo) (ae®)oo(bea ' 1g ) |
(atqe®)oo(btg ) (1g" Yool ca” 14" )oo
(ae™'®)(be ") (ctg e ®)oo(bea” ' 1gFe®) (ac T 1g" ) (abiq oo
X 1oWolabtg ™ 1k, betg” ™, ac™ 'tgt,

aew, ae*"a, beiq), be‘iq); q, q) }

Substituting this for the integral in (3.12) and using the subsequent
expression for H, in (3.5) immediately leads to (1.20). This completes the
proof of (1.17).

Note that the restrictions that are required for the existence of the
Riemann integral in (3.12), namely, that

max( |c|, [b*ca™ 2, |a®c” Y|, |P/c]) < 1
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can be removed, by analytic continuation, and do not need to be applied
to (1.17) and (1.20) which are subject only to requirement of uniform
convergence.

4. A proper g-analogue of Feldheim’s formula. As we observed in
Section 2, eq. (2.16) provides only a formal analogue of Feldheim’s sum
(1.1), but it cannot be directly applied to any problem of interest, unless
we find a companion formula that connects the ,®; in (2.16) to its natural
companion in (2.20). Accordingly, we set

(4.1) B, = ¢"(at/bc)(agt/be), (—agt/be), (— agt/be),
/(a|a2a3a4t2/b4c4)k
in (1.17) and (1.19) to get

S (’Pq ", = Bl Nab), (ac), (belt),
=0 (@),(1 = b°cq~Ybta™ "), (b*ca™ "), (ber),

(t/a )"

® [alt/bc azt/bc a3t/bc a4t/bc . ]
453 ayapaza,t? /bt betd, g " be T

X p,(x; a, b, c, bca” )p,,(y; a, b, c, bca )
(B A eacT D))o,
(D) oe(@C)oo(BC )oo(a@C ™ o
| (a¢)oo(be' M)os(cte®)oo(bea 1)
(b%ca™ )oo(bet)obea™ ' 1)gol (1671 P) (16 )

Q (ay1/be ) (ant/be), (—agt/be), (—agt/be), (bcta™ 't),
k=0 (q)k(t)k(qt/bc)k(ac~lt)k(a,a2a3a4t2/b4c4)k
l(tei0+i®)k(tei0—id)) ?
| (cte'®)(bea™ '1e), 2

X c/‘lOWg(bcza tqk ; tqk, bctq/‘_l, ca_'tqk,

ce’o, ce_io, bca'leiq), bca-]e_i(b; q, q)

(B*D) (e ') oo(t)oo
(a¢)oulbe)os(bPca™ o

| (ce)oe(bea” e?)oy(ate®)or(bte”)oo’
(b*a™")oo(ca ™ )o(a@bt)oglbet)oo| (167 P) (26~ D) 2

2 (oy2/bc) (ayt/be) (— a3t/bc)k( a4t/bc)k(abt)k

4.2)
k=0 (@) (qt/bc)(ca t)k(a]a2a3a4t /bt )k
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I ([€i0+iq’)k (teia’iq))klz
| (ateiq))k(btem)k|2

X g 1o Wolabtg" "5 1", betd" ™", ac™ 't

aeio, aeiio, beiq), be—i‘b; q, q)-

Setting ad = bc and a5 = —ajaya304¢/bc in (2.20) we get

B2 (0‘1“20‘3“414}1) (“1“2"]")

b bc

2n
( _ﬂa_zbitf]__ )Oo(a]qn)oo(ann )oo( - a3qn)oo
C

(-osd) (o) (%) (%)
bc 0 bc ° bc/®\ ¢t />
X

(wwmm$ﬂﬁik

n

- 22
% 8W7(_a1a2(x3tq2n I, _ala2a3t’ _b C f
bC b3C3 a4
oqqn, azq", —a3q"; q, —a4t/bc)
@3) = n n(bc/1), [alt/bc azz‘/bc a3t/bc a4t/bc ) ]
' (bct) ®; a a0t /b4t betd, 1g' " be 0T d

+ (a]t/bc)oo(azt/bc)oo( —'a3t/bC)oo( - a4[/bc)oo
(01)00(02) oo ™ @3) 0o — Ag)oo(DC ) oo (2/ BC) oy
wmummww&w%w
(a1a2a3a4t /b4c4)00

(ap), (), (—a3),(— ay),

005030,
ww%ﬁﬁihfﬁ

D" q( )(—qu)"

X

a,q", arq", —a3q", n_“4qn
X 4q)3[b202q2n, ‘11‘12[)0;36‘;4"1 ’ bcq"+1/t; q, ‘I]~
Now we add the appropriate multiple of (2.16) as suggested by (4.3) to
(4.2) after setting
d = bca”' and as = —ajayazaut/be,

to obtain
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(b**q ), (1 — b2G" ab),
n=0(q),(1 — bzczq* l)(bcza - ')n (b*ca™!

