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Using State Functions and MRST’s AD-OO Framework
to Implement Simulators for Chemical EOR

xin sun, knut-andreas lie , and kai bao

Abstract

Surfactant and polymer flooding, alone or in combination, are common and effec-
tive chemical enhanced oil recovery (EOR) methods. This chapter reviews the main
physical mechanisms and presents how the corresponding mathematical flow mod-
els are implemented as an add-on module to the MATLAB Reservoir Simulation
Toolbox (MRST) to provide a powerful and flexible tool for investigating flooding
processes in realistic reservoir scenarios. Using a so-called limited compositional
model, surfactant and polymer are both assumed to be transported in the water
phase only but also adsorbed within the rock. The hydrocarbon phases are described
with the standard three-phase black-oil equations. The resulting flow models also
take several physical effects into account, such as chemical adsorption, inacces-
sible pore space, permeability reduction, effective solution viscosities, capillary
pressure alteration, relative permeability alteration, and so on. The new simula-
tor is implemented using the object-oriented, automatic differentiation (AD-OO)
framework from MRST and can readily utilize features such as efficient iterative
linear solvers with constrained pressure residual (CPR) preconditioners, efficient
implicit and sequential solution strategies, advanced timestep controls, improved
spatial discretizations, etc. We describe how the computation of fluid properties
can be decomposed into state functions for better granularity and present several
numerical examples that demonstrate the software and illustrate different physical
effects. We also discuss the resolution of trailing chemical waves and validate our
implementation against a commercial simulator.

7.1 Introduction

Mature fields account for a considerable part of the world’s current crude oil pro-
duction. New discoveries are becoming more scarce and it is thus increasingly
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Figure 7.1 Summary of EOR methods, adapted from [2]. Herein, we consider
methods marked in red.

important to enhance oil recovery from existing fields in response to global energy
demand and depleted reserves. Enhanced oil recovery (EOR) refers to processes
that change the physical and chemical properties of the rock and the reservoir
fluids to recover more hydrocarbons. When EOR is performed after gas injection
or waterflooding, it is referred to as tertiary recovery. EOR methods can roughly
be divided into two major categories (Figure 7.1) [2]: thermal and nonthermal
methods.

The dominant mechanism of thermal methods is to increase the reservoir tem-
perature by injecting heat into the ground, thereby further reducing the viscosity
of the crude oil and improving its fluidity within a high-temperature environment.
Thermal methods mainly consist of steam injection (steam flooding or steam huff-
n’-puff), in situ combustion, hot water flooding, and electrical heating.

The nonthermal category includes a wider range of methods and more diverse
recovery mechanisms, which can be categorized as chemical flooding, gas drives,
miscible displacements, and microbial methods. The enhanced recovery mecha-
nisms mainly consist of increasing sweep efficiency, improving the efficiency of
the displacement fluid, improving the flow properties of the in situ crude oil by
changing its density and viscosity or its interfacial tension with water, and so
on. Among the various EOR methods, chemical EOR is very effective but expen-
sive. One particular challenge is that whereas the chemical processes that lead to
enhanced recovery are well known in theory and their effect can be proved in labo-
ratory, upscaling and applying them efficiently and economically on a field scale is

https://doi.org/10.1017/9781009019781.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.013


Chemical EOR Simulators with AD-OO and State Functions 259

a complicated balancing act. However, with the gradual depletion of petroleum
resources and with oil prices that remained at relatively high and stable levels
for a long time, chemical EOR received renewed interest in many oil companies,
especially in national oil companies in China [33].

Chemical EOR methods are basically classified into three types, named after the
chemical substances involved: polymers, surfactants, and alkali. In addition, peo-
ple have created new injection methods by adjusting the concentration of the three
substances and combining them, such as surfactant–polymer (SP) flooding, alkali–
surfactant–polymer (ASP) flooding, emulsion flooding, and micellar flooding [2].
Injection of alkaline liquids can enhance the effect of polymer and surfactant but
can also lead to problems such as excessive formation loss and severe scaling. For
these reasons, the use of alkali is not as common as polymer and surfactant in
chemical EOR processes. This chapter thus focuses on two chemical EOR methods:
surfactant and polymer flooding, on their own or in combination.

Polymer flooding: In polymer flooding, water-soluble polymers are added to the
injected water to reduce its mobility and hence improve the local displacement and
volumetric sweep efficiency of the waterflood [20]. A polymer is generally a chem-
ical compound of large molecular mass, consisting of repetitive structural units,
called monomers, bonded together by covalent chemical bonds. These come in two
main forms: biopolymers like xanthan gum (a polysaccharide) come as a broth or
in powder form, whereas synthetic polymers like partially hydrolyzed polyacry-
lamides consist of synthetic flexible straight chains of acrylamide monomers and
come either as powder or as a water-in-oil microemulsion [36].

The primary mechanism of polymer flooding is that dissolved polymer molecules
increase the brine viscosity, which increases the saturation behind the water front
and enables the water drive to push more oil through the reservoir, thereby leaving
behind less mobile oil in water-swept areas. A higher viscosity also reduces the
injected water’s tendency of channeling through high-flow zones.

Polymer can be adsorbed onto the surface of the reservoir rock, depending
on polymer type and rock and brine properties, which will reduce porosity and
permeability of the reservoir rock [36]. Moreover, the diluted polymer solution is
in most cases pseudoplastic or shear-thinning and hence has lower viscosity near
injection wells and other high-flow zones where shear rates are high. This non-
Newtonian fluid rheology improves injectivity and gradually introduces the desired
mobility control in terms of a stronger displacement front but may also reduce
conformance effects because the polymer solution will have a higher tendency
to flow through high-permeability regions. Polymer solutions can also exhibit
pseudodilatant or shear-thickening behavior, which improves sweep efficiency and
reduces injectivity.
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Onshore, polymer flooding is considered a mature technology with well-proven
results and relatively low commercial and technical risk. Many countries, especially
China, have applied this technology for decades to improve the sweep efficiency for
waterfloods with unfavorable mobility ratios and/or to reduce the water mobility in
high-permeability zones and improve the displacement of oil in low-permeability
zones; e.g., in reservoirs with significant vertical stratification. Offshore, applica-
tions of polymer flooding are still few because of challenges related to logistics and
platform space, high-salinity formation water, large well spacing, stability under
injection, treatment of polymer and produced water, as well as other health, safety,
and environment requirements [4].

Surfactant flooding: The main mechanism of surfactant flooding is to mobilize
trapped oil by reducing the interfacial tension, which is similar to miscible gas
flooding. In more detail, a surfactant consists of two parts, the hydrophilic head
group and the lipophilic tail chain [20]. The surfactant can therefore accumulate in
a large amount at the oil–water interface, adjusting the polarity difference between
the oil and water phases, thereby reducing the oil–water interfacial tension. It can
also increase the capillary number (i.e., the relative effect of viscous drag forces
versus surface tension forces acting across an interface between oil and water) and
thereby improve the relative permeability of the oil and water phases.

Like polymer, surfactant can be adsorbed on the rock surface, depending on
the surfactant type and rock properties. This happens when the positively charged
hydrophilic head group in the surfactant bonds with a hydroxyl group on the rock
surface. This will cause the surfactant to start accumulating on the rock surface
and form an adsorption layer. This adsorption has two effects: One is to change the
wettability of the rock surface, and the other is to reduce the effective concentration
of the surfactant in the solution, thereby reducing its ability to reduce the interfacial
tension between oil and water. In general, we treat the adsorption of surfactants as
an undesirable behavior that causes a loss of surfactants. As mentioned previously,
the surfactant molecules in the solution are able to adsorb at the oil–water interface
to reduce the oil–water interfacial tension. On the one hand, low interfacial tension
helps to reduce the residual oil saturation in the reservoir and improve the oil
washing efficiency. On the other hand, it can increase the capillary number, which
appears in the model as an increase in the relative permeability of the oil and
water phases.

Combined surfactant and polymer flooding: Decreased interfacial tension and
wettability alteration caused by injected low-concentration surfactant will in many
cases increase the relative permeability of the aqueous phase without significantly
improving the mobility ratio of oil and water. As a result, the pure surfactant
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slug will finger into the oil bank and significantly decrease the sweep efficiency.
A reliable remedy is to add polymer to the surfactant solution to counterbalance
the mobility decrease and improve the overall sweep efficiency in the reservoir.

In reality, one rarely implements surfactant flooding alone without adding poly-
mer [34]. This chapter therefore also discusses SP flooding as a combined chemical
EOR method. In addition to the pure polymer and surfactant flooding mechanisms
just described, the coexistence of polymer and surfactant produces a synergistic
effect, resulting in a “one plus one is greater than two” effect. The main synergis-
tic mechanisms are the following:

1. The viscosifying effect of the polymer can reduce the diffusion rate of the
surfactant, thereby reducing the loss of surfactant.

2. The polymer can react with calcium and magnesium ions in the formation water
and prevent these divalent ions from reacting with the surfactant to form calcium
and magnesium salts with low interfacial activity.

3. The coexistence of polymer and surfactant leads to competitive adsorption on
the rock surface, which can reduce adsorption loss of surfactant on the rock
surface.

4. The polymer can improve the stability of the oil-in-water emulsion formed by
the surfactant and further improve the sweep and washing efficiency.

5. Some surfactants can form a complex structure with the polymer to further
increase the viscosifying ability of the polymer.

In its most basic form, SP flooding is described by a flow model that consists of
two or three phases and three to five fluid (pseudo)components. Compared with
the standard black-oil models, the presence of surfactant and long-chain polymer
molecules in the water phase introduces a series of new flow effects.

In summary, understanding and being able to accurately simulate the interaction
between polymer, surfactant, water, oil, and reservoir rocks on a reservoir scale is
important for designing successful surfactant–polymer injection projects. In addi-
tion to the basic effects discussed so far, the fluid chemistry of the injected water
and the resident water tends to significantly affect the viscosifying ability of the
polymer and the interfacial activity of the surfactant. More advanced models of SP
flooding should therefore also consider the effects that pH, salt, microemulsion,
etc., have on the displacement process and the recovery factor.

In the following, we will review the basic flow equations for surfactant–polymer
flooding and show how to use so-called state functions and the object-oriented,
automatic differentiation (AD-OO) framework of the MATLAB Reservoir Simula-
tion Toolbox (MRST) to implement a complete and easily extensible, three-phase,
fully implicit chemical flooding simulator. At the end of the chapter, we also discuss
a few simulation examples and compare the results with a commercial simulator.
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Figure 7.2 Averaging of two partially mixed aqueous fluids over two (large) grid
blocks to give a single immiscible fluid phase with polymer concentration c.

7.2 Effective Modeling Using Black-Oil-Type Equations

This section explains physical assumptions and describes the basic flow equations
for surfactant and polymer flooding, which are built as extensions of the general
black-oil model, which is, e.g., discussed in detail in chapter 11 of the MRST
textbook [22]. We will also briefly outline how the various fluid properties that enter
the flow equations are interrelated and implemented using so-called state functions,
which were recently introduced in MRST. If you are not yet familiar with these, we
encourage you to read Chapter 5 before continuing.

7.2.1 Immiscible Flow Models

Polymer flooding involves two different aqueous fluids (water and polymerized
water) that can be fully or partially mixed inside the reservoir, depending on hetero-
geneity and the displacement process. In principle, one should be able to simulate
polymer flooding accurately on the laboratory scale, given a sufficiently fine grid
and possibly with the use of higher-order numerical discretizations. For field-scale
simulations, on the other hand, the required grid resolution is far beyond what
is computationally tractable. Instead, it is common to upscale the problem and
represent it as an immiscible fluid system, in which water and polymerized water are
considered as two pseudophases that together form a single immiscible fluid phase;
see Figure 7.2. The polymer content of this immiscible fluid phase is represented
by a concentration. To account for the effect of partial mixing of the two fluids,
we will modify the fluid properties of the pseudophases so that they depend on the
polymer concentration.

We use the same approach for the surfactant, which is assumed to exist within
both the water and the polymer pseudophases, and thus obtain two different con-
centrations, cp and cs , for polymer and surfactant, respectively.

In the general case of SP flooding, we therefore have a system with five different
components – oil (O), gas (G), water (W ), polymer (P ), and surfactant (S) –
that can separate into three phases: an oleic (o), a gaseous (g), and an aqueous
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(w) phase. The latter splits into a pure water (ww) and a diluted polymer (wp) pseu-
dophase. Each phase has an associated saturation Sα, a density ρα, a viscosity μα,
and a volumetric flow rate �vα. These are given by modified versions of Darcy’s law:

�vo = −kro(So,cs)

μo

K(∇po − ρog∇z) (7.1a)

�vg = −krg(Sg)

μg

K(∇pg − ρgg∇z) (7.1b)

�vw = − krw(Sw,cs)

μw,eff(p,cs,cp)Rk(ca
p)
K(∇pw − ρwg∇z) (7.1c)

�vwp = − krw(Sw,cs)

μwp(p,cs,cp)Rk(ca
p)
K(∇pw − ρwg∇z). (7.1d)

Here,K is permeability, g is gravitational acceleration, and∇z is the depth gradient,
and μα, krα, and pα denote the viscosity, relative permeability, and phase pressure
of phase α, respectively. All relative permeabilities, except for the gas phase,
depend on both the phase saturation and the surfactant concentration but not on the
polymer concentration, whereas the phase pressures are given by the relation

po = pw + pc(Sw,cs), (7.2)

where the capillary pressure function pc depends on the water saturation and surfac-
tant concentration. Finally, the nondecreasing function Rk(c

a
p) models permeability

reduction of the rock to the aqueous phase(s) caused by absorbed polymer.
As already explained, the two aqueous pseudophases combine into an immiscible

aqueous phase. For the Todd–Longstaff mixture model, which we will discuss in
more detail in Subsection 7.2.2, the volume of the two pseudophases split with the
ratio given by c̄p = cp/cp, max:

Sww = (1 − c̄p)Sw and Swp = c̄pSw.

Here, cp, max denotes the maximum possible polymer concentration. We assume
that the polymer content has a negligible effect on the densities of the aqueous
pseudophases, so that ρww = ρwp = ρw. Finally, we introduce a solid phase (s) to
account for the adsorption of polymer and surfactant onto the rock surface, whose
amounts are denoted ca

p(cp) and ca
s (cs), respectively.

We can now write the mass conservation for component i ∈ {O,G,W,P,S} as

∂

∂t

( ∑
α=o,g,w

φbαxi,αSα + ρs(1 − φ)xi,s

)
+ ∇ ·

( ∑
α=o,g,w

bαxi,α �vα

)
= qi . (7.3)

Here, φ is the porosity of the reservoir rock, qi denotes the source of component
i, and xi,α is either a volume fraction or concentration of component i in phase
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Table 7.1 Expressions for the volume fractions or
concentrations xi,α in the general immiscible
surfactant–polymer model (with phases α as rows
and components i as columns).

