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1. Introduction

In 1978 and 1980, Sinnott published two important papers on the cyclotomic units of

Abelian number fields ([Sin1] and [Sin2]). Its constructions inspired Kubert and

Lang and Kersey who tried to develop an equivalent approach for elliptic units,

cf. [K-L] chapters 12 and 13. However, their main results are obtained under some

very restrictive hypotheses. Galovich and Rosen [Ga-R] were also influenced by

Sinnott’s work. They obtained analoguous results for finite Abelian extensions of

a rational function field. The roots of unity are replaced by the torsion points of

Carlitz Modules. But it was Yin ([Yin1] and [Yin2]) who gave a complete response

to this question in the case of global function fields. In such a situation, the material

used are the torsion points of Drinfel’d Modules of rank one. Let us come back to

elliptic units. The aim of this paper is to clear away almost all the restrictions

imposed in [K-L]. Our main results are Theorem A and Theorem B stated below.

The former is proved in Sections 3 and 4. Propositions 8 and 9 are crucial steps in

this proof. We showed them by using ideas from [Yin1], Proposition 5.1. To state

these theorems, we need some notation. Let K � C be a imaginary quadratic field

and let K ab � C be the maximal Abelian extension of K in C. Let F � K ab be a finite

Abelian extension of K and let OF (resp. O�F ) be the ring of integers (resp. the group

of units) of F. Let mF be the group of roots of unity in F and let wF :¼ #mF. Let m be

the conductor of F=K. For each ideal n of OK dividing m, we let fn be the positive

generator of Z \ n and we put wn :¼ #fz 2 mK; z � 1 modulo ng. Moreover, if

n 6¼ ð1Þ, we define ~jjF;n :¼ NKn=F\Kn
ðjnÞ

wK fm=wn fn ; where Kn � K
ab is the ray class field

modulo the ideal n and jn is the Siegel–Ramachandra–Robert invariant (cf. Defini-

tion 2). Let ~jjF be the Galois submodule of F� generated by ~jjF;n, njm and n 6¼ ð1Þ.
Let hF (resp. h) be the ideal class number of F (resp. K ). Let us also denote, for each
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maximal ideal p of OK, Kp1 , the union of the ray class fields Kpn modulo pn, n5 0.

Let H be the Hilbert class field of K. Then we have

THEOREM A. Let OF be the subgroup of O�
F generated by mF, ~jjF \ O�

F and by all

the norms

NH=F\H
DðOKÞDðabÞ
DðaÞDðbÞ

� �fm
;

where a and b are fractional ideals of K and G ��!DðGÞ is the discriminant function
of lattices G of C. Let Fð1Þ :¼ F \H and suppose that either F � H or H � F, then

½O�F : OF� ¼
hF

½H : Fð1Þ�

ð12wK fmÞ
½F : K��1

wF
wK

Q
p½F \ Kp1 : Fð1Þ�

½F : Fð1Þ�
ðZ½GF� : U Þ; ð1Þ

where GF :¼ GalðF=K Þ, U is a certain GF-submodule of Q½GF�, cf. Definition 5; and

ðZ½GF� : U Þ is Sinnott’s index.

The GF-module U naturally appears when computing the image of the elliptic

units by the logarithm map. It is also related to Iwasawa ordinary distribution

attached to K ([Yin3] or [B-O]). Some of the properties of the index ðZ½GF� : U Þ

are given in Section 6 (cf. Proposition 16). Let us recall that the formula (1) is already

known when F � H, ([Rob1], Section 3). When m ¼ pe for some prime ideal p of OK

and e 2 N� f0g, this formula can be easily derived from Theorem 2.1 in Chapter 13

of [K-L].

In Sections 5 and 7, we focus on ray class fields Km modulo a ideal m prime to 6.

We prove the following

THEOREM B. Let m be a ideal of OK prime to 6 and put L :¼ Kð12f 2
mÞ. Let Vm be the

largest subgroup of O�
L such that mLV

12wK fm
m ¼ mLOKm . Then the group Em :¼ Vm \ Km

satisfies

½OKm : mKm
E12wKfm
m � ¼

wKm

wK
if s ¼ 0 or s ¼ 1;

wKm if s5 2:

�
ð2Þ

Moreover, we have

½O�Km
: Em� ¼

hKm ; if s4 2;

hKmw
eð2s�2�1Þþ2�s
K ; if s5 3 and h odd;

�
ð3Þ

where s is the number of prime ideals of OK that dividem ðs ¼ 0 ifm ¼ ð1ÞÞ and e is the
index in GalðH=K Þ of the group generated by the Frobenius elements at these ideals.

To get formula (2), we used the results from [Rob2], [Rob3], [Sch] and [H-V],

which enabled us to construct explicit generators for Em. Perhaps these generators

may be useful for a better understanding of the group of elliptic units considered

by Rubin in [Rub].
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The following supplementary notations are used throughout this paper. We will

put rm :¼ wm fm. Let a be a fractional ideal of K. Then �aa will denote the image of

a by the complex conjugation. If a is prime to m, then by ða;F=K Þ we mean the auto-

morphism of F=K associated to a by the Artin map. If a � OK, then NðaÞ :¼ ½OK : a�
is the norm of a. In case m 6¼ ð1Þ we will denote p1; . . . ; ps the prime ideals that

divide m, thus m ¼ pe1

1 � � � p
es
s , for some ei 2 N� f0g. If n5 1, we denote by mn the

group of nth roots of unity in C.

2. Preliminaries

2.1. Let G be a lattice of C. It is well known that the field of elliptic functions with

respect to G is generated over C by the Weierstrass function }G and it’s derivative

}0G. Moreover, the points ð}GðzÞ; }
0
GðzÞÞ; z 2 C=G� f0g, parametrize the complex

solutions of the equation y2 ¼ 4x3 � g2x� g3 that defines the elliptic curve associ-

ated with G, where the coefficients g2 and g3 are defined as follows:

g2 ¼ 60
X
o2G
o 6¼0

1

o4
and g3 ¼ 140

X
o2G
o 6¼0

1

o6
:

The discriminant g3
2 � 27g2

3 of the Weierstrass equation y2 ¼ 4x3 � g2x� g3 is

usually denoted DðGÞ and called the discriminant of G. In particular, we have

DðlGÞ ¼ l�12DðGÞ for all l 2 C
�. Let t 2 C be such that ImðtÞ > 0. Let ½t; 1� be

the lattice of C generated over Z by the basis ðt; 1Þ. Then the function

t ��!DðtÞ :¼ Dð½t; 1�Þ is a cusp form of weight 12, and satisfies the Jacobi’s product

expansion

DðtÞ ¼ ð2pÞ12e2ipt
Y1
n¼1

ð1� e2ipntÞ
24:

The function t ��! ZðtÞ :¼ e
2ipt
24

Q1
n¼1ð1� e2ipntÞ is the so-called Dedekind’s eta

function.

PROPOSITION 1. Let a, b and c be fractional ideals of K. Then the quotient
DðaÞ=DðbÞ 2 H and generates the ideal ðba	1OHÞ12. Moreover, we have

DðaÞ
DðbÞ

� �ðc;H=K Þ

¼
Dðc�1aÞ

Dðc�1bÞ
:

Proof. See [Lan], chapter 12, Theorems 1 and 5. &

DEFINITION 1. Let t 2 GalðH=K Þ and b be a ideal of K such that ðb;H=K Þ ¼ t�1.

Let x 2 K be a generator of bh. Then we put

@ðtÞ :¼ x12DðbÞh:
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Let us remark that @ðtÞ is well defined since O�K is of an order dividing 12.

