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Abstract

It is proved that a finite metabelian group G is determined by its group ring KG where the ring
K satisfies the following conditions.
(*) K is an integral domain of characteristic 0 in which no prime dividing the order of G is

invertible.
(**) ZlmZ is a homomorphic image of K where m= exponent of G'.

It is also shown that al! groups of order 2", n < 7 are determined by their integral group rings.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 C 05; secondary 16 A 26.

The aim of this paper is to prove that a finite metabelian group G is determined
by its group ring KG where the ring K satisfies the following conditions

(*) K is an integral domain of characteristic 0 in which no prime dividing the order
of G is invertible

(**) Z/mZ is a homomorphic image of K where m = exponent of G'

This theorem generalizes Whitcomb's result (Whitcomb (1968)) which states that
a finite metabelian group is determined by its integral group ring and also a result
of Sehgal (1970) who proved that a finite metabelian />-group is determined by its
p-adic group ring. We present our theorem in a generalized form which covers (for
the case K = Z) Obayashi's result (Obayashi (1970)) established by cohomological
methods. We also prove that a 2-group which is abelian-by-dihedral of order 8 is
determined by its integral group ring. The corresponding result for the case of a
2-group which is elementary abelian-by-dihedral of order 8 was proved by Obayashi
(1970). Finally, we show that all groups of order 2", n < 7, are determined by
their integral group rings.
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[2] Group rings of finite metabelian groups 379

In what follows KG denotes a group ring of a group G over an associative ring
K with 1,1(K, G) denotes the augmentation ideal of KG, KG = KH means that H
is a normalized group basis of KG. We shall often write I(G) instead of I(K, G)
when the precise situation will be clear from the content. If S is a subset of KG
and A is an ideal of KG then S+A = { J + A | 5 G S } . Finally, Op (respectively
Z(p)) stands for the ring of p-adic integers (respectively /^-integral rationals).

LEMMA 1. Let G be an arbitrary group, K an arbitrary ring with 1, M and N
arbitrary subgroups of G. Then the following equalities hold
(1) /(M) • 1(N) n I(N) = I(M n AO • /(AT).
(2) I(G) • I(N) n I(N) = /(AO2.
(3)

PROOF. By taking M = G we see that (1)=>(2). Since Gnl+KG-I(N)=N it
follows that Gnl+I(G)-I(N)=Nnl+I(G)I(N) = Nnl+(I(G)-I(N)nI(N))
and therefore (2) => (3). Let T be a set of all coset representatives of M with
respect to Mn N. If m = tn, neMnN, then for n' e Af we have

Since the first and the second summand belong to [t— \)I{N) and since

(n -1) («' -1) e I(Mn N) -I(N), (m-\)(n'-l)eI(MnN)-I(N)+(t~l)-I(N)

then

Let

where

yeI(MnN)I(N), tseT, nteN, 1 < / < s , l^j^ k.

If xe/(A0 then

z = «uti(n1-i)+ ... +als<s («s-l)+ ... +xkstk(ns-l)eI(N)

and since all elements of N have coefficient 0 in z, z = 0.
But {t1(n1 — 1),..., ts(ns— 1)} is a linearly independent set and therefore

a n = ... =<xlj = ... = a s s = 0 .

Hence x = y e /(M n A7) • /(A7), proving the lemma.

Let A be an abelian group of exponent n and let K = Z/mZ where w = 0 (mod «).
As in the case K = Z the formula
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defines a homomorphism of I(A) onto A with kernel I(A)2. From this follows:
A n 1 +I(A)2 = 1 and A s I(A)/I(A)2. Moreover, since

the following congruence holds

(4) I(<vl)(«-l) =

In general if G is a group and n is the exponent of G/G' then

(5)
and
(6)

where K = Z/mZ and m = 0 (mod n).

LEMMA 2. Z-e? A be a subgroup G and let K=Z/mZ where

m = 0 (mod «), « = exponent of A/A'.

Then the following properties hold

(7) KG • I(A)/I(G) -
and
(8) / / ' ^ is abelian and x = g (mod KG -I(A)) for some geG, then there exists a

unique element gx = ga (aeA) such that x = gx (mod/(G)-/(/4)).

PROOF. It follows from KG = K+I(G) that KGI{A) =I(A)+I(G)I(A) and the
application of (2) and (5) yields

KG-I(A)/1(G)I(A) s I(A)I1(A) n I(G)-I(A) = I(A)II(A)2 s

proving (7). Finally, x = 3 (mod KG-I(Ay) implies x = g + t (mod I(G)I(A) for
somet = '£mA(u.-l){s-l)eI(A).