O G W P S

o 1 rs 0 0 0
g rv 1 0 0 0
w 0 0 1 cp cs

s 0 0 0 ca
p(cs) ca

s (cs)

α ∈ {o,g,w,s}; expressions for these are summarized in Table 7.1. As in the
standard black-oil model, we have introduced pressure-dependent shrinkage factors
bα to relate densities ρα at reservoir conditions to densities ρ0

α at surface conditions.
Likewise, the solution gas–oil ratio rs accounts for gas dissolved in oil at reservoir
conditions, whereas the vaporized oil–gas ratio rv accounts for oil vaporized in
gas. For the polymer component equation, we must additionally replace the water
saturation Sw by Sw(1 − sipv), where sipv is a scalar quantity that accounts for
inaccessible pore space (see Subsection 7.2.2), and likewise replace the water flow
rate �vw by the flow rate of the diluted polymer pseudophase �vwp.

7.2.2 Physical Effects of Polymer

In this and the next subsection, we discuss various effective properties for model-
ing the pertinent EOR mechanisms for polymer and surfactant flooding. We will
explain the underlying flow physics, outline how the corresponding effective prop-
erties are implemented in MRST, and show how they affect the displacement pro-
cess. We will then come back to more details of how the various effective properties
are integrated into the overall simulator framework to form appropriate model
classes in Section 7.3.

Effective Viscosities

Polymer flooding is also called tackifying or thickening waterflooding. This illus-
trates, from another aspect, the importance of the polymer’s viscosifying effect on
EOR. Increasing the water viscosity can reduce the water–oil mobility ratio, thereby
reducing the fingering effect of water and improving the spreading efficiency of
the displacement agent, and ultimately enhance the oil recovery. The molecular
structure of the polymer explains the reason for its thickening effect:
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Figure 7.3 Polymer molecules dissolved in water. The long-chain molecules,
illustrated by black curves, fully stretch and entangle with each other to increase
the viscosity of the aqueous solution.

1. Polymers have a high molecular weight because they are formed from a large
number of repeating chain links.

2. The hydrophilic groups in these chain link undergo solvation in water, so that
there is a layer of “water sheath” formed by solvated water outside the polymer
molecules, which will increase the internal friction when the water phase moves
relatively; that is, it increases the water viscosity.

3. Ionic hydrophilic groups dissociate in water, resulting in many chain links with
the same type of charge. They repel each other, which makes the polymer
molecules more stretchable in water (Figure 7.3) and gives better thickening
capabilities.

In addition, if you have deployed polymer solutions in a laboratory experiment or
in the oil field, you should find that polymer dissolution is a cautious and slow
process. Once a large amount of polymer is added to the water for a short time,
the dry polymer powder will aggregate into a mass and become extremely difficult
to dissolve. The reason for this phenomenon is that the molecular weight of the
polymer is relatively large, so the speed of its various links unfolding in water
is relatively slow. For the same reason, the process of diluting high-concentration
polymer solutions is also slow. This means that when we inject a relatively high
concentration of polymer solution into the formation, we cannot assume that the
polymer solution and the formation water are instantaneously miscible and form a
single-phase state.

For the effective viscosities of the water–polymer mixture, we use the Todd–
Longstaff mixing model [38], which introduces a mixing parameter ω ∈ [0,1]
that takes into account the degree of mixing of polymer into water. The effect of
polymer on the viscosity is included in the model as a multiplicative function γp.
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For a fully mixed polymer solution, without surfactant and at reference pressure
condition, we have

μw(cp) = γp(cp)μw. (7.4)

For the partially mixed case, the viscosities of pseudophases wp and ww are, in the
absence of surfactant and at reference pressure conditions, given by

μwp(cp) = γp(cp)ωγp(cp, max)
1−ωμw= γ wp

p (cp)μw, (7.5a)

μww(cp) = γp(cp)ωγp(0)1−ωμw = γp(cp)ωμw. (7.5b)

The latter equality follows because γp(0) = 1. The effective water viscosity is then
calculated as a harmonic average of the contributions from the two pseudophases

μw,eff =
[

1 − c̄p

μww

+ c̄p

μwp

]−1

=
[

γp(cp)ω

1 − c̄p + c̄p/γ 1−ω
p,max

]
︸ ︷︷ ︸

γ eff
w (cp)

μw, c̄p = cp

cp, max
.

(7.6)

Microscopic displacement efficiency: To understand how the effective viscosi-
ties affect a displacement, we look at the fractional-flow theory for 1D displace-
ments, which is a generalization of the classical Buckley–Leverett theory of pure
waterflooding discussed in section 8.4 of the MRST textbook [22]. You can consult
[27] for an early introduction to this theory for various displacement types, includ-
ing polymer and surfactant flooding, and [6] for a more comprehensive overview.

To be specific, we consider polymer flooding consisting of two phases (oil and
water) and three components (oil, water, polymer) in a 1D homogeneous, isotropic
medium with uniform initial distribution of fluids and continuous injection of con-
stant composition from the left end. We assume incompressible fluids with neg-
ligible capillarity, dispersion, and gravity. For simplicity, we only consider the
fully mixed case with water viscosity given by (7.4). Finally, we assume constant
porosity and rescale the equations to remove the dependence on flow rate, poros-
ity, length, and area. This reduces the flow equations to the following first-order,
quasilinear, hyperbolic system (for brevity, we drop subscripts p for polymer and
w for water):

∂tS + ∂xf (S,c) = 0, (7.7a)

∂t

(
Sc
)+ ∂x

(
cf (S,c)

) = 0, (7.7b)

f (S,c) = krw(S)

krw(S)+ kro(S)μw(c)/μo

. (7.7c)

In fractional-flow theory, we consider initial-boundary data of the following form:
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(S,c)(x,t) =
{

(SL,cL), x = 0, t ≥ 0

(SR,cR), x > 0, t = 0,
(7.8)

where (SL,cL) and (SR,cR) are constant states. In mathematical literature, it is
more common to consider the Riemann problem, with (SL,cL) imposed as initial
data on the left half-line (x ≤ 0,t = 0). These two problems are mathematically
equivalent and have the same solution, because the system (7.7) only has positive
characteristics.

Solutions of the problem (7.7)–(7.8) will generally consist of a set of constant
states separated by elementary waves (rarefaction waves, shocks, and contact dis-
continuities). These waves are functions of x/t only, which makes the overall
solution self-similar. To determine the wave structure, we start by expanding the
derivatives in (7.7) and writing the system in quasilinear form,

ut + A(u)ux = 0, A(u) = A(S,c) =
[
fs(S,c) fc(S,c)

0 f (S,c)/S

]
. (7.9)

The eigenvalues of A are ξS = fs and ξc = f/S. Continuous elementary waves
must be integral curves of the two corresponding right eigenvectors ηS and ηc.
A complete solution of the Riemann problem for all possible combinations of left
and right states was first given by Isaacson [15]. We will briefly introduce some of
the ingredients, but we do not explain the general solution in full detail.

For ξ = ξS , the eigenvector is ηS = (0,1)T so that c is constant along the
corresponding integral curve. This means that the S-waves can be found by solving
the scalar Buckley–Leverett equation, St + f (S)x = 0; the solution is discussed in
section 8.4 of the MRST textbook [22].

For ξ = ξc, the eigenvector ηc = (fc,ξ
c − ξS) gives a linearly degenerate

characteristic field, because ∇(S,c)ξ
c · ηc = 0, so that the resulting c-waves are

contact discontinuities and not proper rarefaction or shock waves. Because ξc =
f/S is constant along a contact discontinuity, these waves have no inherent self-
sharpening to counteract numerical smearing, unlike shock waves, for which the
characteristics of any intermediate state along the wave curve point into the shock.

Figure 7.4 explains the graphical construction for the special case with SL = 1,
cR = 0, and SR = Swc (connate water). This solution is simple to determine. Given
an injection concentration cL, we first determine the values S1 and S2 by solving
two scalar equations (where f (·;c) is a function of one variable for each given c):

f ′(S1;cL) = f (S1;cL)/S1, f (S2;0) = f (S1;cL) S2/S1. (7.10)

To determine the full solution, all that remains now is to compute the scalar
Buckley–Leverett solutions that represent the S-waves for saturation values from 1
to S1 and from S2 to Swc. As explained in the MRST textbook [22, section 8.4],
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Figure 7.4 Fractional-flow analysis of polymer flooding with increased mobility
ratios because of full mixing as the only physical effect included. The left figure
shows the construction of the solution in (S,f )-space. The right figure shows
the self-similar solution in (x/t,S)-space. (The figure assumes a viscosity ratio
of 5 between polymer and pure water, equal viscosities of water and oil, Corey
exponent 2 for water and 4 for oil, and connate and irreducible water saturation
equal to 0.2.)

this is done by constructing the concave envelopes of f (S;cL), S ∈ [S1,1] and
of f (S;0), S ∈ [Swc,S2], which both can give a shock followed by a rarefaction.
The right plot in Figure 7.4 presents the resulting self-similar solution. Adding
polymer to the injected fluid reduces the penetration of water into the reservoir
by lowering the saturation and propagation speed of the water front. This delays
the water breakthrough and enables us to uphold a higher oil production rate.
Behind the polymer front, all connate water initially present has been displaced by
water containing diluted polymer in a piston-type displacement. This displacement
increases the microscopic displacement efficiency and leaves less residual oil
behind compared with the corresponding waterflood, when viewed at a given
instance in time. We encourage you to run the script showRiemannSolution to
see how the solution changes with the viscosity ratio between polymer and pure
water, the exponents in the Corey relative permeabilities, and the connate and
irreducible water saturation.

Macroscopic displacement efficiency: In addition to improving the injected
water’s ability to locally displace oil from the pores, polymer can have a significant
conformance effect. Improving the viscosity ratio between the displacing and
displaced fluids will reduce the tendency of the displacing fluid to form viscous
fingers for cases with unfavorable oil–water mobility ratios. You may also observe
low sweep efficiency of waterflooding for cases with mobility ratios close to
unity as a result of contrasting stratification or large areal permeability variations.
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high perm

low perm waterflood polymer flood

Figure 7.5 Improved vertical sweep efficiency in a layered system with contrast-
ing stratification (upper layer: K = (200,100) md, lower layer: K = (20,10) md).
The plots show water saturations from two high-resolution simulations of water-
flooding (left) and polymer flooding (right). (Source code for this example:
runPolymerTwoLayer.m.)

Adding polymers to the injected water will provide mobility control and counteract
undesired effects such as early water breakthrough. Figure 7.5 shows how injection
of polymer counteracts the formation of a thief zone in a simple stratified case.

Implementation in MRST: It follows from (7.6) that mixture viscosity is
modeled as a multiplicative effect, μw,eff = γ eff

p (cp)μw. The state-function frame-
work, which is a relative new addition to MRST, motivated and explained in
Chapter 5, contains several hooks that enable you to add in new multiplicative
modifications of existing properties by simply defining a new multiplier, imple-
mented as a state function. The viscosity multiplier γ eff

p (cp) is implemented in the
PVTPropertyFunctions group as shown in Listing 7.1.

Listing 7.1 Member functions of PolymerViscMultiplier.

function gp = PolymerViscMultiplier(model, varargin)
gp@StateFunction(model, varargin{:});
gp = gp.dependsOn({'polymer'}, 'state'); % check mechanism
assert(model.water);
assert(all(isfield(model.fluid,{'cpmax','mixPar','muWMult'})));

end

function effMult = evaluateOnDomain(prop, model, state)
fluid = model.fluid;
cp = model.getProp(state, 'polymer');
cpMax = repmat(fluid.cpmax, numelValue(cp), 1);
mult = prop.evaluateFluid(model, 'muWMult', cp);
multMax = prop.evaluateFluid(model, 'muWMult', cpMax);
cpbar = cp/fluid.cpmax;
a = multMax.̂ (1 - fluid.mixpar);
b = 1./(1 - cpbar + cpbar./a);
effMult = b.*mult.^fluid.mixpar;

end

The creator function declares that the viscosity multiplier depends on polymer
concentration as well as three functions/values from the fluid object. We also check
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that the model has a water phase, because γ eff
p only affects this phase. The second

function uses model-specific parameters extracted from the fluid object (i.e., the
multiplier γp(cp) and the two parameters ω and cp, max) to evaluate γ eff

p (cp) for the
polymer concentration found on the state object. One obvious alternative is to
hardcode the necessary functions directly into the fluid object, but by default, the
ad-eor module assumes that these fluid parameters are specified in an ECLIPSE
input file [5, 30], using the following keywords:

PLYVISC PLMIXPAR
0 1.0 1.0 /
0.5 4.0
1.0 8.0 PLYMAX
1.5 13.0 3.00 0 /
2.0 26.0
3.0 52.0 /

0 1 2 3
0

20

40

60

Because these keywords only contain scalar or two-column tabulated data,1

MRST’s standard deck reader will simply read them with no further ado. However,
to process the content and assign it functionally on the fluid object, we must use
the assignKEYWORD mechanism from the ad-props module. That is, we need
to implement three new functions called assignPLYVISC, assignPLMIXPAR,
and assignPLYMAX and place them in the subdirectory props of the ad-props

module. (You can find a brief explanation of how such assignment functions
work in the MRST textbook [22, section 11.3].) The latter two are simple one-
line functions that assign the scalar input value to the corresponding field in the
fluid object and are omitted for brevity. The processing function for viscosity,
shown in Listing 7.2, may seem somewhat obscure but follows a standard pattern
for such assignments. If you have seen one, it is not difficult to implement
another.

Listing 7.2 Processing of the PLYVISC keyword.

function f = assignPLYVISC(f, plyvisc, reg)
f.muWMult = getFunction(plyvisc, reg);

end

function muWmult = getFunction(plyvisc, reg)
muWmult = cell(1, reg.pvt);
for i = 1:reg.pvt

t = extendTab(plyvisc{i});
muWmult{i} = @(c, varargin) reg.interp1d(t(:, 1), t(:, 2), c);

end
end

1 In this specific example, PLYVISC only supplies a single table, but in general there can be multiple tables, one
per region, which each is terminated by a /.
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Figure 7.6 Illustration of polymer retention in porous media, inspired by [8, 36].
Polymer molecules, shown as black curly lines, are attached to the surface of
the rock particles. The blue lines and arrows indicate the flow path and direction
of the polymer solution. The three areas A/B/C correspond to the retention of
the polymer solution after passing through the pores of different sizes and their
effects on the subsequent fluidity. Zone A: Adsorbed polymer molecules causing
increased resistance to flow. Zone B: Molecules mechanically trapped by bridging.
Zone C: Molecules trapped by physical plugging. In addition, polymer molecules
can become hydrodynamically trapped in stagnant zones.

The first function is called automatically when MRST encounters PLYVISC

while processing all input keywords. It simply returns a function handle to the
internal function getFunction, which sets up functions to evaluate the multiplier
γp(cp) by interpolation in the values given in the PLYVISC input tables, one
function per pressure–volume–temperature (PVT) region. The first line in the loop
modifies the input data for each table so that we can use constant extrapolation for
any values outside the data span, whereas the second line constructs a handle to the
function that does the actual interpolation.

