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1. Introduction. In a joint paper with Leighton (2), the author considered 
quadratic functionals of the type 

f \r(x) y'2 
(1.1) [r(x) y" + p(x) y'] dx (0 < a < b) 

in which x = 0 is a singular point of the functional which is otherwise regular 
on [0, b]. The hypothesis on a regular functional includes the assumption that r 
is continuous and positive on a closed interval [0, b]. This assures the existence 
of extremals for (1.1). As a consequence, the Riccati equation 

2 

(1.2) z ' - ; l - + p{x)=0 

has continuous solutions, at least locally. If the function r vanishes on an inter­
val, the equation (1.2), and presumably its solutions, is annihilated. However 
the functional (1.1) is much less affected. This fact has suggested to the author 
a method of extending the meaning of (1.2). Such is the subject of this article. 

In this paper we consider the functional 

(1.3) J(y) J [r(x) y'2 + 2q(x) yy' + p(x) y2] dx, 
a 

in order to generalize the Riccati equation 

(1.4) < - (Z +,g(*))2 + p(x) = 0. 
r(x) 

The integral (1.3) is a Lebesgue integral. The functions r, p, and q are meas­
urable functions which are defined on ( — » , <» ). The functions r and q are 
bounded on each bounded subinterval of ( — °°, °° ) and p is integrable Lebes­
gue on each bounded interval. We come to a definition. 

A function y is said to be F\-admissible on [a, b] if 

(1) y is absolutely continuous on [a, b] and y'2 is integrable Lebesgue on 
[a,b]; 

(2) y (a) = L 

We denote by Ft[a, b] the class of all functions y which are inadmissible on 
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[a, b). We shall be principally concerned with the cases in which t = 0 or 
/ = 1. By the assumptions on r, p, and g, 

Ay) 

exists and converges absolutely for every y which is inadmissible on [a, b] 
for some /. 

In order to outline the method which we employ, we recall the results for 
the regular functional and then indicate the points of departure from these. 
Suppose that r, p, and q are continuous on (— °°, <») and that r{x) > 0 there. 
Then every solution of the Euler equation of (1.2) 

(1.5) (r(x) y' + g(x) y)r - (q(x) yf + p{x) y) = 0 

has a continuous derivative on (— °°, °°). If u is the unique solution of (1.5) 
such that u(b) = 0, u'(b) = — 1 and if u(x) ^ 0 on (a, b) then the Riccati 
equation (1.4) has a solution 

u' (x) (1.6) 
U\X) 

which is continuous and which has a continuous derivative on (a, b). Further, 
we have by a well-known formula (4, p. 260) that for a < t < b, 

(1.7) J(y) 

As a consequence, if 

(1.8) 

j r(x)\y'(x) - | A - y ( x ) j dx - y\t)\i m < $ + *w). 

L(t, b) = min J(y) 

where the minimum is taken over all y in F\[t, b], it follows by (1.7) that 
L(t, b) exists for every / Ç (a, b) and that 

L«>&) - - '<*> W ) - «W-
Moreover, the minimum is attained by the extremal 

u(x) 
y(x) = 

u(t) ' 

However, once the restriction r(x) ^ 0 is removed, the Euler equation (1.5) 
ceases to exist and the minimum (1.8) will not, in general, be attained. Never­
theless if we define L(t, b) by the relation 

L(t,b) =g.Lb.J(y)\b 

among all y Ç Fi[t, b] we shall see that the functions L (/, b) behave in a manner 
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which resembles the behavior of solutions of a Riccati equation. In the last 
section we discuss the details of the case when r(x) = 0 for x on [a, b). 

2. The conjugate points. In this section we develop a condition which 
ensures that the function L(x, b) exists on (a, b). 

Let x = a be a point of (—00,4-00). If there exists a number b, b > a, 
such that 

(2.1) J(y)\ >o 
I a 

for all y in Fo[a, b], we define c{a) to be the least upper bound of all such b. 
If no such b exists, we define c(a) to be a. The point x = c(a), which may be 
+ œ, is termed the first conjugate point of x = a. We remark that this defini­
tion is consistent with the definition of the conjugate point for regular func­
t ional (3, p. 8). It will be noted that c{x) is a nondecreasing and right con­
tinuous function of x. It is not, in general, continuous as trivial examples will 
show. 

THEOREM 2.1. Ifc(a) > b,then 

J(y) >o 
for every y in F0[a, b]. 