COROLLARY 1. Let t1; t2 2 GalðH=K Þ. Then @ðt1Þ=@ðt2Þ 2 O�
H and we have

@ðt1Þ

@ðt2Þ

� �t

¼
@ðt1tÞ
@ðt2tÞ

for all t 2 GalðH=K Þ.

2.2. Let us now recall the definition of Siegel–Ramachandra–Robert invariants and

some of their properties. They are the essential material when constructing elliptic

units in Abelian extensions of imaginary quadratic fields. One obtains them as spe-

cial values of the classical j-functions whose definition we now recall. If ðo1;o2Þ is a

‘positive’ Z-basis of the lattice G (i.e. such that Imðo1=o2Þ > 0Þ then following

Schertz ([Sch] formula (1.1)), we define

jðt;o1;o2Þ ¼ kðt;GÞZ
o1

o2

� �2

o�1
2 ;

where t ��!kðt;GÞ is the Klein form ([K-L], Chapter 2, Section 1) and Z is

Dedekind’s eta function introduced above. Robert in [Rob1], Section 1, proved

many interesting properties of these j-functions. (His notation is different from

ours. More precisely his jðt;o2;o1Þ is our �ijðt;o1;o2Þ:Þ Stark also used these

functions in [Sta]. Indeed, let t 2 C be such that ImðtÞ > 0. If t ¼ utþ v, where u

and v are real numbers, then ijðt; t; 1Þ is denoted jðu; v; tÞ in [Sta] Equation (10).

Formula (17) of [Sta] may be written as:

Let A ¼
�
a b

c d

�
2 SL2ðZÞ and let o01 ¼ ao1 þ bo2; o02 ¼ co1 þ do2. Then we

have

jðt;o01;o
0
2Þ ¼ eðAÞjðt;o1;o2Þ; ð2:1Þ

where eðAÞ is a 12th root of unity depending only on A and such that

e: SL2ðZÞ �! m12 is a group homomorphism. See [Sch] formula (2.6) for an explicit

description of eðAÞ. On the other hand, if g ¼ b1o1 þ b2o2 2 G and t ¼ a1o1 þ a2o2

with a1; a2 2 Q, then

jðtþ g;o1;o2Þ ¼ ð�1Þb1b2þb1þb2e�piðb1a2�b2a1Þjðt;o1;o2Þ; ð2:2Þ

cf. [Sch] formula (2.3) or [K-L], formula K 2, page 28. Finally, we have

jðat; ao1; ao2Þ ¼ jðt;o1;o2Þ; for all a 2 C� f0g:

See [Rob3], Section 2, where z ��!jðz;o1;o2Þ is defined as a theta function with

some special properties.

PROPOSITION 2. Suppose we have G ¼ m, where m is a proper ideal of OK and let

ðo1;o2Þ be a positive Z-basis of m. Then
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ðiÞ jð1;o1;o2Þ is a algebraic integer in Kð12f 2
mÞ
.

ðiiÞ jð1;o1;o2Þ
12fm 2Km.

Proof. We have fm ¼ r1o1 þ r2o2 for some r1; r2 2 Z. Thus

jð1;o1;o2Þ ¼ j
r1
fm

tþ
r2
fm

; t; 1
� �

with t :¼ o1=o2 2 K. Since r1, r2 and fm are coprime the function t ��!
jðr1=fmtþ r2=fm t; 1Þ is a modular function of level 12f 2

m. It is analytic inside

h :¼ fz 2 C; ImðzÞ > 0g and its q-expansions at every cusp have coefficients in the ring

of integers of Qðm12f 2
m
Þ, cf. [Sta], Section 4. Therefore ðiÞ is a consequence of Lemma 1

and Theorem 3 of [Sta]. As for the part ðiiÞ of the proposition we refer to the proof of

Lemma 7 of [Sta]. Let us remark that our jð1;o1;o2Þ
12fm is denoted by Eðc0Þ in [Sta].

DEFINITION 2. We put jm :¼ jð1;o1;o2Þ
12fm , where ðo1;o2Þ is any positive

Z-basis of m.

PROPOSITION 3. Let q be a maximal ideal of OK. Then we have

NKmq=Km
ðjmqÞ

wm=wmq ¼

jfmq=fm
m ; if qjm;

½jfmq=fm
m �

ð1�s�1
q Þ; if qBm and m 6¼ ð1Þ

DðOKÞ

DðqÞ

� �fq
; if m ¼ ð1Þ;

8>>><>>>:
where sq :¼ ðq;Km=KÞ.

Proof. See [Rob1], Théorème 2, p. 17.

The above results may be used to determine the ideal generated in Km by the

invariant jm. The following corollary makes this ideal explicit:

COROLLARY 2. Suppose that m ¼ qe, where e5 1 and q is a maximal ideal of OK,

and letqKm
be the product of themaximal ideals ofKm which containq. Thenjm generates

in OKm the ð12=wKÞrm-st power of the ideal qKm
. Otherwise jm is a unit of OKm .

Proof. By Proposition 3, above we have

NKm=HðjmÞ
wK=wm ¼

DðOKÞ

DðqÞ

� �fm
:

This implies the first statement of the corollary since DðOKÞ=DðqÞ generates the ideal

ðqOHÞ
12, thanks to Proposition 1, and Km=H is totally ramified at q. Now suppose

that m is divisible by at least two ideals. Then NKm=HðjmÞ must be a unit as follows

from the norm formulas of Proposition 3. But recall that jm is a algebraic integer, cf.

Proposition 2. Hence, jm is a unit too.
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2.3. Let w be a character of GF:= Gal(F=K), where F is a finite Abelian extension of

K. Let Fw � F be the fixed field of ker w. The character w factors through

Gal(F=FwÞ ¼ ker w and yields a character w0 of Gal(Fw=K). Let mw be the conductor

of the Abelian extension Fw=K. Let a be an ideal of K. If a is prime to mw then we put

wðaÞ :¼ w0ðða; Fw=KÞÞ. Otherwise we set wðaÞ ¼ 0.

If w 6¼ 1, then one can associate to w the L-function Lð�; wÞ: s ��!Lðs; wÞ, defined in

the half-plane ReðsÞ > 1 by the Euler product

Lðs; wÞ :¼
Y
pBmw

�
1�

wðpÞ
Nps

��1

:

It is well known that Lð�; wÞ has a analytic continuation to the whole complex plane.

Moreover, Lð0; wÞ ¼ 0 and L0ð0; wÞ 6¼ 0, cf. [Tat], Proposition 3.4, p. 24. Let zF
(resp. zK) be the zeta function of F (resp. K), then we have the following decomposi-

tion zFðsÞ ¼ zKðsÞ
Q

w 6¼1 Lðs; wÞ; cf. loc. cit. page 12, from which we deduce the analytic

class number formula

hFRegðF Þ

wF
¼
h

wK

Y
w6¼1

L0ð0; wÞ; ð2:3Þ

where RegðF Þ is the regulator of F. If F ¼ Km, then we have the Kronecker limit

formulas

Y
pjm

ð1� wðpÞÞL0ð0; wÞ ¼

�1

12rm

X
s2Gm

logðjjmðsÞj
2ÞwðsÞ; if m 6¼ ð1Þ;

�1

12wKh

X
s2Gm

wðsÞ logðj@ðsÞj2Þ; if m ¼ ð1Þ;

8>>><>>>: ð2:4Þ

where Gm :¼ Gal(Km=KÞ, ([Gr-R], Propositions 7.15 and 7.19).