Polymer Adsorption

Polymer has a tendency to interact with the solid rock and either be adsorbed onto
the rock surface or become entrapped between rock particles. Figure 7.6 illustrates
various retention mechanisms. Such retention can have strong effect on the overall
displacement efficiency of polymer flooding.

Polymer molecules can be bound to the surface of the solid rock by forces such
as van der Waals forces (weak, distance-dependent forces acting between atoms
and molecules) and hydrogen bonding. This phenomenon is called adsorption. The
immediate effect on polymer flooding is the loss of the polymer: The polymer stays
on the surface of the rock, thereby decreasing the effective concentration of the
polymer solution. However, due to effective supplement of displacing fluid, the
effect is mainly seen as a backward shift of the front of the polymer solution
in the actual displacement process. The adsorption will also reduce the effective

https://doi.org/10.1017/9781009019781.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.013


272 X. Sun, K.-A. Lie, and K. Bao

rock permeability, because polymer molecules adsorbed to the rock increase the
flow resistance of the displacing fluid through the pores, as shown in Zone A of
Figure 7.6.

Another form of polymer retention, entrapment, refers to the phenomenon that
polymer molecules will tend to accumulate if they are too large to pass through a
narrow pore throat. This phenomenon causes polymer consumption and the cre-
ation of inaccessible pore space for polymer in the reservoir formation. When
the radius of the polymer molecule is smaller than the radius of the pore throat,
polymers can become entrapped by a gradual bridging effect. As shown in Zone B
of Figure 7.6, water may still be able to partially pass through an accumulation
of polymer molecules that are blocked outside a throat. However, this will greatly
increase the resistance to water flow and cause a permeability reduction. When
the radius of the polymer molecule is larger than the radius of the pore throat, the
entrapment is called physical plugging (see Zone C of Figure 7.6). In this case,
polymer molecules and water both cannot pass through the throat.

To make the description of the various polymer effects more structured, we
collectively refer to polymer loss caused by retention as polymer adsorption,
the increase in fluid flow resistance caused by polymer retention as permeability
reduction, and the reduction of pore space accessible to flow because of polymer
molecules that remain outside of pore throats or prefer the “highways” defined by
large pore throats as the inaccessible pore space effect. We will discuss the two last
effects in the following subsections.

As in [30, 31], we assume that adsorption is instantaneous and reversible
and model it through the accumulation term (1 − φ)ρsc

a
p(cp) in (7.3) (see also

Table 7.1). For the polymer adsorption parameter ca
p, we use an approach based

on Langmuir isotherms, so that the adsorbed concentration is a function of the
polymer concentration of the form

ca
p(ĉp) = ap(ĉp − ca

p)

1 + bp(ĉp − ca
p)

, ĉp = min(cp,c
max
p ), (7.11)

where ap,bp are constants, cmax
p is the maximum polymer concentration, and cp−ca

p

is the equilibrium concentration in the rock–polymer solution system. Figure 7.7
shows a characteristic form.

We consider the reversible case and the case without desorption. In the irre-
versible case, the term ca

p is replaced by ĉa
p, which denotes the maximum value that

the adsorption concentration has reached. More precisely, if we define

ĉa
p, max(t,x) = max

t ′<t
(ĉa

p(t ′,x)), (7.12)
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Figure 7.7 Typical shape of the adsorbed concentration ca
p(cp) as function of

polymer concentration cp.

we can define the cumulative amount of irreversible adsorption as

ĉa
p(t,x) = max(ca

p(c(t,x)),ĉa
p, max(t,x)). (7.13)

Microscopic displacement efficiency: To perform the same type of fractional
flow analysis as in Subsection 7.2.2, we consider the following 1D problem:

∂tS + ∂xf (S,c) = 0, (7.14a)

∂t

[
Sc + a(c)

]+ ∂x

(
cf (S,c)

) = 0, (7.14b)

where a(c) represents the adsorption term. Johansen and Winther [16] presented
complete solutions for the corresponding Riemann problem for all possible combi-
nations of left and right states under the assumption that a(c) is smooth, increasing,
and concave; the extension to multicomponent polymers is developed in [17]. The
solution is largely similar to the one we discussed earlier, except for one important
difference. The second eigenvalue is now ξc = f/(S + a′(c)) and corresponds to a
genuinely nonlinear characteristic field, because ∇(S,c)ξ

c ·ηc > 0. Any c-wave will
therefore be a shock if cL > cR and a rarefaction otherwise, and Riemann solutions
will at most consist of four constant states.

Let us look at how to construct this solution for the same setup as in Figure 7.4;
i.e., left state (1,cL) and right state (Swc,0). Now, the contact discontinuity will be
replaced by a c-shock that satisfies the so-called Rankine–Hugoniot conditions

f (SR,cR) − f (SL,cL) = σ
(
SR − SL

)
, (7.15a)

cRf (SR,cR) − cLf (SL,cL) = σ
[
SRcR + a(cR)− SLcL − a(cL)

]
. (7.15b)

Here, the scalar constant σ denotes the shock speed. We can now use (7.15a) to
eliminate fL or fR from (7.15b), which gives
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Figure 7.8 Fractional-flow analysis of polymer flooding with adsorption and
increased mobility ratios because of full mixing. The left figure shows the
construction of the solution in (S,f )-space. The right figure shows the
self-similar solution in (x/t,S)-space. (The figure is generated with the
showRiemannSolution script and assumes a viscosity ratio of 5 between
polymer and pure water, Corey exponent 2 for water and 4 for oil, connate and
irreducible water saturation equal to 0.2, and strong adsorption with hLR = 0.6.)

(
cR − cL

)
fL = σSL

(
cR − cL

)+ σ
(
aR − aR

)
, (7.16a)(

cR − cL

)
fR = σSR

(
cR − cL

)+ σ
(
aR − aR

)
. (7.16b)

If we solve both of these equations for σ , we can express the Rankine–Hugoniot
conditions as

σ = f (SL,cL)

SL + hLR

= f (SR,cR)

SR + hLR

, hLR = a(cR)− a(cL)

cR − cL

. (7.17)

Figure 7.8 illustrates the graphical construction of the corresponding solution. Here,
we have chosen the adsorption to be so strong that the leading S-wave is a com-
posite wave consisting of a shock wave from Swc to S3, followed by a (small)
rarefaction wave from S3 to the right state, S2, of the c-shock. (Notice, however, that
S3 is not a constant state, because the wave speeds of the shock and the rarefaction
wave coincide.) Because a large fraction of the polymer is adsorbed, the polymer
flooding loses much of its efficiency. Not only does the polymer front infiltrate less
deeply into the reservoir, but the leading water front retains its front saturation and
propagation speed from the pure waterflooding case.

Macroscopic displacement efficiency: Adsorption and mechanical trapping can
also have an advantageous effect on sweep efficiency for cases with strong spatial
heterogeneity. Pore blocking and local reduction in permeability will effectively
alter the preferential flow paths through high-permeability regions and deviate more
flow to regions with lower permeability and thereby improve sweep efficiency and
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Listing 7.3 Member functions of PolymerAdsorption.

function gp = PolymerAdsorption(model, varargin)
gp@StateFunction(model, varargin{:});
gp = gp.dependsOn({'polymer', 'polymermax'}, 'state'); % check mechanism
assert(model.water && isfield(model.fluid, 'adsInx'));

end

function ads = evaluateOnDomain(prop, model, state)
[cp, cpmax] = model.getProps(state, 'polymer', 'polymermax');
if model.fluid.adsInx == 2

ce = max(cp, cpmax);
else

ce = cp;
end
ads = prop.evaluateFluid(model, 'ads', ce);

end

contribute to homogenize the lengths of flow paths from injector to producer. We
show an example in the next subsection.

Implementation in MRST: The implementation of adsorption essentially fol-
lows the same lines as the evaluation of the viscosity multiplier, described in
the previous subsection. That is, the reversible adsorption function ca

p(cp) or the
cumulative irreversible adsorption ĉa

p(t,x), depending on what type of process we
are modeling, is evaluated by the state function in Listing 7.3. The constructor
declares that the function depends on two state variables, the current concentration
and the maximum concentration observed so far over the simulation history.
The second function performs the actual evaluation of ca

p(cp) or ĉa
p(t,x). The

necessary input are given in two different ECLIPSE keywords [5, 30]: PLYADS
describes the adsorption function ca

p(cp) and comprises one or more tables given
on the same form as PLYVISC. The corresponding assignPLYADS function is
essentially the same as assignPLYVISC. In addition, adsInx defines whether the
adsorption process is reversible or irreversible. The value of this variable is found
in the fourth entry of the polymer–rock keyword (with one data record/line for
each rock type):

PLYROCK
--IPV RRF dens AI max ads
0.05 1.3 2600 2 0.000025 /

If the adsorption index (AI) equals 1, the adsorption process is reversible so that
the adsorption isotherm is retracted whenever cp decreases. It the index equals 2,
the process is irreversible. The other four entries give the fraction of inaccessible
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pore volume for each rock type, the residual resistance factor, the rock density, and
the maximum polymer adsorption used to evaluated permeability reduction. These
will be discussed in more detail in the next two subsections.

Permeability Reduction

In the previous section, we saw that adsorption of polymer on the pore surface
and mechanical trapping by bridging will both lead to a decrease in the absolute
permeability of the rock. We use the permeability reduction factor Rk to represent
this phenomenon, which is given as

Rk(cp) = 1 + (RRF − 1) ca
p(cp)/ca

p,max . (7.18)

Here, ca
p,max is the maximum adsorbed concentration, whereas the (hysteretic)

residual resistance factor RRF ≥ 1 is defined as the ratio between water permeabil-
ity measured before and after polymer flooding. Both of these quantities depend on
the rock type and will thus generally vary in space. Because Rk(cp) is a translation
and scaling of ca

p, it will essentially have the same shape; see Figure 7.7.

Displacement efficiency: The microscopic effect of reduced permeability was
discussed in the previous subsection. Going back to the fractional-flow analysis,
we see that the only microscopic effect of reduced permeability is to improve
the mobility ratio between the displacing and displaced fluid. Figure 7.9 shows

Figure 7.9 Illustration of how the viscosity ratio M between polymer and pure
water affects the displacement profile. The figure assumes Corey exponent 2 for
water and 4 for oil, connate and irreducible water saturation equal to 0.2, and
adsorption with hLR = 0.2; see Figure 7.8.
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Figure 7.10 Conceptual simulations demonstrating the conformance effect of
reduced permeability by polymer adsorption for an unfavorable displacement. The
lower-left plot shows the permeability (on a logarithmic color scale) with the area
affected by permeability reduction indicated in bluish colors inside a contour line.
(Source code: verticalSPE10.m.)

how the displacement profile changes with the viscosity ratio between displacing
fluid with and without polymer. We encourage you to experiment with the script
showMobilityEffect to see how the figure changes with different choices of the
fluid parameters.

On a macroscopic scale, the permeability reduction will have a conformance
effect by diverting flow from highly conductive to less permeable regions. This is
illustrated in Figure 7.10. The vertical cross section is sampled from the SPE 10
benchmark [10] and has large permeability contrasts, with five orders of magnitude
variations in the lateral direction and eight orders in the vertical direction. The oil
is significantly more viscous than the injected water, and this gives an unfavorable
displacement in which the water has a strong tendency to form long fingers induced
by heterogeneity. Injecting polymer improves mobility control, but the displacing
fluid still shows a relatively strong affinity to follow high-permeability pathways.
If adsorption induces a significant permeability reduction (here, we have used an
exaggerated RRF value of 8 to demonstrate the effect), the conformance improve-
ment is pronounced.

Implementation in MRST: Going back to (7.1c), we see that permeability
reduction is another example of a multiplicative modification of a physical
property, this time for the relative permeability of water. Permeability reduction is
therefore implemented as a multiplier, defined in the PolymerPermReduction

state function
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function permRed = evaluateOnDomain(prop, model, state)
ads = prop.getEvaluatedDependencies(state,'PolymerAdsorption');
fluid = model.fluid;
permRed = 1 + ((fluid.rrf - 1)./fluid.adsMax).*ads;

end

If we know that all dependencies are evaluated, we can bypass much of the
dependency checking in getProp and use getEvaluatedDependencies to
fetch polymer adsorption that has already been evaluated (and cached). Values on
the fluid object are usually set by the PLYROCK keyword discussed in the previous
subsection.

Inaccessible Pore Space

Many polymer flooding experiments show that polymers tend to migrate faster than
other components (such as the chromatographic separation in ASP flooding). The
main reason for this is that polymer molecules are so large that they can only move
through larger pores (see Figure 7.6, Zone C). Because the small pores constitute
the lower part of the underlying velocity spectrum, the effective Darcy velocity of
a polymer mixture increases compared to that of pure water. The region of pore
space not accessible to polymer is known as the inaccessible pore volume, or the
dead pore space. We can introduce a scalar rock parameter, sipv, to represent the
fraction of the pore volume that is inaccessible to the polymer solution for each
specific rock type.

Conventional polymer models used in many commercial reservoir simulators
then simply use sipv to reduce the accessible pore volume for polymer in the accu-
mulation term, (1 − sipv)φbwSwcp, of (7.3). The resulting model is unfortunately
not well posed and can give instabilities and predict unphysical accumulation of
polymer at the water front or infinite polymer concentrations. The reason is that the
model allows polymer to travel independent of the concentration and the water sat-
uration, which can result in polymer traveling beyond the existence of water.
A number of alternative models have therefore been proposed by various authors;
see [14] for an overview. In practice, it may still be reasonable to use the simple,
but incorrect, model, because other physical effects and the significant smearing
induced by the coarse grid resolution of most sector or field models tend to mask
and dampen the unphysical behavior.

Non-Newtonian Rheology of the Polymer Solution

Polymer molecules can be entangled with each other to form a 3D network struc-
ture, thereby increasing the viscosity of the aqueous solution. This can improve the
water–oil mobility ratio and the sweep efficiency of the flooding fluid. On the other
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Figure 7.11 Schematic of polymer in water under shearing, inspired by [19, 29].
The different colored lines in the figure represent polymer molecules. In static
state, large polymer molecules entangle with each other, which greatly increases
the viscosity of the aqueous solution (left diagram). During high-speed shearing,
polymer molecules may align along the shearing direction and disentangle, which
reduces their tackifying ability (upper right). If the shear rate is high enough, the
polymer molecular chain may even break, which reduces the molecular weight of
the polymer solution and its tackifying ability (lower right).

hand, one should expect a need to increase the injection pressure at the wellhead
considerably to be able to push the highly viscous, polymeric fluid through the well
pipe and into the rock formation.

