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1. Introduction

In 1978 and 1980, Sinnott published two important papers on the cyclotomic units of
Abelian number fields ([Sinl] and [Sin2]). Its constructions inspired Kubert and
Lang and Kersey who tried to develop an equivalent approach for elliptic units,
cf. [K-L] chapters 12 and 13. However, their main results are obtained under some
very restrictive hypotheses. Galovich and Rosen [Ga-R] were also influenced by
Sinnott’s work. They obtained analoguous results for finite Abelian extensions of
a rational function field. The roots of unity are replaced by the torsion points of
Carlitz Modules. But it was Yin ([Yinl] and [Yin2]) who gave a complete response
to this question in the case of global function fields. In such a situation, the material
used are the torsion points of Drinfel’d Modules of rank one. Let us come back to
elliptic units. The aim of this paper is to clear away almost all the restrictions
imposed in [K-L]. Our main results are Theorem A and Theorem B stated below.
The former is proved in Sections 3 and 4. Propositions 8 and 9 are crucial steps in
this proof. We showed them by using ideas from [Yinl], Proposition 5.1. To state
these theorems, we need some notation. Let K C C be a imaginary quadratic field
and let K® ¢ C be the maximal Abelian extension of K in C. Let F C K® be a finite
Abelian extension of K and let O (resp. OF) be the ring of integers (resp. the group
of units) of F. Let uy be the group of roots of unity in F and let wyp := #up. Let 1t be
the conductor of F/K. For each ideal n of Ok dividing m, we let £, be the positive
generator of Z Nn and we put wy :=#{{ € ug, { =1 modulo n}. Moreover, if
n # (1), we define ¢, := Nk, /m K“(qon)"""f w/"nfn where Ky, C K is the ray class field
modulo the ideal nn and ¢,, is the Siegel-Ramachandra—Robert invariant (cf. Defini-
tion 2). Let ¢, be the Galois submodule of F* generated by ¢, njnt and n # (1).
Let hp (resp. 1) be the ideal class number of F (resp. K). Let us also denote, for each
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maximal ideal p of Ok, Ky, the union of the ray class fields Ky» modulo p”, n = 0.
Let H be the Hilbert class field of K. Then we have

THEOREM A. Let Qp be the subgroup of O generated by pp, opN Or and by all
the norms

A(@)A(D)

where a and b are fractional ideals of K and T'—> A(T') is the discriminant function
of lattices I of C. Let Fyy:= FN H and suppose that either F C H or H C F, then

Sin
Ny /mH(A@K}A(“b)> ,

he (R2wgfu)E KT IF N Ky Foyl
X Qp] = 7[GF] : 1
[OF F] [F( F(l)] ::/}; [F F(l)] ( [ F] U), ( )

where G := Gal(F/K), U is a certain Gg-submodule of Q[GF), cf. Definition 5, and
(Z|Gp] : U) is Sinnott’s index.

The Gp-module U naturally appears when computing the image of the elliptic
units by the logarithm map. It is also related to Iwasawa ordinary distribution
attached to K ([Yin3] or [B-O]). Some of the properties of the index (Z[Gp]: U)
are given in Section 6 (cf. Proposition 16). Let us recall that the formula (1) is already
known when F C H, ([Robl], Section 3). When m = p° for some prime ideal p of Ok
and e € N — {0}, this formula can be easily derived from Theorem 2.1 in Chapter 13
of [K-L].

In Sections 5 and 7, we focus on ray class fields K}, modulo a ideal m prime to 6.
We prove the following

THEOREM B. Let m be a ideal of Ok prime to 6 and put L := K(y52y. Let Vi be the
largest subgroup of OF such that p; Vadvsim — 1, Q.. Then the group Ex = Vin N Kuy

satisfies
12wxf, s fs=0o0rs=1
Qg Wk = W Y 0T o ?
[ K 'uKm m ] WKy lfs = 2. ( )

Moreover, we have
X . —
[Okm . gm] = {

hkum lf N < 27
s=2_ _
hi, W& TS if s > 3 and h odd,

m

(©)

where s is the number of prime ideals of O that divide m (s = 0 if m = (1)) and e is the
index in Gal(H/K) of the group generated by the Frobenius elements at these ideals.

To get formula (2), we used the results from [Rob2], [Rob3], [Sch] and [H-V],
which enabled us to construct explicit generators for £,,. Perhaps these generators
may be useful for a better understanding of the group of elliptic units considered
by Rubin in [Rub].
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The following supplementary notations are used throughout this paper. We will
put ry = wy fm. Let a be a fractional ideal of K. Then a will denote the image of
a by the complex conjugation. If a is prime to m, then by (a, F/K) we mean the auto-
morphism of F/K associated to a by the Artin map. If a C Ok, then N(a) := [Ok : q]
is the norm of a. In case m # (1) we will denote py, ..., b, the prime ideals that
divide m, thus nmt = p{' - .- p%, for some e¢; € N — {0}. If n > 1, we denote by p, the
group of nth roots of unity in C.

2. Preliminaries

2.1. Let T be a lattice of C. It is well known that the field of elliptic functions with
respect to I' is generated over C by the Weierstrass function pr and it’s derivative
pr. Moreover, the points (pr(z), pr(z)),z € C/T — {0}, parametrize the complex
solutions of the equation y*> = 4x> — g,x — g3 that defines the elliptic curve associ-
ated with I, where the coefficients g, and g3 are defined as follows:

1 1
g2=6OZ g and g3 = 1402 o6

wel wel

w#0 w#0
The discriminant g3 —27g3 of the Weierstrass equation »* =4x’ —gox — g3 is
usually denoted A(I') and called the discriminant of I'. In particular, we have
A(UT) = 27A) for all 1 e C*. Let 7 € C be such that Im(r) > 0. Let [r,1] be
the lattice of C generated over 7 by the basis (z,1). Then the function
T A(7) := A(Jz, 1]) is a cusp form of weight 12, and satisfies the Jacobi’s product
expansion

A(‘L') — (2n)1262im l_[(l _ e2i7mr)24'
n=1

The function 7+ (1) := ez%l_[f;l(l—ezm”f) is the so-called Dedekind’s eta
function.