This theorem is trivial except in the case when c(a) = b. In this case it is 
disposed of in a manner similar to the proof of (4, Theorem 5.2). 

We now proceed to consider the condition under which it is possible to 
define the functions L. We recall from the introduction that L(x, b) is defined 
to be the number 

(2.2) g.l.b. J(y) " 
y ' x 

where the greatest lower bound is taken over all y Ç. Fi[x, b]. If L(x, b) exists 
on an interval (a, 6), we shall call it the Riccati function associated with J 
and the point x = b. 

THEOREM 2.2. In order that L(x, b) be finite on (a, b) it is necessary that 
c{a) > b. 

The proof is by contradiction. Suppose that c(a) < b. Then since c is right 
continuous, there exists XQ > a such that C(XQ) < b. As a consequence there 
exists z in F§\x§, b] such that 

(2.3) / ( * ) < 0. 

Let y Ç. Fi[xo, b]. Then for every t, the function w = y + te Ç Fi[x0, b] 
and 

(2.4) J(w) = J(y) + 2tJ(y, z) + t*J(z) 
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where 

J(y, z) I [r(x) yfzf + q{x){yz)' + p(x) yz] dx. 

Now because of (2.3) it follows that 

lim J(w) = — 00 

and thus L(xo, b) is not finite. 
We now establish the converse of Theorem 2.2. 

THEOREM 2.3. Ifc(a) > b, then L(x, b) is finite for every x on (a, b). 

Let a < Xo < Xi < b and let y be an arbitrary function in Fi[xh b]. Consider 
any function z which coincides with y on [xi, b] and which is in FQ[X0, b]. 
We have then that 

A*) > o. 

Therefore 

(2.5) Ay) > - A*) 

for every y in Fi[xi, b]. Since the right hand side of (2.5) may be independent 
of y it follows that L(x\, b) is finite for the arbitrary value X\ in (a, b) and the 
theorem is proved. 

It follows from the above theorem that, for a < b\ < b and a < x < bi, 
L(x,bi) exists and 

(2.6) L(x, b) < L(x, h) (a < x < bi). 

3. The Riccati functions. In this section we develop a number of 
properties of the Riccati functions. As we shall see the function L(x, b) is not, 
in general, continuous. However, we have the following theorem. 

THEOREM 3.1. / / c(a) > b then L(x,b) is right continuous everywhere on 
(a,b). 

By the previous theorem, L(x, b) is finite for each x in (a, b). Let c be in 
(a, b) and y be in Fi[x, b]. Then yc defined as follows is a member of Fi[c, b]: 

yc(t) = 1, C < t < X, 

x < t < b. 

Thus 

J(y.) = AD + J(y) 

from which it follows that 
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L(c,b) < 7(1) 

for every y in Fi[x, b]. Therefore 

(3.1) 

and 
(3.2) 

L(c, b) < 7(1) 

+ J(y) 

+ L(x,b) (a < x < b), 

lim inf L(x, b) > L(c, b). 

Now let yc be in Fi[c, b]. Then 

y(t) = Jcjt) 
ydx) 

(x < t < b), 

is Fi-admissible on [x, b] if x is sufficiently close to x = c and x > c. Now let 
e > 0 and let yc in Fi[c, b] be chosen such that 

J(y.)\ <L(c,b)+e. (3.3) 

Now 

and consequently 

(3.4) 

J(y) 
J(y.) 

Vc(x) 

Jiyc) 
L(x, b) <—2 

y«(«) 

for every yc in Fi[c, b]. It follows then that 

(3.5) lim sup L(x, b) < J(yc) 
x=c+ 

<L(c,b) + € . 

Since e > 0 is arbitrary, 

(3.6) lim sup L(x, b) < L(c, b). 
x=c+ 

A comparison of the inequality (3.2) with (3.6) yields the theorem. 
We now wish to obtain an extension of equation (1.7). Before stating the 

next theorem, we note that 

(3.7) g.l.b. J(y) | = y\c) L(c, b) 
V I C 

where the greatest lower bound is taken over all y in Ft[c, b] for a fixed /. 

THEOREM 3.2. Ifc(a) > band if 

(3.8) J(y) = Q(y, b) + y\x)L(x,b) 
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for every y in Fc[a, b] then 

Q(y, b) 

is for each x on (a, b), a quadratic functional which is defined for every y in 
Fe[x, b]. For each y in Fc[a, b], it is a positive nonincreasing function of x. 