Therefore x = g+(a -1) = (1 - g) (a -1)+ga = gx (mod I(G) • 1(A)) where

seA

Since G n 1 +/(G) -/(^) = /4 n 1 +/(/4)2 = 1 the element gx is unique, proving the
lemma.

Let o!-»abea ring homomorphism from K onto K with kernel A and let G be
an arbitrary group. Then the mapping <j>: KG -* KG defined by

g I 9

determines the epimorphism of rings KG and KG with Ker <j> = KG.
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LEMMA 3. Let G be a group and let K be a ring. Then KG=KH implies
KG = K<j>{H) and <f>{H) ^ H. Therefore if A and N {respectively B and T) are sub-
groups ofG {respectively of H) such that

KGI{A) = KGI{B) and N+KGI{A) = T+KG-I{A)
then

KGI{K,A) = KG-I{K,4>{B)) and N+KGI{K,A)=<I>{T)+KGI{K,A).

PROOF. All we have to do is to prove that there exists an isomorphism X of
group rings KH and KG such that X{H) = 4>{H). Clearly, KG = KH implies
AC? = AH. Consider the mappings

KH _\^ KH/AH = KGIAG ̂ \ , %G

where

A i ( I S * - M = 5 > * - M - A J f and A 2 ( £ a f 0 + A G ) = £ & g .

Then Xt and X2 are ring isomorphisms and therefore X2XX is also a ring iso-
morphism. It is easy to see that X2 X^ is also a K-module isomorphism and that

{X2 At) {h) = <f>{h) for any h e H, proving the lemma.

Let R be the ring of algebraic integers of a number field and let u =Y,gag9 be
a unit of finite order in RG. It is well known (Berman (1955)) that if ct1 # 0 then
u = ax • 1. From this follows that every central unit of finite order in RG is trivial.
The following extension of this result belongs to Saksonov (1971).

LEMMA 4. Let K be an integral domain of characteristic 0 in which no prime
dividing the order of G is invertible. Ifum = \ where u = £ 9 <xg g e KG and ifctl=£O
then u = a.1 • 1. In particular, all central units of finite order in KG are trivial.

PROOF. Consider the regular representation of the group ring O(e) G, where O
is the quotient field of K and e a primitive mth root of unity. Then

where E? = 1 and e,eO(s), / = 1,2,..., |G | . Therefore at = | G|~1(£i+ ••• £|G|)-
All we have to do is to prove that a.1 is an algebraic integer. By looking at the
tr(u') where {r, m) = 1 we see that the set {fix = au /?2,... , /?,} of all Q-conjugates
to <*!, belongs to A"and therefore Z[jS1;...,/?,] < K.

Suppose that ax is not an algebraic integer. Then there exists an elementary
symmetric function / o f / variables such that /0?l5...,/?,) is not a rational integer.
On the other hand, for some / e Z and some k,\ < k < t, f{Pu...,)?,) = | G\~kl
and therefore f{pu...,P,)= {a/b)eZ^,...,)?,] where a,beZ, {a,b) = 1, b> 1
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and every prime divisor p of b also divides \G\. This shows that (a/p)eZ[fit,...,/?,].
Since (a,p) = 1 there exist c,deZ such that ac+dp = 1 whence

1 ac+dp a
- = ~ =--
P P P

which is a contradiction. This proves the lemma.

COROLLARY. Let NA G and let n: KG -*• K(G/N) be the canonical homomorphism
where K is as in Lemma 4. If KG = KH then

K(G/N)=Kn(H) and KGI(N) = KHI(N*),

where N*=Hnl +KG-I(N).

PROOF. It suffices to show that n(H) is a group basis for K(G/N). Indeed, in this
case TC can be regarded as the extension of the epimorphism H-*n(H) by K-
linearity, hence Kerrc = KGI(N) = KHI(N*).

Let Y,xeH<xxx=0(ixxeK) and let <xA # 0 for some hen(H). Then

«h-h = - £ ax-x

and therefore there exists y ^ h such that the coefficient of 1 in yh~l is nonzero.
But in this case yh ~1 = a. • 1 (a e K) and since H is normalized, y = h — contradiction.
This proves the corollary.

THEOREM. Let A be an abelian normal subgroup of a finite group G and let
KG = KH where the ring K satisfies (*) and (**) for n = exponent of A. If N/A
(respectively M/A* where A* = Hn 1 +KGI(A)) is the centre ofG/A (respectively
HI A*) then there exists an isomorphism of M onto N carrying A* onto A.