PROPOSITION 1. Let a, b and ¢ be fractional ideals of K. Then the quotient
A()/A(b) € H and generates the ideal (ba='Oy)'". Moreover, we have

A(b) ~Ac'b)
Proof. See [Lan], chapter 12, Theorems 1 and 5. O

(@) CHO_ A

DEFINITION 1. Let t € Gal(H/K) and b be a ideal of K such that (b, H/K) =t~
Let x € K be a generator of b”. Then we put

A(z) := x"2A(b)".
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Let us remark that J(z) is well defined since Oy is of an order dividing 12.

COROLLARY 1. Let 11,12 € Gal(H/K). Then 9(t1)/9(t2) € Oy, and we have

(@)T_ (t17)
Nta)) — O(121)

for all T € Gal(H/K).

2.2. Let us now recall the definition of Siegel-Ramachandra—Robert invariants and
some of their properties. They are the essential material when constructing elliptic
units in Abelian extensions of imaginary quadratic fields. One obtains them as spe-
cial values of the classical g-functions whose definition we now recall. If (w;, w;) is a
‘positive’ Z-basis of the lattice I' (i.e. such that Im(w;/w;) > 0) then following
Schertz ([Sch] formula (1.1)), we define

2
@ _
@(I; 601,6()2) = K(tv F)ﬂ( l> W, la
(9]

where t—> x(¢,I") is the Klein form ([K-L], Chapter 2, Section 1) and # is
Dedekind’s eta function introduced above. Robert in [Robl], Section 1, proved
many interesting properties of these ¢-functions. (His notation is different from
ours. More precisely his ¢(t; wy, @) 1s our —ip(t; w1, wy).) Stark also used these
functions in [Sta]. Indeed, let T € C be such that Im(t) > 0. If t = ut + v, where u
and v are real numbers, then ip(¢; 7,1) is denoted ¢(u, v, 1) in [Sta] Equation (10).

Formula (17) of [Sta] may be written as:
Let A = (a p € SLy(Z) and let o} = aw; + bw,, o) = cw; +dw,. Then we
have ‘

o(t: o), 05) = e(A)p(t; 1, ), 2.1)

where ¢(4) is a 12th root of unity depending only on A4 and such that
& SLy(Z) —> uy, is a group homomorphism. See [Sch] formula (2.6) for an explicit
description of &(4). On the other hand, if y = byw; + bywy € I and t = ayw; + @y,
with a1, a, € Q, then

Ot + 75 01, 0) = ()PP THOETR o (1 oy ), (2.2)
cf. [Sch] formula (2.3) or [K-L], formula K 2, page 28. Finally, we have
o(at; amy, aw;y) = @(t; wy,w,), forall a € C — {0}.

See [Rob3], Section 2, where z—> ¢(z; w1, ;) is defined as a theta function with
some special properties.

PROPOSITION 2. Suppose we have I' = m, where m is a proper ideal of Ok and let
(w1, w2) be a positive Z-basis of m. Then
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@) o(1; w1, w2) és, a algebraic integer in K2y
(i) o(1; o1, m2)'¥" € Ky

Proof. We have f, = riw| 4+ ryw; for some ry, r, € 7. Thus

L8| )
1; o1, w7) = ‘E+;r,1)
o(1; w1, w2) </)<fm I

with 7:=w;/w; € K. Since r, r, and f,;, are coprime the function 7+
@(r1/fwt 4+ r2/fint,1) is a modular function of level 12f2. It is analytic inside
h:={z € C, Im(z) > 0} and its g-expansions at every cusp have coefficients in the ring
of integers of Q(u;52), cf. [Sta], Section 4. Therefore (i) is a consequence of Lemma 1
and Theorem 3 of [Sta]. As for the part (ii) of the proposition we refer to the proof of
Lemma 7 of [Sta]. Let us remark that our ¢(1; w1, w,)'¥™ is denoted by E(co) in [Sta].

DEFINITION 2. We put ¢, = o(1, 01, )", where (w1, ,) is any positive
7~basis of m.

PROPOSITION 3. Let q be a maximal ideal of Og. Then we have

@i g,

ma/fm —o ! :
NKum/Km((pum)wm/wmq = [(P(u('/f ](1 1 )a if qfm and m # (1)
W .
(S0)", ifm =),

where o4 1= (q, K /K).
Proof. See [Robl], Théoreme 2, p. 17.

The above results may be used to determine the ideal generated in K, by the
invariant ¢,,. The following corollary makes this ideal explicit:

COROLLARY 2. Suppose that m = q°, where e = 1 and q is a maximal ideal of Ok,
andlet qg, be the product of the maximal ideals of Ky, which contain q. Then ¢, generates
in Ok, the (12/wk)rw-st power of the ideal q, . Otherwise @, is a unit of Ok, .

Proof. By Proposition 3, above we have

A(O[O)ﬂ”

NKm/H(qu)WK/w“‘ = (—A(q)

This implies the first statement of the corollary since A(Ok)/A(q) generates the ideal
(qOH)lz, thanks to Proposition 1, and K,,/H is totally ramified at q. Now suppose
that nt is divisible by at least two ideals. Then Nk, /n(¢,,) must be a unit as follows
from the norm formulas of Proposition 3. But recall that ¢, is a algebraic integer, cf.
Proposition 2. Hence, ¢,, is a unit too.

https://doi.org/10.1023/A:1023667807218 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023667807218

6 HASSAN OUKHABA

2.3. Let y be a character of Gp:= Gal(F/K), where F is a finite Abelian extension of
K. Let F, CF be the fixed field of kery. The character y factors through
Gal(F/F,) = ker y and yields a character x of Gal(F,/K). Let m, be the conductor
of the Abelian extension F,/K. Let a be an ideal of K. If a is prime to 1, then we put
1(@) := x'((a, F,/K)). Otherwise we set y(a) = 0.

