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POLYTOPES OF ROOTS OF TYPE AN

SOOJIN CHO

Polytopes of roots of type An-i are investigated, which we call Pn. The polytopes,
F+, of positive roots and the origin have been considered in relation to other branches
of mathematics [4], We show that exactly n copies of P* forms a disjoint cover of
Pn. Moreover, those n copies of P+ can be obtained by letting the elements of a
subgroup of the symmetric group Sn generated by an n-cycle act on P+. We also
characterise the faces of Pn and some facets of P+, which we believe to be useful in
some optimisation problems. As by-products, we obtain an interesting identity on
the number of lattice paths and a triangulation of the product of two simplices.

1. INTRODUCTION

The poly tope P+ of positive roots of type An-x and the origin has been considered
by Gelfand, Graev and Postnikov in relation to hypergeometric functions [4]. Many
combinatorial problems have been considered: for example, the volume is calculated and
some facets are characterised. In this article, we consider the polytope Pn of all roots
of type An-i in relation to the polytope P+. Pn itself is an object of interest since
it is related to many combinatorial objects. Notice that Pn is a Young orbit polytope
corresponding to the partition (n — 1,1), which was introduced as a framework for many
combinatorial optimisation problems [8]. Moreover, the set of roots of type An_i is the
set of minimal null designs of a certain type [2]. Hence, it is worth characterising the
faces of Pn. It is also interesting to observe how the polytope P+ sits inside Pn and
calculate the volume of Pn.

In this paper, we characterise all faces of Pn and give a proof for the characterisation
of certain facets of P+. Then we use these results to show that exactly n copies of P+
form a disjoint (in the sense that the intersection has volume zero in K""1) cover of Pn,
and there, the cyclic group generated by a Coxeter element (n-cycle) plays a role. While
proving the main theorem, we also obtain an interesting identity on the number of lattice
paths and a triangulation of the product of two simplices.

We refer to [1] and [10] for detailed information on convex polytopes, while we give
r i

some basic definitions. A (convex) polytope is the convex hull Conv(.ft') = i ^2 A,u; :
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392 S. Cho [2]

Y2 A,; = 1, A, ^ 0 > of a finite set K — {u i , . . . , u(} in Rd for some d. The dimension of

a polytope Conv(A') is the dimension of its affine hull I J2 A,-u,- : X) A,- = 1V , t n a t 'si

the size of the largest affinely independent subset of K subtracted by 1. For vectors u,
v € Rd, let (u,v) denote the usual inner product in Rd. A face of a polytope P £ Rd

is any set of the form F - P n {x e Rd : (c,x) = Co} , where c £ Rd, CQ 6 R and
(c,x) ^ Co for all x 6 P. The dimension of a face is the dimension of its affine hull.
P itself is a face with (0, x) ^ 0, and 0 is a face given by (0,x) ^ —1. We call these
faces trivial. A face F of a polytope P is called a facet if the dimension of F is one less
than the dimension of P. Observe that faces are characterised as the subsets of P, whose
elements maximise a given linear functional. In the definition, we can replace c, Co by —c
and —Co, respectively. Hence, the faces of a polytope are also characterised as subsets of
P whose elements minimise a linear functional.

We denote the elementary vectors of E" by e,-, i — 1 , . . . ,n. Then P+ is the convex
hull of {e,- — £j : i < j} and the origin, and Pn is the convex hull of {e, — e}•. : i ^ j}.
Obviously, the dimension of Pn and P+ is n — 1.

In Section 2, the polytope Pn is considered and all faces are characterised. In Sec-
tion 3, we first summarise some combinatorial results of Gelfand, Graev and Postnikov.
Then, in Section 4, Pn and P* are considered together and the main theorem is proved
that shows how the two polytopes are related.

