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More than 70 years ago the glucostatic, lipostatic and aminostatic hypotheses proposed that the
central nervous system sensed circulating levels of different metabolites, changing feeding
behaviour in response to the levels of those molecules. In the last 20 years the rapid increase in
obesity and associated pathologies in developed countries has involved a substantial increase in
the knowledge of the physiological and molecular mechanisms regulating body mass. This
effort has resulted in the recent discovery of new peripheral signals, such as leptin and ghrelin,
as well as new neuropeptides, such as orexins, involved in body-weight homeostasis. The
present review summarises research into energy balance, starting from the original classical
hypotheses proposing metabolite sensing, through peripheral tissue-brain interactions and
coming full circle to the recently-discovered role of hypothalamic fatty acid synthase in feeding
regulation. Understanding these molecular mechanisms will provide new pharmacological
targets for the treatment of obesity and appetite disorders.

Food intake regulation: Gastrointestinal signals: Adipose and pancreatic hormones:
Neural control

The prevalence of overweight and obesity in most devel-
oped countries has increased strikingly during the last
30 years (Friedman, 2000, 2003; Flier, 2004; Farooqi &
O’Rahilly, 2005). Body weight depends on the balance
between energy intake and energy consumption. Despite
wide daily variation in food intake and energy expenditure,
for most individuals body weight remains extremely
stable over long periods of time. For this stability to occur,
feeding and energy expenditure must be constantly modu-
lated and balanced. Obesity results when the former ex-
ceeds the latter and there is an accumulation of an excess
of fat in peripheral tissues such as white adipose tissue,
which is specifically adapted for this function, liver and
muscle, which results in metabolic disease (Friedman,
2000, 2003; Flier, 2004; Farooqi & O’Rahilly, 2005).
Obesity has a profound impact on human health and life-
span. Being obese correlates not just with associated
metabolic dysfunction such as type 2 diabetes and CVD,
but is also associated with the occurrence of certain can-
cers (Calle & Kaaks, 2004).

The first hypotheses proposed to explain the periphery—
brain interaction in the regulation of food intake were the
glucostatic, lipostatic and aminostatic hypotheses. These
models proposed that circulating factors, e.g. lipids (lipo-
static hypothesis), glucose (glucostatic hypothesis) or pro-
tein products (aminostatic hypothesis), that are generated
in proportion to body fat stores and/or nutritional status act
as signals to the brain, eliciting changes in energy intake
and expenditure (Campfield et al. 1996). The current
‘obesity epidemic’ has driven forward research efforts in
the investigation of body-weight homeostasis. For this
reason, in the last decade there has been a major increase
in the knowledge of the physiological and molecular
mechanism regulating body mass. Animals are now known
to regulate body weight by a complex homeostatic mech-
anism involving interactions between peripheral organs
and the central nervous system (CNS). Peripheral organs,
such as white adipose tissue, gut, thyroid, muscle and
gonads produce signals that inform brain centres of
the nutritional, as well as metabolic, status of the animal
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(Flier, 2004; Horvath et al. 2004; Abizaid et al. 2006;
Morton et al. 2006). The CNS receives and integrates
this entire signalling system, adjusting energy intake (food
intake) and energy expenditure, according to the demands
of the organism.

The present review summarises the current knowledge
about periphery—brain interactions in the regulation of
feeding. A full understanding of these mechanisms will
allow the establishment of effective therapies to counter
eating disorders and obesity.

Gastrointestinal signals regulating food intake

In addition to its evident function in the digestion and
absorption of nutrients, the gut and associated organs
(liver, pancreas and visceral white adipose tissue depots)
play an important role in the control of energy homeo-
stasis, particularly in the short-term regulation of food
intake. Both the enteric nervous system and gut hormones
are known to control the initiation and termination of
individual meals (Halford & Blundell, 2000a; Badman &
Flier, 2005; Perez-Tilve et al. 2006).

Enteric nervous system

The gastrointestinal tract receives a dual extrinsic
innervation from the autonomic nervous system via its
parasympathetic (cholinergic) division, which includes
vagal and pelvic nerves, and its sympathetic (nor-
adrenergic) division, which comprises splanchnic nerves.
Parasympathetic innervation is mainly inhibitory, and
sympathetic innervation is mainly excitatory. In addition
to this autonomic innervation, the gastrointestinal tract
also has its own nervous system, i.e. the enteric nervous
system (Konturek et al. 2004; Badman & Flier, 2005),
which is involved in every aspect of gut function, from
mastication to defaecation. Besides these roles, the enteric
nervous system is also implicated in gastric and pan-
creatic exocrine secretion, gut motility, blood supply and
hormone release (Konturek et al. 2004; Badman & Flier,
2005).

The enteric nervous system projects to the CNS through
vagal and sympathetic (spinal) nerves. These projections
transmit a variety of information to several CNS areas,
including mechanical stimuli (distension, contraction),
chemical stimuli (presence of nutrients in the gut lumen)
and neurohumoral stimuli (gut hormones, neurotrans-
mitters and neuromodulators; Langley, 1994; Konturek
et al. 2004). Most of these afferent vagal fibres terminate
in the nucleus of the solitary tract (NTS) in the brainstem,
and in laminas I and V of the dorsal horn of spinal cord
(Maggi, 1991; Konturek et al. 2004). Some signals from
the gut are transmitted from the NTS to higher neural
centres, such as the paraventricular (PVH) and arcuate
(ARC) nuclei of the hypothalamus (Berthoud ef al. 1990),
the bed nucleus of the stria terminallis and the ventral
thalamus. The integration of all these afferent signals
related to food presence in the gut regulates the size
of individual meals (Flier, 2004; Konturek et al. 2004;
Badman & Flier, 2005).
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Gut hormones

Cholecystokinin. Despite the profuse development of
the enteric nervous system, the main route of communi-
cation between the brain and the gut in relation to energy
homeostasis is via the circulation. One of the hormones
first identified in regulating energy homeostasis was the
gastrointestinal hormone cholecystokinin (CCK), which is
secreted by I cells in the duodenum and the jejunum into
the circulation in response to nutrient ingestion (protein
and fatty acids; Larsson & Rehfeld, 1978; Bray, 2000;
Halford & Blundell, 2000a; Badman & Flier, 2005;
Stanley et al. 2005; Perez-Tilve et al. 2006). CCK exists in
several molecular forms, the major forms in the plasma
being CCK-8, -33 and -39 (Halford & Blundell, 2000a;
Konturek er al. 2004; Stanley et al. 2005). Once secreted,
CCK reduces meal size and duration in both man and
animals (Gibbs et al. 1973; Kissileff et al. 1981; Smith
et al. 1981a; Pi-Sunyer et al. 1982; Muurahainen et al.
1988) and infusion of a CCK antagonist increases energy
intake in human subjects (Beglinger et al. 2001). However,
despite its anorectic actions, repeated administration of
CCK does not influence body weight because although
meal frequency is increased, there is no overall change in
feeding (West et al. 1984; Wei & Mojsov, 1995). Thus,
CCK is mostly involved in the short-term control of
food intake, together with distension of the upper gastro-
intestinal tract (Konturek et al. 2004; Badman & Flier,
2005).

CCK signals via two distinct G-protein-coupled recep-
tors termed CCK, and CCKg (Wank et al. 1992a; Halford
& Blundell, 2000a). Both receptors are widely expressed in
the CNS and in the periphery (Moran et al. 1986, 1990;
Wank et al. 1992a,b). The effect of CCK on food intake is
mediated via CCK4 (Asin et al. 1992; Halford & Blundell,
2000a). CCK crosses the brain—blood barrier (BBB;
Reidelberger er al. 2004) and acts on neuropeptide Y
(NPY) neurons in the dorsomedial nucleus of the hypo-
thalamus (DMH), as well as the NTS in the brainstem
(Moran et al. 1997; Bi et al. 2001). The effects of CCK on
feeding are also mediated through paracrine and neuro-
endocrine activation of vagal fibres (Reidelberger &
Solomon, 1986; Schwartz & Moran, 1994; Moran et al.
1997).

Glucagon-like peptide-1 and oxyntomodulin. The pre-
proglucagon gene product yields two important satiety
peptides, glucagon-like peptide (GLP)-1 and oxyntomodu-
lin (OXM; Tang-Christensen et al. 2001; Stanley et al.
2005). The preproglucagon gene is widely expressed in the
gut, the pancreas and the NTS in the brainstem. Tissue-
specific processing of preproglucagon by prohormone
convertases 1 and 2 produces different products: glucagon
is the main product in the pancreas; GLP-1 and -2 and
OXM are the major products in CNS and gut (Tang-
Christensen et al. 2001; Badman & Flier, 2005; Stanley
et al. 2005).