Let y be in Fc[ay b] for some c. We must show that if a < s < t < b, then 

(3.9) Q(y, b) ' = Q(y, b) - Q(y, b) 
1 s 

> 
t 

Now 

(3.10) Q(y, b) ' = \j(y) 
s L 

b
s-y\s)L(s,b)\-[j(y) 

or 

(3.11) Q(y, b) ' = J(y) 
S 

t 

+ y"(x) L(x 
s 

,b)\ 

y\t) Lit ,b)\ 

From equation (3.11), it follows that this depends only upon the values of 
y(x) on the interval [5, /] . Now let z(x) be any function of the class Fc[t, b] 
where c = y(t). We have by the remark above that if 

then 

(3.12) Q(y, b) 

Thus by (3.7), 

y(x) = 

= Q(y,b) 

= J(y) 

y(x), s < x < /, 
z(x), t < x < b. 

y\s)L(s,b) ~ J(z) + z-(t)L(t,b). 

Q(y, à) > - J(z) + z(t)L(t,b) 

for every z in Fc[t, b] where c — y{t). On referring again to (3.7) it follows 
that 

Qiy,b) > 0 . 

THEOREM 3.3. If c{a) > b, then L(x, b) is of bounded variation on every 
subinterval of (a, b). 

Letting y(x) = 1 and ^ = x in equation (3.11) we have 

L(x, b) Qihb): + Al) + L(t,b) (s < t <b) 
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and since the middle term is absolutely continuous on [x, t] the theorem 
follows. 

THEOREM 3.4. Ifc(a) > bthen 

(3.13) r(x)[L'(x, b) + p{x)] - [L(x, b) + q(x)]2 > 0 

for almost all xon (a, b). 

A trivial integration by parts provides a proof of the following lemma: 

LEMMA 3.1. Iff(x) is integrable and g(x) is in C on [a, b] and if c is a point 
at which f{c) is the derivative of 

f 7(0 dt 
v a 

then c is also a point at which f(c) g (c) is the derivative of 

f 7(0 «(0 dt. 

We continue with a proof of the theorem. Let E be a measurable subset of 
(a, b) such that 

m{E) — b — a 

and such that for every c in E, L'(c} b) is finite and the derivatives of the 
functions 

S*b /»& /»& 

(3.14) J»6 /»J /»& 

r(t)dt, q(t)dt, p(t) dt 
X *' X *) X exist and equal — r(c), —q(c) and —p(c) respectively. (Henceforth, if A is a 

measurable subset of (--<», oo ), we will denote its one dimensional Lebesgue 
measure by m {A).) Now by (3.8) we have for y = m(x — /) + n that 

(3.15) 

and 

Q(y, b) = J(y) y2(t)L(t,b) (a < x < c < b) 

Q(y, b) 

is nonincreasing on (a, b). Further, since m(x — c) + n is of class C1 on 
[a, b] we have that for x = c in E, there is a derivative 

d 
Tx^

h) <o. (3.16) 

An application of the Lemma to (3.16) gives the result 

r(c)m2 + 2(q(c) + L(c, b)) mn + (p(c) + L'(c, b)) n* > 0 

for every m and n and every c in E. 

https://doi.org/10.4153/CJM-1956-010-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-010-x


60 A. D. MARTIN 

But from the theory of quadratic forms it follows that 

(3.17) r(c) > o, p{c)+L'(c,b) > 0 

and 

(3.18) r(c)[L'(c, b) + p(c)] - [L(c, b) + q(c)]* > 0, 

for all c'mE. The theorem is proved. 
The relation (3.17) gives at once the following theorem : 

THEOREM 3.5. In order that 

J(y) 
b 

>o 

for every y in F0[a, b] it is necessary that the set of x of [a, b] for which r(x) < 0 
be of Lebesgue measure zero. 

If r(pc) is zero on a set T of positive measure then except for a subset of T 
of measure zero the inequality (3.18) implies that 

L(x, b) = - q(x). 

We thus have the theorem : 

THEOREM 3.6. If 

(3.19) ^.] = f"^(f^ + ^ ' < * > * 0 ' 
i - ( s + g(*))2, r(*)=0, 

then 

(3.20) R[x,L(x,b)] > 0 

almost everywhere on (a, b). 

One may show by example that the inequality in relation (3.20) cannot be 
removed without further assumptions. We have, however, the following 
result. 

