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Abstract
We present a hierarchical Dirichlet regressionmodel with Gaussian process priors that enables accurate and

well-calibrated forecasts for U.S. Senate elections at varying time horizons. This Bayesian model provides a

balance between predictions based on time-dependent opinion polls and those made based on fundamen-

tals. It also provides uncertainty estimates that arise naturally from historical data on elections and polls.

Experiments show that our model is highly accurate and has a well calibrated coverage rate for vote share

predictions at various forecasting horizons. We validate the model with a retrospective forecast of the 2018

cycle as well as a true out-of-sample forecast for 2020. We show that our approach achieves state-of-the art

accuracy and coverage despite relying on few covariates.
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1 Predicting Senate Races
In recent years, there has been an explosion of interest in election prediction models. Primarily,

this has been driven by media outlets and popular forecasting websites like fivethirtyeight.com.

However, although the most prominent forecasting efforts have been housed in media organiza-

tions, these models often build from, or are inspired by, research in political science.

Broadly speaking, academic election forecasting in the U.S. context can be divided into two

approaches. First, there are static models that make a single prediction for a given election (e.g.,

Abramowitz 2008; Fair 1978; Lewis-Beck and Tien 2008). These models are sometimes referred

to as “fundamentals” models and primarily rely on economic indicators, incumbency status, and

other factors that shape the general context of an election. To the extent, they incorporate polling

data at all, they arebasedonproxies suchaspresidential approval (e.g., EriksonandWlezien 2008)

or snapshots taken well before Election Day (e.g., Campbell and Wink 1990).

A smaller body of research focuses on dynamic forecastingmodels that change over the course

of the campaign as new polling data arrives. In particular, Linzer (2013) introduces a dynamic

Bayesian model forecasting the U.S. presidential election results for all 50 states. This model

has served as a basis for presidential forecasts produced by major media outlets including The
Economist andDaily Kos.1 Another example is Jackman (2005),whichpresents a somewhat related
Bayesian model, although the goal is to aggregate polls rather than to make a prediction per se.
While the U.S. presidential election has received themost attention, a smaller body of research

has focused on predicting legislative elections. Most examples in this domain do not seek to

1 While The Economist presidential model was based on Linzer (2013), their senate forecastingmodel was not. The details of
The Economist 2020 U.S. Senate model are not public.
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predict individual races, but rather the aggregate number of seats that swing to a specific party

(e.g., Campbell 2018; Lockerbie 2012). Still, somepreviouswork has builtmodels of individual U.S.

Senate races based on fundamental factors (Hummel and Rothschild 2014; Klarner 2008; Klarner

2012; Klarner and Buchanan 2006). However, to the best of our knowledge, there are no published

models providing dynamic forecasts of individual senate races in political science.

The relative lack of attention to the Senate is probably the result of the intense popular interest

in the presidential race. However, it also reflects the fact that predicting individual-level Senate

elections is actually a more difficult task than it may first appear. To begin, there is far less

polling data for any given Senate election relative to national races, especially early in the cycle.

Some states with close races and large media markets may have dozens of polls, but in many

others there are very few. In addition, senate races are relatively low salience to voters, especially

early in the cycle. Even strong challengers can be unfamiliar to voters until the final weeks. As a

consequence, public opinion can be far more dynamic as voters learn about their options in the

lead-up to Election Day. In short, senate elections offer fewer polls and what polls exist can be

noisy predictors.

A further problem is that local context and other “fundamentals” are often only weakly pre-

dictive of candidate performance. Although the general partisan dispositions in each state tends

to heavily structure presidential outcomes, results in Senate elections are far less geographically

determined. That is, knowing how a party candidate performed in one election is often a poor

predictor of performance in subsequent years. A recent examples would be West Virginia where

Democrat Joe Manchin won over 60% of the vote in 2012 and Republican Shelly Capito won

over 62% just 2 years later. These kinds of dramatic partisan swings occur regularly, making

“fundamentals” forecasts difficult. Klarner notes that his fundamentals-based model “has never

performedwell, beingoffby three seats in2006and five seats in2008.U.S. Senateelectionsappear

tobe influencedby race-specific factors that are difficult to include in forecastingmodels” (Klarner

2013, p. 45). Meanwhile, Hummel and Rothschild (2014) predicted only 83% of races correctly

in-sample and performed similarly out-of-sample.

In combination, this means that for any single cycle it is difficult to provide accurate

forecasts in the absence of polling. Yet, polling data itself is relatively sparse and subject

to significant trends over the course of the election. And, of course, relying on unvarnished

polling data can be inaccurate even where it is not just missing, making simple polling averages

suboptimal.

On the other hand, there is one very important advantage to working in this setting relative to

national elections; there are many more observations. While presidential elections offer only one
observation every 4 years, the Senate has roughly 33 election outcomes attached to hundreds

of polls every 2 years. In our dataset, which covers only the post-1992 period, we have 501

election results and over 7,900 published polls. This give us some hope that we can train a model

that can learn from the past to predict future outcomes and, crucially, correctly calibrate our

uncertainty.

Below, we present a hierarchical Dirichlet regression model in a Bayesian framework that

enables us to combine polls and fundamentals to accurately forecast election outcomes at var-

ious time horizons. This model provides a structured balance between time-dependent opinion

polls and state/candidate-level fundamentals. Unlike fundamentals-based models, ours updates

throughout the election cycle to reflect recent polling trends. Yet unlike existing dynamicmodels,

ours is trained on a set of historical election outcomes rather a single election cycle. The result is

amodel that provides uncertainty estimates that arise naturally from the induced posterior based

on historical data and therefore provide a better sense of our true uncertainty. Experiments show

that our model can achieve high levels of accuracy and correct coverage for various forecasting

horizons.
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The most important contribution we make in this article is proposing an accurate, dynamic

model appropriate for subnational elections at the district level—something the discipline

currently lacks.2 However, we also advance the broader elections forecasting literature in two

ways. First, the hierarchical structure we propose combines the unique strengths of poll-based

dynamic models and fundamentals-based static models in a single framework. Existing dynamic

models are fit to polling data from a single election cycle (Jackman 2005; Linzer 2013). To the

extent historical data are used at all, they enter only through informative priors or hyperparameter

selection. This makes it more difficult to understand whether the final predictive intervals

accurately represents our uncertainty about the outcomes since the likelihood itself is actually fit

to polls and not to election results. Our approach differs in that the dynamic component feeds

into a higher-level model trained on historical election results. Since this higher-level model also

includes fundamental factors (e.g., the partisan orientation of the state), final predictions are

better calibrated to reflect our actual uncertainty about unobserved election outcomes and can

weight polling and fundamentals to reflect their actual predictive performance at different time

horizons.