3. The Groups of Elliptic Units CF and C 0
F

Let F be a finite Abelian extension of K of conductor m. For each ideal n of OK we

put Fn :¼ Kn \ F. Moreover, if njm and is such that n 6¼ ð1Þ, then we define

jF;n :¼ NKn=FnðjnÞ
dðm;nÞ

¼ ~jjhF;n;

where dðm;nÞ :¼ wK fmh=rn. The invariants jF;n were introduced for the first time in

[K-L], p. 307. They are called the Kersey invariants. An easy calculation based on

Proposition 3 above shows that for all ideals n and q such that q is prime and

nqjm, we have

NFnq=FnðjF;nqÞ ¼

jF;n; if qjn;

½jF;n�
1�ðq;Fn=KÞ

�1

; if qBn and n 6¼ ð1Þ;

NH=F\H
DðOKÞ

DðqÞ

� �hfm
; if n ¼ ð1Þ:

8>><>>:
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DEFINITION 3. Let D be the subgroup of O�H generated by the units @ðt1Þ=@ðt2Þ,

t1; t2 2 GalðH=KÞ. We define PF to be the GF-submodule of F� generated by mF,

NH=F\HðDÞ
fm and by all jF;n, njm and n 6¼ ð1Þ. Also we put CF :¼ PF \O�F .

Now we give a technical lemma which is helpful in the proof of Lemma 2.

LEMMA 1. Suppose that m 6¼ ð1Þ and let x 2 PF. Then there exist a 2 K, a finite
Abelian extension M of K and y 2M such that

ðiÞ xwM ¼ a12fmwMyd with d :¼ 12wKwMfmh.

ðiiÞ The valuation of a at every prime ideal of OK is divisible by h.

Proof. It suffices to show the claim for the generators of PKm . Let n be a proper

ideal of OK such that njm. Let n0 be a integral ideal of OK such that njn0, n and n0 are

divisible by the same prime ideals of OK and wn0 ¼ 1. Then Proposition 2 implies that

NKn0 =Kn ðjn0 Þ
wn ¼ jfn0=fnn .

By construction, we have jn0 2 ½Kð12f 2
n0
Þ�

12fn0 . Thus the Lemma is true for x ¼ jdðm;nÞ
n ,

with a ¼ 1 and M ¼ Kð12f 2
n0
Þ. Now let us prove the lemma for the generators of Dfm .

If wK 6¼ 2, then D � O�K ¼ mK. Hence, we may suppose wK ¼ 2. Let t 2 GalðH=KÞ.

Let a be a integral primitive ideal of OK, prime to 6 and such that t�1 ¼ ða;H=KÞ.

Here primitive means that a is not of the form ta0 for some integer t > 1 and some

integral ideal a0 of OK. Let z 2 OK be a generator of ah. Then we have

@ðtÞ
@ð1Þ
¼ z12 DðaÞ

DðOKÞ

� �h
¼ ðza�hÞ12 Zð �aaÞ

ZðOKÞ

� �24h

;

where a ¼ NðaÞ and v ��! ZðvÞ is the Z-function on primitive ideals of OK that are

prime to 6. ([H-V], Definition 8). Now the assertion (ii) of Proposition 10 of loc.

cit. implies that our lemma is true for x ¼ ð@ðtÞ=@ð1ÞÞfm , with a ¼ za�h. The lemma

is now proved. &

DEFINITION 4. Let D0 be the subgroup of O�H formed of all the quotients

@ð1Þ@ðt1t2Þ

@ðt1Þ@ðt2Þ
; t1; t2 2 GalðH=KÞ:

We define P0
F to be the GF-submodule of F� generated by mF, NH=F\HðD

0
Þ fm , and by

all jF;n, njm. The group P0
F \O�F will be denoted C0

F.

PROPOSITION 4. The group OF of Theorem A is the largest subgroup of O�
F such

that mFO
h
F ¼ C0

F.

Proof. It is clear because the group NH=F\HðD
0
Þ
fm is generated by the following

units of F \H:
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NH=F\H
DðOKÞDðabÞ
DðaÞDðbÞ

� �hfm
;

where a and b are fractional ideals of K.

To go further we need to describe the image of PF by the logarithm map

lF: F
�

��!R½GF�, where R½GF] is the group ring of GF over the field of the real

numbers, defined for x 2 F� by lFðxÞ :¼ �
P

s2GF logðjxsj2Þs�1. The map lF is a

GF-homomorphism with the property ker lF \O�F ¼ mF.

Now we introduce some notations useful in the sequel. If X is a subset of GF we

put sðXÞ :¼
P

s2X s 2 R :¼ Z½GF�. Moreover, to every maximal ideal p of OK we

associate the element ðp;FÞ :¼ F�1
p sðTpÞ=jTpj of Q½GF], where Tp denotes the inertia

group of p and F p 2 GF=Tp the Frobenius automorphism. For any R-module A, we

denote by A0 the kernel in A of multiplication by sðGFÞ. &

DEFINITION 5. We denote by U the R-submodule of Q½GF� generated by the

element að1Þ :¼ sðG1Þ, where G1 :¼ GalðF=F \H) and by an :¼ sðGalðF=FnÞÞQ
pjnð1� ðp;FÞÞ, where n is any proper ideal of OK.

PROPOSITION 5. If F � H, then we have U ¼ R. Otherwise U is generated as an

R-module by an;njm. Moreover, U is a free Z-module of rank ½F :K�.
Proof. The first two assertions are obvious. On the other hand, since U is torsion

free and finitely generated as a Z-module it is Z-free. Now recall that U is a

R-submodule of Q½GF�. Thus, we can use character theory to compute its Z-rank.

Let w be a complex character of GF and let rw be the ring homomorphism

C½GF� �!C induced by w. If nw is the conductor of w, then we have

rwðanwÞ ¼ #GalðF=Fnw Þ. In particular, rwðUÞ 6¼ 0. This implies that the Z-rank of U

must be equal to ½F :K�. &

For each character w of GF we let Iw :¼ 1=jGFj
P

s2GF wðsÞs
�1 be the idempotent

associated to w in C½GF�. The element o :¼ 12wK fmh
P

w 6¼1 L
0ð0; �wwÞI w of C½GF] is

uniquely determined by the conditions rwðoÞ ¼ 12wK fmhK L0ð0; �wwÞ for all

w 2 ĜFGF � f1g and r1ðoÞ ¼ 0. Since the complex conjugate of L0ð0; wÞ is L0ð0; �wwÞ we

see that o 2 R½GF�. Let l �F :¼ ð1� I1ÞlF, where I1 is the idempotent associated to

the trivial character, then we have

PROPOSITION 6. Let n be a proper ideal ofOK such that njm and let t 2 GalðH=KÞ.
Then we have

l�FðjF;nÞ ¼ oan and fml
�
F NH=F\H

@ð1Þ

@ðtÞ

� �� �
¼ oað1Þð1�ett Þ;

where ~tt is any automorphism of F=K which coincide with t on F \H. In particular we
have l�FðPFÞ ¼ oU0.
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Proof. It clearly suffices to show that rwðl
�
FðjF;nÞÞ ¼ rwðoanÞ and

fmrw l�F NH=F\H
@ð1Þ

@ðtÞ

� �� �� �
¼ rwðosðG1Þð1� ~ttÞÞ:

for all w 2 ĜGF. But this is an easy consequence of (2.4). &

4. The Indices ½OO��F : CF� and ½CF : C 0
F �

Let V be a vector space of finite dimension over L ¼ Q or R. By a lattice in V we

mean a finitely generated subgroup X of V such that rankZ ðXÞ ¼ dimLðVÞ and

LX ¼ V. Moreover, if A and B are lattices of V, then the index ðA :BÞ is by definition

j det gj, where g is any linear transformation of V mapping A onto B. In other words,

we must have gðAÞ ¼ B. This implies in particular that g is nonsingular since we have

gðVÞ ¼ gðLAÞ ¼ LgðAÞ ¼ V. If B � A, then ðA :BÞ is the usual group index.