THEOREM 3.7. If r(x) is continuous on [a, b] and if c(a) > b then L(x, b) 
satisfies the equation 

(3.21) R[x, z] = 0 

almost everywhere in (a, b). 

Before attending to the proof of Theorem 3.7 we consider some extensions 
of the theory of regular functionals. 

If r(x) is continuous and positive on [s, t] then l/r(x) is continuous on 
[s, t] and 
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It follows that the system of equations 

(3.23) 
v' — a2iu + a22^, 

where 

(3.24) an=-g/r, «„ - l/ r> 

#21 = p — q2/r, a22 = q/r 

has a unique solution (w,u), where u and 1; are absolutely continuous functions 
on [s, t] which almost everywhere satisfy equations (3.23) and which at c in 
[s, t] satisfy the relations 

u(c) = UQ, V(C) = Vo, 

where UQ and vo are arbitrary real numbers. This follows (5, pp. 44-45) from 
the fact that the atj are integrable Lebesgue on [s, /] . By the null solution of 
(3.23) is meant the solution for which u and v vanish identically on an interval. 
It follows from the existence theorem cited that if u and v vanish at one point 
of (s, t) then (u, v) is the null solution on [s, t]. From (3.23) and (3.24) we have 
that for almost all x in [s, t]. 

(3.25) v(x) = r(x) u'(x) + g(x) u(x) 

and 

(3.26) v'(x) = q(x) u'(x) + p(x) u{x). 

Furthermore, in a manner which runs along classical lines, one may show that 
the first conjugate point c(a) of the point x = a is the first zero beyond the 
point a of u of a nonnull solution (u, v) of (3.23) for which u{a) = 0. Hence if 
c(a) > b the function 

»»> -w> 
is absolutely continuous on every closed subinterval of (a, b) and satisfies the 
Riccati equation 

(3-28) z,-£±2Ml + p{x)=0 

for almost all x on (a, b). We have moreover that 

(3.29) J(y)\[- J>[y(0-^ y (0]*- îg u(t)JK''Aw u(x)y2{x) 

for every y in Ft[a, b]. The proof of this formula is similar to that of the 
analogous formula in (2, p. 103, Th. 6.2). A consequence of (3.29) is the 
following well-known result. 
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THEOREM 3.8. If c{a) > b and if (u, v) is any nonnull solution of the system 
(3.23) such that u(b) = Othen 

v(x) 
(3.30) L(x, b) — 

u{x) 
{a < x < b). 

We return to give a proof of Theorem 3.7. Let rn denote the function such 
that 

(3.31) rn(x) = r(x) + - (a < x < b), 
n 

(3.32) Jn(y) = j Kit) y'2 + 2q(t) yy' + p{t) y2} dt. 

Let Ln(x, b) denote the Riccati functions of Jn. We then have that 

(3.33) Uy)\ > Jn+i(y)\ > J(y) 
I X \ X 

from which it follows that 

(3.34) Ln(x, b) > Ln+i(*, b) > L(x,b) (a < x < b). 

Thus for each x on (a, b) there is a limit 

(3.35) lim Ln(x, b) > L(x, b). 
n=oo 

We assert that 

(3.36) llm Ln(x, b) = L(x,b). 
«=oo 

Since for each n, and every y in Ft[x, b], 

0 < rn(t) y2(/) < n(t) y'2(t) (x < t < 6), 

the Lebesgue limit theorem gives the result 

(3.37) lim Jn(y) 
n=oo 

Now let y be in F\[x, b] such that 

= J(y) 

J(y) < L(x, b) + e 

and let m be an integer such that îor n > m 

Uy) < L(x,b) + e. 

By (3.37) such an integer m exists. Thus 

lim Ln(x, b) < lim Jn(y) 
n=co n—oo 

Since e > 0 is arbitrary it follows that 

< L(x, b) + e. 

(a < x < b). 

lim Ln(x, b) < L(x, b)} 
n=co 
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and combining this result with (3.35) gives the assertion (3.36). Now since 
1A«(X) £ Li on every closed subinterval of (a, b) it follows from the remark 
(3.27) that Ln(x, b) is a solution of the Riccati equation 

(3.38) z' - fr + g W ) - + p(x) =o (a<x<b). 