Second, we introduce a Gaussian process (GP) framework for modeling trends in latent public

opinion that is more appropriate for elections with fewer polls—a common feature outside of

U.S. presidential races. Our GP approach offers a significant advantage in that we can model

polling trendsasa linearprocesswherenonlineardeviationsareallowed given sufficientdata. This
added structure offers a significant improvement in out-of-sample prediction relative to a random

walk (Linzer 2013) while also relaxing strict linearity assumptions when needed. It has the further

advantage that it allows us to derive the posterior for these time trends analytically, significantly

reducing computation time for any one election. This in turn allows us to fit the full hierarchical

model including hundreds of elections.

In the next section, we provide a basic intuition for ourmodeling framework before providing a

more detailed presentation in Section 3. We then test the model using historical data in Section 4

and evaluate a true out-of-sample forecast for the 2020 election cycle in Section 5. We show that

our approach achieves state-of-the art accuracy and coverage despite relying on few covariates.

Weconcludewithadiscussionof howourmodel couldbe improved in future iterationsor adjusted

for other election settings.

2 Intuition and RelatedWork
Before introducing themodel, we want to focus on the core ideas that inform our approach. First,

we suppose that polling for a candidate is a noisymeasure of true underlying public opinion, f (t ),

at any given time t. That is, we assume that there is a true level of underlying support for each
candidate thatmoves smoothly over time and that polling results imperfectly follow these trends.

While modeling smooth latent public opinion is consistent with previous efforts to aggregate

polls (Jackman 2005; Linzer 2013; Stoetzer et al. 2019), we adopt a strategy that is more appro-
priate given the sparseness of polling in many senate elections. Our approach assumes a linear

trend in the data with mild nonlinear deviations. This provides a sensible compromise between

a simple linear model of public opinion and the trend-free smoothing procedures adopted in

Jackman (2005) and Linzer (2013) (see also Stoetzer et al. 2019; Walther 2015). Indeed, these other
approaches can be viewed as special cases of our more general model where no linear trend is

included.

Third, ourmodeling strategyassumes that latentpublicopinion isonlyonepredictorof election

outcomes. That is, latentpublicopinion isnotassumed to translatedirectly intoelectionoutcomes

2 Media outlets like fivethirtyeight.com and The Economist provide dynamic predictions. However, the details of these
models are not public and we have no way to assess their methodology or build upon their techniques.
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as inLinzer (2013). Instead, themodel learns thedegree towhichpublicopinionaccuratelypredicts

elections relative to other “fundamental” factors including state-level voting history, candidate

quality, and the like. This approach has two advantages. To begin, it allows us to easily train our

model at different time horizons such that public opinion is weightedmore heavily as the election

approaches and polling becomes more predictive. More fundamentally, however, it allows us to

explicitly model the inherent uncertainty in election outcomes that cannot be adequately pre-

dicted frompollingandandcontextual factors. That is,weassume that even ifweknewpublic sup-

port for a candidate perfectly, there would still be uncertainty in the outcome due to turnout and

other unmodeled factors. Our aim is to use historical data to calibrate our uncertainty and achieve

correct coverage rates at various time horizons in a way that reflects this irreducible uncertainty.

Finally, the model is tuned to accurately predict elections not polls. Thus, while polling out-

comes are included in themodel, the keymodel parameters are not selected to reduce the error in

predicting polls but in predicting vote share. We select hyperparameters intentionally that under-

predict individualpolling resultsbutprovideabetterbasis forpredicting candidate vote share. The

result is a parsimonious, but accurate and well calibratedmodel of elections.3 Themodel takes in

only four variables: polling data, Cook’s partisan voting index (Campbell 2018; MacWilliams 2015),

party affiliation of candidates, and candidate quality (Jacobson 1989; Jacobson and Carson 2019).

However, it still makes accurate predictions for races at various time horizons while maintaining

correct coverage. Indeed, in the 2020 Election our model outperformed the model published

in The Economist (Economist 2020) and provided comparable (and by some metrics superior)
performance to the popular fivethirtyeight.com forecasts (Fivethirtyeight 2020).

In the next section, we introduce the model in stages. Section 3.1 provides important back-

ground information on Gaussian process regression, an approach that has appeared rarely in

political science research. Section 3.2 then applies this framework to the task of projecting latent

public support for each candidate. Section 3.3 then explains how this is combinedwith contextual

factors in our Dirichlet regressionmodel of vote share. We then briefly contrast our approachwith

other forecasting models in the literature in Section 3.4 before turning to our results in Section 4.

3 A Predictive Model of U.S. Senate Elections
Our proposed model has two components as depicted in Figure 1. First, we use candidate-level

polling data to predict latent public support for candidate i on Election Day (t = 0), which we

denote as fi (0).4 If we are predicting this before the election (t < 0), this quantity is predicted

based on all polling data up to the current date as well as an informative prior reflecting the

general electoral context. Note that the goal is not to create a point prediction, but to estimate

a distribution on fi (0) that reflects our uncertainty about the trajectory of public opinion over the

course of the election as well the inherent uncertainty in polling data itself. We refer to this as our

candidate-level model.
Second, we then use predicted public support as inputs for an election-level model5 with the

goal of predicting the proportion of the vote divided among all candidates in a given race (that

is, the entire vote share and not only the winner). We model this with a Dirichlet regression with

year-level random effects using a training dataset of elections starting in 1992. Importantly, this

Dirichlet regression takes in fi (0) as an input along with contextual factors. Thus, we are able to
use historical data to estimate the the degree to which electoral context, public opinion, or some

mix of the two are best able to predict vote shares at different time horizons.

3 The model was built using data from 1992–2016 with cross validation. All modeling decisions and hyper-parameter
selection was done using only these data. We held out 2018 to serve as a test set for this analysis.

4 Supplementary Appendix A provides a reference table of all notation.
5 Throughout, we use election to refer to a race between two or more candidates in a single seat. The overall election cycle
(roughly 33 elections in a given year) is referred to as a cycle.
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Figure 1. Conceptual outline of the two stage model. The candidate-level model, predicts public opinion on
Election Day. The election-level model, predicts vote share as a function of public opinion and contextual
factors.

The final output is a prediction for Senate elections that accounts for two levels of uncertainty.

We have uncertainty about where latent public opinion will be on Election Day given the polling
data we have observed so far. But we also have uncertainty as to how well public opinion and

contextual factors predict election outcomes based on historical data.

3.1 Background on Gaussian Process Regression
Our model for latent public opinion over time is a linear trend with smooth nonlinear deviations.

Here, we subsume both components into a single GP model of latent opinion. GPs offer a flexible

Bayesian framework for nonlinear regression widely adopted in machine learning (Rasmussen

and Williams 2006). GP models have not been used widely in political science, although they

have appeared under the label Bayesian kriging (Gill 2020; Monogan and Gill 2016). However,

mathematically they can be considered a Bayesian variant of kernal regularized least squares

(KRLS) (Hainmueller and Hazlett 2014; Mohanty and Shaffer 2019).

