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TOPICS SURROUNDING THE COMBINATORIAL ANABELIAN
GEOMETRY OF HYPERBOLIC CURVES IV: DISCRETENESS AND
SECTIONS

YUICHIRO HOSHI® anp SHINICHI MOCHIZUKI

Abstract. Let X be a nonempty subset of the set of prime numbers which
is either equal to the entire set of prime numbers or of cardinality one. In
the present paper, we continue our study of the pro-X fundamental groups of
hyperbolic curves and their associated configuration spaces over algebraically
closed fields in which the primes of ¥ are invertible. The present paper focuses
on the topic of comparison between the theory developed in earlier papers
concerning pro-Y fundamental groups and various discrete versions of this
theory. We begin by developing a theory concerning certain combinatorial
analogues of the section conjecture and Grothendieck conjecture. This portion
of the theory is purely combinatorial and essentially follows from a result
concerning the ezistence of fized points of actions of finite groups on finite
graphs (satisfying certain conditions). We then examine various applications
of this purely combinatorial theory to scheme theory. Next, we verify various
results in the theory of discrete fundamental groups of hyperbolic topological
surfaces to the effect that various properties of (discrete) subgroups of such
groups hold if and only if analogous properties hold for the closures of these
subgroups in the profinite completions of the discrete fundamental groups under
consideration. These results make possible a fairly straightforward translation,
into discrete versions, of pro-% results obtained in previous papers by the
authors. Finally, we discuss a construction that was considered previously by
M. Boggi in the discrete case from the point of view of the present paper.
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Let ¥ C Primes be a subset of the set of prime numbers Primes which is either equal
to Primes or of cardinality one. In the present paper, we continue our study of the pro-
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2 Y. HOSHI AND S. MOCHIZUKI

> fundamental groups of hyperbolic curves and their associated configuration spaces over
algebraically closed fields in which the primes of ¥ are invertible (cf. [8]-[11], [18], [20],
[23]). The present paper focuses on the topic of understanding the relationship between
the theory developed in earlier papers concerning pro-Y fundamental groups and various
discrete versions of this theory. This topic of comparison of pro-» and discrete versions
of the theory turns out to be closely related, in many situations, to the theory of sections
of various natural surjections of profinite groups. Indeed, this relationship with the theory of
sections is, in some sense, not surprising, inasmuch as sections typically amount to some sort
of fixed point within a profinite continuum. That is to say, such fixed points are often closely
related to the identification of a rigid discrete structure within the profinite continuum.

In §§1 and 2, we study two different aspects of this topic of comparison of pro-X and
discrete structures. Both §§1 and 2 follow the same pattern: we begin by proving an
abstract and somewhat technical combinatorial result and then proceed to discuss various
applications of this combinatorial result.

In §1, the main technical combinatorial result is summarized in Theorem A below (where
Y, is allowed to be an arbitrary nonempty set of prime numbers). This result consists of
versions of the section conjecture and Grothendieck conjecture—that is, the central issues
of concern in anabelian geometry—rfor outer representations of ENN-type (cf. Definition
1.7(i)). Here, we remark that outer representations of ENN-type are generalizations of the
outer representations of NN-type studied in [8]. Just as an outer representation of NN-
type may be described, roughly speaking, as a purely combinatorial object modeled on
the outer Galois representation arising from a hyperbolic curve over a complete discretely
valued field whose residue field is separably closed, an outer representation of ENN-type
may be described, again roughly speaking, as an analogous sort of purely combinatorial
object that arises in the case where the residue field is not necessarily separably closed. The
pro-X section conjecture portion of Theorem A (i.e., Theorem 1.13(i)) is then obtained by
combining

e the essential uniqueness of fized points of certain group actions on profinite graphs given
in [8, Prop. 3.9(i)—(iii)] with

e an essentially classical result concerning the existence of fized points (cf. Lemma 1.6
and Remarks 1.6.1 and 1.6.2), which amounts, in essence, to a geometric reformulation
of the well-known fact that free pro-X groups are torsion-free (cf. Remarks 1.13.1 and
1.15.2(1)).

The argument applied to prove this pro-X section conjecture portion of Theorem A is
essentially similar to the argument applied in the tempered case discussed in [17, Ths.
3.7 and 5.4], which is reviewed (in slightly greater generality) in the tempered section
conjecture portion of Theorem A (cf. Theorem 1.13(ii)). These section conjecture portions
of Theorem A imply, under suitable conditions, that there is a natural bijection between
conjugacy classes of pro-3 and tempered sections (cf. Theorem 1.13(iii)). This implication
may be regarded as an important example of the phenomenon discussed above, that is,
that considerations concerning sections are closely related to the topic of comparison of
pro-% and discrete structures. Finally, by combining the pro-X section conjecture portion
of Theorem A with the combinatorial version of the Grothendieck conjecture obtained in [10,
Th. 1.9(i)], one obtains the Grothendieck conjecture portion of Theorem A (cf. Corollary
1.14).
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THEOREM A (Combinatorial versions of the section conjecture and Grothen dieck
conjecture). Let Y be a nonempty set of prime numbers, let G be a semi-graph of anabelioids
of pro-¥X PSC-type, let G be a profinite group, and let p: G — Aut(G) be a continuous
homomorphism that is of ENN-type for a conducting subgroup I C G (cf. Definition 1.7(i)).
Write Ilg for the (pro-X) fundamental group of G and HZP for the tempered fundamental
group of G (cf. [17, Exam. 2.10] and the discussion preceding [17, Prop. 3.6]). (Thus, we
have a natural outer injection Htgp — Ilg—cf. [11, Lem. 3.2(i)] and the proof of [11, Prop.

ut
3.3(i) and (ii)].) Write HG et g %G (cf. the discussion entitled “Topological groups”

in [9, §0]); I def Htp G G — g gtp — G for the universal pro-X and pro-tempered
coverings of G correspondmg to Ilg, 11 g ; VCN(—) for the set of vertices, cusps, and nodes of
the underlying (pro-)semi-graph of a (pro-)semi-graph of anabelioids (cf. Definition 1.1(i)).
Thus, we have a natural commutative diagram

1 ey g G 1
1 Ilg Ig G 1

—where the horizontal sequences are exact, and the vertical arrows are outer injections;
Hg’ acts naturally on gtp IIg acts naturally on G. Then the following hold:

(i)  Suppose that p is I-cyclotomically full (cf. Definition 1.7(ii)) for somel €X. Let s: G —
Ilg be a continuous section of the natural surjection llg — G. Then, relative to the
action of llg on VCN(?) via conjugation of VON-subgroups, the image of s stabilizes
some element of VON(G).

(ii)) Let s: G — Hg’ be a continuous section of the natural surjection Hg’ — G. Then,
relative to the action of Hg’ on VCN(gtp) via conjugation of VCN-subgroups (cf.
Definition 1.9), the image of s stabilizes some element of VCN(G'P).

(iii) Write Sect(Ilg/G) for the set of lg-conjugacy classes of continuous sections of
the natural surjective homomorphism Tlg — G and Sect(ILg /G) for the set of ng—
conjugacy classes of continuous sections of the natural surjective homomorphism
Hg’ —» (G. Then the natural map

Sect(ITY /G) — Sect(Ilg/G)

is injective. If, moreover, p is I-cyclotomically full for some | € 3, then this map is
bijective.