2. POLYTOPES Pn

In this section, we consider the polytope Pn = Conv{e; — Cj : i ^ j , i,j € [n]} of
all roots of type An-i- Note that Pn is a special case of the polytopes called generalised
permutahedrons since it is a convex hull of all the vectors given by all permutations of
the vector (1, —1,0,. . . , 0) € Rn- (Permutahedron FIn_i is a classical object defined as
the convex hull of all vectors of permutations of the vector (1 ,2 , . . . ,n) , see [10].) We
give an explicit description of every face of Pn. Pn is obtained from Yln-i by identifying
many vertices, hence the faces of Pn are the ones collapsed down from the faces of fln_i.
Remember that the fc-faces of n n _! are in one to one correspondence with the ordered
partitions of the set [n] into n — k non-empty parts. Hence Theorem 1 does not surprise
us.

Each face of a (finite) convex hull can be described as a subset of the given polytope,
which maximises (or minimises) a linear functional. So, to investigate the faces of Pn, we
consider all possible linear functionals defined on 1". Observe that every linear functional
/ can be written as

/(y) = 5 3 A'2/>' ~ J2 Xiy' fo r A, ̂  0, A_,- > 0 and / flJ = 0, / U J = [n],

where y = (j/i,!/2,-- • ,J/n)-
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[3] Polytopes of roots 393

THEOREM 1 . Every m-dimensional (m — 0 , . . . , n — 2) face of Pn is given by the

convex hull of the vectors in {et- — e,- : i G / , j € J} where I, J are disjoint non-empty

subsets of[n] such that \I\ + \J\ = m + 2. Hence, there is a one to one correspondence

between the set of non-trivial faces ofPn and the set of ordered partitions of subsets of[n]

with two blocks, where the dimension of the face corresponding to (I,J) is \I\ + \J\ — 2.

PROOF: For a given non-zero linear functional / ( y ) = ^2 ^i!/« ~ S ^jVii ^i ^ 0)

Xj > 0 , determining a non-trivial face F, where (/ , J) is a partition of [n], we define

( / ' , J ' ) as follows:

1. If / + 0 and J ^ 0, then / ' = {i : A,- = max(A, : / £ / ) } , J1 = {j : A; =

max(A; : I £ J)} ,

2. If / = 0 then / ' = {i : A,- = min(A, : I 6 J)}, J' = {j : Xj = max(A/ :

lEJ)},

3. If J = 0 then I' = {i : A, = max(A, : / £ / ) } , J' = {j : Xj = min(A, :

/ € / ) } .

If / = 0 (hence J = [n]) and Aj is a constant for all j 6 J, then F = Pn. If J = 0

and A, is a constant for all i € / , then F — Pn also. Hence, / ' ^ 0, J ' ^ 0 and

/ ' n J ' = 0. Note that F is the convex hull of the vectors in {e,- — Sj : i € / ' , j € J ' } ,

hence / ' ^ 0 and J' ^ (!) are determined uniquely and independently of the choice of a

linear functional / which characterises the given face. Conversely, for a pair of disjoint

non-empty subsets / , J of [n], if we define fu{y) = £} j/i — X) Vi > then the convex hull
16/ jEJ

of vectors in {e* — £j : i £ I, j £ J} is the face which maximises fu in P,,.

Now, we show that the dimension of the face of Pn, determined by disjoint non-

empty subsets / , J of [n] is | / | + \J\ — 2. Let a = | / | , b — \J\ and / = {ii,... ,ia},

J - {ju---,jb}- Then

X={eix -ej, : / = l , . . . , 6 } U { e i | - e i l : / = 2 , . . . , a }

is a linearly independent set of minimal vectors, hence is an affinely independent set. In

addition, for any i £ I, j £ J, £,- — £j is in X or

e,- - £j = (a - th) - (£,-, - eh) + (£;, -£j),

an affine combination of vectors in X. Hence, X is an affine basis of the face we are

considering, and the dimension of the face is \X\ — 1 = b + a — 1 — I = a + b — 2. D

COROLLARY 2 . For m = 0 , 1 , . . . ,n — 2, the number of m-dimensional faces of

Pn is
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PROOF: By Theorem 1, the number of m-dimensional faces is the number of ordered
partitions of (m + 2)-subsets of [n] with two blocks. The result is immediate since

"53 (•»+2) = 2m+2 - 2. D
1=1

Remember that a <f-dimensional polytope is simple if every vertex is in d facets.

COROLLARY 3 . Pn is not a simple polytope ifn > 3, whereas the permutahedron
FIn_i is always simple.