GLP-1 and OXM are released from L cells in response
to NEFA and carbohydrates (Ghatei er al. 1983; Le
Quellec et al. 1992; Herrmann et al. 1995; Hirasawa et al.
2005). Both peptides inhibit feeding when they are
centrally or peripherally administrated (Turton et al. 1996;
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Dakin et al. 2004), and chronic administration of GLP-1
and OXM decreases weight gain and adiposity in rodents
(Meeran et al. 1999; Dakin et al. 2004). The actions of
both GLP-1 and OXM on feeding may be mediated via the
GLP-1 receptor, which is expressed in the hypothalamus,
brainstem and periphery (Uttenthal et al. 1992; Wei &
Mojsov, 1995; Shughrue et al. 1996; Bullock et al. 1996).
The anorectic effect of GLP-1 and OXM is also present in
man (Flint ef al. 1998, 2000, 2001; Gutzwiller et al. 1999;
Naslund et al. 1999; Verdich et al. 2001; Meier et al.
2002). Despite this evidence, it has been reported that
some of the anorectic effects of GLP-1 may be related to
taste aversion and visceral illness (Shughrue et al. 1996;
Bullock et al. 1996; Thiele et al. 1997; Yamamoto et al.
2002). Regardless of the anorectic actions of GLP-1 and
OXM reported in rodents, GLP-1 receptor-knock-out mice
have normal feeding behaviour (Scrocchi et al. 1996, 1997,
2000).

Preproglucagon also yields GLP-2. The role of GLP-2
has not been fully established; however, central adminis-
tration reduces feeding, probably via GLP-1 receptor
(Badman & Flier, 2005). No effect of GLP-2 on feeding
has been reported in man (Schmidt et al. 2003).

Peptide YY. Peptide YY (PYY) is secreted post-
prandially by the L cells of the gastrointestinal tract,
especially in the most distal portions such as the ileum,
colon and rectum; PYY secretion is correlated with energy
intake (Stanley et al. 2005). There are two main forms of
PYY in the circulation: PYY; 3¢ and PYY; 3¢ (Grandt
et al. 1994; Batterham et al. 2002; Wynne et al. 2004;
Stanley et al. 2005). Peripheral administration of PYY has
several actions, including delaying gastric emptying and
gastric secretion, and increasing ileum absorption. It
has also been reported that peripheral administration of
PYY;_3¢ inhibits food intake and reduces weight gain in
rodents, primates and man (Batterham et al. 2002; Challis
et al. 2003; Moran et al. 2005). PYY crosses the BBB and
probably exerts its actions via the presynaptic Y, receptor
of NPY neurons in the ARC, releasing inhibition of
pro-opiomelanocortin (POMC) neurons and consequently
inhibiting feeding (Broberger et al. 1997; Batterham et al.
2002; Challis et al. 2003).

Despite this evidence, the anorectic effect of PYY;_3¢ is
controversial and not easily duplicated (Tschop et al. 2004;
Coll et al. 2004a). Indeed, in contrast to peripheral injec-
tion, central administration of both PYY | 3¢ and PYY5_ 34
stimulates feeding in rodents (Stanley et al. 1985; Clark
et al. 1987; Hagan et al. 1998; Corpa et al. 2001). It has
also been suggested that the anorexic effect of PYY may
be partially mediated by an aversive response (Halatchev
& Cone, 2005).

Bombesin. Bombesin is a peptide that is widely dis-
tributed in the mammalian gut. Plasma levels of bombesin
increase markedly after food intake (Gibbs et al. 1979;
Wynne et al. 2004), and peripheral and central adminis-
tration of bombesin is anorectic (Gibbs et al. 1979; Smith
et al. 1981b). Bombesin is structurally very similar to
gastrin-releasing peptide and neuromedin B, and binds
to their receptors. Additionally, a bombesin-3 receptor
has been cloned (Ladenheim et al. 1997). Knocking out
bombesin-3 receptor induces moderate hyperphagia,
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obesity and metabolic alterations in mice (Ohki-Hamazaki
et al. 1997).

Gastric  inhibitory polypeptide. Gastric inhibitory
polypeptide is secreted from the duodenal K cells, pre-
dominantly in response to ingested fat. Mice fed a high-fat
diet have increased levels of gastric inhibitory polypeptide
together with obesity (Wynne et al. 2004; Badman & Flier,
2005), whereas mice lacking the gastric inhibitory poly-
peptide receptor are protected against obesity induced by
both a high-fat diet and leptin deficiency (ob/ob mice;
Miyawaki et al. 2002). Thus, gastric inhibitory polypeptide
may be involved in the development of obesity in response
to high fat intake.

Ghrelin.  Ghrelin is a twenty-eight-amino acid acylated
hormone mainly synthesised and secreted by the gut in
the gastric oxyntic cells (A/X cells) at the fundus of the
stomach, as well as the duodenum, ileum, caecum and
colon (Kojima et al. 1999; Date et al. 2000; Gualillo et al.
2001; Sakata et al. 2002). Ghrelin expression has also
been detected in other tissues, such as the hypothalamus
(Kojima et al. 1999; Horvath et al. 2001; Cowley et al.
2003) testis (Barreiro et al. 2002; Tena-Sempere et al.
2002), pituitary (Caminos et al. 2003a), ovary (Caminos
et al. 2003b; Gaytan et al. 2003), heart (Iglesias et al.
2004) and placenta (Gualillo et al. 2001).

Ghrelin, which was initially identified as the endogenous
ligand of the growth hormone secretagogue receptor
(GHS-R), exerts a potent and specific growth hormone-
releasing activity in vitro (Kojima et al. 1999) and in vivo
(Arvat et al. 2000; Seoane et al. 2000), as well as
increasing the transcription rate of the Pit-1 gene (Garcia
et al. 2001). Further studies have led to the recognition that
ghrelin also plays an important role in energy homeostasis.
Ghrelin administration induces positive energy balance in
rodents by decreasing fat utilisation without markedly
changing energy expenditure or locomotor activity (Wren
et al. 2000; Nakazato et al. 2001). Furthermore, peripheral
and central administration of ghrelin to rodents increases
feeding, as well as fat mass, and reduces fat utilisation
(Tschop et al. 2000; Nakazato et al. 2001; Wren et al.
2001b; Seoane et al. 2003). Plasma levels of ghrelin are
regulated by food intake, rising during fasting and imme-
diately before meals, and falling after food intake (Ariyasu
et al. 2001; Cummings et al. 2001; Tschop et al. 2001a).
These changes in ghrelin expression are directly modulated
by energy intake and nutritional signals such as blood
glucose and ingestion of fat or carbohydrate (Tschop et al.
2000; Sakata et al. 2002). For this reason a physiological
role of ghrelin in meal initiation has been proposed
(Cummings et al. 2001; Cummings & Shannon, 2003).
This suggestion is supported by experiments (Nakazato
et al. 2001) that use anti-ghrelin antibodies to block
the actions of ghrelin, which results in an attenuation of
fasting-induced refeeding.

The effects of ghrelin on feeding and growth hormone
secretion are mediated via type la GHS-R (Kojima et al.
1999; Tschop et al. 2000; Chen et al. 2004; Sun et al.
2004). However, the orexigenic effects of ghrelin are
independent of growth hormone-releasing properties
(Tschop et al. 2000; Shintani et al. 2001; Tamura et al.
2002). The expression of GHS-R in the hypothalamus is
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Fig. 1. Regulation of growth hormone secretogogue receptor (GHS-R) in the rat hypothalamus
by leptin and ghrelin. Effects of intracerebroventricular leptin (H; a, b) and ghrelin (W; c, d) on
GHS-R expression in the arcuate nucleus (a, c) and the ventromedial nucleus of the hypo-
thalamus (b, d) in fed and 48 h-fasted rats. ({J), Vehicle. Values are means with their standard
errors represented by vertical bars. Mean values were significantly different from the corre-
sponding values for fed rats: *P<0-05. Mean values were significantly different from the corre-
sponding values for vehicle-fed or vehicle-48 h-fasted rats: 1P<0-05, +1P<0-01, 1+11P<0-001.

nutritionally regulated in a nucleus-specific manner, with
fasting increasing the mRNA levels of GHS-R in the ARC
but not in the ventromedial nucleus of the hypothalamus
(VMH). Additionally, the level of GHS-R expression in
the ARC, but not in the VMH, is reduced by leptin and
increased by ghrelin in a growth hormone-dependent
fashion (Fig. 1; Nogueiras et al. 2004b).