(iv) Let H be a semi-graph of anabelioids of pro-¥ PSC-type, let H be a profinite group,
and let py: H — Aut(H) be a continuous homomorphism that is of ENN-type for
a conducting subgroup Iy C H. Write Iy for the (pro-X) fundamental group of H.
Suppose further that p is verticially quasi-split (cf. Definition 1.7(i)). Let B: G = H be
a continuous isomorphism such that B(Ig) = Iy ; let | € X be a prime number such that
g défp and py are l-cyclotomically full; let o: Tg = 11y be a continuous isomorphism
such that the diagram
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4 Y. HOSHI AND S. MOCHIZUKI

G 2% Auwt(G) — Out(Ilg)

| l

H 2% Aut(H) < Out(Ily)

—where the right-hand vertical arrow is the isomorphism obtained by conjugating by
a—commutes. Then o is graphic (cf. [18, Def. 1.4(i)]).

The purely combinatorial theory of §1—that is, the theory surrounding and including
Theorem A—has important applications to scheme theory—that is, to the theory of
hyperbolic curves over quite general complete discretely valued fields—as follows:

(A-1) We observe that a quite general result in the style of the main results of [26]
concerning valuations fixed by sections of the arithmetic fundamental group follows
formally, in the case of hyperbolic curves over quite general complete discretely
valued fields, from Theorem A (cf. Corollary 1.15(iii) and Remark 1.15.2(i) and
(ii)). The quite substantial generality of this result is a reflection of the purely
combinatorial nature of Theorem A. This approach contrasts substantially with
the approach of [26] via essentially scheme-theoretic techniques such as the local—
global principle for the Brauer group (cf. Remark 1.15.2(i)). The approach of the
present paper also differs substantially from [26] in that the transition from fixed
points of graphs to fixed valuations is treated as a formal consequence of well-known
elementary properties of Berkovich spaces, that is, in essence the compactness of the
unit interval [0,1] C R (cf. Remark 1.15.2(ii)).

(A-2) We observe that the natural bijection between conjugacy classes of pro-¥ and
tempered sections discussed in the purely combinatorial setting of Theorem A implies
a similar bijection in the case of hyperbolic curves over quite general complete
discretely valued fields (cf. Corollary 1.15(vi)). This portion of the theory was
partially motivated by discussions between the second author and Y. André.

In the context of (A-1), we remark that, in the Appendix to the present paper, we give an
elementary exposition from the point of view of two-dimensional log regular log schemes of
the phenomenon of convergence of valuations, without applying the language or notions,
such as Stone-Cech compactifications, typically applied in expositions of the theory of
Berkovich spaces.

In §2, we turn to the task of formulating discrete analogues of a substantial portion
of the theory developed in earlier papers. This formulation centers around the notion of
a semi-graph of temperoids of HSD-type (i.e., “hyperbolic surface decomposition type”—
cf. Definition 2.3(iii)), which may be thought of as a natural discrete analogue of the
notion of a semi-graph of anabelioids of pro-X PSC-type (cf. [18, Def. 1.1(i)]). As the
name suggests, this notion may be thought of as referring to the sort of collection of
discrete combinatorial data that one may associate with a decomposition of a hyperbolic
surface into hyperbolic subsurfaces. Alternatively, it may be thought of as referring to the
sort of collection of combinatorial data that arise from systems of topological coverings
of the system of topological spaces naturally associated with a stable log curve over a
log point whose underlying scheme is the spectrum of the field of complex numbers (cf.
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Example 2.4(i)). After discussing various basic properties and terms related to semi-graphs
of temperoids of HSD-type (cf. Proposition 2.5 and Definitions 2.6 and 2.7), we observe
that the fundamental operations of restriction, partial compactification, resolution, and
generization discussed in [9, §2], admit natural compatible analogues for semi-graphs of
temperoids of HSD-type (cf. Definitions 2.8 and 2.9 and Proposition 2.10).

The main technical combinatorial result of §2 is summarized in Theorem B below. This
result asserts, in effect, that discrete subgroups of the discrete fundamental group of a
semi-graph of temperoids of HSD-type satisfy various properties of interest if and only
if the profinite completions of these discrete subgroups satisfy analogous properties (cf.
Theorem 2.15 and Corollary 2.19(i)). The main technical tool that is applied in order to
derive this result is the fact that any inclusion of a finitely generated group into a (finitely
generated) free discrete group is, after possibly passing to a suitable finite index subgroup,
necessarily split (cf. [17, Cor. 1.6(ii)], which is applied in the proof of Lemma 2.14(i) of the
present paper). Here, we recall that in [17], this fact (i.e., [L7, Cor. 1.6(ii)]) is obtained as
an immediate consequence of “Zariski’s main theorem for semi-graphs” (cf. [17, Th. 1.2]).

THEOREM B (Profinite versus discrete subgroups). Let G, H be semi-graphs of temper-
oids of HSD-type (cf. Definition 2.3(iii)). Write é, H for the semi-graphs of anabelioids
of pro-“Primes PSC-type determined by G, H (cf. Proposition 2.5(iii) in the case where
Y = Primes ), respectively; Ilg, Ty for the respective fundamental groups of G, H (cf.
Proposition 2.5(i)); g, Il for the respective (profinite) fundamental groups of G\, H.
Then the following hold:

(i) Let H, J Cllg be subgroups. Since Ilg injects into its pro-l completion for any | €
Primes (c¢f. Remark 2.5.1), let us regard subgroups of llg as subgroups of the profinite
completion ﬁg of Ug. Write H, J C ﬁg for the closures of H, J in ﬁg, respectively.
Suppose that the following conditions are satisfied:

(a) The subgroups H and J are finitely generated.
(b) If J is of infinite index in Ilg, then J is of infinite index in llg.

(Here, we note that condition (b) is automatically satisfied whenever Cusp(G) # —cf.
[17, Cor. 1.6(ii)].) Then the following hold:

(1) It holds that J = JN1lg.
(2) Suppose that there exists an element § € llg such that

HCH-J-5 L
Then there exists an element 6 € llg such that
HC§-J-67"
(ii) Let
a: g Ty

be an outer isomorphism. Write a: g = L5 for the outer isomorphism determined

by o and the natural outer isomorphisms ﬁg = Uz, ﬁH = I of Proposition 2.5 (iii).
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© (:(

a cycle lifting cycles

Figure 1.
A cycle and lifting cycles.

Then the outer isomorphism « is group-theoretically verticial (resp. group-theoretically
cuspidal; group-theoretically nodal; graphic) (cf. Definition 2.7(i) and (ii)) if and only
if the outer isomorphism & is group-theoretically verticial (cf. [18, Def. 1.4(iv)]) (resp.
group-theoretically cuspidal [cf. [18, Def. 1.4(iv)]]; group-theoretically nodal [cf. [8, Def.
1.12]]; graphic [cf. [18, Def. 1.4(i)]]).

The significance of Theorem B lies in the fact that it renders possible a fairly
straightforward translation of a substantial portion of the profinite results obtained in
earlier papers by the authors into discrete versions, as follows:

(B-1) the partial combinatorial cuspidalization obtained in [9, Th. A] and [10, Th. A] (cf.
Corollary 2.20 of the present paper);

(B-2) the theory of Dehn multi-twists summarized in [9, Th. B] (cf. Corollary 2.21 of the
present paper);

(B-3) the theory of the tripod homomorphism and metric-admissibility summarized in [10,
Th. C] and [11, Ths. A, C, and D] (cf. Theorem 2.24 of the present paper);

(B-4) the archimedean analogue (cf. Corollary 2.25 of the present paper) of the charac-
terization, given in [11, Th. B], of nonarchimedean local Galois groups in the global
Galois image associated with a hyperbolic curve.