If y # 1, then one can associate to y the L-function L(-, y): s+—> L(s, y), defined in
the half-plane Re(s) > 1 by the Euler product

R -1
Lis,n) =[] (1 - jv(;)))

bt

It is well known that L(-, y) has a analytic continuation to the whole complex plane.
Moreover, L(0,%) =0 and L'(0,y) # 0, cf. [Tat], Proposition 3.4, p. 24. Let {»
(resp. (k) be the zeta function of F (resp. K), then we have the following decomposi-
tion {p(s) = {k(s) H#I L(s, x), cf. loc. cit. page 12, from which we deduce the analytic
class number formula

hrReg(F h
| Y 23)
Kol
where Reg(F) is the regulator of F. If F = K,;;, then we have the Kronecker limit
formulas
o Z log(l9u(@)*)x(@), if m # (1),
[0 = xo)L/©, ) = 7€ (2.4)
pim 12w T 2 0)log(9()P), if m= (1),

6€Gny

where G, := Gal(Ky,,/K), ((Gr-R], Propositions 7.15 and 7.19).

3. The Groups of Elliptic Units Cr and C 2
Let F be a finite Abelian extension of K of conductor n1. For each ideal n of Og we
put Fy := K, N F. Moreover, if njnt and is such that 11 # (1), then we define

)d(m o

(pF,ll = NKn/Fu(q)H - (pFIU

where d(m, 1) := wg fuh/ry. The invariants ¢, were introduced for the first time in
[K-L], p. 307. They are called the Kersey invariants. An easy calculation based on
Proposition 3 above shows that for all ideals n and g such that ¢ is prime and
nqg|m, we have

(pF,ll, lf c”nJ
_ .
NFxm/Fu((PFqu) = [qDF,Il]l @.Fa/K) s if qin and n # (l)a

Mo
NH/FF]H(%) ,ifn=().
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DEFINITION 3. Let A be the subgroup of Oy, generated by the units d(t;)/0(t2),
Ty, T2 € Gal(H/K). We define Pr to be the Gp-submodule of F* generated by i,
NH/FQH(A)/‘" and by all @, njm and n # (1). Also we put Cr:= PrN Op.

Now we give a technical lemma which is helpful in the proof of Lemma 2.

LEMMA 1. Suppose that m # (1) and let x € Pp. Then there exist o € K, a finite
Abelian extension M of K and y € M such that

Q) x"v = o Hwvyd ywith d = 12wgwyfnh.
(i1) The valuation of o at every prime ideal of Ok is divisible by h.

Proof. It suffices to show the claim for the generators of Pk, . Let n be a proper
ideal of Ok such that njnt. Let 1’ be a integral ideal of Ok such that njn’, n and n’ are
divisible by the same prime ideals of Og and wyy = 1. Then Proposition 2 implies that
Ny /(@)™ = i

By construction, we have ¢, € [K(15/2)]'¥". Thus the Lemma is true for x = (pf]l('"”‘l),
with o =1 and M = K(lz-/ff)' Now let us prove the lemma for the generators of A/,
If wg # 2, then A C O = pg. Hence, we may suppose wg = 2. Let t € Gal(H/K).
Let a be a integral primitive ideal of Ok, prime to 6 and such that t~! = (a, H/K).
Here primitive means that a is not of the form za’ for some integer ¢ > 1 and some
integral ideal a’ of Og. Let z € Ok be a generator of a”. Then we have

@_ 1 Al h_ —h 12(71(5[) )24h
an - (A(@a) =@ o)

where a = N(a) and b+ 5(b) is the n-function on primitive ideals of Ok that are
prime to 6. ([H-V], Definition 8). Now the assertion (ii) of Proposition 10 of loc.
cit. implies that our lemma is true for x = (8(1)/8(1))f . with o = za". The lemma
is now proved. O

DEFINITION 4. Let A° be the subgroup of O}, formed of all the quotients

A()o(z172)

8(‘[1)8(‘[2) s ‘E],‘EQEG&](H/K).

We define P} to be the Gp-submodule of F* generated by ptp, Np/mpu(A%)/, and by
all @, njm. The group P).N O will be denoted CY.

PROPOSITION 4. The group Q of Theorem A is the largest subgroup of Oy such
that ,uFQI]F =Y.

Proof. 1t is clear because the group N, H/mH(AO)f‘“ is generated by the following
units of FN H:
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N AOx)A(ab)\""
H/F”H( A(@A(D) ) ’
where a and b are fractional ideals of K.

To go further we need to describe the image of Pp by the logarithm map
lp: F*+— R[GF], where R[Gf] is the group ring of Gy over the field of the real
numbers, defined for x € F* by [p(x) := _Zaecf log(|x?|*)e~". The map I is a
Gr-homomorphism with the property ker/r N O = pip.

Now we introduce some notations useful in the sequel. If X is a subset of Gy we
put s(X):=>_.y0 € R:=7[Gr]. Moreover, to every maximal ideal p of Og we
associate the element (p, F) := f;ls(Tp)/| Ty| of Q[GF], where T}, denotes the inertia
group of p and F € Gr/T), the Frobenius automorphism. For any R-module 4, we
denote by A the kernel in 4 of multiplication by s(GF). O

DEFINITION 5. We denote by U the R-submodule of Q[GFf] generated by the
element o :=s(Gy), where Gj:=Gal(F/FNH) and by a,:=s(Gal(F/Fy))
[Lp(1 = (p, F)), where n is any proper ideal of Ok.

PROPOSITION 5. If F C H, then we have U = R. Otherwise U is generated as an
R-module by oy, n|m. Moreover, U is a free /-module of rank [F:K)].