Ghrelin is also important in the regulation of energy
homeostasis in man. Intravenous administration of ghrelin
to healthy volunteers increases food intake (Wren et al.
2001a). Moreover, the rise in preprandial ghrelin correlates
with hunger scores in human subjects eating spontaneously
(Cummings et al. 2004). Interestingly, the levels of ghrelin
are correlated with adiposity in man, with an inverse re-
lationship between plasma ghrelin levels and BMI (Tschop
et al. 2001b). Obese human subjects show reduced levels
of plasma ghrelin, which rise to normal after diet-induced
weight loss (Hansen ef al. 2002; Cummings et al. 2002b).
Moreover, in obese individuals the postprandial regulation
of ghrelin seems to be altered, which may be related to
continuous food intake and/or obesity (English et al. 2002).
Finally, the severe hyperphagia seen in patients with
Prader-Willi syndrome is associated with elevated ghrelin
levels, in contrast to other forms of obesity in which
ghrelin levels are low (Cummings et al. 2002a).

In the CNS the action of ghrelin on feeding is mainly
exerted via the ARC. GHS-R mRNA is expressed in
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neurons in the ARC co-expressing NPY and agouti-related
peptide (AgRP; Guan et al. 1997; Tannenbaum et al. 1998;
Willesen et al. 1999; Zigman et al. 2006), and the central
administration of ghrelin increases the mRNA content of
NPY and AgRP in the ARC in fed and fasting conditions
(Kamegai et al. 2001; Nakazato et al. 2001; Seoane et al.
2003). There is also some evidence that orexin (also
termed hypocretin; OX) neurons in the lateral hypo-
thalamic area (LHA; Lawrence et al. 2002; Toshinai et al.
2003) and neurons in the NTS and the area postrema in the
brainstem may mediate the orexigenic actions of ghrelin
(Nakazato et al. 2001; Lawrence et al. 2002). Recent data
also indicate that ghrelin acts in the hypothalamus by
altering fatty acid metabolism and AMP-activated protein
kinase. It has been demonstrated that ghrelin increases
hypothalamic AMP-activated protein kinase phosphory-
lation levels, activating it. This action may be associated to
specific changes in hypothalamic neuropeptides, although
the exact molecular mechanisms and anatomical details of
this interaction have not been fully identified (Andersson
et al. 2004; Kola et al. 2005).

Despite ghrelin having a potent action in regulating food
intake, both ghrelin-knock-out mice and mice lacking
GHS-R type la have normal feeding patterns and body
composition on a standard diet (Sun et al. 2003). However,
on a high-fat diet the absence of ghrelin (Wortley et al.
2005) or the ghrelin receptor (Zigman et al. 2005) protects
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against early-onset obesity; in both cases this reduced
weight gain is associated with decreased adiposity and
increased energy expenditure and locomotor activity.
These data suggest that ghrelin, like leptin, may play an
important role in the development of hypothalamic systems
regulating energy balance (Grove & Cowley, 2005). Very
interestingly, elimination of ghrelin improves the diabetic
phenotype but not the obese phenotype of 0b/ob mice (Sun
et al. 20006).

Finally, it has recently been reported that obestatin,
a new peptide derived from the ghrelin gene, inhibits
food intake by acting through the orphan receptor GPR39
(Nogueiras & Tschop, 2005; Zhang et al. 2005). Despite
this evidence there are some discrepancies in relation to
the anorectic effect of obestatin (Nogueiras et al. 2006) as
well as its binding to GPR39 (Holst et al. 2006). If the
anorectic effect is confirmed, this finding could provide a
new drug target for the treatment of obesity.

Adipose tissue hormones

Originally thought of as an inert tissue involved in the
storage of energy, it is now clear that adipose tissue is
an active endocrine organ (Casanueva & Diéguez, 1999;
Ahima & Flier, 2000a). Adipocyte hormones regulate
appetite, glucose homeostasis, lipid metabolism, endocrine
function, cardiovascular physiology, reproduction, immune
function and development, amongst other functions
(Casanueva & Diéguez, 1999; Ahima & Flier, 2000a; Pinto
et al. 2004; Horvath & Diano, 2004).

Leptin

Among the adipocyte hormones, the one that has most
changed the concept of white adipose tissue as an inert
tissue is leptin, the product of the ob (obese) gene (Zhang
et al. 1994). Leptin is expressed principally in adipocytes
(Zhang et al. 1994), but also at lower levels in the gastro-
intestinal tract (Bado er al. 1998) and placenta (Sefiaris
et al. 1997; Masuzaki et al. 1997). Plasma leptin levels
reflect both energy stores and acute energy balance. Cir-
culating leptin levels are tightly correlated with adipose
tissue mass (Maffei et al. 1995), and food restriction
results in suppression of circulating leptin (Frederich et al.
1995; Maffei et al. 1995), which can be reversed by
refeeding or insulin administration. Peripheral and central
leptin administration reduces spontaneous and fasting-
induced hyperphagia (Ahima et al. 1996; Ahima, 2000),
and chronic peripheral administration reduces feeding,
resulting in loss of fat mass and body weight (Halaas et al.
1995).

The complete lack of leptin seen in the 0b/0ob mouse has
profound consequences on body-weight homeostasis,
leading to hyperphagia and obesity, as well as neuroendo-
crine and immune dysregulation, which is normalised by
leptin administration (Campfield et al. 1995; Halaas et al.
1995; Pelleymounter et al. 1995). In man leptin deficiency
causes morbid obesity and hypogonadism (Montague et al.
1997; Strobel et al. 1998), which can be improved by
recombinant leptin (Farooqi et al. 1999; Licinio et al.
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2004). In the same way, defective leptin receptor signalling
also has a profound impact on body weight and endocrine
function. A point mutation in the intracellular domain
of the long isoform of the leptin receptor (OB-Rb) gene,
which prevents signalling, results in obesity in db/db mice
(Chen et al. 1996; Lee et al. 1996). Defects in the human
leptin receptor have also been reported; as with leptin
deficiency, these subjects have hypogonadism and early-
onset morbid obesity (Clement et al. 1998, 2002).

Leptin binds and activates a receptor of the cytokine
receptor family (Tartaglia et al. 1995). Alternative mRNA
splicing and post-translational processing results in several
isoforms of the receptor (OB-Ra, OB-Rb, OB-Rc, OB-Re
and OB-Rf; Tartaglia, 1997; Chua et al. 1997; Ahima &
Flier, 2000b). OB-Rb is the variant implicated in signal
transduction (Tartaglia, 1997; Ahima & Flier, 20005). The
other isoforms may act as leptin sequesters and trans-
porters, binding leptin without signal transduction (Friedman
& Halaas, 1998; Ahima & Flier, 20005). Ob-Rb possesses
a long intracellular domain that binds to janus kinases
(Lee et al. 1996) and to signal transducer and activator of
transcription-3 transcription factors (Vaisse et al. 1996;
Hakansson et al. 1999), resulting in signal transduction and
mediating the action of leptin on feeding (Lee et al. 1996).
Activation of the janus kinases/signal transducers and
activators of transcription pathway induces expression of
suppressor of cytokine signalling-3, a cytokine-inducible
inhibitor of signalling; suppressor of cytokine signalling-3
expression is up regulated by leptin in hypothalamic nuclei
expressing the Ob-Rb receptor (Ahima & Flier, 2000b;
Howard et al. 2004).

Plasma leptin crosses the BBB via a saturable process
(Banks er al. 1996; Banks 2001a,b), thought to be
mediated by OB-Ra and OB-Rc (El Haschimi et al. 2000;
Ahima & Flier, 20005). OB-Rb is widely expressed in the
hypothalamus (being most abundant in the ARC, the VMH
and the DMH) the LHA and the medial preoptic area (Fei
et al. 1997; Elmquist er al. 1998; Hakansson et al. 1998,
1999). OB-Rb is also expressed in feeding-modulating
neurons in the brainstem (Elmquist et al. 1997; Mercer
et al. 1998). In the ARC OB-Rb mRNA is expressed by
the two major neuronal groups: neurons co-expressing the
orexigenic neuropeptides NPY and AgRP (Mercer et al.
1996; Cheung et al. 1997); a distinct second population
of neurons co-expressing the anorexigenic POMC and
cocaine- and amphetamine-regulated transcript (CART).
Leptin inhibits the activity of orexigenic AgRP/NPY neu-
rons and reduces expression of AgRP and NPY (Stephens
et al. 1995; Hahn et al. 1998; Elias et al. 1999), while
activating anorectic CART/POMC neurons (Schwartz et al.
1997; Kristensen et al. 1998; Swart et al. 2002). In the
LHA leptin receptor is expressed in neurons expressing the
orexigenic neuropeptides melanin-concentrating hormone
(MCH) and the OX, which are inhibited by leptin (Qu
et al. 1996; Lopez et al. 2000). When leptin levels are low,
such as in food restriction and fasting, the expression
of orexigenic neuropeptides is increased and orexigenic
neurons are activated; in contrast, anorexigenic neuro-
peptides are decreased and anorexigenic neurons are inhi-
bited. When plasma leptin levels are high, as in the satiated
animal, the anorectic pathways are switched on and the
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orexigenic pathways are switched off (Friedman & Halaas,
1998; Kalra ef al. 1999; Saper et al. 2002; Flier, 2004).