Finally, in §3, we examine the theory of canonical liftings of cycles discussed in [5] from
the point of view of the profinite theory developed so far by the authors. This approach
contrasts substantially with the intuitive topological approach of [5] in the discrete case.
From a naive topological point of view, the canonical liftings of cycles in question amount
to once-punctured tubular neighborhoods of the given cycles (cf. Figure 1), that is, to the
construction of a tripod (i.e., a copy of the projective line minus three points) canonically and
functorially associated with the cycle. This tripod satisfies a remarkable rigidity property,
that is, it admits a canonical isomorphism, subject to almost no indeterminacies, with a
given fixed tripod that is independent of the choice of the cycle. Moreover, this canonical
isomorphism is functorial with respect to “geometric” outer automorphisms of the profinite
fundamental group of the stable log curve under consideration that lift to automorphisms
of the profinite fundamental group of a configuration space (associated with the stable
log curve) of sufficiently high dimension. Here, by “geometric,” we mean that the outer
automorphism under consideration lies in the kernel of the tripod homomorphism studied in
[10, §3]. Indeed, this remarkable rigidity property is obtained as an immediate consequence
of the theory of tripod synchronization developed in [10, §3].

The profinite version of the theory of canonical liftings of cycles developed in §3 is
summarized in Theorem C below (cf. Theorem 3.10). By applying the translation apparatus
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developed in §2 to this profinite version of the theory, we also obtain a corresponding discrete
version of the theory of canonical liftings of cycles (cf. Theorem 3.14).

THEOREM C (Canonical liftings of cycles). Let (g,7) be a pair of nonnegative integers
such that 2g—2+1 > 0; let 3 be a set of prime numbers which is either equal to the entire set
of prime numbers or of cardinality one; let k be an algebraically closed field of characteristic
Z%; let S8 def Spec(k)'°8 be the log scheme obtained by equipping S def Spec(k) with the
log structure determined by the fs chart N — k that maps 1 0; let X'°8 = Xiog be a stable
log curve of type (g,r) over S1°8. For positive integers m < n, write

log
Xn

for the nth log configuration space of the stable log curve X'°® (cf. the discussion entitled
“Curves” in [9, §0]);

1L,
for the mazimal pro-Y quotient of the kernel of the natural surjection 71 (X1°8) — 71 (S1°8);

1
ps/gm: Xibog — s Xlog prl;[/m: 11, - 11,,,

m
I < Ker(pll,,) C1L,, G, g

for the objects defined in the discussion at the beginning of [10, §3] and [10, Def. 3.1]. Let
I C Iy C Iy be a cuspidal inertia group associated with the diagonal cusp of a fiber of
p12°/g1; let Mypg C II3 be a 3-central {1,2,3}-tripod of 3 (cf. [10, Def. 3.7(ii)]); let Iipa
IIipq be a cuspidal subgroup of Ili,q that does not arise from a cusp of a fiber ofpg)/%; let

t*pd, Jt*;d C ILipg be cuspidal subgroups of Iipq such that Iipg, Jt*pd, and Jt*;d determine
three distinct Ilipq-conjugacy classes of closed subgroups of Ilipq. (Note that one wverifies
immediately from the various definitions involved that such cuspidal subgroups Iipa, Jiq;
and Jioy always exist.) For positive integers n > 2, m <n, and o € AutFO(IL,) (ef. [20,
Def. 1.1(ii)]), write

€ Aut™C(11,,)
for the automorphism of 11, determined by «;
Aut¥C (11, 1) € Aut™™C(11,,)
for the subgroup consisting of 8 € Aut"“(I1,) such that Bo(I) =1;
AutFO(I1,)¢ € AutFe(11,,)

for the subgroup consisting of 0 € AutFC(Hn) such that the image of B via the composite
Aut™C(I1,,) - Out™(I1,,) — Out™ (II;) — Out(Ilg) —where the second arrow is the natural
injection of [8, Th. B] and the third arrow is the homomorphism induced by the natural outer
isomorphism 1y = g —is graphic (cf. [18, Def. 1.4(i)]);
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AWFCIL,, )¢ ¥ AwFOIL,, 1) N AutFO(1L,)C;

Cycle™(11)
for the set of n-cuspidalizable cycle-subgroups of 11y (cf. Definition 3.5(i) and (ii));
Tde(H2/1)

Jor the set of closed subgroups T' C Ily/q such that T is a tripodal subgroup associated with
some 2-cuspidalizable cycle-subgroup of 11y (cf. Definition 5.6(i)), and, moreover, I is a
distinguished cuspidal subgroup (cf. Definition 3.6(1i)) of T. Then the following hold:

(i) Let n>3 be a positive integer. Then Aut™C(I1,,I)S acts naturally on Cycle™(IT;),
Tpd;(Ily)1); there exists a unique AutFC(IL,, 1) -equivariant map

€;: Cycle™(II;) — Tpd;(I13/)

such that, for every J € Cycle"(Ily), €;(J) is a tripodal subgroup associated with J (cf.
Definition 3.6(i)). Moreover, there exists an assignment

Cycle"(Iy) 3 J +— syng s

—uwhere syny ; denotes an I-conjugacy class of isomorphisms Uipa — €1(J)— such
that:

(a) synr ; maps Iipa bijectively onto I,

(b) shyny ; maps the subgroups Jipds Jipa bijectively onto lifting cycle-subgroups of
¢ (J) (c¢f. Definition 5.6(ii)), and

(¢) forac AutFC(Hn,I)G, the diagram (of Iipa-, I-conjugacy classes of isomorphisms)

Hipa ——  Ilpa

50“1,Jl J/ﬁnnl,al(J)

¢(J) —— &la(J))

—uwhere the upper horizontal arrow is the (uniquely determined—cf. the commen-
surable terminality of Itpaq in Iipq discussed in [18, Prop. 1.2(ii)]) Iipa-conjugacy
class of automorphisms of Ilipq that lifts T, (a) (cf. [10, Def. 3.19]) and
preserves Iipq; the lower horizontal arrow is the I-conjugacy class of isomorphisms
induced by oy (cf. the “Aut¥(I1,,, )G -equivariance” mentioned above)—commutes
up to possible composition with the cycle symmetry of €;(a1(J)) associated with I
(cf. Definition 3.8).

Finally, the assignment
J — syny g

18 uniquely determined, up to possible composition with cycle symmetries, by these
conditions (a)—(c).
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(i) Let n >4 be a positive integer, o € Aut"C(IL,,,1)¢, and J € Cycle™(II;). Then
there exists an automorphism 3 € AutFC(Hn,I)G such that the FC-admissible outer
automorphism of 113 determined by (3 lies in the kernel of the tripod homomorphism
T1,,q 0f [10, Def. 3.19], and, moreover, a1 (J) = B1(J). Finally, the diagram (of Iipa-,
I-conjugacy classes of isomorphisms)

Htpd p— Htpd
5UnI,JJ/ ls‘)“[,al(J):5UnI,51(J)

¢(J) —— €rla(J)) = &(bi(J))

—uwhere the lower horizontal arrow is the isomorphism induced by P2 (cf. the
“Aut™C(I1,,, I) G -equivariance” mentioned in (i))—commutes up to possible composition
with the cycle symmetry of €r(aq(J)) = €1 (51(J)) associated with I.

80. Notations and conventions

Sets: Let S be a finite set. Then we shall write S* for the cardinality of S.
Let S be a set equipped with an action by a group G. Then we shall write S¢ C S for
the subset consisting of elements of S fixed by the action of G on S.

Numbers: Write Brimes for the set of all prime numbers. Let Y be a set of prime
numbers. Then we shall refer to a nonzero integer n as a X-integer if every prime divisor
of n is contained in Y. The notation R will be used to denote the set, additive group, or
field of real numbers, each of which we regard as being equipped with its usual topology.
The notation C will be used to denote the set, additive group, or field of complex numbers,
each of which we regard as being equipped with its usual topology.