Proof. The first two assertions are obvious. On the other hand, since U is torsion
free and finitely generated as a Z-module it is Z-free. Now recall that U is a
R-submodule of Q[GF]. Thus, we can use character theory to compute its Z-rank.
Let 7 be a complex character of Grp and let p, be the ring homomorphism
C[Gr]— C induced by y. If n, is the conductor of x, then we have
p,(om,) = #Gal(F/Fy,). In particular, p,(U) # 0. This implies that the Z-rank of U
must be equal to [F: K]. O

For each character y of Gr we let T, := 1/|Gr| ), 6, %(0)a~! be the idempotent
associated to y in C[Gp]. The element w := 12wk finh Z#I L0, 9)Z, of C[GF] is
uniquely determined by the conditions p (@)= 12wgfuwhx L'(0,%) for all
7 € Gr— {1} and p,(w) = 0. Since the complex conjugate of L'(0, y) is L'(0, x) we
see that w € R[GF]. Let [} := (1 —I))lp, where I is the idempotent associated to
the trivial character, then we have

PROPOSITION 6. Let 1t be a proper ideal of Ok such that njm and let © € Gal(H/K).
Then we have

[{(@py) = wom  and fi)va(NH/FmH(gE3)> = ooyl =7),

where T is any automorphism of F/K which coincide with t on FN H. In particular we
have [ (Pr) = wUj.
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Proof. It clearly suffices to show that p, (/i(¢f,)) = p,(way) and

fmpl (l;<NH/FﬁH(%>>> = PZ((US(Gl)(l —7)).

for all y Gr. But this is an easy consequence of (2.4). O

4. The Indices [0} : Cr] and [CF : C}]

Let V' be a vector space of finite dimension over L = Q or R. By a lattice in V" we
mean a finitely generated subgroup X of V such that ranky (X) = dimz(}) and
LX = V. Moreover, if 4 and B are lattices of V/, then the index (4 : B) is by definition
| det y|, where y is any linear transformation of V" mapping 4 onto B. In other words,
we must have y(4) = B. This implies in particular that y is nonsingular since we have
y(V) =vy(LA) = Ly(A) = V. If B C A, then (A4: B) is the usual group index.

PROPOSITION 7. Uy is a lattice of R|GF],. Moreover, we have

h)[F cKl-1 WK Reg(F)hr

(Uo : I(PF)) = (12wgfm
Wr h

4.1

Proof. We only have to prove that U is a lattice of Q[Gf], or, equivalently, the
Z-rank of Uy is [F:K]—1. But since we have ranky(U,) = rank,(U)— 1,
Proposition 5 above implies the conclusion. Now recall that Uy is also an R-sub-
module of R[Gf]. Therefore, since p,(w) = 12wk fihL'(0, %) # 0 for the characters
1 # 1, we have by [Sin2] Lemma 1.2 (b)

(Uy : [{(Pp)) = (Ug : 0Up) = |deto] = [ ] p, ().
1#1

The claim now follows from the analytic class number formula (2.3).

Remark 1. In the case m # (1) we choose for each i € {1,...,s} a generator x,, of
the ideal p,”. Let n := p$' then

12fu[H:FNH] ) \™
Nr, (@) = xp;! Nuyjmu )
i

where t; := (p;, H/K). In particular the group QF generated by N H/FQH(A)/;“ and by
all the x;?’{'“[H:mH] is a subgroup of Pp. If m = (1) we put Qp = Pp.

PROPOSITION 8. We have

[Py N K: O N KPR : 1H(CP) = [ [IF N Ko~ : FH]), “2)
b

where p describes all the maximal ideals of Ok.
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Proof. Here we take our inspiration from the proof of Proposition 5.1. of [Yinl].
If F C H, then we have Pr = Cr. Thus we can assume that 11 # (1). Moreover, we
can replace Pr by P’ := P;" and Crp by C' := P' N Oy = C}" since we obviously have

[7H(Pp) : [(Cp)] = [[H(P) : [T
Let us also put Q' := Q% and A" := Q' NO). We have Q'Nkerl;; = Q' NK and
P’ Nkerl;, = PN K. Therefore we obtain the following commutative diagram
1 1 1

Iy

1 — OnNK — Q/N — INO)/EA) — 1
l
Il — PNK — P/C — KPYIC) — 1
which has exact rows and columns. The arrows are just the inclusion maps. The
snake lemma applied to the above diagram gives us

[P : (O] _ [P/C": Q'/A]

[7HQ): (A  [PNK:Q NK]
But since K* C ker /i we have [;(Q’) = Ii(A’). The next step now is to compute the
index [P'/C": Q'/A"]. Let p}, ..., p, be maximal ideals of Of choosen so that p; C p;.
Then we have a well defined homomorphism vg: F* — Z° which associates to
x € F* the element vp(x) = (v1(x),...,vs(x)), where v; is the valuation associated
to p;. Moreover, since C' = P’ Nkervp, we have [P'/C : Q'/A'] = [vp(P') : vr(Q")].
But we know, thanks to Corollary 2, that

N

vr(P) = [ [(12fuhwre(F/Fye)lH : FN HZ),

i=1

where e(F/Fq) is the ramification index at p; in F/Fs, and
vH(Q) = [ [(12fuhwr| Ty [H - O HZ).
i=1

Therefore we obtain the equality
[P'/C: Q' /N =[]lFy: : FN H].

i=1

This concludes the proof of the proposition. O

LEMMA 2. Suppose m # (1) and let R be the subgroup of K* generated by xé,?f‘”w,
i=1,...,5. Then R is free of rank s. Moreover, we have

Oy NK=RUMH c pirnKcCR.
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Proof. The claim that R is free of rank s is obvious. Now since Q" is generated by
RUEMNH] and by Ny mu(AY™", the group Q) N K is generated by RN and by

Ny (DY O K = Npyna(AY™" 0 O% = Nygymnu(A)™ 0 g = 1.

Hence, it remains to prove that P N K C R. So let x € Pr be such that x"* €
PPN K. By Lemma 1, we can find o € K, a finite Abelian extension M of K and
y € M such that x"» = g'¥wwyd with d := 12wgwyfimh. Moreover, the valuation
of o at every prime ideal of O is divisible by 4. The Lemma 6 of [Sta] tells us that
we necessarily have y? = {z% where z € K, { € ugx and d; = d/wg. (recall K(y)/K is
Abelian and y¢ € K). Actually we have { € F'F N ug = {1}. But x is a unit outside
p,i=1,...,s. This is also true for the element az’ of K because we have
X" = (az")' ¥ Now recall that the valuation of o at every prime ideal of O is
divisible by /. This means that

N
O(ZhOK — p/lm - p‘/;r.\ = (l_[ xgl) Ok,
i=1

. : 12 .
for some r; € N. In other words we have x"* = ([]i_, xy) /v and this proves that
X" e (x;)‘_zﬁ“”"', i=1,...,s). This concludes the proof of Lemma 2. O

THEOREM 1. Let us put d(F) := [P} N K : Q3" N K]. Then we have

(12wk mh)[FZK]—‘ he[T,[FN Ky~ : FOH](R : U)
_ nrlly
g h [F:FNH| air) -

Wk

[O; . CF]

Proof. Since kerlp N OF = pp we have

[OF : Crl = [I/(OF) : [/(CF)]
(Ro : Up)

= & 05y Lo FPINEPE) IHCP).