The role of leptin in human obesity is intriguing. As
described earlier, while there are individuals with defects
in leptin synthesis or leptin signalling, these cases are
extremely rare. The majority of obese individuals are
characterised by high levels of leptin (Maffei et al. 1995;
Considine et al. 1996), suggesting leptin insensitivity or
resistance; in fact, leptin administration to obese subjects
has only a moderate effect on body weight (Heymsfield
et al. 1999; Fogteloo et al. 2003). In rodents diet-induced
obesity has also been correlated with the development of
leptin resistance (Van Heek et al. 1997; Levin & Dunn-
Meynell, 2002). Leptin resistance may develop via differ-
ent mechanisms. Peripheral leptin resistance may be the
result of impairment in the function of the saturable leptin
transporters in the BBB (Burguera et al. 2000; Furuhata
et al. 2000; Levin et al. 2004). Central leptin resistance
may develop as a result of impaired leptin signalling via
OB-Rb in the hypothalamus, which could be related to a
decrease in OB-Rb expression (Garcia et al. 2000; Seeber
et al. 2002; Lopez et al. 2005a), a defect in the intra-
cellular signalling mechanism of the janus kinases/signal
transducers and activators of transcription pathway or the
over-expression of suppressor of cytokine signalling-3
(El Haschimi et al. 2000; Howard et al. 2004; Ladyman &
Grattan, 2004; Levin et al. 2004; Munzberg et al. 2004;
Munzberg & Myers, 2005).

The role of leptin in the hypothalamus is not only
associated with food-intake regulation. Leptin also con-
tributes to the adaptation of the neuroendocrine axis to
fasting (Ahima et al. 1996; Casanueva & Diéguez, 1999).
Additionally, leptin is a neurotrophic factor during the
development of the hypothalamus, mediating neuronal
plasticity (Bouret et al. 2004a,b; Bouret & Simerly, 2004;
Pinto et al. 2004). The importance of this function of leptin
in the context of obesity is still not clear, but it has been
proposed that perturbations in perinatal nutrition that alter
leptin levels may have long-term consequences for the
formation and function of hypothalamic circuits regulating
feeding and body weight in adulthood (Lopez et al.
2005a).

Adiponectin

Adiponectin, also termed adipocyte complement-related
protein, apM1 or adipoQ, is a 244-amino acid protein
secreted from adipose tissue (Hu ef al. 1996; Berg et al.
2002; Tsao et al. 2002), the placenta (Caminos et al. 2005)
and cardiomyocytes (Pineiro et al. 2005). Adiponectin has
four domains: an amino-terminal signal sequence; a region
without homology to other known proteins; a collagen-like
region; a carboxy-terminal globular domain. The globular
domain forms homotrimers, and additional interactions
with collagenous segments cause the formation of higher-
molecular-weight complexes (Pajvani et al. 2003).
Adiponectin is important in the regulation of energy
homeostasis (Scherer et al. 1995). Plasma levels of adipo-
nectin are inversely correlated with adiposity in several
species, including man (Hu et al. 1996; Arita et al. 1999;
Hotta et al. 2001) Adiponectin is increased after food
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restriction in rodents (Berg et al. 2001, 2002). Peripheral
administration to rodents has been shown to attenuate
body-weight gain, by increased O, consumption, without
affecting food intake (Berg et al. 2001; Fruebis et al. 2001;
Yamauchi et al. 2003). This effect on energy expenditure
appears to be mediated by the hypothalamic melanocortin
system, without affecting other neuropeptide systems
regulated by leptin (Qi er al. 2004). Circulating adipo-
nectin levels negatively correlate with insulin resistance
(Hotta et al. 2001), and treatment with adiponectin
can reduce body-weight gain, increase insulin sensitivity
and decrease lipid levels in rodents (Berg et al. 2001;
Yamauchi et al. 2001; Qi et al. 2004; Winzell et al. 2004).
Adiponectin-knock-out mice have severe diet-induced
insulin resistance (Maeda et al. 2002). The mechanism by
which adiponectin improves insulin resistance and glucose
metabolism is not fully understood, but some of these
effects may be mediated by activation of AMP-activated
protein kinase (Yamauchi et al. 2002).

Adiponectin binds and activates two known membrane
receptors, adipoR1 and adipoR2 (Yamauchi et al. 2003).
AdipoR1 is highly expressed in skeletal muscle; it has a
high affinity for the globular domain of adiponectin and
low affinity for the full-length ligand. AdipoR2 is highly
expressed in the liver and preferentially binds to the
full-length ligand. Adiponectin receptors have also been
detected in the hypothalamus (Qi et al. 2004) and the
placenta (Caminos et al. 2005). Very interestingly, it has
recently been reported that adiponectin does not cross the
BBB but modifies cytokine expression in the brain endo-
thelial cells, making unlikely a direct effect of adiponectin
in the CNS (Spranger et al. 2006).

Resistin

Resistin is produced by adipose tissue and appears to
be involved in the modulation of insulin sensitivity and
adipocyte differentiation (Steppan er al. 2001a,b; Vidal-
Puig & O’Rahilly, 2001; Steppan & Lazar, 2002). In
addition to adipose tissue, resistin is also expressed in the
stomach, intestine, adrenal gland, testis and skeletal muscle
(Nogueiras et al. 2003a,b, 2004a).

Resistin expression is regulated in a tissue- and gender-
specific manner. Food deprivation leads to a decrease
in resistin mRNA expression only in adipose tissue
(Nogueiras et al. 2003a,b). Circulating resistin is increased
in obese rodents (Steppan et al. 2001a) and man (Savage
et al. 2001) and falls after weight loss in man (Valsamakis
et al. 2004). Resistin-knock-out mice display increased
glucose tolerance on a high-fat diet (Banerjee et al. 2004;
Sul, 2004) and transgenic mice over-expressing a dominant
negative form of resistin show increased adiposity with
elevated plasma leptin and adiponectin levels, as well
as enhanced glucose tolerance and insulin sensitivity
(Sul, 2004). All this evidence suggests that resistin may
contribute to the development of insulin resistance and
diabetes in obesity (Steppan et al. 2001a,b; Vidal-Puig &
O’Rahilly, 2001; Steppan & Lazar, 2002). In support of
this role, recent evidence has shown that resistin inhibits
feeding through a hypothalamic mechanism (Tovar et al.
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2005). However, the molecular details of that action are
not fully established.

IL-6 and IL-1

IL-6 is a multifunctional immune-modulating cytokine that
has been suggested to have important functions in glucose
and lipid metabolism. IL-6 is secreted from adipose tissue
into the circulation, and its expression is positively cor-
related with BMI and total fat tissue. IL-6-knock-out mice
develop obesity, which can partly be reversed by IL-6
replacement, suggesting a role for IL-6 in the long-term
regulation of adipose tissue mass (Wallenius ef al. 2002b).
Furthermore, central administration of a low dose of IL-6
decreases feeding and increases energy expenditure in rats,
suggesting a central site of action for IL-6 (Wallenius e al.
2002a). Supporting this hypothesis it has also been
suggested that IL-6 and IL-6 receptors are expressed in the
neurons in the VMH and the DMH (Schobitz et al. 1993).
IL-1 is also involved in body-weight homeostasis. IL-1
type I receptor-knock-out mice display an obese and
insulin-resistant phenotype. This obese phenotype is
characterised by a decrease in leptin sensitivity, fat utili-
sation and locomotor activity (Garcia et al. 2006).

Pancreatic hormones
Insulin

Insulin is also an adiposity signal. Plasma insulin con-
centrations correlate with peripheral insulin sensitivity,
which in turn is linked to total body fat depots and fat
distribution, visceral fat being a key determinant (Schwartz
et al. 1992a, 2000).

Insulin secretion by the pancreas increases rapidly after
a meal, exerting an anorectic effect via the CNS (Schwartz
et al. 1992a, 2000). Insulin enters the CNS via saturable
receptor-mediated transport across the BBB (Woods et al.
2003). Central administration of insulin or insulin mimetic
reduces feeding and body weight in rodents and primates
(Woods et al. 1979; Schwartz et al. 1992a, 2000; Air et al.
2002). Administration of antisense RNA against the insulin
receptor induces hyperphagia and increased fat mass
(Obici et al. 2002a), and neuron-specific deletion of the
insulin receptor results in obesity, hyperinsulinaemia and
dyslipidaemia in mice (Bruning et al. 2000). Insulin
receptors are widespread in the brain and occur in hypo-
thalamic nuclei involved in food intake (ARC, DMH, PVH
and periventricular nucleus; Corp et al. 1986; Marks et al.
1990). In the hypothalamus the actions of insulin on food
intake and body weight are mediated by NPY (Schwartz
et al. 1992b) and the melanocortin system (Sipols et al.
1995; Obici et al. 2001; Benoit et al. 2002).