In practice, the wellhead pressure is often much lower than what one should
expect from the polymer’s static viscosity. The reason is that diluted polymer gener-
ally has non-Newtonian rheology. When a polymer solution moves at a high speed
in a certain direction, the polymer molecules will elongate and align with the flow
direction or even unwind (see Figure 7.11). These phenomena cause a decrease in
the viscosity of the solution. We call this behavior shear thinning. Of course, there
are also some polymers that thicken as the shear rate increases, but such polymers
are not commonly used. When the flow speed is high enough, strong shear force
may also break the molecular chain and cause irreversible mechanical degradation
of the polymer.

Here, we follow [31] and set the shear viscosity of the polymer to be a function
of flow rate. (See also the discussion in section 7.4 of the MRST textbook [22].)
First, we introduce the shear factor Z to describe the shear effect,

Z = μw,sh(uw,sh)

μw,eff
= 1 + (γ eff

p (cp) − 1)γsh(uw,sh)

γ eff
p (cp)

. (7.19)

The multiplier γsh is a user-prescribed function of the unknown shear-modified
water velocity uw,sh and μw,eff is the effective water viscosity (7.6) without
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considering the shear effect. The multiplier takes values γsh > 1 when shear
thickening occurs and γsh ∈ [0,1) for shear thinning. With no shear effect
(γsh = 1), we use the effective water viscosity, whereas the shear viscosity equals
μw,eff/γ

eff
p (cp) in the case of maximum shear thinning (γsh = 0). To calculate the

unknown velocity uw,sh, we follow [4] and first introduce the effective, unsheared
water velocity uw,0, calculated from (7.1c) without shear effect, and then use the
relation

uw,sh = uw,0
μw,eff

μw,sh(uw,sh)
(7.20)

combined with (7.19) to derive the following implicit equation for uw,sh:

uw,sh

(
1 + (γ eff

p (cp)− 1)γsh(uw,sh)
)− γ eff

p (cp)uw,0 = 0. (7.21)

A standard Newton’s method is used to solve (7.21) for uw,sh. With uw,sh, we can
calculate shear factor Z from (7.19) and calculate the shear-modified viscosities
μw,sh and μp,sh as

μw,sh = μw,effZ and μp,sh = μwpZ. (7.22)

In practice, we update the phase fluxes directly as

�vw,sh = �vw/Z and �vwp,sh = �vwp/Z (7.23)

to avoid repeated computation. Alternatively, we could also calculate shear factors
for μw,eff and μwp separately, but at the moment we use a single shear factor.

Implementation in MRST: The ad-eor module currently
implements two alternative methods to calculate the shear
factor (7.19). The first method is activated with the keyword
PLYSHEAR, which inputs the shear multiplier γsh in tabu-
lated form. With this keyword, the solution procedure just
described with (7.19) and (7.21) will be employed.

PLYSHEAR
-- Vw. VRF
0 1
0.00002 0.9
0.00008 0.8
: :
0.22 0.48
2.2 0.41 /

The keyword PLYSHLOG activates an alternative logarithm-based description to
calculate the shear factor (see [30] for more details about this keyword). With (7.19)
and (7.20), we have

uw,shZ = uw,0. (7.24)

Taking the natural logarithm of both sides of (7.24), we obtain

ln uw,sh + ln Z = ln uw,0. (7.25)

The nonlinear system associated with (7.19) thus becomes a line intersection
problem, which can be more robust when Newton’s method faces convergence
difficulties.
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The corresponding computations of shear multipliers are implemented in two
private functions in the ad-eor module, which we do not present for brevity. More
implementation details about the first method can be found in [4].

7.2.3 Physical Effects of Surfactants

Surfactants (short for surface active agents) are chemical compounds that are capa-
ble of lowering the interfacial tension between two liquids, between a gas and a
liquid, or between a liquid and a solid. They are generally injected along with
a displacing fluid to increase the mobility of hydrocarbons that would otherwise
be residually trapped. Depending on the surfactant concentration and the type of
additives in the displacing fluid, surfactant flooding can be roughly divided into
conventional surfactant flooding, micellar solution flooding, and microemulsion
flooding. If mixed gas is considered, foam injection is also included. Herein, we
will only consider models for conventional surfactant flooding, which has relatively
low cost and widespread application.

Relative Permeability Alterations

Wettability is the ability of a liquid to maintain contact with a solid surface. When
an oil drop is placed on a smooth, horizontal surface covered by water, intermolec-
ular adhesive forces between the oil and the solid will cause the drop to spread out,
whereas cohesive forces inside the fluid will try to make the drop avoid the contact
and stay in a spherical form. This process will reach an equilibrium when a force
balance is established among the interfacial tensions2 between oil and water, water
and solid, and oil and solid; see Figure 7.12. We say that the system is preferably
oil wet if the contact angle θ is less than 90◦ and water wet in the opposite case.

The strength of the contact between the oil droplet and the rock surface is mea-
sured by the work of adhesion, defined as the work one must do to pull an oil
droplet in water with a unit contact area away from the rock surface, as illustrated
in Figure 7.13. Mathematically this work is given as

Wa = σow + σws − σos . (7.26)

The interfacial tension is by definition directed along the contact surface. Combined
with Figure 7.12, we find that the force at point O is balanced, and the interfacial
tension here satisfies the following relationship:

σws = σos + σow cos θ, (7.27)

2 Interfacial tension, or surface energy, is the work that must be expended to increase the interface between two
different phases.
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Figure 7.12 For an oil droplet attached to a solid surface covered by water, there is
a force equilibrium between three interfacial tensions: σow between oil and water,
σws between water and solid, and σos between oil and solid. This equilibrium
defines the contact angle θ .

Figure 7.13 Schematic diagram of work of adhesion. Black lines denote the
water–solid contact, red lines the oil–water contact, and the green line the oil–
solid contact. Work of adhesion is the energy required to pull the droplet free
from the surface, illustrated by the hovering drop in the right plot.

where θ is the contact angle. Inserting (7.27) into (7.26) gives the so-called Young–
Dupré equation for the work of adhesion,

Wa = σow(1 + cos θ). (7.28)

To recover an oil drop attached to the solid rock, we must apply work that exceeds
this work per unit oil–solid interface. Surfactants will lower σow, and hence we
should expect that the work applied by the invading fluid should be able to displace
more droplets of oil.

Let us now see how this process works at reservoir conditions [11], as illustrated
in Figure 7.14. Natural active substances in crude oil adsorb on the rock surface
at reservoir conditions and the rock therefore shows an oleophilic state with con-
tact angle less than 90◦. If a surfactant solution invades the medium, surfactant
molecules will adsorb on the contact surface between oil and water and reduce the
oil–water interfacial tension. Likewise, an additional adsorption layer will form on
top of the adsorption layer of natural active substances on the rock surface, thereby
changing the rock wettability. These effects reduce the work of adhesion of crude
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Figure 7.14 Adhesion change at reservoir conditions. The red ball-stick rep-
resents the natural active substance in crude oil, whereas the black ball-stick
represents the surfactant molecules in the surfactant solution. Left picture: The
rocks are oil wet due to the adsorption of natural active substances on the rock
surface in the original reservoir state. Right picture: When the surfactant solution
invades, the surfactant is adsorbed on the oil–water interface and on the rock sur-
face. The oil–water interface adsorption reduces the oil–water interface tension,
and adsorption on the rock surface changes the rock wettability from oil wet to
water wet.

oil, making it easier to remove from the rock surface, which improves displacement
efficiency.

In our simulator, we use alteration in the relative permeability between two
phases to model these phenomena [31]. The surfactant will reduce the adhesion
and hence reduce the flow resistance of water and oil. Changes in the oil–water
interfacial tension can be orders of magnitude and are considered to be the primary
effect. Changes in the wetting angle can change the rock from being primarily water
wet to primarily oil wet, or vice versa, and also affect the adhesion. However, this
is considered a secondary effect and is neglected in the following.

At the upscaled level, the change in relative permeability depends on the capil-
lary number, which measures the ratio between the viscous and capillary forces

Nc = |K∇p|
σ

. (7.29)

The interfacial tension σ is assumed to be a known function of surfactant concen-
tration, typically given in tabulated form.

We now outline the procedure for computing relative permeability as function
of surfactant concentration; see Figure 7.15. In addition to σ , we assume that
the relative permeabilities kns

rα(Sα) and ks
rα(Sα), and the accompanying residual

saturations Sns
αr and Ss

αr , for zero and maximal surfactant concentrations are
known input. These correspond to minimal and maximal capillary numbers, Nns

c

and Ns
c .

We first compute σ for the given surfactant concentration, which gives us a new
Nc value. To calculate the corresponding relative permeability curve krα(Sα,Nc),
we first use logarithmic interpolation in Nc to calculate a new residual saturation,
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Figure 7.15 A simple example for the relative permeability calculation method.
The green line represents water relative permeability with zero surfactant, the red
line represents water relative permeability with maximum surfactant, and the
blue line represents the final calculated water relative permeability with specific
surfactant concentration.

SNc
αr = m(Nc)S

s
αr +

[
1 −m(Nc)

]
Sns

αr, m(Nc) = log10 Nc − log10 Nns
c

log10 Ns
c − log10 Nns

c

.

(7.30)

We then compute two saturation values, Ss
α and Sns

α , which we will use to interpolate
the relative permeabilities ks

rα and kns
rα for each Sα-value:

Sj
α = Sj

αr +
Sα − SNc

αr

1 − S
Nc
αr − S

Nc

βr

(
1 − Sj

αr − S
j

βr

)
, j = s,ns. (7.31)

Here, α and β denote different phases. With these two new saturations, the interpo-
lation in Nc using the coefficient m(Nc) reads

krα(Sα,Nc) = m(Nc)k
s
rα(S

s
α) +

[
1 −m(Nc)

]
kns

rα(S
ns
α ). (7.32)

Microscopic displacement efficiency: Because the primary effect of injecting
surfactant is to lower the residual saturations, it is usually applied after a waterflood
or in conjunction with polymer flooding to mobilize residually trapped oil. We will
nonetheless first consider the case of secondary recovery by surfactant injected into
a reservoir initially filled with oil. The fractional-flow analysis is essentially the
same as in Subsection 7.2.2, and we therefore do not present any details.

Figure 7.16 shows displacement profiles for two different fluid parameters. In
Case 1, the profile is quite similar to the polymer flooding example presented in
Figure 7.4, except that the trailing S-rarefaction now goes all the way up to 0.975
because more oil is mobilized as a result of reduced interface tension. In Case 2,
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Figure 7.16 Secondary surfactant flooding into an oil-filled reservoir containing
30% connate water. Left figure: Solution in (S,f )-space with Corey exponents
nw = 2 and no = 3 and μo : μw = 1. Right figure: nw = 2, no = 2.5, and
μo : μw = 0.225. The middle plot shows the corresponding self-similar solutions
in (x/t,S)-space. (The figure is generated with the showRiemannSolution
script, assuming that the surfactant reduces the residual saturations of 0.25 for
pure waterflooding to 0.05 for water and 0.025 for oil. No adsorption or viscosity
effects are included for the surfactant.)
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Figure 7.17 Tertiary surfactant flooding for Case 1 from Figure 7.16 but with
μw : μo set to 2 to better separate the leading leading S-shock and the trailing
c-wave.

the trailing c-wave gives rise to an “oil wall” that increases the oil production
momentarily before it again decays in the trailing S-rarefaction.

For surfactant injected into a waterflooded reservoir (tertiary case), the solution
is almost identical, except that the solution ahead of the leading S-shock now
equals the irreducible oil saturation Sor . Figure 7.17 shows the solution for a fluid
model similar to Case 1 from Figure 7.16. To construct this solution, we modify the
construction of the S-wave and now use the lower convex envelope of the fractional-
flow function for water. (Source code: showSurfTertiary.m.)

Implementation in MRST: The procedure described earlier in this section for
interpolating relative permeabilities is implemented in two separate state func-
tions: CapillaryNumber and SurfactantRelativePermeability. The for-
mer computes the capillary number, whereas the latter computes the new residual
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Figure 7.18 The dependency graph for the two state functions that compute
relative permeabilities with alterations due to the presence of surfactant. The figure
also shows how results are fed forward to routines computing interface fluxes.
Slanted text means that this part is inherited from the underlying black-oil model.

saturations and performs the actual interpolation between the kns
rα and ks

rα curves.
Figure 7.18 shows their dependence graphs. The functions consist of many lines of
code, which will not be discussed in detail.

Let us instead look at the ECLIPSE keywords you can use to specify the nec-
essary input for the fluid object. The relative permeability curves (krG,krO,krW)
and their endpoints (krPts) can be given using either of the two alternative key-
word families (SWOF, SGOF) or (SWFN, SGFN, SOF3) [5, 30]. Each keyword
must specify two tables for each fluid region; the first gives curves for the immisci-
ble system without surfactant and the second gives curves for the miscible system
with maximum surfactant concentration (these will be associated to two different
surfactant regions). The first family is discussed in detail in the MRST textbook
[22, section 11.3].

The SURFST keyword gives input to fluid.ift, which describes the water–
oil surface tension as a function of surfactant concentration in the water phase.
The data are given as a two-column table, in the same form as described earlier
for PLYVISC and SHEARVISC, with concentration values increasing monotonically
downward. Last but not least, fluid.miscfact contains the surfactant capil-
lary desaturation function, which takes values in the interval [0,1] and describes
the transition from immiscible to miscible conditions as a function of log10(Nc).
(Notice that this represents a generalization of the linear relation m(log10 Nc) given
in (7.30).) The corresponding keyword SURFCAPD should specify the same number
of two-column tables with log10 Nc versus m as the number of fluid regions.

https://doi.org/10.1017/9781009019781.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.013


Chemical EOR Simulators with AD-OO and State Functions 287

Capillary Pressure Alterations

When two phases coexist in a porous medium, interfacial tension and difference in
wettability of the fluids on the rock surface will cause fluid interfaces to be curved
and be accompanied by a finite pressure difference, referred to as capillary pressure
(see, e.g., subsection 8.1.3 of the MRST textbook [22] for more details). This
pressure is defined as the difference between the phase pressures of the nonwetting
and wetting fluids, pc = pn−pw, because pn > pw. For a given interfacial tension
σ , the capillary pressure is also given by the Young–Laplace equation

pc = σ

(
1

R1
+ 1

R2

)
, (7.33)

where R1 and R2 denote the principal radii of curvature for the interface.
In a three-phase black-oil model, the capillary pressures are defined for the oil–

water and gas–oil subsystems,

pcow = po − pw and pcog = pg − po.

The two capillary functions pcow and pcog are usually assumed to be functions of
saturation. Because surfactant influences the interfacial tension between oil and
water, it follows from (7.33) that it will also affect the capillary pressure. In our
model, we assume a simple scaling relationship,

pcow(Sw,cs) = pcow(Sw)
σ (cs)

σ0
, (7.34)

where pcow(Sw) and σ0 denote oil–water capillary pressure and interfacial tension
without surfactant, respectively.