PROPOSITION 7. U0 is a lattice of R½GF�0. Moreover, we have

ðU0 : l�FðPFÞÞ ¼ ð12wKfmhÞ
½F : K��1 wK

wF

RegðFÞhF
h

: ð4:1Þ

Proof. We only have to prove that U0 is a lattice of Q½GF�0 or, equivalently, the

Z-rank of U0 is ½F :K� � 1. But since we have rankZðU0Þ ¼ rankZðUÞ � 1,

Proposition 5 above implies the conclusion. Now recall that U0 is also an R-sub-

module of R½GF�. Therefore, since rwðoÞ ¼ 12wK fmhL
0ð0; �wwÞ 6¼ 0 for the characters

w 6¼ 1, we have by [Sin2] Lemma 1.2 (b)

ðU0 : l�FðPFÞÞ ¼ ðU0 : oU0Þ ¼ jdetoj ¼
Y
w6¼1

rwðoÞ:

The claim now follows from the analytic class number formula (2.3).

Remark 1. In the case m 6¼ ð1Þ we choose for each i 2 f1; . . . ; sg a generator xpi of

the ideal pi
h. Let n :¼ peii then

NFn=F\HðjF;nÞ ¼ x
12fm½H:F\H�
pi

NH=F\H
@ð1Þ

@ðt�1
i Þ

� �fm
;

where ti :¼ ðpi;H=K Þ. In particular the group QF generated by NH=F\HðDÞ
fm and by

all the x12fm½H:F\H�
pi

is a subgroup of PF. If m ¼ ð1Þ we put QF ¼ PF.

PROPOSITION 8. We have

½PwFF \ K : QwFF \ K �½l
�
FðPFÞ : lFðCFÞ� ¼

Y
p

½F \ Kp1 : F \H�; ð4:2Þ

where p describes all the maximal ideals of OK.
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Proof. Here we take our inspiration from the proof of Proposition 5.1. of [Yin1].

If F � H, then we have PF ¼ CF. Thus we can assume that m 6¼ ð1Þ. Moreover, we

can replace PF by P0 :¼ PwFF and CF by C0 :¼ P0 \O�F ¼ C
wF
F since we obviously have

½l�FðPFÞ : l
�
FðCFÞ� ¼ ½l

�
FðP
0Þ : l�FðC

0Þ�:

Let us also put Q0 :¼ QwFF and D0 :¼ Q0 \O�F . We have Q0 \ ker l�F ¼ Q
0 \ K and

P0 \ ker l�F ¼ P
0 \ K. Therefore we obtain the following commutative diagram

1 1 1

   

1 �! Q0 \ K �! Q0=D0 �!
l�F

l�FðQ
0Þ=l�FðD

0
Þ �! 1

   
1 �! P0 \ K �! P0=C0 �!

l�F
l�FðP

0Þ=l�FðC
0Þ �! 1

which has exact rows and columns. The arrows are just the inclusion maps. The

snake lemma applied to the above diagram gives us

½l�FðP
0Þ : l�FðC

0Þ�

½l�FðQ
0Þ : l�FðD

0
Þ�
¼
½P0=C0 : Q0=D0�
½P0 \ K : Q0 \ K�

:

But since K� � ker l�F we have l�FðQ
0Þ ¼ l�FðD

0
Þ. The next step now is to compute the

index ½P0=C0 : Q0=D0�. Let p01; . . . ; p
0
s be maximal ideals of OF choosen so that pi � p0i.

Then we have a well defined homomorphism vF : F
� ! Zs which associates to

x 2 F� the element vFðxÞ ¼ ðv1ðxÞ; . . . ; vsðxÞÞ, where vi is the valuation associated

to p0i. Moreover, since C0 ¼ P0 \ ker vF, we have ½P0=C0 : Q0=D0� ¼ ½vFðP0Þ : vFðQ0Þ�:
But we know, thanks to Corollary 2, that

vFðP
0Þ ¼

Ys
i¼1

ð12fmhwFeðF=Fpei
i
Þ½H : F \H�ZÞ;

where eðF=Fpei
i
Þ is the ramification index at pi in F=Fpei

i
, and

vFðQ
0Þ ¼

Ys
i¼1

ð12fmhwFjTpi j½H : F \H�ZÞ:

Therefore we obtain the equality

½P0=C0 : Q0=D0� ¼
Ys
i¼1

½Fpei
i
: F \H�:

This concludes the proof of the proposition. &

LEMMA 2. Suppose m 6¼ ð1Þ and let R be the subgroup of K� generated by x12fmwF
pi

,

i ¼ 1; . . . ; s. Then R is free of rank s. Moreover, we have

QwFF \ K ¼ R½H:F\H� � PwFF \ K � R:
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Proof. The claim that R is free of rank s is obvious. Now sinceQwFF is generated by

R½H:F\H� and by NH=F\HðDÞ
fmwF , the group QwFF \ K is generated by R½H:F\H� and by

NH=F\HðDÞ
fmwF \ K ¼ NH=F\HðDÞ

fmwF \O�K ¼ NH=F\HðDÞ
fmwF \ mK ¼ 1:

Hence, it remains to prove that PwFF \ K � R. So let x 2 PF be such that xwF 2

PwFF \ K. By Lemma 1, we can find a2K, a finite Abelian extension M of K and

y 2M such that xwM ¼ a12fmwMyd with d :¼ 12wKwMfmh. Moreover, the valuation

of a at every prime ideal of OK is divisible by h. The Lemma 6 of [Sta] tells us that

we necessarily have yd ¼ zzd1 where z 2 K, z 2 mK and d1 ¼ d=wK. (recall Kð yÞ=K is

Abelian and yd 2 K). Actually we have z 2 FwF \ mK ¼ f1g. But x is a unit outside

pi; i ¼ 1; . . . ; s. This is also true for the element azh of K because we have

xwM ¼ ðazhÞ12fmwM . Now recall that the valuation of a at every prime ideal of OK is

divisible by h. This means that

azhOK ¼ phr11 � � � p
hrs
s ¼

Ys
i¼1

xripi

 !
OK;

for some ri 2 N. In other words we have xwF ¼
�Qs

i¼1 x
ri
pi

�12fmwF , and this proves that

xwF 2 hx12fmwF
pi

; i ¼ 1; . . . ; si. This concludes the proof of Lemma 2. &

THEOREM 1. Let us put dðFÞ :¼ ½PwFF \ K : QwFF \ K�. Then we have

½O�F : CF� ¼
ð12wK fmhÞ

½F : K��1

wF
wK

hF
h

Q
p½F \ Kp1 : F \H �

½F : F \H�

ðR : UÞ

dðFÞ
:

Proof. Since ker lF \O�F ¼ mF we have

½O�F : CF� ¼ ½lFðO�F Þ : lFðCFÞ�

¼
ðR0 : U0Þ

ðR0 : l�FðO�F ÞÞ
ðU0 : l �F ðPFÞÞðl

�
F ðPFÞ : lFðCFÞÞ:

It is not hard to check the identity ðR0 : lFðO�F ÞÞ ¼ RegðF Þ. On the other hand, the

indices ðU0 : l�FðPFÞÞ and dðF Þðl�FðPFÞ : lFðCFÞÞ have already been computed. More-

over, the identity

ðR : UÞ ¼ ðsðGFÞR : sðGFÞUÞðR0 : U0Þ;

together with the fact that sðGFÞR ¼ sðGFÞZ and sðGFÞU ¼ jG1jsðGFÞZ shows that

ðR : UÞ ¼ ½F : F \H�ðR0 : U0Þ. The theorem is now proved. &

Remark 2. If F � H, by definition we have dðF Þ ¼ 1. Actually we also have

dðF Þ ¼ 1 in the case H � F, thanks to Lemma 2. In general there is no explicit
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formula for dðFÞ. However, if one of the following four conditions holds, then

dðF Þ ¼ 1.