Pancreatic polypeptide

Pancreatic polypeptide (PP) belongs to the PP-fold family
of peptides, which also includes PYY and NPY (Conlon,
2002). PP is mainly produced by peripheral cells of the
islets of Langerhans, the exocrine pancreas and the distal
gastrointestinal tract (Small & Bloom, 2004; Stanley et al.
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2005). Plasma PP concentrations increase proportionally to
energy intake (Small & Bloom, 2004; Stanley et al. 2005),
and they appear to be inversely proportional to adiposity,
with high levels in anorexic subjects and reduced levels
in obese subjects (Lassmann et al. 1980; Fujimoto et al.
1997).

Peripheral PP administration reduces feeding and
body weight in obese rodents (Malaisse-Lagae et al. 1977)
and feeding in man (Batterham er al. 2003). The anorectic
effect of PP is exerted via brainstem pathways (in the area
postrema), regulation of hypothalamic neuropeptides (NPY
and OX) and modulation of ghrelin expression (Asakawa
et al. 2003). The anorectic effect of PP is mediated by
Y5 receptor. In contrast to the peripheral actions, central
administration of PP increases food intake (Clark et al.
1984); the receptors mediating this action and the mech-
anisms involved are unclear.

Neural control of food intake
Hypothalamic regulation of food intake

The CNS receives information from the sensory experience
of eating and also from the process of ingestion, absorp-
tion, metabolism and energy storage. The original theories
explaining the central control of food intake were based on
a ‘dual-centre hypothesis’ (Hecherington & Ranson, 1942;
Anand & Brobeck, 1951). In this model, based on hypo-
thalamic-lesioning experiments, feeding is controlled by
two hypothalamic areas: the lateral hypothalamic ‘feeding
centres’ and the ventromedial hypothalamic ‘satiety centres’.
Lesions of the LHA decrease food intake and eventually
lead to starvation and death. Conversely, lesions of several
of the mediobasal hypothalamic nuclei result in obesity.
Since then, knowledge concerning the hypothalamic
regulation of feeding has increased; however, the main
concept is the same, i.e. that anatomically-defined hypo-
thalamic areas regulate food intake. These hypothalamic
nuclei form interconnected neuronal circuits that respond
to changes in energy status by altering the expression of
specific neuropeptides, resulting in changes in energy
intake and expenditure (Friedman & Halaas, 1998; Kalra
et al. 1999; Schwartz et al. 2000; Saper et al. 2002; Flier,
2004; Abizaid et al. 2006; Morton et al. 2006). Table 1
summarises some hypothalamic neuropeptides and neuro-
transmitters regulating food intake.

Hypothalamic neuronal pathways regulating appetite

Arcuate nucleus. The ARC is considered as the
‘master hypothalamic centre’ for feeding control. It is
situated around the base of the third ventricle and lies
immediately above the median eminence. The ARC-
median eminence is a circumventricular organ in which the
BBB is modified, allowing the entry of peptides and pro-
teins from the circulation, such as PYY, GLP-1, leptin and
insulin (Banks et al. 1996; Kastin et al. 2002; Nonaka
et al. 2003; Woods et al. 2003).

Two distinct neuronal populations in the ARC integrate
peripheral nutritional and/or feeding signals. One set of
neurons in the ventromedial part of the ARC express the
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Table 1. Molecules with demonstrated orexigenic and/or anorexigenic effects in some animal models
Orexigenic: feeding stimulators Anorexigenic: feeding inhibitors
26RF amide Somatostatin* Adiponectin Neuromedin B
Agouti-related peptide Thyroid hormones Amylin Neuromedin S
(tri-iodothyronine) Anorectin Neuromedin U
v-Aminobutyric acid VGF (non-acronymic) Bombesin Neuropeptide B

Beacon

B-Endorphin

Corticosterone

Dopamine

Dynorphin

Endocannabinoids

Galanin

Galanin-like peptide

Growth hormone

Growth hormone-releasing
hormone

Glutamate

Ghrelin

Melanin-concentrating
hormone

Motilin

Noradrenaline

Neuropeptide Y

Oestrogens

Orexins (A and B)

Brain-derived neurotrophic factor
Calcitonin-gene related peptide
Cocaine- and amphetamine-regulated

Neuropeptide K
Neuropeptide S
Neuropeptide W

transcript

Cholecystokinin

Ciliary

Corticotrophin-releasing hormone

Entero

Galanin-like peptide
Glucagon-like peptide-1

Neurotensin
Obestatin?
Oleoylethanolamide
Oleoyl-estrone
Oxyntomodulin
Oxytocin

neurotrophic factor

statin

Insulin Pancreatic polypeptide

Insulin-like growth factors-l and-II Prolactin-releasing peptide

IL-1 Peptide YY3-36

IL-6 Resistin

Long chain fatty acids Serotonin

Leptin Somatostatin*

ao-Melanocyte-stimulating hormone Thyrotrophin-releasing
hormone

Nesfatin-1 Urocortin

*The effect of somatostatin on food intake has been reported to be contradictory and very dependent of the doses used. Low doses increase feeding and high doses

decrease feeding (Feifel & Vaccarino, 1989, 1990, 1994).

orexigenic neuropeptides NPY and AgRP (Broberger ef al.
1998b; Hahn et al. 1998). These neurons mostly project to
the PVH. In the ventrolateral part of the ARC there is a
second population of neurons that express the anorexigenic
products of POMC, the precursor of o-melanocyte-
stimulating hormone, and also CART (Elias et al. 1998a;
Kristensen etz al. 1998). This set of neurons projects more
broadly within the CNS to hypothalamic nuclei such as the
DMH, the LHA and the perifornical area, as well as the
PVH. Thus, AgRP/NPY and CART/POMC neurons act
as the primary hypothalamic site of action of peripheral
hormones such as insulin and leptin. ARC neurons, in turn,
project to secondary hypothalamic nuclei (‘second order
neurons’) such as the PVH and the LHA. In these second-
order neurons the release of neuropeptides is regulated
to modulate energy intake (Schwartz et al. 2000; Flier,
2004).

Paraventricular nucleus. The PVH integrates neuro-
peptide signals from numerous CNS regions, including the
ARC and brainstem (Sawchenko & Swanson, 1983).
Administration into the PVH of almost all of the known
orexigenic and anorexigenic signalling molecules alters
appetite (Kalra et al. 1999). Furthermore, CART/POMC
neurons originating in the ARC potentiate inhibitory
Y-aminobutyric acidergic signalling in the PVH and reduce
feeding, while AgRP/NPY neurons inhibit this y-amino-
butyric acidergic signalling and stimulate food intake
(Cowley et al. 1999). Despite the large number of neuro-
peptides acting on the PVH, recent work suggests that they
act to regulate feeding through a common mechanism
involving AMP-activated protein kinase (Minokoshi et al.
2004).
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The PVH also plays a major role in the integration of
food intake and neuroendocrine function. AgRP/NPY and
CART/POMC neurons in the ARC project to thyrotrophin-
releasing hormone neurons in the PVH (Legradi & Lechan,
1999; Fekete et al. 2000). AgRP/NPY inhibits pro-thyro-
trophin-releasing hormone gene expression (Fekete et al.
2002), while a-melanocyte-stimulating hormone stimulates
pro-thyrotrophin-releasing hormone expression and inhibits
the fasting-induced suppression of thyrotrophin-releasing
hormone (Fekete et al. 2000). The PVH also contains
corticotrophin-releasing hormone neurons, which form
reciprocal circuits with NPY neurons in the ARC (Kalra
et al. 1999).

Ventromedial nucleus of the hypothalamus. The VMH
(as distinct from thalamic ventromedial nucleus) has long
been considered as the ‘satiety centre’, since the finding
that bilateral lesions in this nucleus induce hyperphagia
and obesity (Hecherington & Ranson, 1942; Anand &
Brobeck, 1951). The VMH mainly receives projections
from AgRP/NPY and CART/POMC neurons in the ARC.
Additionally, the VMH neurons project their axons to the
ARC, DMH and LHA, as well as brainstem regions such as
the NTS (Kalra er al. 1999; Pinto et al. 2004; Sternson
et al. 2005).