n

(aC)n(al)n(a2)"( “a3)n(‘an )"( —%2('(13[)2"

('_0(20131) (_ala3f) (alazt) (ala2a3a4t) (bzcz)
be I\ be Jn\ pe I\ pS e

ot _amat bq"
be ’

X (t/a) g W —

5 B

b oy
9", ayq", —a3q"; q, —ayt/bc)
X p,(x; a, b, c, bca‘l)pn(y; a, b, c, bcail)

(g7 b)) @t/ be) oo — agt/ be Yoo — a3/ be)o,
(aj03t/ be)oo(— ajast/ be)oo(— oot/ be) oo (2 be) o

< ()i (@) (—a3) (—ay)y

K20 (@) (be ) (be), (b ea™ Y, (b*a™ "),

| (bea™ leio)k (bca™ lei(b)k|2qk
(aapaz0,41/ B>, (beg/ 1), (bea™ %),
X 1oWel@®d e g7k ag' TR be, ag' TR b, ¢k,

aé® ae™ ' aé

X

[

i

,ae "% g, q)
(2 Doo( @)ool — 43)ool — )l — @ @ya31/ bC) o
(ajoyt/ be) oo — ayazt/ be) o o(— agyost/be) g,
(a0, /B¢ o (Doolac™ 1)y,
(—at/be)o(@yayazat/ B Yo (ab)oo(ac)oo(a@c oo
| (ae'®) (be'®) o (bea™ 1e®) (cte'®). | 2
(b0)oo(bca™ Noo(bPa™ " 1)obe/ 1), (11 P) o171 )

S (aq/be), (ant/be)(— azt/be ), (—agt/be) (be*a™ 1),
k=0 (@r(p(gt/boy(ac (o cpazay /b,

| (2 P), (1" T, 2 1, k-1
- . Wo(bc“a 't ;
l (Ctelq))k(bca—ltele)k|2qk10 9( qk

tqk, bctqk_l, ca_'tqk, cew, ceiio, bca*le'.q), bca_‘e_"q); q, q)

(al)oo(aZ)oo( - a3)oo( - a4)oo( - alazd3t/bc)oo
(ayayt/bc)oo(—ajast/be)o(—ayast/be),,
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(0030482 /B*?) (1) oo(ca™ ' 1)oy,
(—ayt/be) @ apano,t/ b (ac)o(b*ca oo(bca V),
1 -1 i i0 id
| (ce”)oelbea'e®)or(bte”)oo(ate™)o
(bC)oo(ca™ Nool@bt)oo(be/ 1oy (16771 P) (26" 710 o

k=0 (D (1)

(‘a3t/bc)k(_a4t/bc)k(abt)k
(qt/bc)k (Ca_ lt)k ((Xla2a3a4t2/b4c4)k

| (teia‘f‘ifp)k(teio.*iq))k |2 k
| (ate'(p)k(bte'())/d2

1oWolabtg ™" tg¥, betg" ™", ac 1,

ae® ae " be'®, be'?; q, 9).

(4.4)

This is a formidable-looking formula and on first sight may appear
unusable. However, there are a number of properties that make it much
more useful than the apparently simpler formula (2.16). First, the ¢W;
series on the left (which is, of course, the same as an ¢®-) is transformable
to another ¢W; of the same kind as in (2.21) or to a pair of balanced 4,®5’s
in a number of ways as in (2.19). Second, the ;W series in the first term
on the right hand side is a very well-poised terminating and balanced ,®,
and as such is transformable to another (@, by Bailey’s theorem [4].
Third, the pair of generally non-terminating |, W, series in the second and
third terms on the right hand side can be transformed to a similar pair by
Bailey’s formula [5]. Finally, one can show by suitably choosing the
parameters «, «,, as, &, as powers of g, setting

(4.5) a = qa/2+1/4, b — q(l/2+3/4’ ¢ =

_ Bt

and taking the limit ¢ — 1 that (4.4) does approach a formula that is
reducible to Feldheim’s sum (1.1). Accordingly, we shall call (4.4) a
g-analogue of (1.1), and we claim that it is a more appropriate one than
(2.16). In the next section we shall consider a special case of (4.4) in an
attempt to justify this claim.