Groups: Let 3 be a set of prime numbers, and let f: G — H be a homomorphism
(resp. outer homomorphism) of groups. Then we shall say that f is ¥-compatible if the
homomorphism (resp. outer homomorphism) f*: G* — H* between pro-¥ completions
induced by f is injective. Note that one verifies easily that if G is a group, and H C G is a
subgroup of G of finite index, then the natural inclusion H — G is Primes-compatible. If
G is a topological group, then we shall write

Gab

for the abelianization of G, that is, the quotient of G by the closed normal subgroup of G
generated by the commutators of G. If G is a profinite group, then we shall write

G —» GZ—ab—free

for the maximal pro-X abelian torsion-free quotient of G. We shall use the terms normally
terminal and commensurably terminal as they are defined in the discussion entitled
“Topological groups” in [9, §0]. If I, J C G are closed subgroups of a topological group
G, then we shall write

I<J

if some open subgroup of [ is contained in J.
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§1. The combinatorial section conjecture

In the present section, we study outer representations of ENN-type (cf. Definition
1.7(i) below) on the fundamental group of a semi-graph of anabelioids of PSC-type (cf.
[18, Def. 1.1(i)]). Roughly speaking, such outer representations may be thought of as an
abstract combinatorial version of the natural outer representation of the maximal tamely
ramified quotient of the absolute Galois group of a complete local field on the logarithmic
fundamental group of the geometric special fiber of a stable model of a pointed stable
curve over the complete local field. By comparison to the outer representation of NN-type
studied in [8], outer representations of ENN-type correspond to the situation in which the
residue field of the complete local field under consideration is not necessarily separably
closed. Such outer representations of ENN-type give rise to a surjection of profinite groups,
which corresponds, in the case of pointed stable curves over complete local fields, to the
surjection from the arithmetic fundamental group to (some quotient of) the absolute Galois
group of the base field. Our first main result (cf. Theorem 1.13(i) below) asserts that, under
the additional assumption that the associated cyclotomic character has open image, any
section of this surjection necessarily admits a fixed point (i.e., a fixed vertex or edge).
This “combinatorial section conjecture” is obtained as an immediate consequence of an
essentially classical result concerning fixed points of group actions on graphs (cf. Lemma
1.6 below). By applying this existence of fixed points, we show that there is a natural
bijection between conjugacy classes of profinite sections and conjugacy classes of tempered
sections (cf. Theorem 1.13(iii) below) and derive a rather strong version of the combinatorial
Grothendieck conjecture (cf. [8, Th. A] and [10, Th. 1.9]) for cyclotomically full outer
representations of ENN-type (cf. Corollary 1.14 below). We also observe in passing that a
generalization of the main result of [26] may be obtained as a consequence of the theory
discussed in the present section (cf. Corollary 1.15 below).

In the present section, let ¥ be a nonempty set of prime numbers and let G be a semi-
graph of anabelioids of pro-¥ PSC-type (cf. [18, Def. 1.1(i)]). Write G for the underlying
semi-graph of G, Ilg for the (pro-X) fundamental group of G, and Htgp for the tempered
fundamental group of G (cf. [17, Exam. 2.10] and the discussion preceding [17, Prop. 3.6]).
Thus, we have a natural outer injection

P —Ilg
(cf. [11, Lem. 3.2(i)] and the proof of [11, Prop. 3.3(i) and (ii)]). Let us write
G—Gg, G»—g
for the universal pro-X and pro-tempered coverings of G corresponding to Ilg, HZP, and

def

VON(G) & lim VON(H), VCN(G®) &

= lim VCN(H™),
where H (resp. HP ) ranges over the subcoverings of 5 — G (resp. _C’jtp — @) corresponding
to open subgroups of IIg (resp. Htgp), and VCN(—) denotes the “VCN(—)” of the underlying
semi-graph of the semi-graph of anabelioids in parentheses (cf. Definition 1.1(i) below and
[8, Def. 1.1(iii)]).

We begin by reviewing certain well-known facts concerning semi-graphs and group actions
on semi-graphs.
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DEFINITION 1.1. Let I" be a semi-graph (cf. the discussion at the beginning of [17, §1]).

(i)  We shall write Vert(I') (resp. Cusp(T'); Node(T')) for the set of vertices (resp. open

edges, i.e., “cusps”; closed edges, i.e., “nodes”) of I'. We shall write Edge(T") def

Cusp(I") UNode(T'); VCN(T') %' Vert(I') LU Edge(T).

(ii) We shall write
Vr: Edge(I) — 2Vert)
(respectively, Cp: Vert(I') — 26w,
Nr: Vert(T') — 2Nede(),
Er: Vert(l') — 2Edge(r))

(cf. (i); the discussion entitled “Sets” in [9, §0]) for the map obtained by sending
e € Edge(T") (resp. v € Vert(T'); v € Vert(T'); v € Vert(I')) to the set of vertices (resp.
open edges; closed edges; edges) of I' to which e abuts (resp. which abut to v; which
abut to v; which abut to v). For simplicity, we shall write V (resp C; N; £) instead of
Vr (resp Cr; Nr; Er) when there is no danger of confusion.

(iii) Let n be a nonnegative integer; v, w € Vert(I') (cf. (i)). Then we shall write 6(v,w) <n
if the following conditions are satisfied:

o Ifn=0, then v=w.

e Ifn>1, then either §(v,w) <n—1 or there exist n closed edges e, ...,e, € Node(I")
of ' (cf. (i)) and n+ 1 vertices v, ...,v, € Vert(I') of T such that vy = v, v,, = w,
and, for 1 <i <n, it holds that V(e;) = {v;—1,v;} (cf. (ii)).

Moreover, we shall write §(v,w) =n if é(v,w) <n, but é(v,w) €n—1. If 6(v,w) =n,
then we shall say that the distance between v and w is equal to n.

DEFINITION 1.2. Let I' be a semi-graph.

(i) Let G be a group that acts on I'. Then (by a slight abuse of notation, relative to the
notation defined in the discussion entitled “Sets” in §0) we shall write

FG
for the semi-graph (i.e., the “G-invariant portion of I'”) defined as follows:

e We take Vert(I'“) to be Vert(I')¢ (cf. Definition 1.1(i); the discussion entitled “Sets”
in §0).

e We take Edge(I'?) to be Edge(I')¢ (cf. Definition 1.1(i); the discussion entitled
“Sets” in §0).

o Let e € Edge(I'%) = Edge(I')¢. Then the coincidence map

Ce: e — Vert(T%) U {Vert(I'“)}

of I'“ (cf. item (3) of the discussion at the beginning of [17, §1]) is defined as follows:
write (L' : e — Vert(T') U{Vert(I')} for the coincidence map associated with I'. Then,
for b€ e, if b€ e and ¢L'(b) € Vert(I')“ (vesp. if either b ¢ e or ¢I'(b) € Vert(I)%),
then we set (.(b) def ¢E(b) (resp. def Vert(I'?)). In particular, it holds that Ve (e) =
Vr(e)NVert(I')¢ (cf. Definition 1.1(ii)) whenever it holds either that I' is untangled
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(i.e., every node abuts to two distinct vertices—cf. the discussion entitled “Semi-
graphs” in [8, §0]) or that G acts on I without inversion (i.e., that if e € Edge(T")%,

then e = e%).

(ii) We shall write
F+
for the semi-graph (i.e., the result of “subdividing” I') defined as follows:

e We take Vert(I'™) to be Vert(I') LU Edge(T").

o We take Edge(I'™) to be the set of branches of T'.

e Let b be a branch of an edge e of I'. Write e(b) € Edge(I'™), v(e) € Vert(I'*) for the
edge and vertex of I'* corresponding to b, e, respectively. If b abuts, relative to T,
to a vertex v € Vert(I'), then we take the edge e(b) to be a node that abuts to v(e)
and the vertex of I'* corresponding to v € Vert(I"). If b does not abut, relative to I,
to a vertex of I', then we take the edge e(b) to be a cusp that abuts to v(e).