PROOF: When we fix a vertex £,- — Ej in Pn, the number of facets containing £,- — Cj
n-2

is £3 ("y2) = ^""2 w n i c n 1S strictly bigger than the dimension n — 1 of Pn, if n > 3. D
/=o

As a reminder, a simplex is the convex hull of vectors in U — { i i i , . . . , U;} with the
property that U is an affinely independent set. Also, an m-simplex Am is a simplex of
dimension m. Given two polytopes P C R P and Q C R', the product of two polytopes is
also a convex polytope P xQ = {(u, v) : u G P ,v e Q) C RP+«.

COROLLARY 4 . Every nontrivial face of Pn is a product of two simplices. More-
over, if the face F corresponds to a disjoint pair of non-empty subsets I, J, then the face
is the product of a ( |/ | — l)-simplex and a [\J\ — l)-simplex.

PROOF: Let P = Conv(e,- : i e / ) ~ A|/|_i and Q - Conv(e,- : j € J) ^ A|j |_!,
then by Theorem 1, F is affinely isomorphic to P x Q. D

3. COMBINATORICS OF P+

In this section, we summarise some combinatorial results from [4] about the polytope
P+. These will be needed in Section 4.

Let //+ be the sublattice in Z" generated by et- — Sj, 1 ^ i < j ^ n and Volw+ be
the form of volume on the space H+ ®z R such that volume of the identity cube is equal
to 1.

DEFINITION 5: Let F = {(i,j) : 1 < i < j < n} be a tree on the set [n]. F is
admissible if there are nol^i<j<k^n such that both (i,j) and (j, k) are edges of F.
W e s a y t h a t F h a s i n t e r s e c t i o n s i f t h e r e a r e l ^ i < k < j < l ^ . n s u c h t h a t ( i , j ) a n d ( k , l )
are edges of F. F is defined to be standard if it is admissible and there is no intersection.
For a given standard tree F, let Zp = {e; — £j '• 1 ^ * < J' ^ n, (i,j) is an edge of F}.
Let 0 = {Zp : F is a standard tree on [n]}. It is well known that Ip, where F is a
standard tree, forms a basis of the linear space i/+ ®z R. Hence Conv(Zr U {0}) is an
(n — l)-dimensional simplex and we let A j r be this simplex.

THEOREM 6. 0 is a local triangulation of P+, in other words,

U A*r = PZ
xree

and AjF ) f\ Aj r 2 is the common face of A j r ] and Ai r j for a/iZri,Zr2 € 0 .
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LEMMA 7 . (n - 1)! Vo\H+AIr = 1 for any I r £ 0 .

THEOREM 8 . The number of standard trees on [n] is equal to the Catalan number

{ n-l

Hence, by Theorem 6 and Lemma 7,

For a disjoint pair (/, J) of subsets of [n], let

Su = {e, -Ej-.iE I, j E J, i < j}.

DEFINITION 9: Let / , J be disjoint subsets of [n] such that / U J = [n] and
1 € / , n € J. We let F be a tree on [n].

1. F is of type (I, J) if for every edge (i, j), i < j , in F, i € / and j € J.

2. Let 0 / j = { I r : F is standard of type (/, J ) } , and Pfj = Conv(5/jU{0}).

3. A word w of type (p, q) is the sequence w = (101,102,..., wp+q), wr € {0,1}
such that \{r : wr = 0}| = p and |{r : wr = 1}| = q. Let
u> = (wi,W2,..., wp+,) and to' = (w'l, w'2,..., w'p+q) be two words of type
(p,q). We say that w' exceeds w if io{ + • • • +.w'r ^ Wi + • • • + wr for all
r = 1,2,..., p + q. If we present a word w of type (p, q) as the path /"„,
from (0,0) to (p,q) by the correspondence 1 <->• /V, 0 <-» £, where N, £
mean north and east respectively, then to' exceed 10 if and only if iV is
above the path Pw.