It is not hard to check the identity (Ry : /r(O))) = Reg(F). On the other hand, the
indices (Uy : [;{Pr)) and d(F)(/;(Pr) : [r(Cr)) have already been computed. More-
over, the identity

(R:U)=(s(Gp)R : s(GR)U)(Ry : V),

together with the fact that s(Gp)R = s(Gp)7Z and s(Gp)U = |G|s(Gr)7Z shows that
(R:U)=[F:FNH](Ry : Up). The theorem is now proved. O

Remark 2. If FC H, by definition we have d(F) = 1. Actually we also have
d(F)=1 in the case H C F, thanks to Lemma 2. In general there is no explicit
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formula for d(F). However, if one of the following four conditions holds, then
d(F)=1.

(1) s €{0,1,2}.

(i) Gal(F/Fn H) is the direct product of the inertia groups.
(ii1) Gal(F/FnN H) is cyclic.
(iv) [F: FN H]is prime to [H : FN H].

The proof of this claim is closely related to the theory of ordinary distributions
([Yin3] and [B-O)).

Let us now compute the index [Cr: CP]. Let Py, ..., P, (t > s) be prime ideals of
Ok such that Gal(H/K) = {(p;, H/K),i=1,...,t}. Let 0° be the Gp-submodule of
F* generated by the elements

AO Itfin .
NH/mH(A((—pf))> s l=l,...7[.
The Gp-submodule P° of F* generated by P2 and Q° is such that /3(P°) = /(PF) and
CY% = PN OF. In particular

[H(P°) 2 IH(CR) = [1°(Pp) : I(CPICr = CP

Let us put d°(F) := [(P°)"* N K : (Q°)"* N K]. Then, by slightly modifying the proof
of Proposition 8, one may prove the identity

S

d"(F)IP) : 1)) = [ [[Fye : F OV HIE(Q®) : 1H(Q° N OF)]

i=1

But Q°N O =N H/FMH(AO)/'“. Therefore we have
[1:(0°) : 1H(Q° N OF)] = [ws(G1)Ro : ws(G1)RG) = [FN H : K].

Thus we have proved

PROPOSITION 9. We have d°(F)[Cr: CY = d(F)[FN H : K].

Proof of Theorem A. Suppose we have HC F or FC H. Then d(F) =1, cf.
Remark 2. Also one may show that d°(F) = 1 in this case. The proof of this claim is
similar to the proof of Lemma 2. On the other hand, we have

[0F : QAW = [OF  QfllQr : 1 Q)]
= [0F : Q[QF : €% (cf. Proposition 4)
=[OF : CHICr : €}
=[OF : CF[FNH : K] (cf. Proposition 9).
This gives us the formula (1) in the introduction since the index [0 : Cp] is already
computed, cf. Theorem 1. I

Q
Q
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5. The Case of Ray Class Fields

The index formula of Theorem 1 can be both made explicit and improved in the case of
ray class fields. The aim of this section and the last one is to explain how this can be
obtained. So let us assume that F = K;;; and let L := Ko ). For technical reasons,
we take m prime to 6. Let D be the discriminant of K. A ideal b of Ok is said to be pri-
mitive ifit is not of the form b’ for some integer > 1 and some ideal b’ of Og. We begin
this section with the following lemma. It gives the exact value of wg, for n prime to 6.

LEMMA 3. Let 11 be a ideal of Ok prime to 6 and let us write 1 = nny, with
ny € N — {0} and ny a primitive ideal of Ok. Then fy = niN(1t2) and wg, |12fy. More
precisely, wg, = wymni, where nj is the product of N(p) where p are those prime
ideals which divide n, and are ramified in K/Q.

Proof. It is a easy consequence of the famous Lemme 5 of [Robl]. O

DEFINITION 6. We let X, be the Galois submodule of L* generated by the values
o(1; w1, wy), where (w1, my) is any positive Z-basis of any proper ideal 11 of Ok that
divide m.

DEFINITION 7. Let a and b be primitive ideals of Ok prime to 6Dk fy,;. Let us
write ab = tc, with 1 > 1 and ¢ a primitive ideal of Ok. Then we put

-1 n(an(b)

n(a,b) 3=< K(m) m»

where b+ #(D) is the n-function on primitive ideals of Ok that are prime to 6 intro-
duced in [H-V], Definition 8, and x: (Og/120)™ — uy is the character defined in
[H-V], Definition 11 and Lemma 13 (see also the remark following the proof of
Lemma 13 ).

Remark 3. Let us recall that K(n(a, b)) is Abelian over K, cf. loc. cit., Proposition
10 (i1). Moreover, we have

b A@A(b) A hHAp™)
AORAD ~ AOA@-1D")

This proves that 5(a, b) is a unit. On the other hand H(n(a, b)) is a Kummer exten-
sion of H and for x € O prime to 6Dxab we have

1, 0)7" = (o) HNODNOD () (K@)

where g (resp. g,) is the automorphism of K% /K associated to xOk (resp. tOk) by
the Artin map, cf. [H-V] Theorem 19 (i). By the quadratic reciprocity law stated in
Theorem 21 of [H-V], we know that

()7 = ()

n(a, b)* =1
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As a consequence we obtain the formula

(@, b)7 ! = ey NN, (5.1)
from which we deduce easily that n(a, b) € K2). If ¢ is a ideal of Ok prime to 6 we
have

n(mb)N(C)f(t‘-,K(m/K) c H. (5.2)

DEFINITION 8. We let ¥,, be the Galois submodule of L* generated by u;, Xy
and by all the quotients 7(a, b)

Our goal now is to determine the index [C(,)q“ . (Em)" "M But first we need
some preleminary results.