Implementation in MRST: The evaluation of capil-
lary pressures is implemented in a state function called
SurfactantCapillaryPressure (Listing 7.4), which
is built on top of the existing state function from the
ad-blackoil module. This demonstrates one of the
advantages of using state functions based on inheritance.

SURFST
-- Cs Surf.tens
0 0.05
0.1 0.0005
0.5 1e-5
1 1e-6
30 1e-6
100 1e-6 /

The constructor simply says that this state function depends on surfactant concen-
tration and whatever the underlying state function from ad-blackoil depends on.

The evaluation function first computes capillary pressures for the black-oil sys-
tem, and if this system has a capillary function for a water–oil system (ph=='W'),
we scale it by interfacial tension according to (7.34). Tabulated values for σ(cs) are
usually given by the SURFST keyword [5, 30].
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Listing 7.4 Member functions of SurfactantCapillaryPressure.

function prop = SurfactantCapillaryPressure(model, varargin)
prop@BlackOilCapillaryPressure(model, varargin{:});
prop = prop.dependsOn('surfactant', 'state');
assert(model.water && isfield(model.fluid,'ift'))

end

function pc = evaluateOnDomain(prop, model, state)
pc = evaluateOnDomain@BlackOilCapillaryPressure(prop, model,state);
ph = model.getPhaseNames(); iW = find(ph=='W');
c = model.getProps(state, 'surfactant');
pc{iW} = pc{iW}.*model.fluid.ift(c)/model.fluid.ift(0);

end

Effective Viscosities

Addition of surfactant may increase the viscosity of the injected aqueous phase.
As for a fully mixed polymer solution in (7.4), this is modeled by introducing a
multiplier function, γs(cs),

μw(cs) = γs(cs)μ
0
w. (7.35)

Here, μ0
w denotes the viscosity of pure water at reference pressure condition. Unlike

polymers, however, the effect of surfactants on the viscosity of the aqueous phase
is relatively minor and will in many cases be comparable to pressure effects in
magnitude. Water viscosibility, the dependence of the viscosity with respect to
pressure, is usually also introduced as a multiplier γ (p),

μw(p) = γ (p)μ0
w. (7.36)

If we now consider a system containing both polymer and surfactant and include
all effects of polymer/surfactant concentration and pressure dependence, it follows
from (7.6), (7.35), and (7.36) that the effective water viscosity becomes

μw,eff = γ (p) γ eff
w (cp) γs(cs) μ0

w. (7.37)

Microscopic displacement efficiency: In Figure 7.9, we saw that increasing the
viscosity ratio between a polymer mixture and pure water will shift the fractional-
flow curve of polymer to the right and increase the frontal saturation of the chemical
wave. Exactly how much this increases the oil recovery will, of course, depend
on the shape of the fractional-flow functions. The effects on secondary surfactant
flooding are similar and are not included for brevity.

Let us instead look at the tertiary flooding case from Figure 7.17. Figure 7.19
shows fractional-flow curves and solution profile for a case with a fourfold increase

https://doi.org/10.1017/9781009019781.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.013


Chemical EOR Simulators with AD-OO and State Functions 289

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5

0.5

0.6

0.7

0.8

0.9

1 Sor
s

1-Sor

Figure 7.19 Tertiary surfactant flooding for the case from Figure 7.17 but with
a fourfold increase in the water viscosity as a result of surfactant and pressure
effects. (Fractional-flow curve and solution with no viscosity increase are shown
as thin lines.)

in the viscosity of the surfactant solution. Here, we observe the interesting effect
that the increased viscosity not only improves the displacement efficiency behind
the surfactant front but also significantly accelerates the oil wall and gives an earlier
increase in the oil recovery.

Implementation in MRST: The surfactant multiplier γs(cs) is implemented as a
state function in the same way as the polymer multiplier from Listing 7.1:

function mSft = evaluateOnDomain(prop, model, state) % SurfactantViscMultiplier
cs = model.getProps(state,'surfactant');
mSft = prop.evaluateFluid(model, 'muWSft', cs) / model.fluid.muWr;

end

The combined evaluation of all terms in (7.37) is handled generically by the under-
lying state-function framework. For the special case of a polymer–surfactant model,
this effectively amounts to first evaluating the standard black-oil viscosities that
include any pressure dependencies, checking which chemical components are part
of the model, computing the corresponding multipliers, and overwriting the viscos-
ity for the water phase. The other viscosities as kept as for the black-oil model.

Figure 7.20 shows the dependence graph for all functions involved in the com-
putation of effective viscosities for a two-phase surfactant–polymer system. The
necessary functional relationships for the fluid object are easiest to give as tabu-
lated data through an ECLIPSE input deck. The PVTW and PVTO keywords specify
viscosities at reference conditions and curves for the dependence on pressure. These
are part of the standard black-oil support in MRST and are discussed in the MRST
textbook [22, section 11.5]. The dependence on viscosity can be prescribed through
the SURFVISC keywords; these data must be consistent with the input from PVTW.
The specification and processing of SURFVISC follows the exact same pattern as
PLYVISC discussed in Subsection 7.2.2.
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Figure 7.20 The dependency graph for the state functions implementing the
viscosity relationship in (7.37) for a two-phase surfactant–polymer system.
Dependencies on the fluid object are not usually included in the dependency graph
generated by MRST. Slanted text indicates inherited entities.

Surfactant Adsorption

We have already discussed how surfactant molecules tend to accumulate at the oil–
water interface and rock surface as a result of the coexistence of specific hydrophilic
and lipophilic groups (Figure 7.14), which has the beneficial effect of reducing the
oil–water interfacial tension. However, adsorption on the rock surface also reduces
the effective concentration of surfactant in the solution, resulting in loss of surfac-
tant and decreased displacement efficiency. Both the modeling and the fractional-
flow analysis are virtually identical to those of polymer and details are omitted
for brevity. (The interested reader can use the scripts showRiemannSolution and
showSurfTertiary to study the effects on secondary and tertiary displacements.)

7.3 The Surfactant–Polymer Flooding Simulator

So far, we have introduced different physical mechanisms that affect surfactant
and polymer flooding, described pertinent mathematical models, and outlined their
implementation as state (or utility) functions in the ad-eor module. In doing so,
we have also mentioned relevant ECLIPSE keywords you can use to set all of the
different parameters and functional relationships.

In this section, we explain how all of the different pieces outlined so far are
put together to make classes in the AD-OO simulation framework (a first version
was released in MRST 2019b). We will not present all details but focus on the
main points. As always with MRST, you can find full details by querying the latest
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version of the ad-eor module. We end the section by explicitly describing the
necessary steps to run simulations based on an ECLIPSE input deck.

7.3.1 Design of Flexible Model Classes

The ad-eor module offers different model classes that implement chemical
flooding simulators. In a previous paper [4], we discussed the implementation
of a fully implicit, three-phase polymer simulator. (This is built in the same
way as the ThreePhaseBlackOilModel model from the original AD-OO
framework discussed in chapter 12 of the MRST textbook [22].) More recently, we
developed a similar model for surfactant–polymer flooding. The only conceptual
difference is that various fluid properties, which in the polymer model were
evaluated by functions held by the fluid object (see [4]), now are evaluated using
state functions.

In this model, the evaluation of residual flow equations is essentially located to a
single function, which makes it simpler to follow the logic of the computation. The
disadvantage is that if you want to simulate, say, a two-phase oil–water–surfactant
problem, you would either use the full model and always solve for five unknowns
per cell or develop a specialized class (OilWaterSurfactantModel) that uses
only three unknowns per cell. With three phases and five components, there will be
many special cases, and if we later wish to expand the module by adding additional
chemicals like alkali or solvents, we quickly end up with a combinatorial explosion
of model classes.

Component (or generic) models, discussed in Chapter 5, were introduced to
overcome this limitation. They offer finer granularity and eliminate the need for
specialized classes for different combinations of phases and components. Instead,
combinations can be specified at runtime to form models having only the necessary
unknowns. The underlying framework is designed so that it is easy to specify
alternative spatial or temporal discretizations; e.g., to replace the standard fully
implicit formulation by an adaptive implicit method, replace the two-point flux
approximation scheme by a multipoint discretization, or replace the single-point
upwind mobility scheme by a high-resolution method; see Chapter 5.

7.3.2 The Full Three-Phase, Five-Component Model

We start by briefly describing the full model having three phases and all five
components. The model is derived and inherits a lot of functionality from the
ThreePhaseBlackOilModel. We therefore assume that you are already familiar
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with this model and the underlying ReservoirModel and PhysicalModel;
all three are described in great detail in chapter 12 of the MRST textbook [22].
The model has five properties that decide which components are active and what
type of shear model to use, if any. These are set in the constructor based on an
ECLIPSE-type input deck:

classdef ThreePhaseSurfactantPolymerModel < ThreePhaseBlackOilModel
properties

polymer
surfactant
usingShear, usingShearLog, usingShearLogshrate

end

Variables and updating: The model must define necessary variables: polymer
and surfactant concentrations cp and cs are primary variables, whereas maximum
concentrations cp,max and cs,max are used to calculate adsorption:

function [fn, index] = getVariableField(model, name, varargin)
switch(lower(name))

case {'polymer', 'polymermax'}
index = nnz(strcmpi(model.getComponentNames(), 'polymer'));
if strcmpi(name, 'polymer')

fn = 'cp';
else fn = 'cpmax'; end

:
otherwise

[fn, index] = getVariableField@ThreePhaseBlackOilModel...
(model, name, varargin{:});

end

Here, fn and index are the field name and column index that will extract the
correct variable from the state struct. The last two lines access all variables defined
in the black-oil model. The function also defines two extra variables, qWPoly and
qWSft, for the surface rate of polymer and surfactant in and out of wells.

We also need to implement two update functions. The first, updateState, is
run after each iteration step to update the reservoir state and check that it is within
physical limits; that is, we let the underlying black-oil model check the states
defined in this model and then check that cp/s ∈ [0,cp/s,max]; see [4] for details.
The second function, updateAfterConvergence, is almost identical and is run
after the nonlinear equation has converged to track the maximum concentrations
cp/s,max. The class also implements an enhanced validateState function, which
checks that concentration variables are present in the state and have the correct
dimensions.
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State functions: By and large, the member functions are straightforward exten-
sions to those discussed in [4] and [22, chapter 12]. The new part is how to
incorporate the state functions for computing fluid properties described in Sub-
sections 7.2.2 and 7.2.3. These are not created by the class constructor, because
the properties of the model can change after the class is instantiated, but are
instead instantiated at the start of the simulation by the validateModel func-
tion, which in turn calls the setupStateFunctionGroupings function. We
go through some parts of this to give you the general idea. We start by call-
ing upon the underlying black-oil model to create the necessary state-function
groupings:

function model = setupStateFunctionGroupings(model, varargin)

model=setupStateFunctionGroupings@ThreePhaseBlackOilModel(model,varargin{:});

fp = model.FlowPropertyFunctions;
pp = model.PVTPropertyFunctions;
fd = model.FlowDiscretization;

pvtreg = pp.getRegionPVT(model);
satreg = fp.getRegionSaturation(model);
surfreg = fp.getRegionSurfactant(model);

The last three lines extract region identifiers that will be used to model spatial
dependencies in PVT properties, capillary pressures, and relative permeabilities.
Saturation and PVT regions are used as in a standard black-oil model from the
rock struct stored by the model, if available. For relative permeabilities we use
satreg to get the value of kns

rα(Sα) and use surfreg to get the value of ks
rα(Sα),

whereas pvtreg is used when computing the viscosities.
Let us start by state functions modeling adsorption. Provided that polymer is

present, the corresponding function is added to the flow property group as follows
(setup for surfactant adsorption is analogous):

fp = fp.setStateFunction('PolymerAdsorption', PolymerAdsorption(model, satreg));

The state functions necessary to compute viscosities for the three physical phases
are set up in the PVT property group:

pp = pp.setStateFunction('Viscosity', EORViscosity(model, pvtreg));
pp = pp.setStateFunction('BaseViscosity', BlackOilViscosity(model));

viscmult = PhaseMultipliers(model);
viscmult.label = 'M_\mu';

https://doi.org/10.1017/9781009019781.013 Published online by Cambridge University Press

https://doi.org/10.1017/9781009019781.013


294 X. Sun, K.-A. Lie, and K. Bao

The evaluation is done by the general class EORViscosity. The function first
evaluates a base viscosity, which here is the standard, pressure-dependent viscosity
from the black-oil model – i.e., μα(p) = γ (p)μ0

α – and then applies any multi-
pliers defined by chemical effects in the EOR model. The PhaseMultipliers

class is a simple container that collects state functions defining multipliers. These
are added as follows, conditional on the presence of polymer and surfactant
components:

if model.polymer
peffmult = 'PolymerEffViscMult';
pp = pp.setStateFunction(peffmult, PolymerEffViscMult(model, pvtreg));
viscmult = viscmult.addMultiplier(model, peffmult, 'W');

end
if model.surfactant

smult = 'SurfactantViscMultiplier';
pp = pp.setStateFunction(smult, SurfactantViscMultiplier(model, pvtreg));
viscmult = viscmult.addMultiplier(model, smult, 'W');

end
pp = pp.setStateFunction('ViscosityMultipliers', viscmult);

Notice here the last argument to addMultiplier, which specifies that multipliers
will only be applied to the water phase.

State functions for relative permeability, with reduced permeability as multiplier,
and for the polymer pseudophase are defined in the much the same way. We must
also set up state functions for evaluating interface fluxes for the polymer pseu-
dophase:

fd = fd.setStateFunction('PolymerPhaseFlux' , PolymerPhaseFlux(model));
fd = fd.setStateFunction('FaceConcentration', FaceConcentration(model));

Residual equations: With state functions set up, we can compute the dis-
cretized flow equations. This is done in equationsThreePhaseSurfactant

Polymer, which follows the same general pattern as in [4, 22]. The function is
admittedly complicated because of wells, source terms, boundary conditions, shear-
thinning effects (see discussion in [4]), and the possibility of formulating reverse
equations for computing adjoints. Going through all these details is outside the
scope of this introductory chapter. Instead, we briefly explain how state functions
and extended functionality from the new AD backends discussed in Chapter 6 are
used to evaluated the basic flow equation for the polymer component.