4. Let / = {1} U /' , J = {n} U J'. Let | / ' | = p, |J ' | = <? and / ' U J' =
{<i < *2 < • • • < *p+()}- Associate with the pair (/, J) the word to/j =
(wi, 102, • • • i ' "VH) °f tyPe (Pi ?) such that wr = 0 if <r € / and tor = 1 if
<r £ J f o r a l l r = l , 2 , . . . , p + g.

LEMMA 1 0 . (n - 1)! VolH+Arr = 1 for each I r G 0 / j , where (/, J) is a pair of
disjoint subsets of [n] such that I U J — [n] and 1 € / , n £ J-

THEOREM 1 1 . Let (/, J) be a pair of disjoint subsets of [n] such that ID J — [n]
and 1 € /, n € J. Then, 0 / j forms a local triangulation of P/j. Moreover, the number of
standard trees of type (I, J) is equal to the number of words w' of type (|/ | — 1, | J\ — l ) ,
which exceeds the word w = Wfj.

C O R O L L A R Y 1 2 . If 1 = { 1 , 2 , . . . , i } and J - {i + l , t + 2 , . . . , n } then wu =

(0 , . . . , 0 , 1 , . . . , 1), hence (n — 1)! times the volume of Pfj is the number of paths from
(0,0) to (i - l ,n - i - 1), which is (nr2

x).
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4. Pn AND P+

In this section, we look at the polytope Pn in relation to P+. We first characterise
the facets (which do not contain the origin) of P+. (In [4], there is a statement about the
facets of P*, but it is slightly incorrect and there is no proof given, so we give a proof of
the characterisation of the facets of P+.) Then, we prove the main theorem which shows
how P+ sits inside Pn. From this observation, we obtain an interesting identity on the
number of paths, and find a triangulation of the product of two simplices. Remember
that Su = {£,- — £j : « 6 / , j 6 J, i < j}, for a pair of disjoint subsets / , J of [n].

PROPOSITION 1 3 . Let A be the set of facets of P+ which do not contain the
origin, and B = {(/ , J) : I U J = [n], I n J = 0 and 1 € / , n £ J}. Then there is a one
to one correspondence between A and B, such that the corresponding facet of (I, J) £ B
is Conv(5/j).

PROOF: Note that when n = 3, the Proposition is clear. Let F be a facet of P+

not containing the origin, and 5 = {e,- - e, € F}. We also let / (y) = ^2 ^iVi — 5Z ^iVi <

where / D J = 0, / U J = [n], A,- ̂  0, Xj > 0, be a corresponding linear functional such
that F maximises / on P+. Moreover, let M be the maximum value of / on P+. We let
(/', J') be the disjoint pair of non-empty subsets of [n] given in the proof of Theorem 1.
If SJIJI 7̂  0 then 5 = SI>J>. Moreover, if / ' U J ' / [n], then we can ignore the number
missed in the union of / ' and J' and the case goes down to the case n — 1. Hence F can
not be a facet, by induction. Hence / ' U J' = [n]. If 1 ^ / ' or n (£ J', then 1 or n is
completely ignored in Spj* hence, by induction again, 1 £ /' , n 6 J'.

Suppose that 5/>./< = 0. We first state two basic facts.

1. { / : £ ;— £j € 5 or £,- — £/ £ 5} = [n], since with an (n — l)-set, the
maximum dimension of a face is n — 3.

2. M > 0, since the origin is not contained in F.

There are two cases to be considered, either / and J are non-empty, or one of / , J is
empty.

Suppose that 7 ^ 0 and J ^ 0. Note that, by considering the elements in / ' in the
context of fact 1, we have SJ>J-J' I") S ^ 0 or 5/</_/< D S ^ 0, and those two cases are
exclusive because of the difference of the possible values of M. (If S/</' l~l S ̂  0 then the
maximum of / on P+ is 0, contrary to fact 2.)

We assume that SPJ-J- n S / 0 . Then

5 C Si'j-J1 U SI-I>JI U Si-i'j-ji U SJ-JI j> U SJ-JIJ-J- .
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Let

/i = {i £ I - I' •• £; - ej £ S for some j € J'}
h = { » € / - / ' : £,- - Sj £ S for some j £ J - J'}
J, = {j £ J - J' : et - Ej £ 5 for some i £ / '}
J2 = {j g J - / : £j - e7- e 5 for some i £ I - I'}
J3 = {i £ J - •/' : e, -£j £ S for some j e J '}
J4 = {i € J - J' : £j - £j £ S for some j G J - J'}
J5 = {j e J - J' : £,• -£j £ S for some i € J - J'} .