PROPOSITION 1102. }Yf_"}%e group Vy, of Theorem B is such that Vy, = Vi N O} . More-
AWK/ m 0

over, we have pu; V. = pu Pk, .

Proof. Obvious. O

PROPOSITION 11. Ler njm and n # (1). Let w := (w1, ws) (resp. o' := (0}, %))
be a positive 7-basis of m (resp. n). Then

o(1; o, )™
o(1; oy, )
Proof. The claim may be deduced from Satz (1.2) of [Sch]. It is also possible to

prove it as follows. Since m is prime to 6 we can consider the elliptic function
z+— W(z; m, n) introduced by G. Robert ([Rob2] [Rob3]). We have

€ UK.

N

1 ol o, )™
Clw, ) o(1; o}, )

Y(z; n,n) =

where C(w, ') is a 12th root of unity depending on @ and @’ ([Rob3] Théoréme 1(c)
and Théoréme 3(b). Moreover, W(1; nm, 1) € K, thanks to Théoréme 5 of loc. cit. [

PROPOSITION 12. Suppose m # (1) and let w := (w1, ;) be a positive 7-basis of
m and let b be a ideal of Ok prime to 6m. Then
o(1; 1, )V OO0 € Ky

Proof. By Théoréeme 1(c) and the corollaire of Section 6 of [Rob3] the elliptic
function z — Y(1; m, bflln) is such that

o(1; wr, ) VO OLK — (1 m b m).

Now W(1; m, b_lm) € Ky, is an immediate consequence of Théoréme 5 of [Rob3].
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PROPOSITION 13. Suppose mt # (1). Let a and b be primitive ideals of Ok, prime to
6Dk fin. Let e(a,b):= Nm)(N(a)—1/2)(ep — 1), where oyp:=(b,L/K). Let
(w1, w2) be a positive Z~basis of m, then

(@, D)p(1; o1, )™ € iy, K.

Proof. It suffices to prove the claim for a particular choice of (w;, w;), thanks to
the formula (2.1) above. So, let us write m = mn1,, where 11, is a primitive ideal of
Ok and m; € N — {0}. Let u € Z be such that u = —/Dx modulo pm, and put
o = (u+ +/Dk)/2. We have f;;, = m; N(n,) and
mypo

Ok = 70+ 7, My = 7o+ 7ZNs), b= Zo+ ZN(b), b~'m = NG

+ Zfm-

In particular (m;0, fyy) is a positive Z-basis of nt. Hence, Satz (1.1) of [Sch] gives us
the identity

lip(1; myo, fu)]™ = i ( ‘;\y,l(lg) 7fm)

which implies

2
K(Lb*lm)r](%)
(15 myot, fin)™ ! = yom))_ji=o,
K, m)”(l\mm)

On the other hand we have

_ N(ma e _ N(bmz) o«
n() = <N(1nz)) and - y(bm;) = "(N(bmz)>7

where &, &, € pyg ([H-V] Definition 8). Thus we obtain the decomposition

n(a, D)p(1; myot, fiun) @ = My My M;,
with

U(bmz) Nm)(N(a)—1)
n(ny) )

While M3 is the following 12th root of unity

o NanyX@=b
k(1,b 1111)) )

Ml = W(a,b)( K(l m)

and Mzz(

M; = [i(&) &) MO,

Now we claim that M, € K;;;. Indeed, this is a consequence of Theorem 2.1 in
Chapter 12 of [K-L]. As for M one may use Theorem 19 of [H-V] and the formula
(5.1) above to show that M; € H. The proposition is now proved. O

COROLLARY 3. Suppose m # (1) and let m:=[C} :uK“‘(5111)12”"‘ﬂ“h]. Then n
divides wg, . If s = 1 then © divides wg, [wk
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Proof. Let us consider the two factor groups
M= Gy /g, (€)™ and T i= Py Juug, (Van 0 Ki) 290,

The inclusion C§ C P} induces a injective map IT — IT". On the other hand, the
three Propositions 11, 12 and 13 show that IT’ is generated as an Abelian group
by the class of (p}‘]’{‘h. Recall that wg, may be written as a finite sum
> na(N(a) — 1), nq € Z, for some ideals a of Ok prime to 6nt and such that
(a, Ky /K) = 1. Therefore, Proposition 12 implies that

WKWK 1 oy 12wgfmh
om "€ .“Km(Vm N Ki) Kl
wih(o—1)

In the case s=1, the group Il is generated by the classes of ¢y ,
o € Gal(Ky,/K). But I1 is cyclic. Hence = is the least positive integer such that

QU € e (Vi N Ky)' 2" for all ¢ € Gal(Kin/K).

In particular n|wg,, /wk. ]

PROPOSITION 14. Suppose m # (1) and let 7’ .= wgn if s=1land ' :=mif s = 2,
then wg,, divides 1'.
Proof. We deduce from the proof of Corollary 3 that

o(1L; wl;wz)n, € py Ky,

where (w1, @) is any positive Z-basis of m. In other words there is x € K;;; such that

&= xp(li 01,027 € 1y, C toygp. (5.3)

Actually we may prove that ¢ € pry, N L. Even ¢ € iy, in the cases Dg = 1,4 or 5
modulo 8. Indeed, Let u € 7Z (resp. u € 47 if 2| D) be such that u = —/Dg modulo
m,, then put o := (u+ +/Dg)/2. We have Ok = Za + 7 and m, = Zo + ZN(my).
Now take v := 1 4+ 12}, and let o, = (vOg, L/K). We have
gl = ENOOO-1 — 224 and  [xe(1; o, 02)" 7 =1

([Sch] Satz (1.2)). This makes it clear that ¢ € uy, N L. If Dg =1 or 5 modulo 8
then wy = l2f]121. If Dg=4 modulo 8 we have wy; = 24fnzl, but if we take
J:=1+6f20 then

60271 = EIme and [XQD(I, wl,a)Q)”/]”i_l =1.