To define a GP, consider a function f : X → � on some arbitrary domain X; for our model of
latent opinion, X = (−∞,0] is the span of times at which we may wish to predict. The defining
property of a Gaussian process is that if X ⊂ X is a finite vector of input locations, then the

associated function values f (X) has a multivariate normal distribution. The moments of this

distribution are provided by amean function μ(x ) = �[f (x ) | x ] and covariance functionK (x ,x ′) =

cov[f (x ), f (x ′) | x ,x ′]; evaluating thesepointwiseprovides themeanvector andcovariancematrix
for anydesiredvectorof functionvalues f (X).Modelingwith theGPentails designing themeanand

covariance functions to encoding the desired statistical properties of f such as correlations over
the domain.

A critical property of GPs is that they enable exact, closed-form inference for regression for

observations corrupted by additive Gaussian noise. Let f ∼ GP(μ,K ) have a GP prior and suppose
we obtain a vector of observed values y at locations X, where yi = f (xi )+ε, ε ∼N (0,σ2). Then the
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posterior belief of f givenD = (X,y) is again a GP with updatedmean and covariance function:

μf |D (x ) = μ(x )+K (x ,X)(K (X,X)+σ2I)−1(y−μ(X))

Kf |D (x ,x
′) = K (x ,x ′)−K (x ,X)(K (X,X)+σ2I)−1K (X,x ′).

Hence, appealing to the definition above, the posterior predictive distribution of any function

value f (x ∗) is normal:

f (x ∗) | D ,x ∗ ∼ N
(
μf |D (x

∗),Kf |D (x
∗,x ∗)

)
.

This final point is important for our application.Whenmodeling the latent opinionwith aGaussian

process, our prediction for latent public opinion on Election Day, fi (0), is a normal distribution

that can be directly derived. This in turn becomes a normal prior for public opinion that is passed

directly into the election-levelmodel. This allowsus to includeour uncertainty aboutwherepublic

opinion will be on election day into the election-levelmodel while at the same time significantly
reducing computation time relative to Linzer (2013).

3.2 Projecting Public Support via GP Regression
We next outline our approach for forecasting voter preferences throughout an election given

polling results. Our approach entails building independent GP models for each race conditioned

on available polling outcomes.6 The model includes only polls, hyperparameters, and priors

(discussed below).

Denote by C the set of all candidates in all races we wish to reason about. We will consider

the unknown proportion of voters preferring candidate i ∈ C in a given race a function of time,

writing fi : (−∞,0] → [0,1]. Here, the domain of the function is time (measured in days), where
the election is defined to occur at time t = 0days. Let Ti be the set of times when opinion polls for
candidate iwere conducted.7

Wemodel the trend of voter preferences fi as a sum of an underlying linear trend ai +bi t , with

smooth nonlinear deviations from this trend, ηi (t ). We place independent Gaussian priors on the

intercept ai (i.e., the priormean of the voter preferences on Election Day) and slope bi of the linear

trend, and will place an independent, zero-mean GP prior on the nonlinear component ηi . The

covariance function K determines the correlation of deviations from the linear trend as a function

of timeandwas taken tobe identical acrossall races.Here,weused theMatérncovariance function

with ν = 3
2 , whichmodels isotropic, once-differentiable functions (Rasmussen andWilliams 2006).

This covariance function has two hyperparameters that we will estimate from training data: a

length scale ρ determining the scale of correlations, and an output scale λ determining the

pointwise variance of the process. Intuitively, we can think of ρ as determining the “window” of

days overwhichnonlinear deviations are estimated andλ as controlling thedegree of nonlinearity

we expect such that higher values lead to more dramatic deviations.

The model can be summarized as:

fi (t ) = ai +bi t +ηi (t ) (1)

ai ∼ N (āi ,σ2
a = 0.12) (2)

bi ∼ N (0,σ2
b = 0.0022) (3)

ηi (t ) ∼ GP(0,K ), (4)

6 Supplementary Appendix B shows that Senate election results are far less correlated across states than presidential
elections. As we discuss in the conclusion, this independence assumption would need to be relaxed for presidential
forecasting.

7 We date polls based on the first day they are in the field.
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where the covariance function for the nonlinear deviations is

K (t , t ′;ρ,λ) = λ2
(
1+

√
3d

ρ

)
exp

(
−
√
3d

ρ

)
; d = |t − t ′ |.

The priors on the linear parameters are constructed to be broad for the slope (so that over a time

periodof roughly 100days the linear trendcouldplausibly assumeanypossible value) andvaguely

informative for the intercept; we will discuss the intercept mean parameter āi shortly.

The above prior choices induce the following joint prior over the voter preference, as shown

in (5). Notice that ourmodel provides an automaticmarginalization over the linear slope parame-

ters, since the covariance function in our GPmodel has absorbed the hyperparameters controlling

the prior distribution of the linear function parameters.

fi (t ) ∼ N
(
μi (t ),V (t , t

′)
)
, (5)

μi (t ) = āi , (6)

V (t , t ′) = σ2
a + t t ′σ2

b +K (t , t ′). (7)

Our goal is to infer the latent voter preference trend from opinion poll outcomes, which

are by their nature noisy. Our approach is to model the observed poll outcomes as binomially

distributed, then approximate each binomial with a Gaussian formathematical convenience. This

will allow closed-formexact inference, yielding aposterior GPbelief about underlying voter trends

conditioned on available data. As discussed in Section 3.4, this step is an important innovation,

allowing us to exactly solve for the posterior predictive distribution of fi (t ).

For a candidate i ∈ C with Si conducted opinion polls, let Di = {t i s ,ni s ,xi s }, (s = 1, . . . ,Si )

denote the outcomes of all available polls involving that candidate. Here, t i s is the time of the poll,

ni s is the sample size of the poll, and xi s is the number of polled people expressing support for the

candidate. Dropping subscriptsmomentarily, consider one such polling outcome (t ,x ,n) ∈ D. We
make the natural assumption that the number of supporters x is binomially distributed given the
sample size n and the true (unknown) voter support f at time t:

x ∼ Binomial
(
n, f (t )

)
. (8)

Unfortunately, it is not possible to condition a GP exactly on observations with a binomial

likelihood.However, sample sizes for electionpolls tend tobe largeenough (often in thehundreds)

that we can safely make a Gaussian approximation to the likelihood by moment matching. Here,

we also explicitly consider an additional general noise term σ2, which designates another level of

noise stemming from the polling data. Let p = x/n to be the observed proportion of support in a
poll, so (8) could be approximated with

p ∼ N
(
f , p̂(1− p̂)/n +σ2), (9)

wherewehave substituted theestimated p̂ for the trueunknownproportion f (t ) in the variance (in

our case, p̂ = p after observation). This likelihood is now conjugate to our GP prior on f and allows
exact inference.