(i) s 2 f0; 1; 2g.

(ii) GalðF=F \HÞ is the direct product of the inertia groups.

(iii) GalðF=F \HÞ is cyclic.

(iv) ½F : F \H� is prime to ½H : F \H�.

The proof of this claim is closely related to the theory of ordinary distributions

([Yin3] and [B-O]).

Let us now compute the index ½CF : C 0
F �. Let psþ1; . . . ; pt ðt5 sÞ be prime ideals of

OK such that GalðH=KÞ ¼ fðpi;H=KÞ; i ¼ 1; . . . ; tg. Let Q0 be the GF-submodule of

F� generated by the elements

NH=F\H
DðOKÞ

DðpiÞ

� �hfm
; i ¼ 1; . . . ; t:

The GF-submodule ~PP0 of F� generated by P 0
F and Q0 is such that l �F ð

~PP0Þ ¼ l�FðPFÞ and

C0
F ¼

~PP0 \O�F . In particular

½l�Fð
~PP0Þ : lFðC

0
FÞ� ¼ ½l

�ðPFÞ : lFðCFÞ�½CF : C 0
F �:

Let us put d 0ðFÞ :¼ ½ð ~PP0Þ
wF \ K : ðQ0Þ

wF \ K�. Then, by slightly modifying the proof

of Proposition 8, one may prove the identity

d 0ðF Þ½l �F ð
~PP0Þ : lFðC

0
FÞ� ¼

Ys
i¼1

½Fpei
i
: F \H�½l�FðQ

0Þ : lFðQ
0 \O�F Þ�:

But Q0 \O�F ¼ NH=F\HðD
0
Þ
fm . Therefore we have

½l �F ðQ
0Þ : lFðQ

0 \O�F Þ� ¼ ½osðG1ÞR0 : osðG1ÞR
2
0� ¼ ½F \H : K�:

Thus we have proved

PROPOSITION 9. We have d 0ðFÞ½CF : C0
F� ¼ dðFÞ½F \H : K�.

Proof of Theorem A. Suppose we have H � F or F � H. Then dðFÞ ¼ 1, cf.

Remark 2. Also one may show that d 0ðFÞ ¼ 1 in this case. The proof of this claim is

similar to the proof of Lemma 2. On the other hand, we have

½O�F : OF�h½F:K��1 ¼ ½O�F : OF�½OF : mFðOFÞ
h
�

¼ ½O�F : OF�½OF : C0
F� ðcf: Proposition 4Þ

¼ ½O�F : CF�½CF : C0
F�

¼ ½O�F : CF�½F \H : K� ðcf: Proposition 9Þ:

This gives us the formula (1) in the introduction since the index ½O�F : CF� is already

computed, cf. Theorem 1. &
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5. The Case of Ray Class Fields

The index formula of Theorem 1 can be both made explicit and improved in the case of

ray class fields. The aim of this section and the last one is to explain how this can be

obtained. So let us assume that F ¼ Km and let L :¼ Kð12f 2
mÞ

. For technical reasons,

we take m prime to 6. LetDK be the discriminant ofK. A ideal b of OK is said to be pri-

mitive if it is not of the form tb0 for some integer t > 1 and some idealb0 ofOK. We begin

this section with the following lemma. It gives the exact value of wKn for n prime to 6.

LEMMA 3. Let n be a ideal of OK prime to 6 and let us write n ¼ n1n2, with

n1 2 N 	 f0g and n2 a primitive ideal of OK. Then fn ¼ n1Nðn2Þ and wKn j12fn. More

precisely, wKn ¼ wHn1n
�
2, where n

�
2 is the product of NðpÞ where p are those prime

ideals which divide n2 and are ramified in K=Q.

Proof. It is a easy consequence of the famous Lemme 5 of [Rob1]. &

DEFINITION 6. We let Xm be the Galois submodule of L� generated by the values

jð1;o1;o2Þ, where ðo1;o2Þ is any positive Z-basis of any proper ideal n of OK that

divide m.

DEFINITION 7. Let a and b be primitive ideals of OK prime to 6DK fm. Let us

write ab ¼ tc, with t5 1 and c a primitive ideal of OK. Then we put

Zða; bÞ :¼
� ffiffiffiffiffiffiffiffiffiffi

kðtÞt
p ��1 ZðaÞZðbÞ

ZðOKÞZðcÞ
;

where v ��! ZðvÞ is the Z-function on primitive ideals of OK that are prime to 6 intro-

duced in [H-V], Definition 8, and k : ðOK=12OKÞ
�
! mH is the character defined in

[H-V], Definition 11 and Lemma 13 (see also the remark following the proof of

Lemma 13 ).

Remark 3: Let us recall that KðZða; bÞÞ is Abelian over K, cf. loc. cit., Proposition

10 (ii). Moreover, we have

Zða; bÞ24
¼ t12 Dð �aaÞDð �bbÞ

DðOKÞDð�ccÞ
¼

Dða�1ÞDðb�1
Þ

DðOKÞDða�1b�1
Þ
:

This proves that Zða; bÞ is a unit. On the other hand HðZða; bÞÞ is a Kummer exten-

sion of H and for x 2 OK prime to 6DKab we have

Zða; bÞsx�1
¼ kðxÞ�

1
2ðNðaÞ�1ÞðNðbÞ�1Þ

� ffiffiffi
x
p �st�1� ffiffiffiffiffiffiffiffiffiffi

KðtÞt
p �sx�1

;

where sx (resp. st) is the automorphism of Kab=K associated to xOK (resp. tOK) by

the Artin map, cf. [H-V] Theorem 19 (i). By the quadratic reciprocity law stated in

Theorem 21 of [H-V], we know that� ffiffiffi
x
p �st�1� ffiffi

t
p �sx�1

¼
� ffiffiffiffiffiffiffiffi

kðtÞ
p �sx�1

:
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As a consequence we obtain the formula

Zða; bÞsx�1
¼ kðxÞ�

1
2ðNðaÞ�1ÞðNðbÞ�1Þ; ð5:1Þ

from which we deduce easily that Zða; bÞ 2 Kð12Þ. If c is a ideal of OK prime to 6 we

have

Zða; bÞNðcÞ�ðc;Kð12Þ=KÞ 2 H: ð5:2Þ

DEFINITION 8. We let ~VVm be the Galois submodule of L� generated by mL, Xm

and by all the quotients Zða; bÞ

Our goal now is to determine the index ½C0
Km

: mKm
ðEmÞ

12wKfmh�. But first we need

some preleminary results.

PROPOSITION 10. The group Vm of Theorem B is such that Vm ¼ ~VVm \ O�
L . More-

over, we have mL ~VV
12wKfmh

m ¼ mLP
0
Km
.