Let T be the subset x on (a, b) for which r(x) = 0 and 5 the subset consisting 
of x on (a, b) for which r{x) > 0. Then 

S U T = (a, 6), 

and since r(x) is continuous on (a, b) S is open while T is closed in (a, 6). 
I f w ( r ) < 0 then by the inequality (3.18) 

L(x, b) = — g(x) 

for almost all of J1, and hence 

(3.39) R[x,L(x,b)] = 0 

on almost all of T. If S is not empty then m(S) > 0. In the latter case let Ik 

be the components of S, let 

/* = (ak,bk) (k = 1 ,2 , . . . ) . 

It suffices to show that (3.39) holds on almost all of each interval Ik. Let k 
be a fixed but arbitrary integer and let [s, t] be a closed subinterval of Ik. 
We have then by Theorem 3.8 that Ln(x, b) is absolutely continuous on each 
closed subinterval of (a, b). Thus by (3.20) we have that 

\2 
Ln(t, b) - Ln(s, b) = f &»(*•*)+g(*)) rfx _ f £ (x ) ^ 

Now since, for every w, 

qn(x,&)+g(x))2 ( IL^X.^I + I^X)!)2 

rK(x) ^ r(x) 

the Lebesgue limit theorem may be invoked to infer that 

(3.40) L(t, b) -L(s,b) = f l L M ) + g ( * ) ) dx _ f 'p{x) dx 
J s r[X) Js 

for every t and 5 such that 
ak < s < t < bk. 

On taking the derivative of (3.40) when t < x we have almost everywhere on 
Ik that 

T>(„ h\ (L(x>b) + g ( x ) ) 2 

L (*, 6) ^ + £(*) = 0. 
The proof is complete. 

We remark that equation (3.40) contains the following result. 
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THEOREM 3.9. If c(d) > b then L(x, b) is absolutely continuous on every closed 
interval in (a, b) where r(x) is continuous and positive. 

As the results of the next section will show, even if r(x) is continuous, the 
condition that c (a) > b does not imply that L (x, b) is continuous. 

Let r(x) be continuous on (—00, °°). Let Ik = (ak, bk) be the components 
of the subset S of (a, b) on which r(x) > 0. Let x = mk be a point of (ak, bk) 
and T the complement of S in (a, b). We have the following theorem. 

THEOREM 3.10. Letc(a) > b. If q{x) is continuous on Tand if 

J 'mk dx Cbk dx 

" 7 T = œ ' \ -T\= °° (* = 1 ,2 , . . . ) 
ajfc ?A#J t/m* r\X) 

thenL(x, b) is continuous on (a, b) andL(x, b) = — q{x)for every x in T. 
By Theorem 3.9 it follows at once that L(x, b) is continuous at each point 

of 5. To show that L is continuous at each point x = c of T it is therefore 
sufficient to prove that 
(3.42) L(c,b) = - q(c) 

and 
(3.43) \imL(cn,b) = - q{c) 

W=oo 

for one sequence of numbers such that cn < c for all n = 1 , 2 , . . . . This follows 
from the facts that L(x, b) is right continuous on (a, b) and that it is of bounded 
variation on every closed subinterval of (a, b). 

We assert first that 

L(c, b) = - q{c) 

for every point x = c in T. By the hypothesis (3.41) and the formula 

Tf M T( M fm* (L(*>ft) +<?(*))2 7 P \ * / w 
L(w*, &) - L(ak, b) = I --—* , A ^ - I £ (*) <&» 

•'ajfc T ' W J ak 

it follows that 
(3.44) L(ak, b) = limL(x, &) = - g (a*). 

z=a/b 

Let x = c be any point of 7\ If x = c is a right limit point of the sequence 
ak the assertion (3.42) follows from (3.44). In the remaining case x = c is 
isolated on the right from ak. Then 2" contains an interval (c, a'), (0 < a' < b). 
But since r(x) = 0 in [c, a'], Theorem 3.6 implies that 

L(x, 6) = — g(x) 

almost everywhere in [c, a'], in particular on an everywhere dense subset of 
[c, a']. Then on taking cn in [c, a'] such that 

£(c„, b) = - g fe ) (« = 1,2, . . .), 
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the assertion follows from the continuity of q and the right continuity of L. 
Now the desired result (3.43) is clear for every point of T which is a left limit 
point of T. If x — c is isolated on the left from T, then x = c is the right 
endpoint of an interval of S. Thus c = bk and by reasoning analogous to that 
used for the ak we have 

\im_L(x, b) = — q(bk, b) = L(bk, b). 
x=bk 

4. The case r = 0. In this section it will be presumed throughout that 
r(x) vanishes identically on (— oo , oo ). We will determine the Riccati functions 
completely and obtain a necessary and sufficient conjugate point condition. 