Let us define the vectorp to entail a set of polling outcomesobservedat times t, ps = xs/ns , and
further defineB to be a S ×S diagonalmatrixwithBss = ps (1−ps )/ns +σ2. This is the approximate

noise variance for each of these measurements appearing in (9). Using the results in Section 3.1,

Yehu Chen et al. � Political Analysis 119

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
1.

42
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2021.42


the posterior predictive distribution of the voter preference at any time t is:

f (t ) | D ∼ N
(
μf |D (t ),Kf |D (t , t )

)
, (10)

μf |Di
(t ) = μ(t )+V (t , t)

(
V+B

)−1
(p−μ), (11)

Kf |D (t , t
′) =V (t , t ′)−V (t , t)

(
V+B

)−1
V (t, t ′), (12)

where μ and V are the prior mean and covariance of f (t), respectively. Although we may make

forecasts for any time t, we are especially interested in public opinion on Election Day, f (t = 0).

This will also be normal following Equation (10). For notational convenience below, we will again

use subscripts for candidates and write fi (0) ∼ N
(
μfi ,Kfi

)
.

The candidate-level model is completed by choosing values for the intercepts {āi } and
the set of shared hyperparameters ω = (ρ,λ,σ2). Here, σ2 represents the level of unmodeled

noise remaining in the polling data, λ controls the degree to which the time trend deviates

from linearity, and ρ represents the “bandwidth” of the smoothing window for these nonlinear

deviations.

We chose informative, but wide hyperpriors for {ai } so that projections could bemade in races
with few or zero polls but that polling data would quickly swamp the prior when plentiful. Since

the standard deviation for the hyperprior is set at 0.1, any vote sharewithin±30 points of the prior
should be well supported.8 To set {āi }, we ran a simple regression in the training set with normal-
ized vote share as the dependent variable and party, lagged partisan vote index (PVI), and level or

prior experience as covariates.9 While not an accuratemodel by itself, it proved to be an adequate

prior.10

For ω, we adopt a leave-one-year-out (loyo) cross-validation approach using the training

period from 1992 to 2016. The motivation is to choose hyperparameters that maximize predictive

performance for election results even at the expense of choosing parameters that reduce fit for

the polling data.

First, we define the search region of output scale and shared noise both to be [0,0.05]. We
search length scale with a minimum of 7 days and a maximum of 56 days.11 Empirically, we

generatepotentialω’s for the validationprocedure froma low-discrepancySobol sequence (Sobol

1979) in the search region, since it covers the spacemore efficiently than a grid.We fit the complete
model, including the election-level model, for each of 100 values of ω at each time horizon (τ)

leaving out each year in turn.

For example, for choosing the hyperparameters for the model predicting 4 weeks in advance

of the election, we used all of the polling data up to day t = −28. We then fit the GP models and
trained the election-levelmodel described below leaving out each cycle in turn. We then generate

out-of-sample predictions for vote shares and choose the hyperparameter setting thatmaximized

the loyo log-likelihood averaged across all cycles.

8 Supplementary Appendix C considers alternative choices for the prior standard deviation σa . Using 2016 as a test case, we
show that these alternatives do not improve predictive performance.

9 Lettingw represent standard regression coefficients, this model was just

vote sharei ∼w0 +w1experiencedi +w2partyi +w3pvii ×partyi ,

where party was coded as 1 for Republicans, −1 for Democrats, and 0 otherwise. We lag PVI to the previous presidential
cycle and experienced is a binary indicator for whether or not the candidate has ever previously held elected office. The
entire cycle is left out of the training data when constructing these priors.

10 The few exceptions where the prior proved to bewildly offwere for third-party candidates. Future efforts to forecastmight
create a separate prior structure for third-party candidates.

11 These ranges were determined from earlier exploratory work. Supplementary Appendix D considers an alternative cross-
validation strategy and shows it has almost no effect onmodel predictions.
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Table 1. Learnedmodel hyperparameters from leave-one-year-out cross validation.

Time horizon (τ) Length scale (ρ) Output scale (λ) Noise std (σ)

0 38.4 4.61% 2.89%

7 49.1 4.76% 4.61%

14 45.3 3.90% 3.28%

21 54.5 2.96% 4.84%

28 52.2 3.20% 3.67%

42 39.9 1.95% 4.92%

56 44.9 0.74% 3.48%

The chosen hyperparameters for each time horizon are shown in Table 1, and examples of the

resulting candidate-level models for one candidate (John McCain in 2016) are shown at various

time horizons in Figure 2. (Supplementary Appendix E shows another example for Democrat

Katie McGinty [PA-2016].) This approach yields models that begin as linear far from Election Day

but become increasingly nonlinear as τ approaches zero. Note also that the uncertainty in fi (0)

narrows considerably in run up to Election Day.

3.3 Election-Level Model
The goal of the candidate-level model (Section 3.2) is to project forward at any time horizon a

predictive distribution of latent public support on Election Day, fi (0). The election-level model in

this section takes fi (0) as an input and combines it with additional contextual factors to generate a

predictive distribution. Our method is based on Dirichlet regression, that allows prediction of the

election vote shares for multiple candidates.12

In our setting, the vast majority of races involve only two credible candidates.13 Indeed, in the

1992–2018 period, we included more than 2 candidates in only 11 elections.14 However, we retain

the Dirichlet presentation here as being more general and races with third parties can be critical

in any given cycle.

Relying on the Dirichlet likelihood contrasts with somework in political science for multi-party

elections, which builds on the logistic normal distribution (or t-distribution) applied to log-ratios
of the votes (Katz andKing 1999) or seemingly unrelated regression (Tomz, Tucker, andWittenberg

2002). The primary criticism of Dirichlet regression is that it assumes that ratios of outcomes are

independent (Aitchison 1982; Katz and King 1999; Philips, Rutherford, andWhitten 2016), which is

unrealistic inmore standard settings such asmulti-party elections. However, while the outcome in

U.S. Senate races is always compositional, themeaningof the categories donot correspondacross

races as these alternativemodels require. That is, the “third choices” are typically idiosyncratic to

each race. So, for instance, the third-party candidate in the 2018 NewMexico race was Libertarian

GaryJohnsonwhile in the2008Minnesota race itwas IndependenceParty candidateDeanBarkely.

In other cases, even themajor party candidate labels can be confused. So, for instance, in the 2012

Maine election Cynthia Dill was the official Democratic nominee while Independent Angus King

garnered a significant amount of support from Democrats and caucused with the party once he

12 Note that the model we propose assumes that we know which candidates will be on the ballot. We discuss third-party
choices below. However, for a typical race this requires that the winner of the major party primaries should be known
either because the primary is over or the primary winner can be predicted with high level of certainty.