We start by extracting the necessary physical variables, selecting and setting up
primary unknowns as AD variables, and evaluating basic fluid properties:
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[p, sW, sG, rs, rv, cp, cpmax] = model.getProps(state, ...
'pressure', 'water', 'gas', 'rs', 'rv', 'polymer', 'polymermax');

[p, sW, x, cp] = model.AutoDiffBackend.initVariablesAD(p, sW, x, cp);

[b, pv] = model.getProps(state, 'ShrinkageFactors', 'PoreVolume');
[phFlux, flags] = model.getProps(state, 'PhaseFlux', 'PhaseUpwindFlag');
[pres, mob, rho] = model.getProps(state, 'PhasePressures', 'Mobility', 'Density');
vP = model.getProps(state, 'PolymerPhaseFlux');
muWeffMult = model.getProp(state, 'PolymerEffViscMult');
adsp = model.getProp(state, 'PolymerAdsorption');
[bW, bO, bG] = deal(b{:});
[vW, vO, vG] = deal(phFlux{:});

:

For brevity, we have skipped code for selecting the primary variable x representing
free or dissolved gas, code computing values at the previous time step (adsp0, cp0,
p0, sW0), and so on. We then compute the accumulation and flux terms:

plyAcc = ((1-fluid.dps)/dt).*(pv.*bW.*sW.*cp - pv0.*fluid.bW(p0).*sW0.*cp0) ...
+ (s.pv/dt).*fluid.rhoR.*((1-poro)./poro).*(adsp - adsp0);

plyFlux = s.faceUpstr(upcw, bW).*vP;

These are collected along with similar terms from the other equations and passed
on to the AD backend, which combines the accumulation and the divergence of the
flux term as efficiently as possible:

eqs = {wAcc, oAcc, gAcc, plyAcc, sftAcc};
fluxes = {wFlux, oFlux, gFlux, plyFlux, sftFlux};

for i = 1:numel(fluxes)
eqs{i} = s.AccDiv(eqs{i}, fluxes{i});

end

One word of caution at the end: During simulation, states with zero or almost
zero water saturation and nonzero polymer/surfactant concentrations may lead to
bad condition numbers for the corresponding Jacobian matrices. We therefore post-
process the Jacobians and reinstate original values in cells with problematic values.

7.3.3 A Generic Surfactant–Polymer Model

So-called generic models offer a systematic and relatively simple approach to for-
mulate multiphase, multicomponent systems. The basic idea is to build the system
at runtime as a collection of components that each has a well-known PVT behavior.
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Examples of such components are immiscible components that only exist in one
phase that is made up entirely of the specific component; oil or gas components
of the type found in black-oil models that can exist in all hydrocarbon phases; or
concentration components that are transported in another phase without changing
the mass and density of the phase but affecting other properties like viscosity.
Each component type is implemented as a class that offers routines for computing
phase composition, component density and mass, component mobility, etc.; see
Chapter 5.

Surfactant and polymer models can generally contain components of all of these
types. Water is an immiscible component, polymer and surfactants are concentra-
tion components, whereas oil is an “oil component” in a system with live oil or wet
gas and an immiscible component in a dead-oil system without gas or with dry gas.

Polymer/surfactant components: The ConcentrationComponent neither
implements the density (PVT behavior) of the carrying aqueous phase by itself
nor implements how the component concentration affects the component mobility.
To get the correct behavior, we must therefore implement two derived classes. Let
us consider surfactant as an example; the class for polymer is almost identical
but with the obvious modifications due to different flow physics. The class has
no properties and the constructor only states that the surfactant is carried by the
aqueous phase (which by convention is the first phase) and then registers functional
dependencies:

classdef SurfactantComponent < ConcentrationComponent
properties
end
methods

function c = SurfactantComponent()
c@ConcentrationComponent('surfactant', 1);
c = c.functionDependsOn('getComponentDensity', 'surfactant');
c = c.functionDependsOn('getComponentDensity', 'ShrinkageFactors',...

'PVTPropertyFunctions');
:

end

The component density (relative to the constant surface density of the aqueous
phase) is given by the usual shrinkage factor times the surfactant density:

function c = getComponentDensity(component, model, state, varargin)
[cs, b] = model.getProps(state, 'surfactant', 'ShrinkageFactors');
c = cell(1, numel(b));
c{1} = cs.*b{1};

end
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Surfactant mass is found in two different forms: dissolved in the mobile aqueous
phase and adsorbed in the rock:

function c = getComponentMass(component, model, state, varargin)
[cs, pv, b, sw, ads] = model.getProp(state, 'surfactant', 'PoreVolume', ...

'ShrinkageFactors', 'sW', 'SurfactantAdsorption');
c = cell(1, model.getNumberOfPhases);
mobile = sw.*cs.*b{1};
poro = model.rock.poro;
adsorbed = model.fluid.rhoR .* ((1-poro)./poro) .* ads;
c{1} = pv.*(adsorbed + mobile);

end

Finally, the mobility of the surfactant component is the mobility of the water phase
times the component density:

function cmob = getComponentMobility(component, model, state, varargin)
[mob, b, c] = model.getProps(state, 'Mobility', 'ShrinkageFactors', 'surfactant');
cmob = cell(1, model.getNumberOfPhases);
cmob{1} = c.*b{1}.*mob{1};

end

Because the polymer component only flows with the polymer pseudophase, its
mobility must be multiplied by γ eff

p (cp)/γ
wp
p (cp) – i.e., the ratio between the poly-

mer effective viscosity multiplier and the polymer multiplier.

The GenericSurfactantPolymerModel class: Any generic model must be
derived from the dummy class ExtendedReservoirModel to signify that it
is generic. Here, we also derive the new class from ThreePhaseSurfactant

PolymerModel so that we can inherit properties, the constructor, setup of state func-
tions, and necessary update functions. As with state functions, the component
functions are initiated during runtime by the validateModel member function
and not by the constructor. The following is a slightly edited excerpt of this member
function:

if isempty(model.Components)
nph = model.getNumberOfPhases();
names = model.getPhaseNames();
model.Components = cell(1, nph + model.polymer + model.surfactant);
for ph = 1:nph

switch names(ph)
case 'W', c = ImmiscibleComponent('water', ph);
case 'O'

if disgas || vapoil, c = OilComponent('oil', ph, disgas, vapoil);
else, c = ImmiscibleComponent('oil', ph); end

:
end
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model.Components{ph} = c;
end
index = nph;
if model.polymer

index = index + 1;
model.Components{index} = PolymerComponent();

end
:

end
model = validateModel@ThreePhaseSurfactantPolymerModel(model, varargin{:});

The function first loops through all phases present to construct the corresponding
components. Then, we construct any concentration components. Finally, we call
upon any underlying classes to perform additional validations, which in this case
are carried out in the ReservoirModel and PhysicalModel classes.

The residual equations are evaluated by the getModelEquations function,
which, in the case with no wells and boundary conditions, only consists of a few
lines:

function [eqs, names, types, state] = ...
getModelEquations(model, state0, state, dt, drivingForces)

[eqs, flux, names, types] = ...
model.FlowDiscretization.componentConservationEquations(model,state,state0,dt);

for i = 1:numel(eqs)
eqs{i} = model.operators.AccDiv(eqs{i}, flux{i});

end

The first statement calls a member function of the flux-discretization group, which
essentially loops through all phases and components to evaluate and accumulate
the component phase masses and the component phase fluxes. These fluxes are in
turn evaluated from the component mobilities of the type we just saw explained for
the SurfactantComponent class.

Figure 7.21 shows the dependency between all state variables and the various
state functions used to evaluate the component fluxes and masses. The diagram for
fluxes includes 28 different state functions and eight different state variables. The
diagrams are very complex, but if you look in detail, you will probably recognize
many of the state functions we discussed in Subsections 7.2.2 and 7.2.3.

The point of including this figure, however, is not to discuss details in the depen-
dencies but rather highlight the fine granularity of the generic implementation. This
offers a lot of flexibility but also makes it more challenging to figure out exactly
where in the code each model or formula is evaluated.

This ends our discussion of the general setup. If you want to learn more technical
details about how to include wells and surface facilities or source terms and bound-
ary conditions or how to account for non-Newtonian fluid effects, you must look in
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Figure 7.21 Dependency diagrams for the calculation of total component flux
(top) and total component mass (bottom) for the generic surfactant–polymer
model.

the code itself. It is admittedly complicated, but all of the necessary details are there.
If you want to explore the code, your experience is that the powerful functionality
for displaying state-function diagrams and groupings is an indispensable tool to
quickly develop an understanding of how things are tied together.

7.3.4 Running the Simulator from an Input Deck

The first thing you need to do to run an EOR simulation with the ad-eor module
is to load the necessary modules:

mrstModule add ad-core ad-blackoil ad-eor ad-props deckformat mrst-gui

The first three modules contain the necessary simulator classes, the next two supply
routines for reading ECLIPSE input decks [30] and building fluid objects, and the
last module contains useful plotting tools.

Here, we simply assume that you have made an appropriate input function
according to the specifications in [30]. We have already discussed most of the
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keywords necessary to specify polymer and surfactant behavior in Section 7.2.
Likewise, section 11.5 of the MRST textbook [22] gives a brief and MRST-centric
introduction to how you can specify properties of the underlying black-oil model.
For a more comprehensive discussion of the input format, you should consult
the documentation of ECLIPSE [30], the lecture notes of Pettersen [26], or the
documentation of OPM Flow [5]; we recommend the latter two, because they are
freely available online.

Given an input deck, you can use a function that was recently introduced in
the AD-OO framework to read the deck and construct an initial state, a model, a
simulation schedule, and a nonlinear solver class:

fn = fullfile('path','to','datafile', 'filename');
[state0, model, schedule, nonlinear] = initEclipseProblemAD(fn);

The init function uses selectModelFromDeck to pick the appropriate model,
and if you write a new model class, you must make sure that the logic of this
latter function is able to select your model. Likewise, the init function uses
getNonlinearSolver and selectLinearSolverAD to set up reasonable
defaults for the nonlinear solver, the linear solver, and the timestep selector classes.
You can find more details about this functionality in Chapter 6. (You can, of course,
also perform the setup manually if you want more direct control.)

We can now simulate the model and plot the well responses (bottom-hole pres-
sures, reservoir and surface rates, water cut, etc.):

[wellSols, states, report] = ...
simulateScheduleAD(state0, model, schedule, 'NonLinearSolver', nonlinear);

plotWellSols(wellSols,cumsum(schedule.step.val))

By default, the simulator will report progress by printout, but you can also use the
getPlotAfterStep function to set up a graphical user interface that provides sim-
ple means for computational steering; see section 12.1 of the MRST textbook [22].
Chapter 6 describes more advanced functionality for setting up so-called packed
simulation problems, which provide a means for automatic restarts of aborted sim-
ulations and storage and retrieval of simulation results from disk.

7.4 Numerical Examples

In this section, we go through a few examples to demonstrate how you can use
the models and solvers from the ad-eor module to set up simulations. All exam-
ples come with complete source code and ECLIPSE input files, all found in the
book-ii example directory of the ad-eor module. We have already discussed
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how to run the ad-eor simulators from an input deck; hence, we will not discuss
code details in the following.

However, before you continue, we would like to add a few words of caution.
The examples presented in this section have been designed to highlight particular
features of chemical flooding. In most of the examples, we have therefore modified
fluid and reservoir parameters to visually highlight specific effects of polymer and
surfactant on enhanced recovery or to demonstrate effects in the numerical solvers
you should be aware of. In particular, we have scaled the concentration of chemical
agents (compared to actual reservoir development parameters). When reading the
examples, you should therefore look at trends and features and not focus on specific
numbers such as fluid rates, pressure values, temporal and spatial scales, and so on.
Likewise, parameters found in the input files should not be applied uncritically to
model real-life scenarios.

7.4.1 Numerical Resolution of Trailing Waves

We have seen in previous sections that trailing waves in a displacement profile in
many cases are a main cause of the EOR effect observed for polymer and sur-
factant flooding. (As an example, you can think of the c-waves in Figures 7.4
and 7.8.) To correctly predict potential improvements in microscopic and macro-
scopic displacement efficiency it is therefore important to resolve these waves as
accurately as possible. This may prove quite challenging if the trailing wave is
linear or weakly nonlinear, which means that the wave has no or very little self
sharpening to counteract the strong numerical smearing seen in the standard first-
order discretization methods used in reservoir simulation. Reducing this smearing
is one of the main motivations for developing high-resolution schemes such as the
weighted essentially nonoscillatory (WENO) schemes outlined briefly in Chapter 5
and higher-order discontinuous Galerkin methods discussed in Chapter 3.

Conceptual analysis: To illustrate this point, let us first look at a conceptual
problem describing the transport of a scalar quantity u ∈ [0,1] subject to a convex
flux function h(u), for which h(0) = 0 and h(1) = 1. A discontinuity û(x,t) with
left state uL = 1 and right state uR = 0 will then propagate with constant unit
speed. In Lagrangian coordinates (i.e., coordinates that follow the discontinuity),
we can write the effective quasilinear equation as

ut +
[
h′(u) − 1

]
ux = 0 (7.38)

and let the stationary discontinuity û be centered at the origin, so that û(x,t) equals
one for x < 0 and zero for x > 0. Consider now a smeared version ũ(x,t) of
the stationary solution u(x,t). If we assume h′′(u) > 0, there exists a u∗ such
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Self-sharpening
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h(u)
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h(u)
u

Strongly nonlinear Weakly nonlinear

Figure 7.22 Conceptual illustration of the balance between self-sharpening and
numerical smearing in the transport equation (7.38) for a stationary shock (dashed
line). The circles denote constant u-values and the arrows indicate the effects that
try to move these values in opposite directions.

that h′(u) < 1 for u ∈ [0,u∗) and h′(u) > 1 for u ∈ (u∗,1]. Using the method
of characteristics, we then have that any value ũ(x,t) < u∗, found to the right
of the discontinuity, will propagate leftward toward x = 0. Likewise, any value
ũ(x,t) > u∗, found to the left of the discontinuity, will propagate rightward toward
x = 0. As a result, the smeared profile will eventually sharpen up again into
the stationary discontinuity û(x). This is what we refer to as self-sharpening; see
Figure 7.22 for a conceptual illustration.

When simulating this transport with a finite-volume or finite-difference scheme,
we effectively introduce some numerical smearing, so that instead of solving (7.38),
we solve ut+[h′(u)−1]ux = εuxx , where the magnitude of the diffusion coefficient
ε depends on the specific scheme, the grid resolution, and the timestep. The smear-
ing can be thought of as a “force” that pushes the states ũ(x,t) < u∗ rightward and
the states ũ(x,t) > u∗ leftward. To what degree the profile stays sharp or continues
to be smeared out depends on the magnitude of |h′(u) − 1| compared with the
smearing. In other words, the more nonlinear h(u) is, the less the discontinuous
profile will be affected by numerical smearing. We also see that in the case of
h(u) = u, which corresponds to a contact discontinuity, there is no self-sharpening
to counteract the smearing, and in Lagrangian coordinates this discontinuity will
effectively evolve according to a heat equation ut = εuxx .