Proof. Obvious. &

PROPOSITION 11. Let njm and n 6¼ ð1Þ. Let o :¼ ðo1;o2Þ ðresp. o0 :¼ ðo0
1;o

0
2ÞÞ

be a positive Z-basis of m ðresp: nÞ. Then

jð1;o1;o2Þ
Nm
Nn

jð1;o01;o
0
2Þ
2 m12Km:

Proof. The claim may be deduced from Satz (1.2) of [Sch]. It is also possible to

prove it as follows. Since m is prime to 6 we can consider the elliptic function

z ��!Cðz;m;nÞ introduced by G. Robert ([Rob2] [Rob3]). We have

Cðz;m;nÞ ¼
1

Cðo;o0Þ
jð1;o1;o2Þ

Nm
Nn

jð1;o01;o
0
2Þ

;

where Cðo;o0Þ is a 12th root of unity depending on o and o0 ([Rob3] Théorème 1(c)

and Théorème 3(b). Moreover, Cð1;m;nÞ 2 Km thanks to Théorème 5 of loc. cit. &

PROPOSITION 12. Suppose m 6¼ ð1Þ and let o :¼ ðo1;o2Þ be a positive Z-basis of

m and let b be a ideal of OK prime to 6m. Then

jð1;o1;o2Þ
NðbÞ�ðb;L=KÞ

2 Km:

Proof. By Théorème 1(c) and the corollaire of Section 6 of [Rob3] the elliptic

function z�!Cð1;m; b�1mÞ is such that

jð1;o1;o2Þ
NðbÞ�ðb;L=KÞ

¼ Cð1;m; b�1mÞ:

Now Cð1;m; b�1mÞ 2 Km is an immediate consequence of Théorème 5 of [Rob3].
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PROPOSITION 13. Supposem 6¼ ð1Þ. Let a and b be primitive ideals of OK, prime to

6DK fm. Let eða; bÞ :¼ NðmÞðNðaÞ 	 1=2Þðsb 	 1Þ, where sb :¼ ðb;L=KÞ. Let

ðo1;o2Þ be a positive Z-basis of m, then

Zða; bÞjð1;o1;o2Þ
eða;bÞ
2 m12Km:

Proof. It suffices to prove the claim for a particular choice of ðo1;o2Þ, thanks to

the formula (2.1) above. So, let us write m ¼ m1m2, where m2 is a primitive ideal of

OK and m1 2 N� f0g. Let u 2 Z be such that u � �
ffiffiffiffiffiffiffi
DK
p

modulo �bbm2 and put

a ¼ ðuþ
ffiffiffiffiffiffiffi
DK
p
Þ=2. We have fm ¼ m1Nðm2Þ and

OK ¼ ZaþZ; m2 ¼ ZaþZNðm2Þ; �bb ¼ ZaþZNðbÞ; b�1m ¼ Z
m1a
NðbÞ

þZfm:

In particular ðm1a; fmÞ is a positive Z-basis of m. Hence, Satz (1.1) of [Sch] gives us

the identity

½ijð1;m1a; fmÞ�sb ¼ ij 1;
m1a
NðbÞ

; fm

� �
which implies

jð1;m1a; fmÞ
sb�1
¼

kð1; b�1mÞZ a
Nðbm2Þ

� �2

kð1;mÞZ a
Nðm2Þ

� �2
i1�sb :

On the other hand we have

Zðm2Þ ¼ xNðm2Þ

1 Z
a

Nðm2Þ

� �
and Zðbm2Þ ¼ xNðbm2Þ

2 Z
a

Nðbm2Þ

� �
;

where x1; x2 2 m48 ([H-V] Definition 8). Thus we obtain the decomposition

Zða; bÞjð1;m1a; fmÞ
eða;bÞ
¼M1M2M3;

with

M1 ¼ Zða; bÞ
Zðbm2Þ

Zðm2Þ

� �NðmÞðNðaÞ�1Þ

and M2 ¼
kð1; b�1mÞ

kð1;mÞ

 !NðmÞðNðaÞ�1Þ
2

:

While M3 is the following 12th root of unity

M3 ¼ ½iðx1x2Þ
2
�
�Nðm2Þð

NðaÞ�1
2 ÞðNðbÞ�1Þ:

Now we claim that M2 2 Km. Indeed, this is a consequence of Theorem 2.1 in

Chapter 12 of [K-L]. As for M1 one may use Theorem 19 of [H-V] and the formula

(5.1) above to show that M1 2 H. The proposition is now proved. &

COROLLARY 3. Suppose m 6¼ ð1Þ and let p :¼ ½C0
Km

: mKm
ðEmÞ12wKfmh�. Then p

divides wKm . If s ¼ 1 then p divides wKm=wK
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Proof. Let us consider the two factor groups

P :¼ C0
Km

=mKm
ðEmÞ

12wKfmh and P0 :¼ P0
Km

=mKm
ð ~VVm \ KmÞ

12wKfmh:

The inclusion C0
Km
� P0

Km
induces a injective map P! P0. On the other hand, the

three Propositions 11, 12 and 13 show that P0 is generated as an Abelian group

by the class of jwKhm . Recall that wKm may be written as a finite sumP
naðNðaÞ � 1Þ, na 2 Z, for some ideals a of OK prime to 6m and such that

ða;Km=KÞ ¼ 1. Therefore, Proposition 12 implies that

jwKwKmhm 2 mKm
ð ~VVm \ KmÞ

12wKfmh:

In the case s ¼ 1, the group P is generated by the classes of jwKhðs�1Þ
m ,

s 2 GalðKm=KÞ. But P is cyclic. Hence p is the least positive integer such that

jwKhðs�1Þp
m 2 mKm

ð ~VVm \ KmÞ
12wKfmh; for all s 2 GalðKm=KÞ:

In particular pjwKm=wK. &

PROPOSITION 14. Suppose m 6¼ ð1Þ and let p0 :¼ wKp if s ¼ 1 and p0 :¼ p if s5 2,

then wKm divides p
0.

Proof. We deduce from the proof of Corollary 3 that

jð1;o1;o2Þ
p0
2 mLKm;

where ðo1;o2Þ is any positive Z-basis of m. In other words there is x 2 Km such that

x :¼ xjð1;o1;o2Þ
p0
2 mL � m24f 2

m:
ð5:3Þ

Actually we may prove that x 2 m24fm \ L. Even x 2 m12fm in the cases DK � 1; 4 or 5

modulo 8. Indeed, Let u 2 Z (resp. u 2 4Z if 2jDK) be such that u � �
ffiffiffiffiffiffiffi
DK
p

modulo

m2, then put a :¼ ðuþ
ffiffiffiffiffiffiffi
DK
p
Þ=2. We have OK ¼ ZaþZ and m2 ¼ ZaþZNðm2Þ.

Now take n :¼ 1þ 12fm and let sn ¼ ðnOK;L=KÞ. We have

xsn�1
¼ xNðnOKÞ�1

¼ x24fm and ½xjð1;o1;o2Þ
p0
�
sn�1
¼ 1

([Sch] Satz (1.2)). This makes it clear that x 2 m24fm \ L. If DK � 1 or 5 modulo 8

then wL ¼ 12f 2
m. If DK � 4 modulo 8 we have wL ¼ 24f 2

m, but if we take

l :¼ 1þ 6f 2
ma then

xsl�1
¼ x12fm and ½xjð1;o1;o2Þ

p0
�
sl�1
¼ 1:

The last equality is a application of Satz (1.2) of [Sch]. Thus we may conclude that

x 2 m12fm for all DK � 1, 4 or 5 modulo 8. In such a situation (5.3) is possible only if

wKmdivides p0, [Sch] Satz (1.3). It remains to prove the proposition in the case DK � 0

modulo 8. Since x2
2 m12fm , formula (5.3) and Satz (1.3) of [Sch] give wKm j2p

0. Let us
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remark that wKm=2 is odd (DK � 0 modulo 8). Hence we only need to prove that 2jp0.
Let l be as above, we have

xsl�1
¼ 1 and ½xjð1;o1;o2Þ

p0
�
sl�1
¼ i2p

0

;

cf. [Sch] Satz (1.2). The proof of Proposition 14 is now complete.