13 We include third-party candidates only when they are regularly included in public opinion polls in advance of the election.
However, this criterion may be ex ante difficult to anticipate at the beginning of a cycle. We return to this point in our
concluding discussion.

14 This includes races in Arizona (1992), Virginia (1994), Minnesota (2008), Alaska (2010 and 2016), Florida (2012), Maine (2012
and 2018), Maryland (2012), South Dakota (2014), and NewMexico (2018).
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Figure 2. Voter Preference Estimate for John McCain in 2016 Arizona race at various time horizons. Points
represent individual polls, the distribution on the right side of each panel is the prior, the dark gray region is
the 95% confidence intervals for the estimated latent trend, and the light-gray region is the projected latent
trajectory.

joined the senate. Indeed, in some instances the categorymeanings are unstable evenwhen there

are only two choices. For example, the 2016 California race featured two Democrats. We therefore
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retain theDirichlet regressionapproachdespite the independenceassumption sincemodeling the

dependence between the choice categories is impossible when the choice set itself changes from

observation to observation.15

We model the parameters in the Dirichlet distribution as a linear function of voter preferences

and “fundamentals.” This is similar in nature to other generalized linear models where a linear

combination of terms is passed to a link function. In this case, each candidate is represented

by a “concentration parameter,” αi , which we model as a linear combination of both fi (0) and

other covariates. The unique feature of the Dirichlet regression is that each race is characterized

by a vector of concentration parameters, α , where we have one αi for each candidate. When

the concentration parameter for candidate i is relatively large, she is expected to earn a higher
proportion of the vote. Furthermore, the predictive density is more concentrated around this

expected value when the individual components of αj are large.

More formally, consider arbitrary race j with mj candidates and a specific candidate i. We
assumea simple linearmodel thatmaps the voter preference fi (0) to the underlying concentration

parameters αi . Although there are many possible covariates we could include, we found that

very few actually improved out-of-sample predictive performance.16 We therefore include only

the lagged PVI generated by Cooks political report (Campbell 2018; MacWilliams 2015), and an

indicator for the experience of the candidatewhere a one indicates the candidate has held elected

office before and it is coded zero otherwise (Jacobson 1989; Jacobson and Carson 2019). We also

includeayear-level randomeffect toaccommodateunmodeledelectoral “swings”associatedwith

specific election cycles. PVI and the year random effects are reverse coded by party.

More formally, collect α j = (α1j + α̃ , . . . ,αmj j + α̃ ) from all candidates in the race (α̃ ≥ 0). The

base parameter α̃ here is introduced for two reasons. First, it can reduce variance of samples

and thus stabilize the MCMC sampling. Second, α̃ encodes the prior belief on how equally the

vote shares should be distributed without any additional information. We assume that the actual

vote share vector yj = (y1j , . . . , ymj j )
� is distributed with a Dirichlet distribution yj ∼ Dir(yj ;α j ),

where αi j is a linear function of fi (0) and contextual predictors. We also need to integrate over the

distributionof fi (0); in our case, thedistributionof fi (0) is a truncatedGaussian. In total,weassume

the election outcomes follow the following data generating process:

fi (0) ∼ N
(
μfi ,Kfi

)
, 0 ≤ fi ≤ 1, (13)

αi j = θ1fi (0)+θ2partyi j ×pvij +θ3experiencei j +partyi j ×γyear, αi j ≥ 0, (14)

γyear ∼ N (0,σ2
year), (15)

(yj , . . . , ymj )
� ∼ Dirichlet(α̃ +α1, . . . , α̃ +αmj ), α̃ ≥ 0. (16)

Here, we allow party to be equal to 1 for Democratic candidates, −1 for Republicans, and 0 for
independents.17 This allows for PVI and the year random effects to have opposite effects by party.

Themodel is completedbyplacingproper but vaguepriors across all parameters. Thepriors for

the θ parameters are set to bewide based on the scale of the relevant variable. Specifically, we set

15 Note that inourmodel, the specific party affiliationof the choices is determinedby thevaluesof the covariates, notwhether
it is the first, second, or third choice. That is, the model is robust to the kinds of idiosyncratic variations in the meaning of
categories discussed here.

16 For instance,onealternativewouldbe to includean indicator for incumbencystatus.While themodeldoes improveatmore
distant time horizons (e.g., τ = 56) the overall accuracy of the final predictions is no better and by somemetrics worse. For
the 2018 election discussed below, for example, including an incumbency covariate results in nearly identical root mean
squared error but lower predictive accuracy (94.29% vs. 97.14%). However, as we discuss in our concluding discussion, it
should bepossible to extend themodel to consider awider array of covariates through some formof regularization scheme
in future research.

17 Wecode third-party candidateswho regularly caucuswithoneparty asbelonging to that party. So, for instance, Sen. Bernie
Sanders is coded as a Democrat.
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Figure 3. Posterior predictive densities for Sen. John McCain in the 2016 Arizona Election at different time
horizons. The vertical line indicates the final vote share. Note that the posterior narrows noticeably as the
time horizon shrinks.

independent truncated Gaussian priors on the θ coefficients and the year-level random effects.

θ1 ∼ N (0,1002); θ1 > 0 θ2 ∼ N (0,102); θ2 > 0,

θ3 ∼ N (0,102); θ3 > 0 σ2
year ∼ Gamma(1,0.5).

We can combine all of these parameters together inΘ =
(
{θ}, {γyear},σ2

year, α̃
)
and let zj be the

vector of contextual factors for election j. We obtain the posterior p(Θ | {yj }, {zj }, {fi (0)}) using
MCMC estimation. Specifically, we use no-U-turn sampling in Stan (Carpenter et al. 2017; Hoffman
and Gelman 2014).

With this posterior, the final predictive distribution of future election outcomes with new

{f∗i (0)}, {z
∗
j } will be defined by (13)–(16) marginalized by the posteriors:

p
(
yj | {z∗j }, {fi (0)

∗}, {yj }, {zj }, {fi (0)}
)

=

∫
p(yj | {z∗j }, {fi (0)

∗},Θ)p(Θ | {yj }, {zj }, {fi (0)})dΘ (17)

A final issue is how to handle the dynamic nature of our forecasting task. While we have the

complete setofpolls for elections inour training set,whenmaking real-time forecastswehaveonly

the polls up to the current date. Training themodel on the complete set of polls (all the way up to

Election Day) is likely to lead to higher weight being assigned to polling data and poor predictive

performance at remote time horizons. For instance, the coefficients for the Dirichlet regression

component in the election model may put too much confidence on the polling. As noted above,

this same issue applies to hyperparameter selection for the candidate-level model.

To address this concern, we train the complete model at various time horizons denoted by τ .