5. Some special cases: a Poisson kernel. In this section we shall
consider some special cases of (4.4); cases in which the 4 W, series on the
left can be summed. There is one obvious case in which the series becomes
a (@;. This happens when, for instance, a; = —bc/t. Then we get
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a]a2q2n—l’ q\/_’ _q\/’7 a](fl, azqn,

= .0
s Vo, =V ad' o,
22 n
oo bc
beq' /1, '2 2 - . 2
4 . > 4, —agt/be
o 00
alath"/bc b202 2n 9 %246]
b c
5.1 -
71— n
aja0q”" ", gV, =g\ beq't,
= 6q)5 \/7, —\/7, a,ath”/b(‘
ajo,/ bt — bt "/ ay
2 9 5 g, —ayt/be

bZC2 2n’ — 0,050, /b2 2

(@@ ebetg oo — @050t/ D)oo~ g )
(ayaytq"/be ) P2 o — 105044/ by (— ayt/be)os

provided, of course, |a,2/bc| < 1. The left hand side of (4.4) then simplifies

to
(bet)oo( — )o@ @)oo — 0y @yt /B>c)
(bzcz)oo( - a4t/bc)oo(a]azt/bc)oo( - ozloz2a4/bzcz)OO
652 a0 (@0 - bzczq )

(ab),(ac),(bc/t),

2\n
ba Yy, (BPea N bey, Y

X p,(x; a, b, c, bca_l)p”(y; a, b, c, bcavl).

Because of the factor (—a;t/bc),, the first term on the right hand side of
(4.4) vanishes. Also, the second and third terms on the right become single
series since the factor (—a3t/bc), is zero unless k = 0. When we equate
both sides the terms with a;, a,, a4 cancel out and we get the following
formula

(b*)os(Doolac 1),
(b)oo(@b)oslac)olac™ e,
| (ae”’)oo(beid))oo(bca B ]teio)oo(ctei <I>)00|2
(bPca "o (bet)oy(bPa™ 1) | (1?0 (1?0
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X l()Wg(z‘bc?‘(flq_l; t, bctq'], cailt,

ceia, ce_m, bca_]e’d), bca']ef"(b; q, q)

(D)oo oslca™ ' 1)y
(b)ool(@c)oo(b’ca™ gy
| (ce)oo(bea” &)y (b1 oo(ate' )
(ca™ Neo(bPa™ N oobet)o(abt )| (1677 ®) (16?1 P)

(5.3)

X

X IOWg(abtq"]; 1, bctq_l, ac_]t, aeio, ae*"g, be@, be_i(b; q, q)

S (B°Pg D, = BPg" Nab),(ac), (be/t),

2\n
=0 (@),(1 = b*q Ybta ), (bea ) (ber), (t/a)

X p.(x; a, b, c, bcagl)pn(y; a, b, c, bcail).

This may be viewed as a non-terminating extension of the inverse of the
product formula (2.8).
There are other special cases that one might consider, but the one that is
of more interest to us corresponds to an evaluation of the series
GWAAP; A, 1, —t, 1\/q, —1\/q; g, Aq) when |4q < 1.
Settinga = A", b = t,¢c = —t,d = 1\/g, e = —1\/q, [ = A in (2.19)
we find

WA 1, —1, 1\/q, —1\/q, 4; q, Aq)

(AP (= Dot VDo — 1V Doy
(A1 @)ool = A1V @)ool @)oo — Deo

o [A, —Aq, 1\/g, —t1\/q Ly q]
473 Atq, —Atq, —q T
L A4 Ao VDo — 1V Do 1 — A
(A oo = ANV PDo G0l — Do 1 + 4
Ag, —A, t\/q, —1t
4(1)3[ 1 f \/(} > 4 Q]~
Atg, —Atq, —q
Now,
A, —Aq, 1\g, —t\/q . ]
43 Atq, —Atq, —q 44

N 1 — A4(I)3[Aq, —A,1\/q, —t\/q

1+ A4 Atq, —Atg, —q 4 q]
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_1—4 § VD (V"

1+ A 0 (@ — i (A1g) (— Arg),

1 + A4
1 — 4

(5.5) X {(A)(—Aq), + (—A4)(A9), }

_ 2 § (A (— A NV Dp(— 1V ),
I + A4 k=0 (@(—q)(Atg),(—Atq),

2 [AZ, qt2 ) ]
1 > q

B mz Aztzq2 > 4

since

(5:6) (@ qu(—a; q) = (@ &)

and
U~ Agya— + (~Ay g,
— (Aq) (= A)iy + (—A)(Ag),
= 2= Ay gy, = DR

However, by Heine’s formula [3, 8.4 (3) ]
[Az, av, 2 q] _ (4 Dol T D)oo
Pt APF Dot Doo
_ AVE Dol —AVE D)oo Do — 48 Doo
(414; @)ool —A19; Qoo V& Do — V5 D)oo

(5.7

by (5.6).
Using (5.7) in (5.5) and (5.4), we obtain

sWoAL; 1, =1, 17/g, —17/g, 45 ¢, Aq)