For the functionals under consideration 

(4.1) R[x,z] = -(z + q(x)Y. 

Further since r = 0 is everywhere continuous, L(x, b), whenever it exists, 
satisfies the Riccati equation 

R[x, z] = 0 

almost everywhere on (a, b). Thus for these x, 

(4.2) L(x,b) = -q(x). 

We have then as an immediate consequence of (4.2), Theorem 3.1, and 
Corollary 3.1 the following result. 

THEOREM 4.1. If c{a) > b then q(x) must agree almost everywhere on (a, b) 
with a function which is right continuous on (a, b) and which is of bounded 
variation on every closed subinterval of {a, b). 

With no loss of generality we may always assume that whenever c(a) > b 
that q(x) is right continuous on (a, b) and is of bounded variation on every 
closed subinterval of (a, 6). 

THEOREM 4.2. In order that c(a) > b it is necessary that the function 

(4.3) q{x) + j p(t)dt 

be nonincreasing on (a, b). 

LEMMA 4.1. Ifx = cisa point where q (x) is right continuous then 

(4.4) \hn j ( ~ ^ ) \ = - q(c) 
t=c+ \ C — t / \ c 

and 

(4.5) Hm j(~A ' = q(c). 
t=c+ V ~ C/ I c 

We shall provide a demonstration of equation (4.4). 
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It is sufficient to show that 

(4.6) J *1 (x — t) 
2q(x) 7 T^dx = — q(c) 

c [C — t) 

since 

l'< 0 I J> x)\dx = 0(1) 

as / tends to c+. But on an integration by parts we find that 

: I q(x)(x — t) dx — 
(c - tf 

By I'Hospital's theorem one has 

2 

(c - ty t / c *s c 
q(x) dx ds. 

lim q{x){x — t) dx — lim I q(x) dx = — q(c), 
C t=C+ * C 9/ c t=c+ (c - ty 

since q (x) is right continuous at x = c. 
The lemma is proved. We continue with a proof of the theorem. 
Let F(x) denote the function (4.3). As previously remarked we may assume 

that F(x) is right continuous and of bounded variation on every closed 
subinterval of (a, b). Let x = s and x = u be two points of (a, b) such that 
.v < u, and let numbers / and v be chosen such that 

(4.7) s < t< u < v. 

We define a function y in FQ[a, b] as follows: 

o, a < x < 5, 
X ~ S 

t - s' 
5 < x < /, 

y(x) = a, / < X < U, 

x — v 
u — v ' 

U < X < V, 

o, 
V 

v < x < b. 

Since c(a) > b, we have 

J(y) * > o, 
1 a 

or what is the same thing : 

(4-8) Afe1) 
1 * 

I 
+ (Up(x)dx+j(~ - ) 

for every 5, /, u, and y which satisfy the inequalities (4.7). Now let t tend to s+ 

and v then to w+. By Lemma 4.1 the inequality (4.8) becomes 

p{x) dx - q{u) > 0, 
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that is, 
F(s) - F(u) > 0 (a < s <u <b), 

and the theorem follows. 
We now establish the converse of the preceding Theorem. 

THEOREM 4.3. If the function 

(4.9) q(x)+ jj(t) 

is nonincreasing on (a, b) then c(a) > b. 

dt 

Again we denote (4.9) by F(x). The theorem will be proved if we show 
that 

Ay) >o 
for every y in Fo[a, b]. On an integration by parts one finds that for every y in 
F0[a, b] 

(4.10) J(y) = 2 I F(x) y(x) y'(x) dx. 
a *) a 

Since F(x) is nonincreasing we may infer from the Second Mean-Value Theo­
rem that there exists con (a, b) such that 

J{y)\ =2F(a) y(x) y'(x) dx + 2F(b) y{x)y\x)dx 

= (F(a) - F(b)) y\c) > 0. 

The proof is complete. 
We remark in closing that if 

L(x, b) = — q(x) 

on a set of positive measure T then there exists a subset T' such that 

m{Tr) — m(T) 

such that 
L(x, c) = —q(x) 

for all x in T' and all c such that 

x < c < b. 

Hence under these circumstances L(x, b) is independent of b. Further, if 
r(x) = 0, L(x, b) is independent of the function p subject only to the condition 
that the function 

q{x) + J p{t)dt 

be nonincreasing on (a, b). 
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