Then /i fl /2 = 0 because of the possible values of M. (Note that \i is constant on /'.)
Moreover, Ji, J2,..., J5 are mutually disjoint sets: It is easy to show that Ji, J2, J5 are
mutually disjoint and J3, J4 are disjoint. To show that J?C\ J3 = 0, assume that there
is £j 6 J2 fl J3; then £,- — Ej £ S and e; — Ej< £ S for some i £ I — I', j ' £ J'. Since
i < 3 < j ' , £i - £j- € P+ and /(e , - £_,<) = /(e,- - e7) + f(Ej - Ej') - 2M > M, we have a
contradiction. Other cases can be proved in the same way.
We also define two subsets J{ and J'2 of J' by

J[ = {j £ J' : e, -Ej £ S for some i £ I - I'}
J'2 = {j £ J' : Ei -Ej £ S for some i £ J - J'} .

Then J[ (~l J'2 = 0. Now, if we count the possible number of affinely independent vectors
in S, by the proof of Theorem 1, it is at most

(|/'| + \Jx\ - 1) + (|/,| + 1-7(1 - 1) + (|/2| + \Ji\ - 1)

+ (1^1 + \A\ - 1) + {\J*\ + \M - 1) ^ W + \A ~ 5 = n - 5 .

Hence, 5 can not make an (n — 2)-dimensional face.

If we assume that Sv i-v 0 5 ^ 0 , then

5 C Sin-v U Sj-j'j' U Si-n-r U SJ-J< J-J< U SI-I>J-J< U 5/_/- j>.

As we did for the previous case, we define five mutually disjoint subsets Ii,... ,I5 of / —/',
four mutually disjoint subsets J i , . . . , J4 of J — J' and two disjoint subsets J[, J'2 of J'.
Then, the number of possible affinely independent vectors is at most

(|/'| + |A| - 1) + fl.7,1 + \J[\ - 1) + (|72| + |/3| - 1) + (|J2| + |J3| - 1)

+ (|/4| + I J4| - 1) + (|/5| + I J2\ - 1) < |/| + |-7| - 6 = n - 6.

Hence 5 can not make a facet.

As for second case, we assume that J = 0. Applying fact 1 to the elements of / ' ,
we have 5 C S/'/_/<_j< and the number of affinely independent vectors of 5 is at most
I/'| + | / - / ' - J'\ - 1 = \I - J'\ - 1 ^ n - 2. Therefore 5 can not form a facet. The
proof for the case / = 0 goes just the same.
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For a given facet F, we produced (/', J') £ B so that F = Conv(Si'j') and the choice
is unique as we proved in Theorem 1.

Conversely, if we have (/, J) £ B then F = Conv(Sjj) is a facet, since 1 G I,n £ J.

Moreover, since fu(y) = J^j/i + ^3 Vi IS a linear functional producing F, this is the
•e/ jeJ

inverse process of what we did above. U
Observe that Sn (the symmetric group on n letters) acts on Pn as a linear trans-

formation in the obvious way, by a £ Sn sending the vertex £,• — ey to another vertex
£a(i) — £o{j) (geometric representation of Sn). Let G be the cyclic subgroup of Sn gener-
ated by the n-cycle (12 . . . n). Let FJJ be the corresponding facet of Pn and Ffj be the
corresponding facet of P+ of the given pair of disjoint subsets / , J such that / U J = [n\.
(For Ffj, 1 G / and n G J should be satisfied also.) We say that a convex polytope F' is
a sub-face of a face F of a polytope P if F' and F have the same dimension and F' C F.
Two sub-faces of a given face are said to be disjoint if the dimension of the intersection
is strictly less than the dimension of the given face.

PROPOSITION 1 4 . Let (I,J), (I',J') be two pairs of disjoint subsets of[n] such
that I U J = V U J' = [n] and 1 € / ' , n € J'. Let g 6 G. Then g{Fjij,) is a sub-face of
Fu if and only if g(I') = I and g(J') = J.