THEOREM 2. We have

½C0
Km

: mKm
E12wKfmh
m � ¼

wKm
wK

if s ¼ 0 or s ¼ 1
wKm if s5 2:

�
Proof. If m 6¼ ð1Þ the theorem is equivalent to Corollary 3 and Proposition 14. If

m ¼ ð1Þ and K ¼ Qð
ffiffiffiffiffiffiffi
�1
p
Þ or Qð

ffiffiffiffiffiffiffi
�3
p
Þ all these groups are equal to mK. Now suppose

m ¼ ð1Þ and wK ¼ 2. Let c1; . . . ; cr be primitive ideals of OK prime to 6 and such that

the gcd of NðciÞ � 1, i ¼ 1; . . . ; r is wK. Then the factor group C 0
H=mHE

12wKh
ð1Þ is cyclic

generated by the image of f24h, where

f :¼
Y
i;j

Zðci; cjÞ
ninj ;

the integers n1; . . . ; nr satisfying 2 ¼
P
niðNðciÞ � 1Þ. Indeed, this follows from (5.2)

and the property (5.1) which implies

Zða; bÞf
ðNðaÞ�1Þ

2
ðNðbÞ�1Þ

2 2 H;

for all ideals a and b of OK prime to 6. Now let d 2 Z be such that f24d
2 mHH

24h. In

particular there is x 2 H such that x :¼ xfd is a root of unity, say of order n. By

Lemma 14 (ii) of [H-V] there is a l 2 OK prime to 6 such that NðlOKÞ � 1 modulo

n and kðlÞ is a primitive wHth root of unity. In particular, xsl�1
¼ 1. On the other

hand we have xsl�1
¼ xfd

� 	sl�1
¼ kðlÞ�2d; thanks to (5.1). This proves that

wH=2jd. The theorem is now proved. &

6. Some General Properties of the Index ðR :UÞ

Let bmm :¼ p1 � � � ps. For each ideal r of OK such that r jbmm we denote by Tr the com-

positum in GF of the inertia groups Tp as p varies through the maximal ideals divi-

ding r. In particular we have Tð1Þ ¼ f1g, Tbmm ¼ G1; and in general Tr ¼ GalðF=FnðrÞÞ;

where nðrÞ is the largest divisor of m coprime with r. This implies

PROPOSITION 15. U is generated as an R-module by the elements

sðTrÞ
Q

pjnðrÞð1 	 ðp;F ÞÞ ¼ anðrÞ; where r varies over the divisors of bmm.
Let s be a divisor of bmm. We denote by Us the R-module generated in Q½GF] by the

elements sðTrÞ
Q

pjs=rð1� ðp;F ÞÞ; where r varies over the divisors of s. Hence,

Uð1Þ ¼ R and Ubmm ¼ U. Let p be a maximal ideal of OK such that p divides bmm but
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not s. Then we have Usp ¼ UsðTpÞ þ ð1� ðp;FÞÞUs; where UsðTpÞ is the R-module

generated by the elements sðTrpÞ
Q

qjs=rð1� ðq;FÞÞ: As in [Sin2] Lemma 5.1 one may

prove that Us is a lattice of Q½GF� and that the index ðUs : UspÞ is an integer divisible

only by the primes dividing jTpj. On the other hand the expression

ðR : UÞ ¼
Ys�1

i¼0

ðUri : Uriþ1
Þ; ð6:1Þ

of ðR : UÞ as a product of indices of the form ðUr : UrpÞ, with pB r; where r0 :¼ ð1Þ

and ri :¼ ri�1pi for i ¼ 1; . . . ; s, implies the following

PROPOSITION 16. The index ðR : UÞ is an integer divisible only by the primes
dividing jG1j. Moreover, if at most two ideals ramify in F=K, or if G1 is the direct

product of the inertia groups, then ðR : UÞ ¼ 1.

7. The Index ðR : UÞ in the Case of Ray Class Fields

In this Section we are interested in computing the index ðR : UÞ for ray class Fields.

Recall that ðR : UÞ ¼ 1 if s ¼ 1 or 2, cf. Proposition 16. Thus we can assume that

s5 3. On the other hand, we are able to make this computation only when hfm is

prime to wK. So, throughout this section we suppose that F ¼ Km, s5 3 and

gcdð fmh;wKÞ ¼ 1.

Remark 4: Let n be a proper ideal of OK prime to wK. The global class field theory

gives the exact sequence

1�!mK�!ðOK=nÞ
�
�!GalðKn=HÞ�! 1:

The order of ðOK=nÞ
� is usually denoted jðnÞ. We have jðnÞ ¼

Q
pejjn jðp

eÞ and

jðpeÞ ¼ NðpÞe�1
ðNðpÞ � 1Þ. This enables us to make the following deductions.

ð1Þ The ramification index at pi in Km=K is equal to jðpeii Þ because we have

Tpi ¼ GalðKm=Kmi
Þ, where mi :¼ mp�eii .

ð2Þ Let r be a divisor of m̂m such that r 6¼ m̂m. Since Tr ¼ GalðKm=KnðrÞÞ we have

#Tr ¼
jðmÞ
jðnðrÞÞ

¼
Y
pijr

jðpeii Þ:

This proves that Tr is a direct product of Tpi , pijr.

In particular if rj bmm and r0j bmm, are coprime such that rr0 6¼ bmm, then we have

Tr \ Tr0 ¼ f1g. This may be used to prove that Ur is free over Tr0 , cf. [Sin1]

Proposition 5.2. Let us suppose that r0 ¼ p is a maximal ideal of K. Then we have

ðUr : UrpÞ ¼ #B=ð1� F�1
p ÞB; ð7:1Þ

18 HASSAN OUKHABA

https://doi.org/10.1023/A:1023667807218 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023667807218


where B :¼ Bðr; pÞ :¼ U
Tp
r =UrðTpÞ ([Sin2], Lemma 5.1). But if rp 6¼ bmm the intersec-

tion Tr \ Tp ¼ f1g and then Ur is a free Tp-module. In particular U
Tp
r ¼

sðTpÞUr ¼ UrðTpÞ and consequently the index ðUr : UrpÞ ¼ 1. The formula (6.1)

becomes

ðR : UÞ ¼ ðUrs�1
: UÞ ¼

�
U
Tps
rs�1

: ð1� F�1
ps
ÞU

Tps
rs�1
þUrs�1

ðTpsÞ
�
:

The last equality is a application of (7.1). Let X and Y be the R-modules defined as

follows

X :¼ U
Tps
rs�1

=ð1� F�1
ps
ÞU

Tps
rs�1
þ sðTps ÞUrs�1;

Y :¼ Urs�1
ðTpsÞ þ ð1� F�1

ps
ÞU

Tps
rs�1

=sðTpsÞUrs�1
þ ð1� F�1

ps
ÞU

Tps
rs�1

:

Then X=Y is obviously isomorphic to U
Tps
rs�1

=ð1� F�1
ps
ÞU

Tps
rs�1
þUrs�1

ðTpsÞ. Thus we

have ðR : UÞ ¼ ½X : Y�: On the other hand

X ’ N=ð1� F�1
ps
ÞN with N :¼ U

Tps
rs�1

=sðTps ÞUrs�1
:

It is not difficult to determine the structure of Y as an R-module. Indeed, we have

LEMMA 4. We have

Urs�1
ðTpsÞ ¼ sðTps ÞUrs�1

þ sðG1ÞR: ð7:2Þ

Moreover, let ~DD be the subgroup of G :¼ GalðKm=KÞ generated by G1 :¼ GalðKm=HÞ

and by F pi ; i ¼ 1; . . . ; s. Then we have

sðG1ÞR \ ðsðTpsÞUrs�1
þ ð1� F�1

ps
ÞU

Tps
rs�1
Þ ¼ sðG1ÞðIþ wKRÞ; ð7:3Þ

where I is the augmentation ideal of the group ring Z½ ~DD�.