DEFINITION 1.3. Let I' be a semi-graph, and let I'g C I" be a sub-semi-graph (cf. [17,
the discussion following the figure entitled “A Typical Semi-graph”]) of I'.

(i) We shall write
I;°CT

for the sub-semi-graph of I' (i.e., whenever a suitable condition is satisfied [cf. Lemma
1.4(v) below], a sort of “open neighborhood” of I'y) whose sets of vertices and edges
are defined as follows. (Here, we recall that it follows immediately from the definition
of a sub-semi-graph that a sub-semi-graph is completely determined by its sets of
vertices and edges.)

e We take Vert(I';°) to be Vert(I'y).
o We take Edge(I';°) to be the set of edges e of I' such that Vp(e) N Vert(Iy) # 0.

(ii) We shall write
récr

for the sub-semi-graph of I' whose sets of vertices and edges are taken to be Vert(I')\
Vert(T'y), Edge(I") \ Edge(I'y), respectively.

(ifi) We shall write T£ < (TF)~ (cf. (i) and (ii)).

(iv) We shall say that an edge e of T is a T'g-bridge if Vr(e) NVert(Ty), Vr(e) ﬁVert(Fg) #0.
(Thus, one verifies easily that every I'g-bridge is a node.) We shall write Brdg(I'g C
I') € Node(I') for the set of T'p-bridges of I'. By abuse of notation, we shall write
Brdg(I'y CT') C T for the sub-semi-graph of I" whose sets of vertices and edges are
taken to be () (i.e., the empty set), Brdg(I'¢ CT') C Node(T"), respectively.

LEMMA 1.4 (Basic properties of sub-semi-graphs). Let ' be a semi-graph, To C T a sub-
semi-graph (cf. [17, the discussion following the figure entitled “A Typical Semi-graph”]) of
I, G a group, and p: G — Aut(T") an action of G on I'. Then the following hold:

(i)  Suppose either that T' is untangled or that G acts on T' without inversion. Then the
semi-graph T'C (cf. Definition 1.2(i)) may be regarded, in a natural way, as a sub-
semi-graph of T'.
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(ii) Suppose that G acts on T without inversion, and that every edge of T' abuts to at least
one vertex of I'. Then every edge of T'C abuts to at least one vertex of T'C.

(ili) The semi-graph T'= (cf. Definition 1.2(ii)) is untangled.

(iv) There exists a natural injection Aut(I') — Aut(I'*). Moreover, the resulting action
p* of G on I'F (i.e., the composite G 2 Aut(T") — Aut(I'%)) is an action without
inversion. Finally, it holds that T'¢ =) if and only if (T7) = ().

(v) Suppose that every edge of T'g abuts to at least one vertex of T'y. Then T'y may be
regarded, in a natural way, as a sub-semi-graph of I'y° (cf. Definition 1.3(i)).

(vi) We have an equality of subsets of Edge(T):

Edge(I';°) N Edge(lE ™) = Brdg(I'y CT).

Proof. The assertions of Lemma 1.4 follow immediately from the various definitions
involved. [

LEMMA 1.5 (Sub-semi-graphs of invariants). In the situation of Lemma 1.4, suppose
either that I' is untangled or that G acts on I' without inversion. Suppose, moreover, that
the sub-semi-graph T'o C T is a connected component of the sub-semi-graph T¢ C T (cf.
Lemma 1.4(i)). Then the following hold:

(i)  The action p naturally determines actions of G on I'g, I'y®, I’g_o, respectively.

(ii) The intersection of T'y° C T with any connected component of T¢ CT that is # Ty is
empty.

(iii) We have an equality of subsets of Edge(T):

Edge(T¢) N Brdg(T'y° CT) = 0.

Proof. The assertions of Lemma 1.5 follow immediately from the various definitions
involved. [

LEMMA 1.6 (Existence of fixed points). Let I' be a finite connected (hence nonempty)
semi-graph, let G be a finite solvable group whose order is a X-integer (cf. the discussion
entitled “Numbers” in §0), and let

p: G— Aut(I)
be an action of G on I'. Write IIESC for the (discrete) topological fundamental group of T;
IIE for the pro-X completion of TI&se; [disc _, T, RN for the discrete, pro-X universal
coverings of I corresponding to TIES¢, IIF, respectively. Let O € {disc,¥}. Write Aut(fD —
I)C Aut(f‘:‘) for the group of automorphisms & of I'P such that & lies over a(n) (necessarily
unique) automorphism « of T';

Aut(M® -T) — Aut(I)

« = (67

for the resulting natural homomorphism;

def

HE//G = Aut(f[] — F) xAut(F) G

for the fiber product of the natural homomorphism Aut(I'® — I') — Aut(T) and the action
p: G — Aut(I'). Thus, one verifies easily that HE//G fits into an exact sequence

1%HE—>HE//G—>G—>1.
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Let s: G — HE//G be a section of the above exact sequence. Write p5: G — Aut(fu) for
the action obtained by forming the composite G = HE//G At —T) — Aut(I'7). We

shall say that a connected finite subcovering I'y — ' of I 7T s G-compatible if 'y — T is
Galois, and, moreover, the corresponding normal open subgroup of H%“ is preserved by the
outer action of G, via p, on UE. If T'x — T is a G-compatible connected finite subcovering of
s L, then let us write ps «: G — Aut(T',) for the action of G on T, determined by pS ;
LS for the semi-graph defined in Definition 1.2(i), with respect to the action ps .. (Thus,
if T, hence also T, is untangled, then T'C is a sub-semi-graph of T',—cf. Lemma 1.4(i).)
Then the following hold:

(i)  Suppose that T is untangled. Then, for each G-compatible connected finite subcovering
Iy —1T of s - I, the sub-semi-graph TC C T, coincides with the disjoint union of
some (possibly empty) collection of connected components of I'y|rc def I',xpI'¢ CT,.

(ii) Suppose that T is untangled, and that G is isomorphic to Z/IZ for some prime number
l €X. Then, for every G-compatible connected finite subcovering I's, — ' of rs— r,
the sub-semi-graph T'C C T, is nonempty.

(iii) Suppose that O = disc. Write (DY)C for the sub-semi-graph (cf. Lemma 1.4(i)) of
(the necessarily untangled semi-graph!) [dise defined in Definition 1.2(i), with respect
to the action p3s¢. Then (fdiSC)G 1s nonempty and connected. If, moreover, we write
(%) CTY for the image of the composite (fdiSC)G < Tdisc T then the resulting
morphism (IT4)G — (I'G)g is a (discrete) universal covering of (I)o.

(iv) Suppose that O =disc (resp. O =3). Then the set

Tdisc = def ;.
VON(I*)S  (resp. VON(I'*)¢ = lim VON(I',)%),

where, in the resp’d case, the projective limit is taken over the G-compatible connected
finite subcoverings I'y — T of R I', is nonempty.

(v) Suppose that O =X, that T' is untangled, and that G is isomorphic to Z/IZ for some
prime number 1 € X Let (T%)g CT'C be a (nonempty) connected component of I'C such
that

VON((I'%)p) N Im(VCN(IT®)¢ — VON(T)) # 0

(cf. (iv)). Then there exists a G-compatible connected finite subcovering I'x — I' of
I'> =T such that the image of F*G CT. inT coincides with (FG)O Cre.

(vi) Suppose that O =X, and that T is untangled. Then the sub-pro-semi-graph (fZ)G of I®
determined by the projective system of sub-semi-graphs TG —where I', — T' ranges over
the G-compatible connected finite subcoverings offE — I'—1is nonempty and connected.
If, moreover, we write (I'%)g CT'C for the image of the composite IT®)¢ - T= ST,
then the resulting morphism (DZ)C — (I'%)g is a pro-% universal covering of (I%).