PROOF: The 'if part is trivial. Let us assume that g(Ffij,) is a sub-face of FJJ.
Then g{Srj>) C {e, - £_,- : i 6 / , j 6 J}. Note that for each i € / ' (or j 6 J'), e, - en

(ei — £j respectively) is in S /v , hence g(i) £ / and g(j) € J. The proof is completed
since / U J = I' U J ' = [n]. U

PROPOSITION 15 . Let I, J be a pair of disjoint subsets of[n] such that IUJ =
[n] andS = {(/ ' , J',5/.j.) : 9i'j>(I') = I, gpj-{J') = J, for gVJ, € G and 1 6 / ' , n e J'}.
Then {grj'(Ffij,) : (/', J',gi'j') S <S} forms a set of disjoint sub-faces of FJJ.

PROOF: Note that for (I',J') £ S, since gpji is a power of the n-cycle (12 ...n)

and 1 € / ' , n G J', there must be i £ J such that i + 1 £ I. (If gpji = id, then i — n,

» + l = 1.)
Let (/i, Ji,fl/,j,), (h,J2,ghJ2) eS be distinct and 9/,j,(F;+^), gi2j,{F£j7) be sub-

faces of F/ j . Then there are two numbers i'i, 12 such that ii, ii £ J, i\ + 1, i2 + 1 £ / and
97,7,(1) = ii + 1, ff/,j2(l) = 12 + 1 (hence ff/,j,(n) = iu gi7j2(n) - i2). Without loss of
generality, we assume that i\ < i%. (If ii = 22 then <?/,./,(rc) = gi7Ji{n) so <7/,j, = gi2j2 £ G.
Hence h = gj^l) = gj^i1) = 7* a n d J i = ^ - ) W e let A = {i2 + 1, . . . ,n, 1, . . . ,»,},
|>1| = a / 0 (if i2 = n then ,4 = { l , . . . , i i } ) and B = [n] - A, \B\ = b ^ 0. If there
is ek - ei £ gi^F+jJ n ghJ,(F+j2) such that k £ A, I £ B, then gjx\{k) < gj^l)
but A = giljl ({i2 — J'I + 1 , . . . ,n}) and B - ghJl ( {1 , . . . , i 2 - ii}), hence we have a
contradiction. The same argument excludes the case k £ B, I £ A also. Therefore,
the vertices of p/,jt(F7+ Jt) n gi,j2{F^j7) are eA — £( where (fc 6 /I fl / and / G /4 D J)
or (A: G B (1 / and / G B C\ J). The biggest possible number of affinely independent
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vertices of gilj,(F^Ji) Dgi2j2(F£j2) is (a - 1) + (b — 1) = n — 2. Hence the dimension of
ghjAF^j,) CighJ,(F+j7) is strictly less than n - 2. D

For a given disjoint pair (/, J) of subsets of [n], we let PJJ be the convex hull

generated by the vectors in {e,- — £j : i € / , j £ •/} U {0}.

The main theorem is the following.

THEOREM 16 . [Main Theorem]

Furthermore, ifgl(P+)r\g2(P+) ^ 0 for gi ^ g2 € G, then the volume of the intersection

isO.

PROOF: The disjointness of g(P^) follows from Proposition 15. Therefore, we are
only left to show that G(P+) is not only a part of Pn but also Pn itself. It is sufficient to
show that

\G\ VolHn+(Pn
+) = n Volff+(P+) = £ (")*.•.»-•. (1)

where £,,„_, is the volume of Pu, \I\ = i and \J\ = n — i, since

Pn= U P/J.