1D polymer flooding: Let us now use this insight to study the resolution of the
polymer front in a 1D pure polymer flooding. For this, we use a setup consisting of
a 50 × 3 × 3 m3 horizontal reservoir with permeability 100 md and porosity 0.2,
discretized by a 1D grid. The reservoir is initially filled with oil and 20% connate
water. We continuously inject a polymer solution with concentration 3.0 kg/m3 at a
constant rate along the left edge and produce fluids at a constant rate from the right
edge. We neglect all polymer effects except for viscosity enhancement and consider
varying degrees of mixing, from fully mixed to no mixing. You can find the source
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Figure 7.23 Polymer injection for various degrees of mixing, from no mixing
(ω = 0 in (7.6)) to full mixing (ω = 1), simulated with two different grid
resolutions. The fluid model only accounts for changes in effective viscosities
resulting from the polymer.

code in the script runPolyMixParam.m and the setup in two ECLIPSE input files
called MixPar25.DATA and MixPar400.DATA, in which 25 and 400 refer to the
number of cells in the grid.

Figure 7.23 reports saturation and concentration profiles for a variety of mixing
parameters ω in (7.6), simulated on the two different grids. The analytic solu-
tion consists of a leading S-shock, followed by a discontinuous c-wave and an
S-rarefaction. On the coarsest grid, it is difficult to distinguish the c-wave from the
trailing S-rarefaction in the saturation profile for values of ω close to one, because
the concentration front is smeared out over large distances. A grid resolution of
16 m may be possible for onshore EOR applications, where well distances are not
too large, but for offshore applications this would be considered a high-resolution
grid. Even on the much finer grid (with �x = 1 m), we see that the c-wave is
smeared much more than the leading shock. You may recall from Subsection 7.2.2
that the c-wave is a contact discontinuity for the special case of ω = 1. For ω < 1,
the polymer equation (7.7b) is replaced by

∂t

(
Sc
)+ ∂x

[
cm(c)f (S,c)

] = 0, (7.39)

which means that the contact discontinuity turns into a shock. Here, cm(c) ≤ c

is a convex function of a form similar to h(u) from our conceptual analysis. The
function cm(c) becomes more convex with decaying values of ω. This increases
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Figure 7.24 Polymer injection for varying degrees of mixing, from no mixing
(ω = 0 in (7.6)) to full mixing (ω = 1). In addition to changes in effective
viscosities, we account for polymer adsorption and permeability reduction but not
inaccessible pore volume.

the self-sharpening of the c-wave, and for ω � 0.6, you can see that the c-wave is
resolved approximately as accurately as the leading S-shock.

If the fluid model also accounts for polymer retention, the c-wave is no longer
linear or weakly nonlinear, and the need for high grid resolution is not as imminent.
In Figure 7.24, we have repeated the simulation from Figure 7.23 with the effects
of adsorption and permeability reduction included on the coarsest grid. The degree
of mixing still influences how accurately we resolve the trailing c-discontinuity, but
the effect is not as evident as for the case without polymer retention.

Improved discretizations: To improve the resolution we will use the implicit,
second-order WENO scheme developed in [23, 24], which is explained briefly in
Chapter 5. Instead of computing fluxes from cell-averaged quantities, one uses a
nonlinear procedure to reconstruct a piecewise linear approximation to the mobil-
ities inside each cell and then uses reconstructed point values on opposite sides of
each cell interface to evaluate the numerical fluxes.

To replace the standard single-point upwind (SPU) mobility scheme by a WENO
scheme, we simply select a different set of state functions in the generic model
class. These are set up by the helper function

model = setWENODiscretization(model);

To further reduce numerical smearing, we can also use an adaptive-implicit tempo-
ral discretization [37], which uses an estimate of the Courant number to determine
whether a mobility is evaluated explicitly or implicitly. AIM is set up as follows:

model = setTimeDiscretization(model, 'aim', 'saturationCFL', 0.75);

The estimated Courant number is not necessarily accurate, and to be on the safe side
we use a conservative limit of 0.75; this is to prevent the method from introducing
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Figure 7.25 Polymer injection with mixing coefficient ω = 0.85 simulated on
a fine grid and with the standard single-point upwind scheme and two high-
resolution schemes on a coarser grid. (Source code: runPolyMixHiRes.m.)

explicit discretizations too aggressively, which would lead to instabilities in the
form of spurious oscillations. Figure 7.25 shows how this improves resolution;
with AIM and WENO, the trailing waves are resolved almost as accurately as on
the fine grid.

7.4.2 Subset from SPE10: Conformance Improvement

We consider a subset of the 64th layer of Model 2 from the SPE10 benchmark
[10]. Our reservoir is described by a uniform 50 × 50 × 1 rectangular grid that
covers an area of size 1 000 × 500 × 2 m3. Initially, the reservoir has a uniform
pressure equal 423 bar and is filled with 33% water and 67% oil that contains
a lot of dissolved gas. We set a water injection well in the center of the model,
operating at a fixed injection rate, and two production wells on the upper and lower
sides, operating at a fixed bottom-hole pressure of 420 bar. All wells are shown
as black dots in Figure 7.26. We consider two different injection scenarios: pure
waterflooding and continuous polymer flooding. For the polymer, we include all
effects outlined in Subsection 7.2.2: viscosity enhancement due to full mixing of
polymer and water, adsorption, permeability reduction with RRF= 1.3, 5% inac-
cessible pore space, and shear-thinning polymer rheology. (The complete source
code is found in the script plyConformSPE10.m.)

Here, we only review a few conspicuous points for the two scenarios.
Figure 7.26 clearly shows how the injected water will finger rapidly through the
high-permeability channel that connects the injector and the two producers. Adding
polymer reduces the frontal saturation and retards the water front as observed in the
fractional-flow analysis in Figure 7.4 but also improves flow conformance in terms
of an improved areal sweep. This is also seen in the water cuts of the two producers
and the cumulative oil production reported in Figure 7.27. However, this comes
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Figure 7.26 Comparison of waterflooding (top) and polymer flooding (bottom)
in a fluvial reservoir. The brown background colors show the permeability on a
logarithmic scale, with light colors signifying low permeabilities and dark colors
signifying high permeabilities. Water saturation in flooded cells are shown using
a blue-to-green color scale, and polymer concentration is shown in red.

at a cost: The increased viscosity of the diluted polymer causes a considerable
reduction in injectivity despite its shear-thinning rheology, and to maintain the
prescribed injection rate, the bottom-hole pressure of the injector must be increased
significantly above the injection pressure used in the waterflooding scenarios.
Notice also that the injection pressure continues to increase as the reservoir is filled
with more water containing diluted polymer. Without the shear-thinning effect, the
injection pressure would have to be increased another 10 bar or so.

Computer exercises
To get more familiar with the simulator, we suggest a few exercises:

1. Run the simulations yourself and compare the number of iterations and the
consumed CPU time. (Hint: look in the reports structures.)

2. Run a simulation to verify the difference in injection pressure with and without
shear thinning effects. How much does this effect the overall displacement?
(Hint: to turn off shear thinning, you can set model.usingshear to false.)

3. How is the displacement affected if the assumption of full mixing of water and
diluted polymer is not correct? (Hint: you can control the degree of mixing using
the ω parameter model.fluid.mixPar.)
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Figure 7.27 Well responses for the simulations in Figure 7.26. The upper-left
plot shows water cut in the two producers, the upper-right plot shows cumulative
surface production of oil, and the lower plot shows bottom-hole pressure in the
injector.

4. The pressure control on the two producers is set so high that the oil stays above
the bubble point. Lower the bottom-hole pressure and see how this affects the
production process.

5. Use tools from the diagnostics module to investigate how polymer injection
affects the dynamic heterogeneity of the displacement; see section 13.2 of the
MRST textbook [22].

7.4.3 The Dynamics of Slug Injection

In all examples so far, we have considered continuous injection of chemical agents
as part of a secondary or tertiary recovery process. Polymers and surfactants are
rarely used in this way. A usual setup is instead to start off recovering oil by natural
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drive mechanisms (primary recovery), followed by injection of water to maintain
pressure and push oil toward the producers (secondary recovery). In the tertiary
recovery period, one first injects water containing surfactants to reduce interfacial
tension between water and residual oil and to alter the wettability so that more
oil can be recovered. Polymer is then injected for an extended period of time to
provide mobility control for the mobilized oil bank. After a significant fraction of
the sweep region has been flooded by chemicals, a pure water drive is set up to push
the chemical slugs and the enhanced oil bank toward the producers.

In this example, we consider a conceptual 1D slug injection with an injector at
the left and a producer at the right end. (Source code and ECLIPSE input files
are found in the book-ii/slug1D folder of the ad-eor module.) Supporting
fractional-flow analysis for such cases is discussed in chapters 7–9 of the textbook
by Bedrikovetsky [6], and herein we only present results from numerical simu-
lations. We consider two different EOR scenarios for our virtual recovery project,
visualized to illustrate how the fluid distribution would be inside the reservoir, from
injector I to producer P, if each slug represented a piston-type displacement:

I P
0T/6T/3T/2

initial oilwatersurfactantpolymerwater

Strategy 2:

I P
initial oilwatersurfactant + polymerwater

Strategy 1:

Strategy 1: Instead of injecting surfactant and polymer as two consecutive slugs,
we first consider coinjection of a single slug. During the initial secondary-recovery
period, the solution is a standard Buckley–Leverett profile, consisting of a shock
followed by a rarefaction. Once chemical injection starts, we get a tertiary injec-
tion process. We have already presented and discussed the tertiary solution for a
surfactant solution injected into a waterflooded reservoir in Figures 7.17 and 7.19.
Adding polymer to the injection fluid does not fundamentally change the tertiary
solution. There is still a significant oil bank, resulting from increased mobilization
of residually trapped oil, that travels rightward as an S-shock that impinges on the
trailing S-rarefaction from the secondary waterflooding. As this tertiary S-shock
gradually eats away the trailing end of the S-rarefaction, its speed increases when
the front saturation decreases, so that it (almost) overtakes the secondary S-shock
by the time they reach the producer at the right end of the domain.

The leading tertiary S-wave (which with time also includes a weak rarefaction)
is followed by two trailing c-waves associated with the eigenvalues ξ cs = f/(S +
a′s(cs)) and ξ cp = f/(S + a′p(cp)), where as and ap are the adsorption terms
associated with surfactant and polymer, respectively; see Equation (7.14). If there
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is no adsorption or the adsorption terms are the same (i.e., hs
LR = h

p

LR in the
notation of (7.17)), the eigenvalues coincide and the two c-waves collapse into a
single c-wave, which is found as the upper envelope of the chemical fractional-flow
curve. For the specific parameters of this example, the chemical curve is shifted so
far to the right, compared with the pure-water curve, that the c-wave is a shock not
followed by an S-rarefaction, as was the case in Figures 7.17 and 7.19.

In the general case, ξcs �= ξcp , and this will cause so-called chromatographic
separation between polymer and surfactant. You can see this from the difference in
the yellow and magenta lines marked by “1” in the top plot of Figure 7.28, which
represent the foot of the cp- and cs-waves, respectively. Inaccessible pore space will
also influence the degree of separation, because water containing large molecules
can only move through a smaller fraction of pore space than water containing
surfactant, which implies that a polymer solution will move faster through a bulk
volume than a surfactant solution. This separation is clearly evident in the second
solution, sampled at time 2

3T , after chemical injection has ceased. We also see that
whereas the trailing edge of the polymer slug is a single rarefaction wave (points 2
to 3), the trailing edge of the surfactant splits into two rarefaction waves, a strong
wave from points 2 to 3 and a weak wave from points 4 to 5.

Strategy 2: The recovery with the second, four-slug strategy (Figure 7.29) turns
out to be less efficient. As intended, the surfactant slug reduces the interfacial
tension between oil and water and reduces the endpoint saturations, but it does
not provide sufficient mobility control to push a large amount of oil ahead of the
chemical front (see the first solution sample). This happens first when we start
injecting polymer in the second half of the chemical injection period (second and
third solution samples). As a result, the bank of enhanced oil will consist of two
parts and be composed of a number of subwaves that result from the interaction
of the surfactant and polymer slugs. Altogether, this means that the production
of oil mobilized by the surfactant is significantly delayed, and by the end of the
project period, the highly resolved simulations show that the first strategy will
have recovered 16.6% more oil. On the positive side, the second strategy requires
significantly lower injection pressures.

The simulations presented thus far have been highly resolved. Typical lateral
resolution in 3D models is on the order of tens of cells between injectors and pro-
ducers, and in Figure 7.30 we have thus repeated the simulation of strategy 2 with
12, 25, 50, 100, and 200 cells. Consistent with the discussion in Subsection 7.4.1,
the chemical slugs are smeared out to the point where the oil bank is hardly rec-
ognizable for the 12 cell simulation. Notice also how far the solution paths deviate
from the high-resolution one in state space. Deviations in cumulative oil production
nonetheless only range from 4.7% to 0.85%, because we stop the simulations long
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2

1

secondary
BL-solution

tertiary
solution

Figure 7.28 Highly resolved numerical solutions for strategy 1 of the slug-
injection experiment (5 000 grid cells, 5 000 timesteps). The upper plot shows a
color plot of the water saturation in the (x,t)-plane. The colored lines track start
and endpoints for the c-waves for surfactant (magenta) and polymer (orange).
The two boxes below show the solution in physical space (left) and in state space
(right) at two different times, indicated as dashed horizontal lines in the color plot.
The tracked points are indicated by colored dots. For the plots in physical space,
surfactant and polymer concentrations have been scaled to take values in the unit
interval.
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Figure 7.29 Solutions for strategy 2 of the slug-injection experiment shown in
(x,t)-space (top) and at three different times in physical space (left column) and
in state space (right column). See Figure 7.28 for an explanation of the different
plots.
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Figure 7.30 Grid-refinement study with n uniform cells for strategy 2; see
Figure 7.29. The three coarsest simulations all used 100 timesteps, whereas the
finest used 5 000. The left plots show s(x,t), cs(x,t), and cp(x,t) for t =
2T/3. The right plot shows the same solutions in state space. (Source code:
slugGridRef.m.)

before the oil bank has reached the producer and the self-sharpening shock of the
secondary production profile is reasonably well resolved on a coarse grid.

Improved discretizations: For completeness, we also run scenario 2 with
improved temporal and spatial discretizations. Figure 7.31 reports surfactant
concentrations computed by the standard upwind method (SPU) and WENO,
both with fully implicit (FIM) or AIM temporal discretization. In all simulations,
we use 80 equally spaced timesteps. With 25 cells, the estimated Courant numbers
vary from approximately 0.2 for the trailing waves to 2.75 for the leading saturation
shock. As we have already noted, the smearing increases with decreasing Courant
numbers for the explicit part of AIM but decreases for FIM. Hence, we only see a
modest effect of replacing FIM by AIM. The effect of using WENO, on the other
hand, is pronounced on all four grids. Typically, WENO gives at least as good
resolution as SPU gives on a grid that is refined by a factor of 2.

When the number of cells is doubled to 50, Courant numbers for large parts of
the trailing chemical waves fall in the range where AIM is effective and we thus
observe significant improvements by switching time discretization for both SPU
and WENO. On the 100-cell grid, the Courant number exceeds unity in the majority
of the cells and the effect of AIM is negligible. With 200 cells, the WENO-FIM
scheme breaks down (and produces a singular linearized system) when the Courant
number increases well above 20 midway through the polymer injection period.
However, if we halve the timestep during this time period, the simulation runs
smoothly.
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Figure 7.31 Surfactant concentration computed with different spatial and tem-
poral discretizations on a uniform grid with n cells, using 80 equally spaced
timesteps. (Source code: slugWENOAIM.m.)