Proof. First, we verify assertion (i). Let us first observe that one verifies immediately
that there is an inclusion of sub-semi-graphs I'? C I'y|po (cf. Lemma 1.4(i)). Next, let us
observe that it follows immediately from Lemma 1.4(iii) and (iv) that, by replacing I" by
', we may assume without loss of generality that G acts without inversion on I' (which
implies that G acts trivially on I'?—cf. Definition 1.2(i)). Thus, to complete the verification
of assertion (i), it suffices to verify that the following assertion holds:
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Claim 1.6.A: Let (I's|re)o C I'v|re be a connected component of I, |pe such that
(Tulra)oNTC # (. Then (T|pe)o CTE.

To verify Claim 1.6.A, let us observe that since (I'x|pc)o NI # (), the action ps . of G on
I, stabilizes (I'x|pe)o C [« In particular, we obtain an action of G on (T'.|pe)e over T'C.
Thus, since the action of G on I'“ is trivial, and the composite (I'x|pa)o <= Ti|pe — I'¢ is
a connected finite covering of some connected component of FG, again by our assumption
that (Ts|pa)oNTY # (), we conclude that the action of G on (T |pc ) is trivial, that is, that
there is an inclusion of sub-semi-graphs (I'y|re)o € I'¢. This completes the proof of Claim
1.6.A, hence also of assertion (i).

Next, we verify assertion (ii). One verifies immediately that we may assume without
loss of generality that I', = I'. Now suppose that I'“ = (). Then since G = Z/IZ, it follows
that the action of G on I' is free, which thus implies that the quotient map I' - I'/G
is a covering of I'/G. In particular, H? e is isomorphic to the pro-% completion of the

topological fundamental group of the semi-graph I'/G. Thus, the pro-¥X group H? e is
free, hence, in particular, torsion-free. But this contradicts the existence of the section of
the surjection H? 16 G determined by s. This completes the proof of assertion (ii).

Next, we verify the resp’d portion of assertion (iv) (i.e., the assertion that VCN(I')C = ()
in the case where G is isomorphic to Z/IZ for some prime number [ € ¥. Let us first
observe that it follows immediately from Lemma 1.4(iii) and (iv) that, by replacing I" by
I'*, we may assume without loss of generality that I' is untangled. Thus, the assertion
that VON(I'Z)S £ () follows immediately from assertion (ii), together with the well-known
elementary fact that a projective limit of nonempty finite sets is nonempty. This completes
the proof of the assertion that VON(I')Y # () in the case where @ is isomorphic to Z/IZ
for some prime number [ € X.
fdisc

Next, we verify assertion (iii). Let us first observe that since is a tree, hence

untangled, it follows from Lemma 1.4(i) that (D4¢)S is a sub-semi-graph of ['Uis¢. Next,
let us observe that it follows immediately from Lemma 1.4(iv) that, by replacing I" by
I'*, we may assume without loss of generality that G acts without inversion on I'. Thus,
the assertion that (fdiSC)G is nonempty and connected follows immediately from [17, Lem.
1.8(ii)]. The remainder of assertion (iii) follows from a similar argument to the argument
applied in the proof of assertion (i). This completes the proof of assertion (iii). In particular,
the unresp’d portion of assertion (iv) (i.e., the assertion that VON(I'45¢)G = ()) holds.
Next, we verify assertion (v). Let us first observe that, to verify assertion (v), it follows
immediately from Lemma 1.4(iii) and (iv) that, by replacing I' by I'*, we may assume
without loss of generality that the action p is an action without inversion, and that every
edge of I' abuts to at least one vertex of I'. In particular, since (we have assumed that)

(T%) # 0, it follows from Lemma 1.4(ii) and (v) that (I'%);° # 0 (cf. Definition 1.3(i)).

Now if I'® is connected, then one verifies immediately that the trivial covering T “r
satisfies the condition imposed on “I'y — I'"” in the statement of assertion (v). Thus, to
complete the verification of assertion (v), we may assume without loss of generality that
I'“ is not connected, hence (cf. Lemma 1.4(ii)) contains at least one vertex ¢ Vert((I'“)o).
In particular, (I¢)E™° # 0 (cf. Definition 1.3(iii)).

Write ((T9)5°)d — ()5 for the trivial Z/IZ-covering obtained by taking a disjoint
union of copies of (I'“);° indexed by the elements of Z/1Z; (IG)E )L — (I'F)E~ for the

trivial Z/l7Z-covering obtained by taking a disjoint union of copies of (I’ G)g_‘) indexed by
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the elements of Z/IZ. Then the natural actions of G on ((T¢)y°)H, ((FG){?_O)U (cf. Lemma
1.5(i)) determine natural actions of G' x Z/IZ on ((I'“)5°)L, ((FG)g_(’)H, that is, we have
homomorphisms

P G X ZJIZ — Aut((I9)5°)H),

£ G X ZNIZ — Aut((P9)F)H).

Let ¢: G = Z/IZ be an isomorphism. Write

—o

pE° GXZNZ — GXLJIL = Aut((1%)§~)H)
(a,)  — (a,¢(a)+D)

for the composite of p# with the homomorphism described in the second line of the
display.

Next, for e € Brdg % Brdg((I'¢)o CT) (cf. Definition 1.3(iv)), write G -e C Edge((I'%)5°)
for the G-orbit of e. Then it is immediate that G- e C Brdg; moreover, since G = Z/IZ, it
follows immediately from Lemma 1.5(iii) that G -e is a G-torsor. Next, let us write

— ef S
((FG)O )H’G-e d: ((FG)O )H X(FG)(T" G-e,

—o def S
(O e = (TDFM X paye— G-e
(cf. Lemma 1.4(vi)). Then one verifies easily from the various definitions involved that the
following hold:

(a) The actions p—, pi% of GxZJIZ on ((T'9)5°), ((I‘G)g%)]—[ determine actions on
these fibers (I')5°)|g.e, (T9)E ).

(b) These fibers (I9)5°)H|g.c, (TF)E ) |q.c are (G x Z/IZ)-torsors with respect to the
actions of (a).

(c) There is a natural isomorphism of semi-graphs ((I'“);°)H|g.. = ((Fc)g_")]—”ge (cf.
Lemma 1.4(vi)), which we shall use to identify these two semi-graphs.

(d) Let epase € (T9)5°) | ge = (TF)E )| g.c (cf. (¢)) be a lifting of e € Brdg. Then there
is a uniquely determined (cf. (b)) isomorphism

tepme * (P )M ge = (P9)E ) g
of (G xZ/IZ)-torsors (cf. (b)) that maps epage t0 €pase-

Let B be a collection of elements “epase” as in (d) such that the map epase — € determines
a bijection between B and the set of G-orbits of Brdg. Thus, by gluing ((I'“);°)I to
(0G)E)U by means of the collection of isomorphisms {ie, . }e,..ep of (d) (cf. Lemma
1.4(vi)), we obtain a finite covering I', — I, together with an action of G x Z/IZ on ', (i.e.,
obtained by gluing the actions p—, pg_o), such that the morphism I', — I' is equivariant
with respect to this action of G X Z/IZ on I', and the action of G x Z/IZ on I' obtained
by composing the projection G x Z/1Z — G with the given action of G on I'. Next, let us
observe that since ¢ is an isomorphism, and both (I'“)y and (FG)Sz ~° contain vertices fixed
by G (cf. the discussion at the beginning of the present proof of assertion (v)), one verifies
immediately—for example, by considering the orbit by the action of G x {1}(C G x Z/IZ)
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of some lifting to I, (which may be chosen to pass through an element of B) of a path
of minimal length between such vertices fixed by G—that I', is connected. Moreover, it
follows from the definition of I', that the covering I'y — I' is Galois, G-compatible, and
equipped with a natural isomorphism Gal(T'./T") = Z/IZ; in particular, IS =T factors as
a composite e I',—T.