Note that *,-,„_,- = ( ( " ^ / ( n - l ) l ) by Corollary 12, since Pu, | / | = i, | J\ = n - j ,

is exactly the same polytope as Pt ,-\/,-+1 n\-

By Theorem 8, the left hand side of Eqation (1) is

and the right hand side of Eqation (1) is

Equation (1) is verified because of the following well known equation: for fixed
integers k,l,m,
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REMARK 1. The 7i-cycle (12 . . . n) is a Coxeter element of Sn. Hence, Theorem 16
explains how the Coxeter elements of type An_i play a role in one way. However, The-
orem 16 does not hold for the other types of root systems (at least for B2 and G2).
To understand Theorem 16 in the wider context of finite reflection groups (or Coxeter
groups), n-cycles of Sn might have to be interpreted differently (other than Coxeter ele-
ments), or a more general rule would be needed which covers the An case. Although we
could not find a general version (in the context of Coxeter groups) of Theorem 16, we
believe that it is a very interesting property in itself.

EXAMPLE 1. The following picture is P4, which is a 3-dimensional polytope. The
shaded region is the intersection of Pf with the boundary of P4. It is easy to check
that exactly 4 copies of the shaded region form the boundary of P4.

~X2

13-14

i2 -13 i2 -14

As a corollary of Theorem 8 and Theorem 16, we have the following.

COROLLARY 17.

Some facets of Pn are a union of images of facets of P+. If we use the identity on
the volume then we obtain an interesting result.

COROLLARY 1 8 . For given n,i,j such that i + j = n, i ^ 0, j / 0 Jet A =
t

(Ai, A2,. . . , A,) be a sequence of non-zero integers such that ^ A/ = n. Then the number

of paths from (0,0) to (i — \,j — 1), equally ("Zi)> 's equal to the sum

•^-y number of paths from (0,0) to (i — 1, j — 1)

rx x . , =., which exceed P(s A ),
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where P{mi m | ) = ^ ( m , ) . . . < £ ( m i _ i ) ^ ( m ; ) is t h e p a t h from ( 0 , 0 ) t o (i - l , j - 1)
obtained from ( m 1 ; . . . , m/) by the following correspondence

4>{m)= N...N E,

m — 1 times

and

771 — 2 times

PROOF: Define two subsets of [n] by

/ = {1,1 + Xu 1 + Xi + A 2 , . . . , 1 + Aj + • • • + Xi_i]

and J = [n] - I. Then | / | = i, \J\ — j and (n — 1)! VolH+(P/j) is the number of paths
from (0,0) to (i — l,j — 1) by Corollary 12. On the other hand, by Proposition 15 and
Theorem 16, Wo\H+(Pu) = £ Vol//+(^A/<)- Remember that 5 was defined by

(I',J',gI,JI)eS

S = {(/', J',gi.j.) : gi.j.(r) = I,gi.j.(J') = J, for gVJ, € G and 1 € I',n e J '} .

Moreover, by Theorem 7, (n — 1)! Vol//+(P^J<) is the number of paths from (0,0) to
(i — l,j — 1) which exceed the word wpjt.

For a given subset A = {ai, a.2, • • •, at} of [n], such that 1 = ai < a2 < • • • < a,-, we
define the type of A as <ype(/l) = (02 — aij 03 — 021 • • • ,a, —a,_i,n + l —a;). Then type(I) —
(XuX2,...,Xi). Note that {I',J',gi>j<) £ S if and only if type(I') = (AMl), Afc(2),..., AA(l))
for some h 6 ( (1 ,2 , . . . , i)) and A ĵ.) ^ 1 since if X^i) — 1 then l ,n £ I'. Hence, we are
only left to show that the path PWrj, is exactly the same as PtypS{i<), and this is immediate
from Definition 9, (4). D

EXAMPLE 2. Let n = 6, i = 3, j = 3, A = (1,3,2), and let Np(miiin2im3, be the number
of paths from (0,0) to (2,2) which exceed P(mi,m2,m3)- Then

the number of paths from (0,0) to (2,2)

,3)) = 3 + 3 =

since P(1,3,2) = ENNE and (̂2,1,3) = NEEN.

COROLLARY 1 9 . There is a triangulation with no new vertices of Ap x A,,
p, q ^ 0, with (p+q) simplices, where A,- is the i-dimensional simplex.

PROOF: Let / = { l , 2 , . . . , p + l } , J = { p + 2 , p + 3 , . . . , p + g + 2 } t h e n F ; j ^ A p x A ,
by Corollary 4. Now, Corollary 12 finishes the proof. D
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