Altogether, this example demonstrates two important points: (i) AIM seems
to be most effective when the Courant numbers of trailing waves straddle unity
and (ii) the WENO discretization is not as robust as the SPU scheme and should
not be used with very large Courant numbers. What is a large Courant number in
this regard may depend on the complexity and nonlinearity of the system you are
solving.

7.4.4 Validation against a Commercial Simulator

In the last example, we validate our SP simulator against the commercial simulator
ECLIPSE [30, 31]. To this end, we consider two models: a 2D vertical reservoir
cross section with a single injector–producer pair and a small 3D sector model.

Vertical cross section: The setup is shown in Figure 7.32 and consists of a large
4 000 × 200 × 125 m3 sandbox discretized on a uniform 20 × 1 × 5 Cartesian
grid. Initially, the reservoir is at hydrostatic equilibrium and contains all three
phases, with a mobile gas cap overlying the mobile oil. Hydrocarbons will be
recovered from a producer perforated in the upper two cells in the rightmost column
and operating at a constant bottom-hole pressure of 260 bar. The production is
supported by an injector perforated in the bottom two cells of the leftmost col-
umn, which injects the displacing fluids at constant flow rate of 1 000 m3/day
subject to a maximum pressure limit of 800 bar. (You find complete source code in
spValidation2D.m.)
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Figure 7.32 Setup of the 2D validation case with horizontal permeability in
millidarcies to the left and initial fluid distribution to the right.

Figure 7.33 Evolution of the phase saturations over the whole simulation period
for the 2D validation case. Columns show, from left to right, saturation mid-
way through the water preflush, at the end of the preflush, after the chemical
injection period, midway through the water postflush, and at the end of the
simulation period. Black lines indicate wells, whereas colored lines outline the
polymer/surfactant slugs, measured as c > 0.05.

The production is set up in three stages: First, 1 260 days of water preflush, and
then, 1 700 days of chemical injection of polymer with a concentration of 2.0 kg/m3,
surfactant with a concentration of 20 kg/m3, or a combination of both chemicals.
This is followed by 8 000 days of chase water injection. For comparison, we also
simulate pure waterflooding. Figure 7.33 reports computed fluid saturations and
chemical concentrations throughout the four production scenarios. The water pre-
flush is dominated by production from the gas cap, which is almost fully displaced
by the time chemical injection starts (after 3.45 years). Injection of polymer con-
tributes to push more oil toward the producer. If you compare the waterflooding and
polymer flooding plots at 8.11 years, you can see that the oil saturation is slightly
higher behind the leading water front and that the water saturation is slightly higher
behind the trailing polymer front. The surfactant, on the other hand, has a very
strong washing effect and reduces the residual water saturation from 0.2 to 0.06 but
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Figure 7.34 Bottom-hole pressure of the injector (left) and oil production rate
(right) for the 2D cross-section validation case. Solid lines are simulated by
MRST and dashed lines by ECLIPSE. The shaded regions represent the chemical
injection period.

also introduces significant gravity segregation so that the displacing fluids move
faster toward the producer along the bottom of the reservoir. Including polymer
improves the conformance significantly and we end up with a trailing displacement
front that is more vertical for SP flooding. (You can also notice a chromatographic
separation between the two chemicals.)

Figure 7.34 reports bottom-hole pressures and oil production rates predicted by
MRST and by ECLIPSE with the same input data. First of all, there is excellent
agreement between the two simulators,3 which validates our implementation. Let us
also compare the four different production scenarios. By injecting polymer, we are
able to maintain a slightly higher oil rate after water breakthrough around 8.6 years
and up to approximately 25 years. Altogether, this enhances the oil and gas produc-
tion by 4% and 2%, respectively. However, this comes at the cost of a significantly
increased injection pressure in order to overcome the reduced injectivity caused
by the more viscous injection fluid. The injector hits its pressure constraint after
7.3 years and is thus not fully able to maintain the prescribed injection rate for the
full slug-injection period.

When solvent is injected, we see the opposite effect: Because solvent reduces
the interfacial tension between oil and water, it not only mobilizes oil that would
otherwise be residually trapped but also increases the mobility of both phases so
that a lower injection pressure is sufficient to maintain the prescribed injection rate.
This is particularly evident toward the end of the simulation. Altogether, solvent
injection gives an enhanced oil and gas production of 14.1% and 7.9%, respectively.

3 The match cannot generally be expected to be exact due to subtle differences in how the two simulators
evaluate oil properties; ECLIPSE 100 interpolates bo and bo/μo [30], whereas MRST interpolates bo and μo.
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Figure 7.35 Setup of the 3D validation case with horizontal permeability in
millidarcies to the left and initial fluid distribution to the right.

The full SP flooding contains features from both the polymer and the surfactant
flooding. First of all, we see an even larger increase in the oil rate after water
breakthrough, in particular in the period between years 10 and 18, as a result of
the improved flow conformance. The highly viscous polymer solution still reduces
injectivity, but the increased mobility caused by the surfactant will to a certain
extent compensate for this, so that the pressure increase is less than for pure poly-
mer flooding. The overall result is 10.6% increase in gas recovery and 18.9%
increase in oil recovery after 30 years.

Sector model: Our second validation test is taken from [4] and is a 30 × 20 × 6
corner-point grid with 2 778 active cells, in which the middle section contains four
intersecting vertical faults. The reservoir is produced from two production wells,
located on the left and right sides, respectively, each perforating the top layer. These
are supported by an injection well at the center of the model that perforates the
lower three grid layers. The reservoir contains all three phase fluids in the initial
state, and they are all in hydrostatic equilibrium, as shown in Figure 7.35.

To produce the reservoir, we consider the same four types of injection strategies
as in the 2D example. The injector is set up with constant injection rate of
2 500 m3/day and an upper pressure constraint of 290 bar, whereas the producers are
set to operate at a constant bottom-hole pressure of 230 bar. The first water injection
stage lasts for 560 days and then turns into a chemical injection with polymer
solution concentration of 1 kg/m3 and surfactant concentration of 30 kg/m3. After
400 days of continuous chemical injection, chase water is injected for another
2 430 days.

Figure 7.36 reports a comparison of well responses simulated by MRST and
by ECLIPSE. As in the 2D example, there is excellent agreement for the water-
flooding and polymer flooding cases. For cases with surfactant, there are some
slight deviations in the bottom-hole pressures, which we believe come from the
fact that ECLIPSE uses a kind of operator-splitting method in which the surfactant
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Figure 7.36 Bottom-hole pressure of the injector (left) and cumulative oil produc-
tion (right) for the 3D cross-section validation case. Solid lines are simulated by
MRST and dashed lines by ECLIPSE. The simulator discrepancy in oil production
is measured as the difference between MRST and ECLIPSE, normalized by the
MRST result.

concentrations are updated implicitly after the oil, gas, and water components
have been computed [31]. However, the discrepancies in total oil production are
nonetheless within 1% for all simulations.

Starting with the waterflooding scenario, we initially see a rapid decay in injec-
tion pressure because of gas production, followed by a gradual buildup of pressure
until around water breakthrough to compensate for the increase resistance by the
multiphase fluids. (The breakthrough appears as a gradual increase in water cut
because the water front is very smeared out.) Once sufficient water communication
is established between injector and producers, the prescribed injection rate can
be maintained with a lower pressure and the injection pressure drops off. When
polymer is injected, the pressure increases sharply because of poor injectivity and
hits the upper constraint almost immediately, so that we cannot maintain the pre-
scribed injection rate during the injection of the chemical slug. This reduces the
efficiency of the polymer injection significantly so that all over oil recovery is only
enhanced by 2%.

In the surfactant flooding, we notice that injection pressure decreases when
surfactant is injected, as we already observed in the 2D case. More pronounced,
however, is the sharp decay that takes place after approximately 1 600 days.
Comparing the 3D plots of saturation in Figure 7.37, we see that a wide channel
of high saturations has developed between the injector and the second producer
for the surfactant flooding. This not only increases the water rate (and lowers
the oil rate) but also explains the sharp decay in injection pressure as this water
channel offers a path of less resistance to flow for the injected chase water. This
effect is also evident in the combined surfactant–polymer flooding but is delayed
and weakened because of the improved conformance introduced by the viscous
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Figure 7.37 Water rates for the second producer (left plot). The plots to the
right show phase saturations for surfactant flooding (top) and polymer flooding
(bottom) in all cells where the water saturation exceeds 0.55. The plots are
sampled after 1 695 days, when the water rate attains a local maximum for
surfactant flooding.

polymer mixture. All over, the two surfactant cases enhance the oil recovery by
7.8% and 11.9%, respectively.

7.5 Directions and Suggestions for Future Improvements

This chapter has introduced you to the basic physiochemical mechanisms of EOR
by polymer, surfactant, or surfactant–polymer flooding. We have also outlined how
to model these processes by appropriate extensions of the standard black-oil equa-
tions and discussed our modular implementation, which has been set up so that
you easily can utilize the many different discretizations, solvers, and solution algo-
rithms the AD-OO framework of MRST offers.

Our main purpose of developing the ad-eor module of MRST is to provide a
basic framework and flexible interface that we can build upon when developing
novel models and simulation methods that do not exist in any other simulators.
We are well aware that the AD-OO framework, with its modular state functions
and generic simulator models, is complex and can be difficult to understand for
new users. However, we hope that this chapter has made it more accessible and
convinced you that it is a powerful tool you can leverage to quickly implement
standard models for other well-known mechanisms or develop novel models and
computational methods. We welcome and encourage you to participate in the con-
tinued research and construction of the ad-eor module and MRST in general.
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In its current form, the ad-eor module of MRST only implements the most rudi-
mentary models for three specific enhanced recovery schemes. Many other chem-
ical and biological agents have been applied for EOR purposes, and researchers
have discovered and studied many mechanisms that have yet to be implemented in
MRST. We end the chapter by providing a brief overview of mechanisms that have
yet to be included in the public version of the ad-eor module.

Temperature effects: Temperature affects the properties of both polymers and
surfactants. Viscosity, for instance, is usually deeply affected by temperature.
Excessively high temperature may even destroy the structure of the polymer and
irreversibly reduce the viscosity of the polymer solution. [9, 21, 39]. Temperature
also changes the adsorption characteristics of the surfactant at the solid–liquid
interface and at the oil–water interface [7, 18], and further affects chemicals’
ability to enhance the recovery factor. Therefore, the role of temperature should be
emphasized in the case of large temperature changes in the formation.

Mechanical effects: During polymer injection, when the flow rate is high, the
polymer not only undergoes the shear-thinning behavior described in this chapter
but mechanical degradation may also occur. This phenomenon is generally consid-
ered to be an irreversible behavior caused by the breaking of polymer molecular
chains [3]. Mechanical degradation can significantly reduce the viscosity of the
displacing agent and thus reduce its EOR effect. Accounting for this mechanism
is important so that correct design decisions can be made; e.g., by preshearing the
polymer mixture according to simulation results before injection to maximize its
effectiveness [32].

Wettability alteration: Interfacial phenomena are common in reservoirs where
multiphase fluids coexist. Wettability is one of the key parameters to accurately
describe the interface phenomenon and plays an important role in surfactant flood-
ing and spontaneous imbibition [43] in fractured reservoirs. In addition, the appli-
cation of nanomaterials in EOR is attracting more attention. The mechanism of
wettability alteration caused by the adsorption of nanomaterials on solid surfaces
[42] also needs to be further explored and accurately simulated.

Salinity effects: Like temperature, changes in salt ion type and concentration also
affect the properties of polymers and surfactants [40]. For polymers, the viscosity-
increasing effect changes with different salt ion concentration; usually the viscosity
decreases, but a few special polymers have salt-sensitive self-thickening effects
[41]. For surfactants, the presence of salt ions not only impacts the reduction in
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interfacial tension and the wettability alteration but also plays an important role in
the phase behavior and properties of microemulsion.

In the most basic model [31], polymer solution, reservoir brine, and injected
water all form pseudophases within the aqueous phase, and the evolution of salt
concentration is described with a similar flow equation as for polymer concentra-
tion, with an effective water viscosity described using Todd–Longstaff mixing to
account for physical dispersion at the front and fingering effects at trailing edges
but without adsorption and dead pore space. This model should thus be relatively
straightforward to include in the existing ad-eor module.

Microemulsions: When the surfactant concentration is greater than the critical
micelle concentration, the surfactant will spontaneously aggregate and form
micelles. The presence of micelles will cause a part of oil and water to mix thermo-
dynamically and stably, thus forming a new phase state, called the microemulsion
phase [1]. The appearance of new phase states will change the original oil–
water phase properties (such as density, viscosity, etc.) and will also change the
properties between phase states (such as interfacial tension, relative permeability,
capillary force, etc.) [12, 25]. Therefore, accurate description and simulation of the
microemulsion phase are very important in the simulation of surfactant flooding
with medium–high concentrations.

Alkali flooding: In this EOR technique, one injects alkaline chemicals, such as
sodium carbonate, that react with acidic oil components to create natural surfactants
such as petroleum sulfonate inside the reservoir. Like the water-soluble synthetic
surfactant discussed earlier in this chapter, the resulting petroleum sulfonate will
mobilize more oil and thus increase the microscopic displacement efficiency by
reducing interfacial tension, changing the rock surface wettability, and emulsifying
the oil into the injected water. Alkaline chemicals can also have an adverse effect,
by reacting with the calcium ions to produce scale and precipitation that may
damage the formation. It is thus not suitable for reservoirs with high divalent ion
concentration formation water.

Tertiary ASP flooding [35] combines polymer injection with two sources of sur-
factants, water-soluble synthetic surfactant and alkaline chemicals that form surfac-
tants in situ and contribute to reduce surfactant adsorption. This lowers the required
concentration of the synthetic surfactant and makes the injection more sustainable
and less detrimental to long-term production. As in SP flooding, the surfactant
and polymer can be co-injected, but polymer is often injected as a post-slug to
mobilize the oil freed from the rock by the surfactant and provide general mobility
control to the flood fronts. In the most basic model [31], the flow equation for the
alkali concentration has the same form as for polymer but without the effects of
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dead pore space and permeability reduction. This model should thus be relatively
straightforward to include in the existing ad-eor module.

Compositional effects: To study the action mechanism of various chemical
agents in more detail, it may be necessary to study crude oil components sep-
arately. Likewise, chemical agents can also be used alongside of gases, such
as carbon dioxide, nitrogen, oil field associated gas, etc. In all of these cases,
compositional EOR models are necessary to simulate the interaction between each
components and the resulting changes in fluid properties [13, 28]. For more details
on compositional simulation, we refer to Chapter 8.
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