Next, let us observe that, for each g € G, the automorphism «4 of I', obtained by
considering the difference between ps .(g) and the action of g (i.e., (¢,0) € G X Z/IZ) on
I', defined above is an automorphism over I'. Moreover, it follows immediately from our
assumption that

VCN((T'%)p) N Im(VCN(T'®)¢ — VCN(T)) # 0

that «, fixes an element of VCN(T',) that maps to VON((I'%)o) € VCN(I'). But this implies
that oy is trivial, that is, that the action p, . of G coincides with the action of G(=G x {0} C
G xZJIZ) on T, defined above.

On the other hand, since ¢ is an isomorphism, it follows that (I',)¢ C T, is contained in
the sub-semi-graph of T, determined by ((I'“)5°)LL. In particular, it follows immediately
from Lemma 1.5(ii) that the image of I'¢ C T, in I' is contained in (I'“)y C I'“. Thus,
it follows immediately from assertion (i) that the image of T'¢ C T, in T' coincides with
(I'%)o CT'¢. This completes the proof of assertion (v).

Next, we verify assertion (vi). First, we claim that the following assertion holds:

Claim 1.6.B: If G is isomorphic to Z/IZ for some prime number [ € ¥, then
assertion (vi) holds.

Indeed, it follows from the resp’d portion of assertion (iv) (i.e., the assertion that
VON(I)C #£ () in the case where G is isomorphic to Z/IZ for some prime number [ € X
(i.e., the case that has already been verified!) that (I'Z)¢ # (). On the other hand, it follows
immediately from assertion (v) (i.e., by allowing “I'"” to vary among the G-compatible
connected finite subcoverings of I'* — T') that (I'*)% is connected. Thus, the final portion
of assertion (vi) (in the case where G is isomorphic to Z/IZ for some prime number [ € X3)
follows immediately from assertion (i) (and the evident pro-X version of [17, Prop. 2.5(i)]).
This completes the proof of Claim 1.6.B.

Next, we verify assertion (vi) for arbitrary finite solvable G by induction on G*. Let us
first observe that it follows immediately from Lemma 1.4(iii) and (iv) that, by replacing
I’ by I'*, we may assume without loss of generality that the action p is an action without
inversion. Next, observe that since G is finite and solvable, there exists a normal subgroup
N C G of G such that G/N is a nontrivial finite group of prime order. Then it follows
from the induction hypothesis that if we write (I'’")y C TV for the (nonempty, connected!)
image of the composite (I'®)Y < I'® — T', then the resulting morphism (IZ)Y — (I'V)g is
a pro-¥ universal covering of (I'")g, and, moreover, (since the action p is an action without
inversion) N acts trivially on (fz)N . Next, let us observe that since N is normal in G,
(one verifies immediately that) the action p= of G on I'= preserves (IZ)N C T'=. Thus, by
replacing (I — T',G) by ((I*)Y — (I'N)y,G/N) and applying Claim 1.6.B, we conclude
that assertion (vi) holds for the given G. This completes the proof of assertion (vi).

Finally, we verify the resp’d portion of assertion (iv) (i.e., the assertion that VCN(I'=)C #
(). Let us first observe that, to verify the assertion that VCN(fE)G # (0, it follows
immediately from Lemma 1.4(iii) and (iv) that, by replacing I' by I'*, we may assume

https://doi.org/10.1017/nmj.2023.39 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.39

18 Y. HOSHI AND S. MOCHIZUKI

without loss of generality that I' is untangled. Thus, the assertion that VCN(fZ)G # )
follows immediately from assertion (vi). This completes the proof of Lemma 1.6. U

REMARK 1.6.1. The conclusion of Lemma 1.6(vi) follows for an arbitrary (i.e., not
necessarily solvable!) finite group G from [30, Ths. 2.8 and 2.10]. That is to say, the proof
given above of Lemma 1.6(vi) may be regarded as an alternative proof of these results of
[30] in the case where G is solvable. In this context, it is also perhaps of interest to observe
that, by considering Lemma 1.6(vi) in the case where ¥ = Primes and “I'” is taken to be
some finite connected sub-semi-graph of rdisc that is stabilized by the action of G (where
we note that one verifies easily that 'disc ig a union of such sub-semi-graphs), one obtains an
alternative proof of the classical result concerning actions of finite groups on trees quoted in
the proofs of Lemma 1.6(iii) and [17, Lem. 1.8(ii)]—hence also alternative proofs of Lemma
1.6(iii) and [17, Lem. 1.8(ii)]—in the case where the finite group under consideration is
solvable.

REMARK 1.6.2.

(i) In the situation of Lemma 1.6, if G is isomorphic to Z/I"Z for some prime number [ € ¥
and a positive integer n, then the conclusion of the resp’d portion of Lemma 1.6(iv) may
be verified by the following easier argument: since (as is well known) a projective limit of
nonempty finite sets is nonempty, to verify the assertion that VCN(fE)G # (), it suffices
to verify that VCN(T', )¢ # () for every G-compatible connected finite subcovering T, —
I of T —T. Moreover, one verifies immediately that we may assume without loss of
generality that I'y, =T'. Next, let us observe that it follows immediately from Lemma

1.4(iv) that, by replacing I' by I'*, we may assume without loss of generality that G

acts on I without inversion. Write H C G for the unique subgroup such that @ ' a JH

is of order [; I'g dfp /H for the “quotient semi-graph,” that is, the semi-graph whose

vertices, edges, and branches are, respectively, the H-orbits of the vertices, edges, and
branches of I' (cf. the fact that G acts on I' without inversion). Then one verifies
immediately that the natural morphism of semi-graphs I' = I'g determines an outer
homomorphism

056 — 15, /0

(cf. the notation of the statement of Lemma 1.6). Now since H%Q is a free pro-X
group, hence torsion-free, it follows that the restriction s(H) — H?Q //Q (which clearly
factors through H%“Q C H%“Q / /Q) of the outer homomorphism II¥ e H?Q /0 to
s(H) C H?//G is trivial, hence that s determines a section sg: Q — H?Q//Q of the
natural surjection H?Q /0~ @. In particular, by applying Lemma 1.6(ii), we thus
conclude that VCN(I'g)® # 0. Let zg € VCN(I'g)¥, let z € VCN(I') be a lifting of
2g, and let g € G be a generator of G. Then since @ fixes zg, it follows that z9 = 2k
for some h € H, hence that z is fixed by g-h~! € G. On the other hand, since g-h~*
generates G, we thus conclude that z is fixed by G, that is, that VCN(T',) # (), as
desired.

(ii) The proof of Lemma 1.6(ii), as well as the argument of (i) above, is essentially the
same as the argument applied in [19] to prove [19, Lem. 2.1(iii)].
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REMARK 1.6.3. In the respective situations of Lemma 1.6(iii) and (vi), the sub-semi-
graph (fdiSC)G and the sub-pro-semi-graph (fE)G are necessarily connected (cf. Lemma
1.6(iii) and (vi)). On the other hand, I'“ is not, in general, connected. This phenomenon
may be seen in the following example: suppose that 2 € 3, and that rdisc jg the graph given
by the integral points of the real line R, that is, the vertices are given by the elements of
Z C R, and the edges are given by the closed line segments joining adjacent elements of Z.
For N =2M a positive even integer, write I'y for the quotient of [dise by the evident action
of N € Z on T'95¢ via translations. T hus, we have a diagram of natural covering maps

pdisc L,y —T7%p,
and the group G = Z/2Z acts equivariantly on this diagram via multiplication by +1. Here,
we observe that since N is even, one verifies immediately that G acts on 'y without
inversion. Then one computes easily that

ITHE = {0}, T'§ = MZ/NZ.
In particular, the pro-semi-graph (fE)G corresponds to the inverse limit
lim MZ/NZ,
P

hence consists of a single pro-vertex and no pro-edge and, in particular, is nonempty and
connected. On the other hand, each Fﬁ consists of precisely two vertices and no edges,
hence is not connected.