The VMH has been considered as a ‘reception nucleus’
for peripheral signals, as well as central signals. VMH
neurons show a high abundance of leptin, ghrelin, oestro-
gen, thyroid hormone and neuropeptide receptors (Shughrue
et al. 1997; Roselli et al. 1997, Kalra et al. 1999;
Nogueiras et al. 2004b; King, 2006). However, despite the
identification of these receptors, the molecular mechanisms
regulating feeding in the VMH have not yet been well
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established. Some evidence suggests that brain-derived
neurotrophic factor and steroidogenic factor-1 may play
crucial roles in mediating body weight in this nucleus.
Mice with reduced brain-derived neurotrophic factor re-
ceptor expression (Xu et al. 2003), and with reduced brain-
derived neurotrophic factor signalling (Xu et al. 2003),
and also steroidogenic factor-1-knock-out mice (Majdic
et al. 2002), have increased body weight. Furthermore,
activation of steroidogenic factor-1 neurons by leptin is
required for normal body-weight homeostasis (Dhillon
et al. 2006). Finally, it has recently been reported that fatty
acid synthase (FAS) and malonyl-CoA levels in this
nucleus may play an important physiological role in the
regulation of feeding (Lopez et al. 2006).

Dorsomedial nucleus of the hypothalamus. Like the
VMH, the DMH has long been considered to be an inte-
grative centre, processing information from other hypo-
thalamic areas (Kalra et al. 1999). The DMH is located
immediately dorsal to the VMH and has extensive direct
connections with other hypothalamic nuclei (e.g. the PVH
and the LHA), as well as the brainstem (Kalra et al. 1999;
Bellinger & Bernardis, 2002). Destruction of the DMH
induces hyperphagia and obesity, although less dramati-
cally than VMH lesions (Bellinger & Bernardis, 2002).
Very recent evidence has also demonstrated that the DMH
is critical for the expression of food-entrainable circadian
rhythms (Gooley et al. 2006).

The DMH contains NPY-expressing cell bodies, which
are involved in the hyperphagia observed in pregnant and
lactating rats (Li et al. 1998; Garcia et al. 2003). More-
over, CART-expressing neurons are highly abundant in the
DMH; the exact function of these cells is unknown, but
they are probably involved in fasting-induced responses
(Henry et al. 2001).

Lateral hypothalamic area. Although the involvement
of the LHA, including the perifornical area, in the regula-
tion of feeding has been known for >60 years (Hecher-
ington & Ranson, 1942; Anand & Brobeck, 1951), the
molecular mechanisms involved had remained unknown
until 15 years ago when MCH was identified as the first
orexigenic peptide exclusively expressed in this nucleus
(Qu et al. 1996). Other neuropeptides important in the
regulation of feeding are also highly expressed in this area,
such as galanin (Hakansson et al. 1998), dynorphin (Chou
et al. 2001), CART-encoded peptides (Koylu et al. 1998)
and OX (de Lecea et al. 1998; Sakurai et al. 1998; Lopez
et al. 2005b).

MCH and prepro-OX are each expressed by a different
cell population, both of which receive projections from
AgRP/NPY and CART/POMC neurons in the ARC
(Broberger et al. 1998a; Elias et al. 1998b; Horvath et al.
1999). Additionally, both sets of neurons express leptin
receptors, indicating that their actions may be integrated
(Hakansson et al. 1998, 1999). The LHA also contains a
large number of glucose-sensing neurons (Bernardis &
Bellinger, 1996). OX neurons in the LHA respond to a fall
in glucose levels with an increase in activity (Cai
et al. 1999; Moriguchi et al. 1999). LHA neurons project
widely to a large number of extrahypothalamic areas.
Major targets of the MCH and OX neurons include the
brainstem motor systems, sympathetic and parasympathetic
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preganglionic nuclei in the medulla and spinal cord, the
locus coeruleus, the medial raphe nucleus, the tubero-
mammillary nucleus and the cerebral cortex. All these
areas are fundamental in different aspects of food intake
regulation, from feeding-related behaviours to arousal
and motor activity (Willie er al. 2001; Loépez et al.
2001a, 2005b; Saper et al. 2002; Steininger et al. 2004).
Thus, these second-order neurons in the LHA play a
fundamental role in integrating information from ARC
neurons before sending it to other CNS areas involved in
feeding control.

Hypothalamic neuropeptides regulating food intake

Neuropeptide Y. NPY is a thirty-six-amino acid pep-
tide belonging to the PP-fold family of peptides, which
also includes PYY and PP (Conlon, 2002). NPY is widely
distributed in the CNS and is one of the most potent
stimulators of food intake; repeated third ventricle or PVH
administration of NPY induces striking hyperphagia and
obesity (Stanley et al. 1986; Zarjevski et al. 1993). Central
administration of NPY also reduces brown fat thermo-
genesis (Billington et al. 1991), suppresses sympathetic
nerve activity (Egawa et al. 1991) and inhibits the thyroid
axis (Fekete et al. 2002) in order to reduce energy expen-
diture. Additionally, NPY induces hyperinsulinaemia (Moltz
& McDonald, 1985; Zarjevski et al. 1993), hypercortico-
steronaemia (Zarjevski et al. 1993) and reduced plasma
testosterone levels (Kalra er al. 1999); effects that are
independent of increased food intake. NPY mRNA levels
and NPY release in the ARC respond to changes in energy
status, being increased after fasting and food restriction and
decreased after refeeding (Sanacora et al. 1990; Kalra et al.
1991; Swart et al. 2002).

Regardless of its potent orexigenic effect, NPY-
knock-out mice show normal body weight and adiposity
(Erickson et al. 1996), probably related to a compensatory
and redundant mechanism in the orexigenic pathways,
particularly in relation to AgRP. However, it has been
reported recently that selective ablation of AgRP/NPY
neurons in adult mice results in hypophagia and leanness,
demonstrating direct evidence for a critical role of these
neurons in the regulation of energy homeostasis (Gropp
et al. 2005; Luquet et al. 2005).

NPY, as part of the PP-fold family of peptides, binds
and activates G-protein-coupled receptors termed Y,—Yg
(Larhammar, 1996; Kalra et al. 1999). Y —Y5 receptors are
present in rat brain, but Y is only active in mice, being
absent in rats and inactive in primates (Inui, 1999). The
orexigenic action of NPY is thought to be mediated by
hypothalamic Yy, Y,, Y4 and Y5 receptors (Kalra er al.
1999; Williams G et al. 2000, 2001; Stanley et al. 2005).

Melanocortin system (co-melanocyte-stimulating hormone/
pro-opiomelanocortin and agouti-related peptide). Among
the hypothalamic neuropeptide systems that regulate feed-
ing, melanocortins play a prominent role (Kalra et al.
1999; Cone, 1999, 2005; Coll et al. 2004b). The central
melanocortin  system modulates energy homeostasis
through the anorectic actions of the agonist oi-melanocyte-
stimulating hormone (a POMC cleavage product) and the
endogenous orexigenic antagonist AgRP (Kalra er al.
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1999; Cone, 1999, 2005; Coll et al. 2004b). Five melano-
cortin receptors (MCnR, n 1-5) have been identified. The
feeding-related effects of both o-melanocyte-stimulating
hormone and AgRP are mediated via MC3R and MC4R.
Both receptors are widely expressed in the hypothalamus
and are found in the ARC, VMH and PVH (Kalra et al.
1999; Cone, 1999, 2005; Coll et al. 2004b).

Circulating hormones such as insulin (Kim ef al. 1999),
leptin (Ahima & Flier, 20000), ghrelin (Nakazato et al.
2001; Cowley et al. 2003; Seoane et al. 2003), PYY
(Batterham et al. 2002), glucocorticoids (Savontaus et al.
2002) and oestrogens (Fodor & Delemarre-van de Waal,
2001; Tritos et al. 2004) act on melanocortin AgRP and
POMC neurons, providing information on energy status
from the periphery. Hypothalamic POMC mRNA expres-
sion is regulated by nutritional status, with low levels
during fasting that return to normal after leptin treatment
or refeeding (Schwartz et al. 1997; Swart et al. 2002).
In contrast, AGRP mRNA expression is increased by fast-
ing, but unlike NPY mRNA levels, which are decreased
after refeeding, AgRP levels remain elevated (Swart et al.
2002). Recent evidence also suggests that circulating
macronutrients, such as glucose (Sergeyev et al. 2000;
Fraley et al. 2002; Ibrahim et al. 2003) and lipids (Obici
et al. 2002b; Morgan et al. 2004) modulate AgRP and
POMC neurons.