PROOF. We shall prove even a more general result, namely if iV and M are sub-
groups of G and H respectively such that

N^A, M>A* and N+KG-I(A) = M+KGI(A)

then there exists an isomorphism of M onto TV carrying A* onto A. It follows from
the corollary of Lemma 4 that KGI(A) = KG-I(A*) and hence | A \ = | A* |.

By applying Lemma 3 we may assume that K = Z/mZ where m is a multiple of
both the exponent of A and the exponent of A*. Multiplying both sides of the
equality KGI(A)=KGI(A*) by I(G) =I(H) we obtain I(G)I(A) =I(H)-I(A*).
It follows from (7) that A £ A*/(A*)'. Since | A \ = \A* | then A s A* and there-
fore the application of (3) and (6) yields Hr> l+I(H)I(A*) = 1. Let

n: KG -* K(G/A)
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be the canonical homomorphism. Since N+KG-I(A) = M+KG-I(A) then

n{N)=n{M)

and therefore \N/A\ =\M/A*\. Hence |M | = |A |̂. The same equality also
implies that for every heM there exists geN such that h = g (modKG-I(A)). By
(8) there exists a unique gheN such that h = gh (modI(G)I(A)).

Therefore the mapping f:h^gh defines a homomorphism of M into N. Since
| M | = [ N | and since Ker/ < H n 1 +I(H) • I(A*) = 1,/ is actually an isomorphism
of M onto N. Let be A*. Then b- leKem = KG-1(A)=I(A)+I(G)-I(A) andit
follows from (4) that b—l = a-1 (mod I(G)I(A)) for some aeA. Hence
b = a (mod I(G)I(A)) and f(b) = a. Thus it remains only to prove that N and M
satisfy N+KG-I(A) = M+KGI(A). It follows from the corollary of Lemma 4
that K(G/A) = Kn(H). Since n(iV) (respectively n(M)) is the centre of G/A (res-
pectively HI A*) the application of Lemma 4 yields n(N) = TI(M). Hence
N+KG-I(A) = M+KGI(A), proving the theorem.

COROLLARY 1. Let G be a finite metabelian group and let the ring K satisfy (*)
and (**). Then G is determined by its group ring KG.

PROOF. Take A=G'. Then N = G and M = H. Now apply the theorem.

The following proposition was suggested to me by Dr K. R. Pearson.

COROLLARY 2. Let G be a finite metabelian group and let K — S~1Z be the ring
of fractions ofZ with respect to S, where S = {aeZ\ (a, \ G\) — 1}. Then the group
ring KG determines G.

PROOF. All we have to do is to check that K satisfies (*) and (**). It is obvious
that K satisfies (*) and that the mapping S~1Z-^ ZfmZ defined by (alb) -> d(B)~1

where m = exponent of G' and a =a+mZ is a ring epimorphism, proving the
corollary.

Berman and Rossa (1966) and Whitcomb (1968) gave an example of two group
bases in ZZ>4 which are not conjugate in U(ZD^) but are conjugate in U(02 D4).
(In fact they are conjugate in £/(Z(2) D4). On the other hand, Weller (1972) proved
that there are only two nonconjugate classes of group bases in U(ZD4).

COROLLARY 3. Let G be a 2-group with abelian normal subgroup A such that
G/A = DA. Then G is determined by its integral group ring.

PROOF. Let ZG = ZH and let n: ZG -* Z(G{A) be the canonical homomorphism.
Then Zn(G) =Zn(H), 027i(G) = 02^(H) and there exists a unit ueO2G such that
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u~1n(H)u = n(G). Since 02 G is a local ring there exists a unit teO2G such that
TT(/)=M and therefore n(t~l Ht)=n(G). Thus if fi = t~lHt then 0 2 G = 0 2 #
and G+02 G-/(^) = H+02 GI(A). It follows from the proof of the theorem that
in this case G ^ H, proving the corollary.

COROLLARY 4. Let | G \ = 2", n < 7. 7%ew r/?e growp G w determined by its integral
group ring.

PROOF. Every group of order 2" n < 6, is metabelian and group of order 27

has a normal abelian subgroup 4̂ of index 8 (Miller, Blichfeldt and Dickson
(1961)). Suppose that G is not metabelian. It follows from Berman (1955) that we
can restrict ourself to the case when G/A s D4. Now apply Corollary 3.
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