The last equality is a application of Satz (1.2) of [Sch]. Thus we may conclude that
¢ € Hyy, forall Dg =1, 4 or 5 modulo 8. In such a situation (5.3) is possible only if
wg, divides 7', [Sch] Satz (1.3). It remains to prove the proposition in the case Dx =0
modulo 8. Since & € 2y, » formula (5.3) and Satz (1.3) of [Sch] give wg, [27". Let us
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remark that wg, /2 is odd (Dg = 0 modulo 8). Hence we only need to prove that 2|z’".
Let A be as above, we have

el =1 and [xe(1; w,wy)" %! = 7,

cf. [Sch] Satz (1.2). The proof of Proposition 14 is now complete.

THEOREM 2. We have

WK, .
. Rwifuhy _ ) ifs=0o0rs=1
[C(I]<m : 'ungm ] - { w,[gn l‘f‘s > 2
Proof. If m # (1) the theorem is equivalent to Corollary 3 and Proposition 14. If
m = (1) and K = Q(+~/—1) or Q(+/—3) all these groups are equal to ux. Now suppose
m = (1) and wg = 2. Let ¢y, ..., ¢, be primitive ideals of O prime to 6 and such that
the ged of N(¢;) —1,i=1,...,ris wg. Then the factor group Cg/#,,g(lf)"*h is cyclic

generated by the image of ¢**, where
¢ = l_[ W(Cia (‘_i)nin/7
i

the integers ny, ..., n, satisfying 2 = > n;(N(c;) — 1). Indeed, this follows from (5.2)
and the property (5.1) which implies

na, g T e
for all ideals a and b of Ok prime to 6. Now let d € 7 be such that ¢**' € pu, H**'. In
particular there is x € H such that & := x¢“ is a root of unity, say of order n. By
Lemma 14 (ii) of [H-V] there is a 1 € Ok prime to 6 such that N(A1Og) = 1 modulo
n and k(2) is a primitive wyth root of unity. In particular, £%~' = 1. On the other
hand we have &7 != [xq,’)‘l] K k(A)"2?  thanks to (5.1). This proves that
wg/2|d. The theorem is now proved. O

6. Some General Properties of the Index (R: U)

Let i := p, - - - p,. For each ideal v of Ok such that v |t we denote by T the com-
positum in GF of the inertia groups 7T} as p varies through the maximal ideals divi-
ding v. In particular we have T(;) = {1}, TrAn = Gy; and in general T, = Gal(F/Fyw)),
where 11(1) is the largest divisor of nt coprime with r. This implies

PROPOSITION 15. U is generated as an R-module by the elements
S(T2) My (1 = (0, F)) = o), where 1 varies over the divisors of m.

Let 3 be a divisor of . We denote by Us the R-module generated in Q[G] by the

elements s(7y) []p5/ (1 — (p, F)), where v varies over the divisors of 3. Hence,
Ugy =R and Uy = U. Let p be a maximal ideal of Ok such that p divides m but
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not 8. Then we have Uy, = Us(Typ) + (1 — (b, F))Us, where Us(Ty) is the R-module
generated by the elements s(7yy) Hm sl = (q, F)). As in [Sin2] Lemma 5.1 one may
prove that Us is a lattice of Q[Gr] and that the index (Us : Usyp) is an integer divisible
only by the primes dividing |7}|. On the other hand the expression

s—1

(R:U) =] Uy, : Uy, (6.1)
i=0
of (R : U) as a product of indices of the form (U, : Uyy), with p 4 r; where 1 := (1)
and v;:=1;1p; fori=1,... s, implies the following

PROPOSITION 16. The index (R: U) is an integer divisible only by the primes
dividing |Gy|. Moreover, if at most two ideals ramify in F/K, or if Gy is the direct
product of the inertia groups, then (R : U) = 1.

7. The Index (R : U) in the Case of Ray Class Fields

In this Section we are interested in computing the index (R : U) for ray class Fields.
Recall that (R: U) =1 if s =1 or 2, cf. Proposition 16. Thus we can assume that
s = 3. On the other hand, we are able to make this computation only when #Af, is
prime to wg. So, throughout this section we suppose that F= K, s =3 and

ged(fuh, wg) = 1.

Remark 4. Let 1 be a proper ideal of Ok prime to wg. The global class field theory
gives the exact sequence

1 —> px — (Og/0)* —> Gal(Ky/H) —> 1.

The order of (Ox/n)* is usually denoted @(n). We have o(1) = [, ¢(p¢) and
o(1°) = N(p)*"'(N(p) — 1). This enables us to make the following deductions.

(1) The ramification index at p; in K,,/K is equal to ¢(p7) because we have
Ty, = Gal(Ky/Kuy,), where nt; := mp; .
(2) Let r be a divisor of 1t such that v # nt. Since T, = Gal(Ky/Ky)) we have

_ o) .
4T, = o) H (D).

This proves that T is a direct product of Ty, p;|r.

In particular if v|m and v/|m, are coprime such that rr’ # i, then we have
T.N Ty ={1}. This may be used to prove that U, is free over Ty, cf. [Sinl]
Proposition 5.2. Let us suppose that 1’ = p is a maximal ideal of K. Then we have

(Ur: Uy) = #B/(1 — F, 1B, (7.1)
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where B := B(t,p) := UrT“/Ur(Tp) ([Sin2], Lemma 5.1). But if rp # m the intersec-
tion T.NTy,={1} and then U, is a free Ty-module. In particular UrT" =
s(Ty)Uy = Uy(Tp) and consequently the index (U, : Uy) = 1. The formula (6.1)
becomes

Ul U

(R:U)=(Uy, - U)=[Up) : (1 = FLHULE + U, (Ty)].
The last equality is a application of (7.1). Let X and Y be the R-modules defined as
follows
Ul U7
= r:)‘l /(1= r\p\l +s(Ty ) Uy,
Ty, Ty,

Y = UrH(TpX)+(1 — FyHUR [s(Ty)Ur, + (1 = FHUL",

Then X/Y is obviously isomorphic to UrTs‘i“l/(l - fljsl)UrTi‘l + U, (Ty,). Thus we

have (R: U) =[X : Y]. On the other hand

X=N/(1-F, )N with N:=U"/s(Ty)U,,.