The role of melanocortin signalling in body-weight
homeostasis is fully supported by the phenotype of trans-
genic and knock-out mice, as well as identified human
mutations. Transgenic mice over-expressing AgRP are
obese (Ollmann et al. 1997) and reduction of hypothalamic
AgRP by RNA interference reduces body weight (Maki-
mura et al. 2002). However, AgRP-knock-out mice (as
well as the double knock-out AgRP/NPY) show normal
body weight and food intake (Qian et al. 2002), while
selective ablation of AgRP/NPY neurons in adult mice
results in hypophagia and leanness (Gropp et al. 2005;
Luquet et al. 2005). The role of AgRP in human obesity is
not well defined, but a polymorphism in the human agrp
gene in man is associated with reduced body weight and
fat mass (Marks et al. 2004). POMC-knock-out mice
(Yaswen et al. 1999; Challis et al. 2004; Coll et al. 2005)
and hucman (Krude et al. 1998) are hyperphagic and obese
and display adrenal insufficiency. MC4R-knock-out mice
(Huszar et al. 1997; Fan et al. 1997) and hucman (Yeo
et al. 1998; Farooqi et al. 2000, 2003) also show hyper-
phagia and obesity. Finally, MC3R-knock-out mice display
an increase in adiposity (Butler et al. 2000).

Melanin-concentrating hormone. MCH 1is an orexi-
genic neuropeptide expressed in the LHA-perifornical
area. Central administration of MCH increases food intake
and adiposity in rats and mice (Qu et al. 1996; Marsh et al.
2002). MCH receptor 1 antagonists inhibit food intake and
induce weight loss (Borowsky et al. 2002). MCH expres-
sion is regulated by nutritional status; fasting induces MCH
mRNA expression and leptin decreases it (Qu et al. 1996;
Tritos et al. 2001).

The important role of MCH in appetite regulation is
supported by the phenotype of GM models. Transgenic
mice over-expressing MCH display hyperphagia and
obesity (Ludwig et al. 2001; Marsh et al. 2002), while
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MCH-knock-out mice are hypophagic and lean (Shimada
et al. 1998). Finally, the double knock-outs leptin/MCH
have lower weight gain and adiposity compared with
leptin-deficient ob/ob mice (Segal-Lieberman et al. 2003),
suggesting that MCH is a downstream mediator of leptin
effects on feeding. Finally, MCH receptorl-knock-out
mice display a lean phenotype as a result of increased
energy expenditure (Marsh et al. 2002).

Orexins. The OX (OX-A and OX-B), or hypocretins
(hypocretins 1 and 2), are neuropeptides derived from
the common precursor prepro-OX (also called prepro-
hyprocretin) expressed in the LHA/perifornical area (de
Lecea et al. 1998; Sakurai et al. 1998). Two different
OX receptors have been cloned, termed OX 1 receptor
(or hypocretin receptor 1) OX 2 receptor (or hypocretin
receptor 2). Although OX expression in the brain is only
located in the LHA-perifornical area (Broberger er al.
1998a; Elias et al. 1998b;, Horvath er al. 1999), OX
receptors show a widespread distribution in the CNS, with
high levels of abundance in some hypothalamic nuclei
(ARC, DMH, LHA, PVH and VMH; Marcus et al. 2001;
Backberg et al. 2002). OX receptors are also present in the
adrenal gland (Lopez et al. 1999), pituitary (Blanco ef al.
2001) gut (Kirchgessner & Liu, 1999), testis, kidney, ovary
and placenta (Johren et al. 2001).

OX are important regulators of the sleep—wake cycle
and the absence of OX signalling causes narcolepsy
(Willie et al. 2001; Taheri et al. 2002; Sutcliffe &
de Lecea, 2002). However, evidence also links OX to
endocrine function (Lopez et al. 1999, 2001b, 2004,
2005b; Barreiro et al. 2004; Seoane et al. 2004) and food
intake regulation (Sakurai et al. 1998; Lopez et al. 2001a,
2005b). Central administration of OX to rats stimulates
feeding via a NPY-dependent mechanism (Sakurai et al.
1998; Dube et al. 2000; Ida et al. 2000; Jain et al.
2000; Yamanaka et al. 2000; Lopez et al. 2002). Other
evidence has linked the feeding actions of OX-A to
opioids, corticotrophin-releasing hormone (Ida er al.
2000), urocortin and melanocortins (Wang & Kotz, 2002).
Finally, prepro-OX-knock-out mice (Willie et al. 2001)
and the OX/ataxin-3 transgenic mice in which OX-
containing neurons are ablated (Hara et al. 2001) are
hypophagic.

OX neurons are also responsive to peripheral signals
regulating food intake. The expression of prepro-OX is
increased in fasting and restored to normal by leptin
(Sakurai er al. 1998; Lopez et al. 2000; Zhu et al. 2002;
Yamanaka et al. 2003). OX neurons in the lateral hypo-
thalamus are also sensitive to glucose, being activated
during hypoglycaemia (Cai et al. 1999; Griffond et al.
1999; Moriguchi et al. 1999). It has been also proposed
that visceral feeding-related signals regulate OX actions,
which are thought to act via the vagus nerve and the NTS.
Thus, stimuli acting as ‘terminate-eating’ signals, such as
gastric distension and glucose concentrations in the portal
vein, appear to be important in the regulation of OX (Cai
et al. 2001, 2002).

Despite evidence supporting the orexigenic effect of
OX, it has been proposed (Hagan et al. 1999) that these
effects are secondary, and are related to the state of arousal
and vigilance necessary for normal feeding. However,
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Fig. 2. Fatty acid synthesis pathway. Fatty acid synthesis is cata-
lysed by acetyl-Co A carboxylase (ACC) and fatty acid synthase
(FAS) in the cytoplasm. ACC catalyses the carboxylation of acetyl-
CoA to malonyl-CoA. Acetyl-CoA and malonyl-CoA can be used as
the substrates for the production of palmitate by the seven enzymic
reactions catalysed by FAS. The synthesis step of malonyl-CoA is a
reversible regulated mechanism, and malonyl-CoA decarboxylase
(MCD) converts malonyl-CoA back to acetyl-CoA. The inhibition (L)
of FAS (by using cerulenin, C75 or tamoxifen) increases the levels
of malonyl-CoA in the hypothalamus, altering the concentration of
long-chain fatty acid (LCFA)-CoA, which reduces feeding. The link
between this effect and the neuropeptide changes is unknown (?).
POMC, pro-opiomelanocortin; CART, cocaine- and amphetamine-
regulated transcript; AgRP, agouti-related peptide; NPY, neuro-
peptide Y.

OX-A-induced feeding that is independent of arousal acti-
vation has been reported (Kotz et al. 2002).

Cocaine- and amphetamine-regulated transcript. CART
is the third-most-abundant transcript in the hypothalamus
and is expressed in the ARC, DMH, LHA and PVH
(Kristensen et al. 1998; Elias et al. 2001; Hunter et al.
2004). Food deprivation decreases ARC expression of
CART, while peripheral leptin treatment in ob/ob mice
increases CART expression (Kristensen ef al. 1998). Central
administration of CART-(1-102) and CART-(82-103)
inhibits feeding (Kristensen et al. 1998) and CART-knock-
out mice display a predisposition to become obese on a
high-fat diet (Asnicar et al. 2001), an age-related increase in
body weight and impaired glucose metabolism (Wierup
et al. 2005), supporting the role of CART in the hypotha-
lamic mechanism regulating food intake.

Lipid sensing in the hypothalamus

Although circulating lipids have for some time been
hypothesised as signalling molecules that inform the
hypothalamus of metabolic status, this function has only
recently been definitively demonstrated. Following an
elegant experimental approach Rossetti and colleagues
(Obici et al. 2002b; Morgan et al. 2004) have shown that
central administration of long-chain fatty acids such as
oleic acid inhibits food intake via AgRP/NPY neurons
in the ARC; this effect is not produced by medium-chain
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fatty acids. The physiological relevance of these data is
intriguing. Since circulating NEFA can access the brain it
is likely that the anorectic action of long-chain fatty acids
may play an important role in the regulation of energy
balance by acting as a ‘nutrient abundance’ signal (Lam
et al. 2005a,b). Impairment of hypothalamic lipid-sensing
in rats induces obesity (He et al. 2006), as well alterations
in plasma glucose (Pocai er al. 2006), indicating that this
mechanism may be important in the physiological regu-
lation of metabolism and body-weight homeostasis.