For any threshold, we discard all data where |t | < τ . Thus, when τ = 28, we ignore all polls in the

training data closer than 28 days to the election. This again helps calibrate themodel for the levels

of accuracy we can expect at various horizons. Table F.1 in Supplementary Appendix F shows the

summaries for the posteriors of the model parameters at horizons ranging from τ = 0 to τ = 56 (8

weeksbefore theelection). Asexpected, theθ parameterassociatedwith fi (0) increasesasElection

Day approaches while the fundamental parameter become relatively less important.

Figure 3 shows the posterior prediction for Senator John McCain in 2016 for various time

horizons. Note that the outcome (marked with the vertical blue line) is near the center of
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the posterior for all horizons, but that the prediction becomes more concentrated as Election

Day nears. This reflects both more certainty in fi (0) and changing weights in the Dirichlet

regression.

3.4 Discussion
Before turning to our results, we briefly contrast our approach with existing forecasting models

in the literature. Most importantly, we combine a dynamic, poll-based model with an election-

level model trained on historical data to make predictions about individual senate races. Some

existing poll-based models are dynamic (e.g., Jackman 2005; Linzer 2013) while others create

district-level forecasts based onhistorical election results (e.g., Klarner 2012). However, to the best

of our knowledge this is the first publishedmodel to explicitly combine these two approaches.18

Second, we introduce a GP framework for modeling trends in public opinion. Although related

to the random walk model in Linzer (2013), it differs in two crucial ways. To begin with, the GP

model allows us to model polling trends as a linear process with nonlinear deviations, which (as

we show below) offers significant improvements in predictive performance when polling data

is sparse. Further, by adopting the Gaussian approximation to the binomial likelihood in Equa-

tion (9), we can exactly derive the posteriors for each candidate. This computational efficiency

allows us to build the election-level model and facilitates our loyo cross-validation approach.

Finally, it is alsoworth considering the computational resources required by themodel. Assum-

ing that the hyperparameters have been selected, running the complete model is quite fast. A

standard runwith 5,000MCMC iterations takes roughly 5min on an Intel i7-CPUmachine (running

three chains in parallel). The GP component is very fast because results can be computed exactly

without sampling, usually completing inunderoneminute. This contrastswith, for instance, a stan

implementationsof the Linzer (2013)model,which takes approximately 30min for a givenelection

cycle. Thus, during any one election, the computational load is very reasonable.

The computational bottleneck with our approach is in the loyo cross-validation procedure for

choosing hyperparameters. As described above, we ran the loyo validation for the 1992–2016

period with 100 hyperparameter settings at seven forecasting horizons. With three MCMC chains

for each model, this results in 27,300 posteriors. Thus, even the 5-min run time is cumulatively

computationally intensive requiring the use of a computing cluster. This exercise only needs to be

done once in advance of any specific election cycle, but is nonetheless time consuming.We return

to this point in our concluding discussion.

4 Empirical Evaluation
In this section, we investigate our model using historical polling data and vote shares in U.S.

Senate elections from 1992 to 2018. Throughout ourmodel building process, we held out the 2018

election as a test case and it was not involved in any hyperparameter tuning, variable selection, or

other decisions. Therefore,we canassess themodel’s predictive performanceusing the 1992–2016

period, but also approximate its true out-of-sample performance using the 2018 data. In the next

section, we report predictions for 2020 actually made in advance of Election Day.

4.1 Data and Evaluation Criteria
We obtained opinion polls and election outcomes of all senate election races from 1992 to 2018

from www.fivethirtyeight.com and from CNN. On average 16 polls were conducted for each race,
although some races such as the 2016 Florida election had over 80. Most of the surveys are

conducted 2 weeks to 4 months prior to election, with a median number of respondents of 635.

18 To be sure, Linzer (2013) uses historical data to create informative priors and chooses hyperparameters based on perfor-
mance in a previous cycle. However, the likelihood is based on polling alone, and the model is fit to only one cycle.
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Over 470 entities have conducted these polls, but several active pollsters collectively contribute

over half of them, including Rasmussen Reports, Mason-Dixon Polling, Public Policy Polling,

SurveyUSA, YouGov, SurveyMonkey, Quinnipiac, and Zogby Interactive. To guarantee credibility,

weeliminatedpolls sponsoredbyparties or candidates sinceunfavorablepolls from these sources

are not released.

We also acquired the partisan voting indices in every election cycle for each election state. The

Cook PVI is a measurement of how strongly a U.S. congressional district or state leans toward the

Democratic orRepublicanParty, compared to thenationasawhole. For example, PVI forCalifornia

in 2018 is 10.76, indicating a strong preference for Democratic candidates, while PVI for the pro-

republican state Texas in 2018 is−7.02. For each candidate, we coded partisan affiliation and past
experience (whether or not they held office). Where not provided in the CNN data, we coded these
manually using ballotpedia.com.

To evaluate performance, we examine both the forecasting precision and the validity of our

model. Hence, we consider the following measures: the averaged root-mean-squared-error

(RMSE) between the expectation of the Dirichlet posterior samples and actual vote shares, the

prediction accuracy of winners for election defined by higher winning probability (we calculate

the winning probability of each candidate as the proportion of samples with the highest vote

shares in Dirichlet posteriors), the coverage rate of actual vote shares in 95% credible intervals for

Dirichlet posteriors, the averaged multinomial predictive likelihood and the averaged log-scaled

Dirichlet predictive likelihood (LL). RMSE and prediction accuracy focus on the precision of the

forecastingability,while coverage rate focuseson thevalidityof theclaimedcredible intervals. The

two likelihood measures serve as out-of-sample evaluation criteria for both vote share (Dirichlet)

and final outcome (multinomial) that also reflect the uncertainty in the full posterior.

4.2 Baselines
Wecompare theperformanceof our combinedGPandDirichlet regression (GP+DR)model against

three benchmarks. First, we compare our model to the dynamic Bayesian model in Linzer (2013).

This model was developed for predicting state-level results in presidential elections, but we

adjusted it for predicting Senate races. Intuitively, this model is a dynamic Bayesian randomwalk

(BRW)model similar to the nonlinear component in themodel described above except that latent

public opinion is assumed to be a random walk. We use the same informative prior for {a} as
used above anduse the tuning parameters andbasic estimation procedures as described in Linzer

(2013).19

Second, we consider a baseline Dirichlet Regression model that uses a Bayesian linear regres-

sionmodel to forecast voter preferences. We refer the second baseline as LM+DR. To ensure a fair

comparison, we choose the same priors for the linear coefficients as those in GP priors. We also

chose the σ2 hyperparameter using the same cross-validation approach described above. This

model is, in essence, the same as what we describe above without allowing for deviations from

linearity. Finally, we examine the performance of the GPmodel in isolation excluding the Dirichlet

regression portion of the hierarchy. Note that while we frame these as competitors to our favored

model, both of these baselines are also novel.