Proof. The identity (7.2) is easy to verify using the definitions and the fact that

Trps is the direct product of Tr and Tps for every proper divisor r of rs�1. Let us prove

(7.3). Since G1 is generated by all Tpi the trace sðG1Þ 2 U
Tps
rs�1

, moreover,

wKsðG1Þ ¼ sðTps ÞsðTrs�1
Þ because #Tps \ Trs�1

¼ wK. On the other hand, if

i 2 f1; . . . ; s� 1g we have

sðG1Þð1� F�1
pi
Þ ¼ gisðTps ÞsðTrs�1p�1

i
Þð1� ðpi;FÞÞ

for some gi 2 R. Thus if we denote by E the R-module on the left-hand side of (7.3),

then sðG1ÞðIþ wKRÞ � E. Conversely, E may be written in the form

E ¼ wKsðG1ÞRþ V, where V is such that V � QI \ sðG1ÞR. But the identity

Q I \ sðG1ÞR ¼ sðG1ÞI; shows that E � sðG1ÞðIþ wKRÞ. &

COROLLARY 4. We have the isomorphisms

Y ’ sðG1ÞR=sðG1ÞðIþ wKRÞ ’ Z½G= ~DD�=wKZ½G= ~DD�:
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Let D be the subgroup of GalðH=KÞ generated by ðpi;H=KÞ, i ¼ 1; . . . ; s. Then we have

#Y ¼ weK; e :¼ ½GalðH=KÞ : D�: ð7:4Þ

Proof. The first isomorphism is a consequence of the definition ofY and Lemma 4.

The second one is clear. Now since G= ~DD ’ GalðH=KÞ=D the last assertion follows.

We devote the remaining of this Section to the determination of the structure of X.

Let J be the subgroup of G generated by the ‘-parts of Tps , ‘jwK. We have

Trs�1
\ Tps � J. On the other hand, the group J is cyclic since

Tps ’ ðOK=p
eÞ
�
’ Z=ðNp� 1ÞZ�OK=p

e�1;

where p ¼ ps, e ¼ es. Let Zps be the subgroup of Tps such that Tps ¼ J� Zps . If r is a

divisor of bmm then we let Zr be the subgroup of G generated by Zps if psjr and by the

inertia groups Tp, pjr and p 6¼ ps, thus

Zr :¼

Q
pjr
Tp; if ps B r;

Zps �
Q
pjr

p 6¼ps

Tp; if ps j r:

8><>:
LEMMA 5. We have Trs	1

\ Zps ¼ f1g. Moreover if r and r0 are coprime such that
ps B r. Then Tr \ Zr0 ¼ f1g:
Proof. Clear. &

Using Lemma 5 one may show, as in [Sin1] Proposition 5.2, that if r and psr
0 are

coprime then Ur is free over Zr0 . In particular, for p ¼ ps and r ¼ rs�1 we have

N ¼ U
Tp
r =sðTpÞUr ¼ H

2ðJ;U
Zp
r Þ: Let us put for i ¼ 0 to s� 1, Bni :¼ HnðJ;U

Zr0
i

ri Þ;

where r0i is such that rir0i ¼ bmm. Since J is finite, we have #JBni ¼ 0. On the other hand,

we see that sðJÞsðZbmÞ ¼ wKsðG1Þ. Hence, since R is a free Zm̂m-module we have

B2n
0 ¼ ðR

ZbmÞJ=sðJÞRZbm ¼ RG1=sðJÞsðZbmÞR ’ ðZ=wKZÞ½G=G1�:

Moreover, B2nþ1
0 ¼ H1ðJ;RZm̂m Þ ¼ 0 by [Sin2] Lemma 5.2. Let i 2 f1; . . . ; s� 1g, then

J and Zr0
i
act trivially on Bni . In fact the group Tri also acts trivially on Bni . The proof

is exactly the same as for Lemma 5.3 of [Sin1]. But G1 is generated by J, Zr0
i
and by

Tri . Thus Bni is naturally a Z½GalðH=KÞ�-module.

PROPOSITION 17. We have an exact sequence of R-modules

0�!Bni =ð1� F�1
piþ1
Þ �!Bniþ1�!ðB

nþ1
i Þ

F piþ1 �! 0 ð7:5Þ

Proof. We refer to the proof of Proposition 6.3 of [Yin1].

The exact sequence (7.5) splits in our case because wK and h are supposed to be

coprime, see [Yin1], Lemma 6.5. Hence using induction we obtain the structure of

Bni , i 2 f1; . . . ; s� 1g. Indeed we have

Bni ’ ððZ=wKZÞ½Gm=D
ðiÞ�Þ

2i�1

; ð7:6Þ
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where DðiÞ is the subgroup of Gm generated by G1 and by the Frobenius auto-

morphisms F pj ; j 2 f1; . . . ; ig. &

COROLLARY 5. We have

X ¼ B2
s�1=ð1� F�1

ps
ÞB2
s�1 ’ ððZ=wKZÞ½Gm=D

ðsÞ�Þ
2s�2

:

In particular, X has order #X ¼ ðwKÞ
eð2s�2Þ.

Putting the results of Proposition 16 together with the results of Corollaries 4

and 5, we get

PROPOSITION 18. Suppose F :¼ Km, then

ðR : UÞ ¼
1; if s ¼ 0; 1 or 2;

ðwKÞ
eð2s�2�1Þ; if s5 3 and fmh prime to wK:

�
Proof of Theorem B. The formula (2) is equivalent to Theorem 2 since

C0
Km
¼ mKm

OhKm
. The formula (3) may be deduced from the following identities:

½O�Km
: OKm �½OKm : mKm

ðEmÞ
12wKfm �

¼ ½O�Km
: Em�½Em : mKm

ðEmÞ
12wKfm �

¼ ½O�Km
: Em�ð12wKfmÞ

½Km:K��1:

The index ðZ½GalðKm=KÞ� : UÞ has already been computed, (Propositions 16 and 18).

(Let us remark that wK 6¼ 2 only when K ¼ Qð
ffiffiffiffiffiffiffi
�1
p
Þ or K ¼ Qð

ffiffiffiffiffiffiffi
�3
p
Þ, but in these

two cases, we have h ¼ 1 and wK ¼ 4 (resp. wK ¼ 6). In particular, h is prime to

wK if and only if h is odd.) On the other hand,Q
p½Km \ Kp1 : H�

½Km : H�
¼

1 if m ¼ ð1Þ
w1�s
K if m 6¼ ð1Þ:

�
by Remark 4 above (recall m is prime to 6). Theorem B is now proved. &
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