It is not difficult to determine the structure of Y as an R-module. Indeed, we have

LEMMA 4. We have
Uy, (Ty,) = s(Ty )Uy,_, + s(G1)R. (7.2)

Moreover, let D be the subgroup of G := Gal(Ky/K) generated by G, := Gal(Ky,/H)
and by Fy,,i=1,...,s. Then we have

SGDR N (5(Ty)Ur,_, + (1 = FyHUL™) = s(G1)U + wR), (7.3)
where I is the augmentation ideal of the group ring %[ﬁ].

Proof. The identity (7.2) is easy to verify using the definitions and the fact that
Ty, is the direct product of 7y and T}, for every proper divisor r of r,_ 1 Let us prove
(7.3). Since G; is generated by all T, the trace s(Gi) e Ul*“l, moreover,
wgs(G1) = s(Ty,)s(Ty,_,) because #T, NT.  =wg. On the other hand, if
ie{l,...,s— 1} we have

SGN(1 = F, 1) = yis(To)s(Ty, 1)1 — (0, F))

for some y; € R. Thus if we denote by E the R-module on the left-hand side of (7.3),
then s(G))(I+wgR) C E. Conversely, E may be written in the form
E=wgs(G))R+V, where V is such that V' c QINs(Gy)R. But the identity
QINs(G)R = s(Gy)I, shows that E C s(G)(I + wgR). O
COROLLARY 4. We have the isomorphisms

Y ~ s(G)R/s(G\)(I + wkR) ~ 7[G/D]/wxZ[G/D].
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Let D be the subgroup of Gal(H/K) generated by (p;, H/K), i =1,...,s. Then we have
#Y =wg, e:=[Gal(H/K): D]. (7.4)

Proof. The first isomorphism is a consequence of the definition of ¥ and Lemma 4.
The second one is clear. Now since G/D ~ Gal(H/K)/D the last assertion follows.

We devote the remaining of this Section to the determination of the structure of X.
Let J be the subgroup of G generated by the {-parts of T, £|wg. We have
Ty, , N Ty, C J. On the other hand, the group J is cyclic since

Ty, = (Og/p)* = Z/(Np = )7 x Ox /b,

where p = p,, e = e,. Let Z;, be the subgroup of T}, such that 7, =J x Z, . Ifrisa
divisor of 1t then we let Z, be the subgroup of G generated by Z, if p,|r and by the
inertia groups 7y, p|r and p # p,, thus

[17y, ifpgtr,
. blr
Zr = ZDA X 1_[ Tp, lf p.&‘ | L.
plr

b
LEMMA 5. We have T, N Z, = {1}. Moreover if v and Y' are coprime such that

pAr. Then Ty N Zy = {1}.
Proof. Clear. 0

Using Lemma 5 one may show, as in [Sinl] Proposition 5.2, that if v and p,1" are
coprime then U, is free over Z.. In particular, for p = p, and v =1, ; we have
Zy
N = Ul /s(Ty) U, = HX(J, UZ). Let us put for i=0 to s—1, B :== H"(J, Uy "),
where 1} is such that 1,1} = . Since J is finite, we have #/B} = 0. On the other hand,
we see that s(J)s(Zg;) = wis(G). Hence, since R is a free Zz-module we have
BY' = (R%)’ [s())R% = R [s())s(Zg)R = (2. wk Z)|G G1]
0 S S(U)S(Liy =L WKL 1]
Moreover, Bg”*l = H'(J,R%+) = 0 by [Sin2] Lemma 5.2. Let i € {1,...,s — 1}, then
Jand Zy act trivially on B/". In fact the group Ty, also acts trivially on B;". The proof
is exactly the same as for Lemma 5.3 of [Sinl]. But G| is generated by J, Z and by
Ty,. Thus B} is naturally a Z[Gal(H/K)]-module.

PROPOSITION 17. We have an exact sequence of R-modules

0— B/ /(1 — Fy' ) —> Bl — (BIT) i1 — 0 (7.5)

Proof. We refer to the proof of Proposition 6.3 of [Yinl].
The exact sequence (7.5) splits in our case because wg and & are supposed to be

coprime, see [Yinl], Lemma 6.5. Hence using induction we obtain the structure of
B!, ie{l,...,s—1}. Indeed we have

B! = (Z/wk Z)[Gu /D), (7.6)
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where D@ is the subgroup of G, generated by G, and by the Frobenius auto-
morphisms Fy ,j € {1,..., i} O

COROLLARY 5. We have

X =B\ [(1 = F OBy = (7w Z)[Gu /D).

s—1 —

In particular, X has order #X = (w K)@(Z“’E).

Putting the results of Proposition 16 together with the results of Corollaries 4
and 5, we get

PROPOSITION 18. Suppose F := K, then

I, ifs=0,1o0r2,
W)@V if s =3 and fiuh prime to wg.

(R:wz{

Proof of Theorem B. The formula (2) is equivalent to Theorem 2 since
C(l)ﬂn = ,uKmQ’,}m. The formula (3) may be deduced from the following identities:

[O;ém : QKm][QKm : 'uKm (5m)]2“’1</iu]
= [O;;m : gm][gm : luKm(gm)qufm]
= [OF,  Ewl(12wify) KR,
The index (Z[Gal(Ky/K)] : U) has already been computed, (Propositions 16 and 18).
(Let us remark that wg # 2 only when K = Q(+/—1) or K = Q(+~/—3), but in these

two cases, we have 1 =1 and wg = 4 (resp. wg = 6). In particular, / is prime to
wg if and only if / is odd.) On the other hand,

[Tp[Km N Ky : H] _ {1 if m=(1)

[Kuw : H] wios i m #£ (1).
by Remark 4 above (recall m is prime to 6). Theorem B is now proved. O
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