4.3 Results
First, we present results from a loyo cross validation exercise where each election cycle from 1992

to2016washeldout. Thishas theadvantage thatwecanuse thecomplete setof electionoutcomes

to validate the model. However, since we followed an identical procedure when choosing our

19 The major deviation from the original model implementation is we do not include a national over time trend since the
senate races are far more independent than the state-level presidential races. See Supplementary Appendix B.
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hyperparameters above, there may still be some risk of overfitting.20 We therefore also present

results for the 2018 election separately which serves as a stronger out-of-sample test.

We simulate a real forecasting scenario and examine the model’s forecasting ability at various

horizon τ ’s. Specifically, we consider horizons of 4 months, 3 months, 6 weeks, 4 weeks, 2 weeks,

1 week and Election Day, where τ = 56,42,28,21,14,7,0. As noted above, Table 1 summarizes

hyperparameters learnt for the candidate-level model used throughout this exercise.

Table 2 shows the results for the loyo cross validation exercise for the 1992–2016 period. The

results show that GP+DR model on average outperforms the other baselines across metrics. The

closest competitor is actually the LM+DR model, which performs quite well in terms of coverage

and accuracy. This is explained in part by the fact that the GP model itself is mostly linear at

distant horizons andwhen there is little polling data. However, the nonlinear component in theGP

does providemeasurable improvements over the linear version in the final lead up to the election

when the hyperparameters most enable nonlinear deviations (see Figure 2). In Supplementary

Appendix G, we use a paired t-test to show that this improvement in accuracy is statistically

significant when τ ≤ 21.

We then predict the 2018 cycle, which was not used in our model development or cross

validation, and find a nearly identical pattern. (Full results for 2018 are shown in Supplementary

Appendix H.) The RMSE for the Election Day forecast was 0.053, 0.055, 0.060, and 0.075 for the

GP+DR, LM+DR, BRW, and GPmodels respectively. Meanwhile the predictive accuracy was 0.951,

0.932, 0.898, and 0.936.21

Figure 4 shows the predictions, 95% predictive credible intervals, and outcomes for the 2018

senate elections with τ = 7. The results show that all election outcomes fell within the 95%

credible range and that on average the forecast tracked the actual election outcomes very closely.

Moreover, the elections where the model is incorrect at a 7-day range are also among the closest

contests in that cycle (Arizona and Nevada). Finally, the width of the credible interval can vary

significantly depending on the number and recency of polls for that election. For instance, the

credible intervals for Wyoming are very large reflecting the fact that we had only one poll. This

contrasts with, for instance, Missouri where dozens of polls were reported.

5 Predicting the 2020 Cycle
Finally, we turn to the task of predicting the 2020 senate elections. For this cycle, we again

acquired all data from the fivethirtyeight.com website. Following the procedures outlined above,

we exclude all partisan polls and and date each poll based on the first day it was fielded. We

did not include any third-party candidates,22 and we exclude the Georgia special election and

the Louisiana senate race do to the potential for a runoff after November.23 We used the same

hyperparameters as shown in Table 1, but refit the Dirichlet regression using the complete 1992–

2018 training period.

The final predictive densities for the Democratic candidates are shown in Figure 5 (we show

only one party since we modeled only two candidates in each state). The model predicted that

20 However, in Supplementary Appendix D, we show that themodel’s predictions are not strongly sensitive towhether or not
the complete set of elections is included during the loyo process.

21 In Supplementary Appendix I,wealso compare the 2018model to thepredictionspostedon fivethirtyeight.comatdifferent
forecasting horizons. The GP+DR model is more accurate at all time horizons (correctly predicting 97% vs. 90% of races
on Election Day). However, there is evidence that our model is relatively conservative, with coverage rates of 97% for 80%
credible intervals. We emphasize that our model was developed after the 2018 cycle.

22 We could have included the third-party candidates inMaine as theywere polled regularly and received a significant portion
of the final vote.Wediscuss the issue of selecting third-party candidates ex ante to include in the forecast in our concluding
discussion.

23 We included the nonspecial Georgia race based on the (incorrect) assumption that the third-party candidate would not
deny the winner a majority. One possible extension to this model would be to better accommodate runoffs and elections
that take place outside of November. Alternatively, we could simply predict November vote share rather than excluding
races with a possible runoff and ignore the potential for a subsequent runoff.
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Table 2. Predictive accuracy in the 1992–2016 period.

Days until Eleciton Day (τ)

Model 56 42 28 21 14 7 0

RMSE GP+DR 0.082 0.074 0.068 0.065 0.059 0.056 0.053

GP 0.102 0.096 0.091 0.088 0.082 0.078 0.075

LM+DR 0.082 0.073 0.069 0.065 0.061 0.055 0.055

BRW 0.085 0.081 0.078 0.076 0.072 0.065 0.060

95% Coverage GP+DR 0.919 0.931 0.932 0.949 0.943 0.961 0.946

GP 0.800 0.870 0.862 0.860 0.819 0.823 0.747

LM+DR 0.928 0.919 0.938 0.933 0.933 0.936 0.950

BRW 0.548 0.523 0.504 0.510 0.514 0.514 0.527

Predictive accuracy GP+DR 0.892 0.892 0.919 0.915 0.920 0.935 0.951

GP 0.879 0.895 0.913 0.916 0.921 0.934 0.936

LM +DR 0.885 0.899 0.908 0.914 0.918 0.934 0.932

BRW 0.798 0.814 0.827 0.828 0.847 0.859 0.898

APLL Vote Share GP+DR 1.411 1.552 1.646 1.703 1.803 1.913 1.950

GP 0.549 1.126 1.171 1.186 1.138 1.214 0.940

LM+DR 1.410 1.537 1.634 1.682 1.776 1.873 1.902

BRW −2.171 −1.606 −1.513 −1.126 −1.048 −0.377 −0.143
APLL Winner GP+DR −0.135 −0.116 −0.102 −0.098 −0.092 −0.081 −0.075

GP −0.170 −0.117 − 0.101 −0.097 −0.092 −0.078 −0.072
LM+DR −0.135 −0.118 −0.105 −0.100 −0.092 −0.082 −0.079
BRW −0.371 −0.337 −0.342 −0.289 −0.252 −0.234 −0.172

Cells reports fit statistics at various simulated timehorizonsusinga leave-one-year-out cross validation. RMSE is rootmeansquarederror for thepoint predictions,while the95%coverage
is the percent of vote shares that fall within the predicted 95% credible intervals. Predictive accuracy measures the percent of races predicted correctly across cycles. Average predicted
log-likelihoods (APLL) are predicted using the Dirichlet likelihood (for vote share predictions) and the multinomial likelihood (for winner predictions).
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Figure 4. Forecast for 2018 at one week time horizon for major party candidates. Stars indicate actual
vote share, while points and confidence intervals reflect posterior mans and 95% credible predictions. The
California election had two Democrats and we coded Sen. Angus King of Maine as Democrat. Red font for
state names indicates an incorrect prediction. This model also included a forecast for Libertarian candidate
Gary Johnson inNewMexico (posteriormedian 0.185, 95%CI [0.117, 0.247], outcome0.154). MNS andMSS are
special elections held on the usual Election Day.

the Democrats were favored to win in four Republican-held seats (CO, ME, AZ, and NC) and to lose

Alabama.However, theelectionoutcomeswerepredicted tobevery close inmany states including

MS, AK, MT, SC, GA, IA, NC, IA, AZ, ME, and CO (states here are ordered by the degree to which they

favor the Democratic candidates).24

In all, the forecast was accurate, missing only two election outcomes. One miss was North

Carolina, which our model predicted as being a narrow Democratic victory and turned out to be

a narrow Republican victory. The only serious miss was Maine, where pre-election polling was

dramatically off.25 Maine was also the only case where the result fell outside of our 95% predictive

CI, giving us 96.9% coverage.