Fatty acid synthesis pathway in the hypothalamus

Recent reports demonstrate that the enzymes of the fatty
acid synthesis pathway (Fig. 2) are expressed in the hypo-
thalamus. Acetyl-CoA carboxylase, FAS and malonyl-
CoA decarboxylase mRNA and proteins have been
detected in the ARC, DMH, PVH and VMH (Kim et al.
2002; Loépez et al. 2006). The anatomical location of
these enzymes suggests that they may play a role in the
hypothalamic mechanism regulating feeding. This notion
is further supported by evidence demonstrating that peri-
pheral and central administration of the FAS inhibitors
cerulenin, C75 and tamoxifen reduces food intake and
body weight through a malonyl-CoA-dependent mech-
anism (Loftus et al. 2000; Hu et al. 2003; Lelliott et al.
2005; Lopez et al. 2006). The anorectic action of FAS
inhibitors is linked to decreased expression of AgRP/NPY
and elevated expression of CART/POMC in the neurons
of the ARC, although the molecular mechanisms of this
interaction have not yet been completely defined (Loftus
et al. 2000; Shimokawa et al. 2002; Lopez et al. 2006).
Additionally, it has been demonstrated that nutritional
status regulates hypothalamic malonyl-CoA levels and
FAS expression in a nucleus-specific manner, with FAS
mRNA levels down regulated by fasting and up regulated
by refeeding, an effect specific to the VMH (Fig. 3;
Loépez et al. 2006). This evidence suggests that the
regulation of FAS could be a physiological mechanism of
food-intake control and that the increase in malonyl-CoA
induced by FAS inhibition may act as central lipid-
sensing signal.

Brainstem regulation of food intake

The brainstem plays an essential role in the regulation of
body-weight homeostasis. The NTS is anatomically close
to the area postrema, a circumventricular organ, like the
ARC, with a partial BBB (Stanley et al. 2005). Conse-
quently, the NTS is in a perfect location to receive peri-
pheral circulating signals, as well as vagal afferents from
the gastrointestinal tract and the glossopharyngeal nerves
(Kalia & Sullivan, 1982; Sawchenko, 1983).

The NTS contains GLP-1, NPY and melanocortin neu-
ronal circuits. GLP-1-expressing neurons comprise the
main brainstem circuit modulating feeding. In the CNS
GLP-1 is only synthesised in the caudal NTS. GLP-1 fibres
project to the PVH and DMH, with fewer projections to the
ARC (Stanley et al. 2005). Central administration of
GLP-1 into either the third ventricle or the fourth ventricle
reduces food intake, and treatment with the GLP-1 receptor
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Fig. 3. Fatty acid synthase (FAS) expression and malonyl-CoA levels are nutritionally regulated in the
rat hypothalamus. Expression of FAS in the ventromedial nucleus of the hypothalamus (VMH; a), arcu-
ate nucleus (ARC; b) and paraventricular nucleus (PVH; c), and malonyl-CoA levels (d) of fed rats ([1),
fasted (F; W) rats and F +refed (R; W) rats. Values are means with their standard errors represented by
vertical bars. Mean values were significantly different from those for fed rats: *P<0-05, ***P<0-001.
Mean values were significantly different from those for the corresponding F rats: t1P<0-01,

111P<0-001.

antagonist exendin (9-39) increases appetite (Turton et al.
1996). This finding suggests a role for endogenous GLP-1
in energy homeostasis. NPY neurons from the brainstem
project to the PVH (Sawchenko er al. 1985), and extra-
cellular NPY levels within the NTS are nutritionally-
regulated (Yoshihara et al. 1996). Y, and Y5 receptors are
also located in the NTS (Harfstrand ef al. 1986; Dumont
et al. 1998; Glass et al. 2002). POMC-derived peptides are
synthesised in the NTS of the rat (Kawai et al. 1984;
Bronstein et al. 1992; Fodor et al. 1996). Brainstem POMC
neurons are activated by feeding and also by CCK treatment
(Fan et al. 1997). MC4R are also expressed in the NTS
(Mountjoy et al. 1994) and act to modulate energy intake.
Fourth-ventricle administration of a MC3R/MC4R ago-
nist decreases food intake, and MC3R/MC4R-antagonist
administration to these areas increases food intake
(Williams DL et al. 2000).
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Prolactin-releasing peptide is expressed in the NTS,
in addition to the hypothalamic DMH (Lee et al. 2000).
Prolactin-releasing peptide expression is reduced in
fasting, and central administration of prolactin-releasing
peptide decreases appetite by a corticotrophin-releasing
hormone- and CCK-mediated mechanism (Seal et al.
2001; Ellacott et al. 2002; Lawrence et al. 2004). Chronic
administration of prolactin-releasing peptide does not
affect food intake (Ellacott er al. 2003), suggesting a role
in short-term appetite regulation instead of long-term
control of body weight.

Reward and regulation of food intake

Even in the absence of an energy deficit, the rewarding
nature of food may act as a stimulus to feeding.
Several signals are able to modulate reward pathways.


https://doi.org/10.1017/S0029665107005368

Molecular mechanisms and physiology of food intake 143

The reward circuitry is complex, involving interactions
between several signalling systems, including the opioid,
dopaminergic and endocannabinoid (EC) systems (Cota
et al. 2003a,b; Flier, 2004; Di Marzo & Matias, 2005;
Lichtman & Cravatt, 2005; Fulton er al. 2006; Hommel
et al. 20006).

Opioids. Opioids play an important role in the regu-
lation of feeding. The anatomical site for opioid action is
the nucleus accumbens (Zhang & Kelley 2000; Zhang
et al. 2003). Mice lacking enkephalin or B-endorphin lose
the reinforcing property of food, despite the palatability.
This effect is overridden after fasting, indicating that
homeostatic mechanisms can overrule the hedonistic
pathway (Hayward er al. 2002). In man opiate antagonists
decrease food palatability without altering subjective
hunger (Yeomans et al. 1990; Drewnowski et al. 1992).

Endocannabinoids. The effect of marijuana (Cannabis
sativa) to increase appetite has been known for many years
(Di Marzo & Matias, 2005; Lichtman & Cravatt, 2005).
The primary constituent of cannabis is A’tetrahydro-
cannabinol; this molecule, along with other naturally-
occurring and synthetic cannabinoids (CB), binds to two
separate G-protein-coupled receptors: the CB1 receptor,
which is located in the CNS and periphery; the CB2
receptor, which is primarily found in cells of the immune
system (Matsuda et al. 1990; Devane et al. 1992; Munro
et al. 1993). These receptors also bind endogenous ligands,
the EC, which include the fatty acid amide N-arachidonoyl
ethanolamine (anandamide) and the monoacylglycerol
2-arachidonoylglycerol (Di Marzo et al. 2001; Cota et al.
2003a; Di Marzo & Matias, 2005; Lichtman & Cravatt,
2005).

Central and peripheral administration of EC stimulates
food intake (Williams et al. 1998; Koch, 2001; Cota et al.
2003a). This orexigenic effect is mediated via CB1 recep-
tors in the hypothalamus, which co-localise with CART,
corticotrophin-releasing hormone, MCH and OX (Cota
et al. 2003b). Additionally, CB1-knock-out mice display
hypophagia and leanness (Cota et al. 2003b), and leptin-
deficient signalling is associated with high hypothalamic
EC levels (Di Marzo et al. 2001). Recent evidence (Verty
et al. 2004) has also shown that the EC receptors are
located downstream from the melanocortin system.

Together this evidence supports the important role of
the EC system in the regulation of feeding. In fact, there
is currently a CBI1 selective antagonist, Rimonabant
(SR141716), in use in phase III clinical trials that may be a
potentially promising anti-obesity drug (Di Marzo &
Matias, 2005).

Dopamine. The dopaminergic system is also important
in the rewarding circuitry of feeding regulation (Fulton
et al. 2006; Hommel et al. 2006). In fact, mice lacking
tyrosine hydroxylase, the enzyme synthesising dopamine,
are hypophagic (Szczypka et al. 2001). These actions
are mediated via D; and D, receptors (Szczypka et al.
2001).

Serotonin. Serotonin plays an important role in
regulating both rewarding and homeostatic mechanisms
(Halford & Blundell, 2000b). Serotonin actions of food
intake are mediated via the melanocortin system (Heisler
et al. 2002, 2003). In fact, the currently-discontinued
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anorectic agent fenfluramine mediates its actions via sero-
tonin and melanocortins (Heisler et al. 2002).

Conclusions

Multiple, redundant and complex peripheral neural circuits
participate in the regulation of food intake and body-
weight homeostasis. All this evidence indicates that
obesity, and associated metabolic alterations, is complex,
multifactorial and chronic pathology. Thus, the search for,
and development of, new weight-loss drugs is made
extremely complicated. In fact, the efficacy of drugs acting
on a single molecular target might be limited by compen-
satory feedback mechanism. In the near future combined
therapies that act on both peripheral and central targets
should be sought. Understanding these molecular networks
regulating food intake could lead to the design of better
therapeutic targets for weight loss.
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