58 (APe(Ag0)e0

(A9)ocl 424 ) oo
In deriving the final expression on the right hand side we made use of the
identity

(5.9) (@ 9)y, = (@ @)lag; ),

= (Va; 9),(—Va; 9),(\ag; 9),(—\ag; 9),,
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To see how the parameters «), . . . , a4y may be chosen to relate the W,
in (4.4) with the W5 in (5.8) we first transform it by (2.21):

2n—1 . 1 noo__ n
sWo(—ayayastqg™ ' /bes g, anq’, —asq’,
— a0t/ B3¢, — b " ay; g, — agt/be)

(ot /be)oo —aq )

(5.10
) (b2 2(]2")00((X|(Xza3a4[q /b3C‘ )oo

(ala2a3a4l /b4 )Oo(bctq )oo

(—oayt/bc)o(— <>11012013t2qz/b202)OO
X Wi —ayapoqt’q" /b gt/ be, agt/be, —ast/be,
—ala2a3t/b3c - bzczq"/oq, g, —ayq").

Now we choose a; = a3 = bc, ay = a4 = bcn/q so that the left hand
side of (5.10) equals

g Wo(— bct2 Vo~ 1Ng — 1NV, —bcq”*l/z; q, —bcg

_ ( b2 _tq212+l/2)oo( bcqn+I/Z)OO(qZZ)OO(thqN)OO
(bhc- 2”)oo(b tq"+l)oo(_t\/—)oo( bCl2 iH—]/Z)OO

(b2 2 Zn) ( bet qn+l/2)
( be n+]/_)oo(b2C2 2 2;1)00

/1+l/2)

by (5.8)

_ (@)eclbetq )~ B2C1g™ 1)

A S NN
Substituting this for the 3 W5 on the left hand side of (4.4) and simplifying
by using (5.9) we get
(G)oolbe)ool =11/ q)oq
(= 1V@eo(beqt)oo (B¢ )
(b*c*q D, (1 = B¢ Yab), (@), -
-0 (@),(1 = b°c*q~ Ybc’a 1), (b*ca™ ),

X p,(x;a,b,c, bca_')pn(y; a, b, c, bcaﬁl).

Using this in (4.4) and simplifying the coefficients we obtain the Poisson
kernel for ¢g-Wilson polynomials
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oo

(b2czq_l)n(1 _ b262q2n~1)(ab)n(ac)n
i=0 (@, (1 = bCq” bta ), (bea ),

X afznt”p,,(x; a, b, c, bca_l)p"(y; a, b, c, bca*l)
(begt)o, X (—bc)k(bC\/c_I)k(—bC\/(}),‘.
(1/bc)o k=0 (@) (b’a Ny (bPea ),

| (bea™ e, (bea™'e'®),Pq

(be )i (bea™ ) (beqt), (beq/ 1),
(511 X We@b e g K ab 2 g R ab T e g R g,

=1 =10

(Doolac™ 1) (BN,
(ab)oo(aC)o(bC)ofac™ )y
|(aeio)oo(bei(b)oo(cteiq))oo(bca e 0)00|2
(b*ca Yo (bta 1) (bel b)) (te? ) (1e? ) )

S COEVDE D bla D, e, e T
K=o (@) (qt/be)(qr)(ac™ 1)l (cte' ) (bea '), 2

X l()Wg(bcchltq"'_]; tgt. betg" ", ca” \igt,
bcaﬁle"q), bea ‘e
(oolca™ "1)eo(B*A)es
(a¢)oe(be)oo(ca™ Noolbc’a™ oy
| (ce”)oelbea'eP)or(ate®)or(b1e”) o
(bca™ ") oo(abt)oo(be/ 1)o| (167 D) (2?1 P) oo
v S oV Vayabnl (e e T,
k=0 (@) (qt/be) (g (ca 1), (a1e®), (bre), |2
X o Wolabtg" ™' tq", beid ™!, ac™1gt,

beiq), be_’@, aeio, aef"o; q, q)-

—i<I>, cem, ce—if); q, q)

>,

This is the same as eq. (6.13) in [7]. The right hand side is clearly
non-negative for a, 8§ > —1 where

a/2+1/4 /2+1/4
q b= -q*

a= av/q, ¢ =

and0 <1< 1,0<g< .
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Note that the procedure of obtaining the Poisson kernel from (4.4) is
analogous to deducing Bailey’s formula {3, p. 102] from (1.1) in [12]. As
such, one might even call (4.4) a generalization of the Poisson kernel for
continuous g-Jacobi polynomials.

There are other interesting applications of the bilinear formulas derived
here which we hope to report in a later paper.
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