We can compare this performance to the Economist and fivethirtyeight.commodels, although

it is important to note that their methods are not public. These results are show in Table 3. Our

model outperformed the Economistmodel on allmetrics. In addition toNC andME, The Economist
also missed Iowa and (the plurality winner in) Georgia. The 95% out-of-sample coverage rate was

90.6% as, in addition to Maine, their model also missed New Jersey and West Virginia.

24 Weprovide example outputs for candidate-levelmodels in Supplementary Appendix J. Additional details on the predictive
posterior for the 18 closest races are shown in Supplementary Appendix K.

25 The last nonpartisan poll showing Sen. Collins winning re-election was reported in September, 2019.
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Figure 5. Predicted vote share densities for 2020 on Election Day for Democratic candidates. States are
arranged in order of increasing probability of Democrats winning. Solid black vertical lines indicate actual
vote shares for Democratic candidates. The plot excludes Louisiana and the Georgia special election.

Table 3. Comparing predictive accuracy in 2020 cycle to prominent media forecasts.

Model

GP+DR Economist 538 Classic 538 Delux 538 LITE

Accuracy (%) 93.75 87.5 90.63 93.75 90.63

RMSE 0.0316 0.0394 0.0421 0.0397 0.0446

80% CI Coverage 0.875 0.859 0.859 0.844

95% CI Coverage 0.969 0.906

Comparing forecast accuracy based on final model predictions acquired from Fivethirtyeight (2020) and
(Economist 2020). The Economist provided 95% CIs while fivethirtyeight.com provided 80% CIs.

It is not as easy to directly compare performance to the fivethirtyeight.com forecasts as they

predict non-normalized voter share (not two-party vote share), provide only 80% predictive

intervals, and actually produce three predictions. Thus, for instance, the RMSE metric is not

on the same scale as our model which predicts the normalized vote share (excluding write-ins,
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third-party votes, etc.). However, the results in Table 3 indicate that our model performed at

comparable levels of accuracy and coverage as their forecasts, although ours is perhaps slightly

conservative in having a 87.5% coverage rate for the 80% CIs. Notably, our model made the same

winner prediction for all of the 2020 elections as the “Delux” model, while their other variants

missed the plurality winner in Georgia. We also have lower RMSE than all three variations. In all,

we consider this to be evidence that our model is at least as accurate as fivethirtyeight.comwhile

having the advantage of being a public and transparent methodology that can be studied and

improved upon by other forecasters.

6 Conclusion
In this article, we offer a novel approach to dynamic election prediction that combines both poll-

based and fundamentals-based forecasting. Although the model itself is somewhat complex, in

the end it includes only a few variables: polling, PVI, experience, and party. The novelty here is not

in what factors go into the model, but how they are combined to create accurate, well-calibrated

predictions.

Our approach contains two basic stages. The first step is to treat polling data as a probabilistic

representation of latent public support for a candidate, where this latent support has a linear and

nonlinear trend. By fitting amodel to this trend,we can accurately predict forward towhere public

opinionwill beonElectionDay. Second,we then incorporatepredictions about this latent position

into a Dirichlet regression that uses historical data and a few simple features about the election to

estimate the degree to which polling can be used to predict elections based on historical data. A

final innovation is that we train the data completely at different time horizons to ensure that our

final predictions reflect an appropriate level of uncertainty.

While we believe that this model improves upon other Senate forecasting models in the

literature, it could be refined in several ways. First, we might better extend it to handle unusual

cases like runoff elections or special elections (e.g., the 2020 Georgia special election) or the

potential for instant runoffs in states adopting ranked-choice voting. We could, in theory, also

extend the model to account for “house effects” of various polling firms or weight more accurate

firms more highly in the candidate-level model. Likewise, we could try alternative variables to

include in the construction of the candidate-level prior or in the election-level model.26 However,

adding such complications should be done with caution as they may lead to overfitting. Many

variables (e.g., money raised or incumbency status) should be reflected in the polling data. Once

we have conditioned on latent public support, the list of accurate predictors of outcomes is much

smaller. Finally, retrospectively it is relatively easy to identify which third-party candidates should

be included in a predictions model since they appear regularly in the polling data and receive a

considerable vote share. However, future work might improve upon our efforts by more clearly

defining a rule for when to include minor candidates based on ex ante conditions.
A further shortcoming is that our model does not allow online-updating of hyperparameters:

forecasters have to learn from scratch customized hyperparameters for every new horizon. In

Table 1, the learnt length scale and noise standard deviations are somewhat constant across

horizons, while the learnt output scales shrink at earlier horizon. When computation capability

is limited, practitionersmay use the same optimal hyperparameters across horizons andwarp the

output scale according to the forecasting horizon.

A third extension would be to adjust the model to handle elections at different levels. This

model would be relatively straightforward to extend to, for example, gubernatorial races. How-

ever, more significant adjustments may be needed for lower (e.g., races for the U.S. House of

26 A simple approach might be to use regularized regression for this task and include the complexity penalty parameter in
the loyo cross validation.
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Representatives) or higher (presidential) elections. Lower-level races are unusual in that there is

even less polling data available for most races, which may require heavier reliance on contextual

factors or cycle factors such as generic ballots. Meanwhile, presidential races usually offer many

more polls, but the election-level training data is necessarily very sparse at the national level and

the state-level outcomes (state-level results) are much more correlated. Researchers wishing to

extend this basic approach to those settings should think carefully about how to construct the

election-level and candidate-level models to account for these important differences. It will also

be important to consider how well our approach to, for instance, cross validation will work given

smaller sample sizes.

Finally, it is important to remember that while we have taken steps to gauge the accuracy of

the model, there is no way feasible way to assess its true long-term out-of-sample performance

until we observe more election outcomes. We created a held-out prediction for 2018 and a true

prediction for 2020, but there is always the risk that idiosyncratic features of these election cycles

are driving the results. Itwill be important to re-evaluate themodel’s performance in future cycles.
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