DEFINITION 1.7. Let G be a profinite group, and let p: G — Aut(G) be a continuous
homomorphism.

(i) We shall say that p is of ENN-type (where the “ENN” stands for “extended NN”) (resp.
of EPIPSC-type (where the “EPIPSC” stands for “extended PIPSC”]) if there exists a
normal closed subgroup Ig C G of G such that, for every open subgroup J C I of I,
the composite J < G % Aut(G) factors as a composite J —» J>2>-free . Aut(G) (cf.
the discussion entitled “Groups” in §0), where the second arrow is of NN-type (cf. [8,
Def. 2.4(iii)]) (resp. of PIPSC-type (cf. [11, Def. 1.3]). In this situation, we shall refer
to Ig as a conducting subgroup. Suppose that p is of ENN-type for some conducting
subgroup I C G. Then we shall say that p is verticially quasi-split if there exists an
open subgroup H C G that acts as the identity (i.e., relative to the action induced by
p) on the underlying semi-graph G of G and, moreover, for every v € Vert(G), satisfies
the following condition: the extension of profinite groups (cf. the discussion entitled
“Topological groups” in [9], §0)

out
1—1II, —1II, x H— H —1,

where II,, C Ilg is a verticial subgroup associated with v € Vert(G), associated with the
outer action of H on II, determined by p (cf. [18, Prop. 1.2(ii)]; [9, Lem. 2.12]) admits

a splitting s, : H — 11, O;t H such that the image of the restriction of s, to I¢e N H
commutes with II,,.

(ii) Let [ € ¥. Then we shall say that p is l-cyclotomically full if the image of the composite
G L Aut(G) X2 (Z%)* — Z (cf. [9, Def. 3.8(ii)]) is open.
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REMARK 1.7.1. It follows immediately from [11, Rem. 1.6.2] that the following
implication holds:

EPIPSC-type = ENN-type.

LEMMA 1.8 (Outer representations induced on pro-/ completions). Let G be a profinite
group, and let p: G — Aut(G) be a continuous homomorphism of ENN-type (resp. of
EPIPSC-type) for a conducting subgroup I C G (cf. Definition 1.7(i)). For l € &, write
G for the semi-graph of anabelioids of pro-{l} PSC-type obtained by forming the pro-l
completion of G (cf. [17, Def. 2.9(ii)]). Then the composite G 2 Aut(G) — Aut(G1) is of
ENN-type (resp. of EPIPSC-type) for some conducting subgroup C G, which may be taken
to be a mormal open subgroup of 1.

Proof. This follows immediately from the various definitions involved (cf. also [9, Th.
4.8(iv)]; [9, Cor. 5.9(ii) and (iii)]). O

DEFINITION 1.9. Let z € VCN(G). If z € Vert(G) (resp. z € Edge(G)), then we shall refer
to a verticial (resp. an edge-like) subgroup of Htgp associated with z (cf. [17, Th. 3.7(i) and
(iii)]) as a VCN-subgroup of Htgp associated with z For ¥ € VON(G™), we shall also speak
of VCN-subgroups of Htgp associated with z.

DEFINITION 1.10.

for the

(i) Let I be a semi-graph and v € Vert(I'). Then we shall write V°<!(v) C Vert(T)
) # (0. Also, we

subset consisting of w € Vert(I') such that either w = v or N'(v) "N (w
shall write Star(v) o VOSL(v)UE(v) € VCN(T).

(ii) Let v € Vert(G). Then we shall write V<! (v) C Vert(G), Star(v) C VCN(G) for the
respective subsets of (i) applied to the underlying semi- -graph of G.

(ili) Let @ € Vert(G). Then we shall write V9<1(3) C Vert(G), Star(3) C VCN(G) for the
respective projective limits of the subsets of (ii), that is, where the constructions of
these subsets are applied to the images of v in the connected finite etale subcoverings

of’gv—>g.

LEMMA 1.11 (VCN-subgroups and sections). Let G be a profinite_group, let p: G —
Aut(G) be a continuous homomorphism, let z € VCN(Q) let 2** € VCN(G'P), let 11z C Ilg be
a VCN-subgroup of llg associated with z € VCN(Q) and let Hth - Htp be a VCN—subgmup of
Htgp associated with 2 (cf. Definition 1.9). Write I < Hg G Iy = o Htp Ne (cf. the
discussion entitled “Topological groups” in [9, §0]). Thus, we have a natuml commutative

diagram
t t
1 g 1K G 1
1 IIg g G 1

—where the horizontal sequences are exact, the vertical arrows are outer injections, H
acts naturally on gtp, and g acts naturally on G. Then the following hold:

(i) It holds that
II; = NHG (Hg) NIlg = CHG (Hg) NIlg,
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Dz ™ Niio (I1z) = Cnig (1) = Nirg, (D5) = Crig (D3),

zee = Nypeo (Hzee ) NI = Crpep (Izee) N I,

tp
G

def
(Hgtp) = CH

Dgtp = NH (Hgtp) = NH (Dgtp) = CHtGp (Dgtp).

tp tp tp
G G G
(ii) Suppose that p is of ENN-type for a conducting subgroup I C G (cf. Definition 1.7(i)).

Let S be a nonempty subset of VCN(G), and let s: G — g be a section of the surjection

II¢ — G such that, for each y € S, it holds that s(Ig) < Dy (cf. the discussion entitled

“Groups” in §0). Then there exists an element v € Vert(G) such that S C Star(v) (cf.
Definition 1.10(iii)).

(iii) Suppose that p is of ENN-type for a conducting subgroup I C G. Let s: G — g be
a section of the surjection llg — G such that s(Ig) < Dx (cf. the discussion entitled
“Groups” in §0). Write G e Ci, (s(Ig)). Then there exists an element 7 € VON(G)
such that s(G) C G5 C D.

(iv) Suppose that p is of ENN-type for a conducting subgroup I C G. Let s: G — Hté’ be
a section of the surjection TIy — G such that s(Ig) < Dzw (cf. the discussion entitled
“Groups” in §0). Write G def Hg(S(IQ)). Then there erists an element (Z')" €
VCN(G™) such that s(G) C Gy C D zyew . In particular, G4 is contained in a profinite
subgroup of I (cf. (i)).

Proof. First, we verify assertion (i). The two equalities of the first (resp. third) line of the
display and the first “=" of the second (resp. fourth) line of the display follow immediately
from [18, Prop. 1.2(i) and (ii)] (resp. [18, Prop. 1.2(i) and (ii)], together with the injection
reviewed at the beginning of the present §1). Thus, the second and third “=" of the second
(resp. fourth) line of the display follow immediately from the chain of inclusions

Dz C Nug(Dz) € Cng(Dz) € Cug(DzNllg) = Cng(llz) = Dz

(resp.
D‘Z“tp g Nng(Dgtp) g CHg’(thp) g Cng:(Dgtp ﬂl_[tgp) - Cng:(ngtp) - Dgtp),

where the third “C” follows immediately from [10, Lem. 3.9(i)] (resp. the [easily verified]
tempered version of [10, Lem. 3.9(i)]). This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows from the definition of
the term “ENN-type” that the restriction of p to I C G factors through the quotient

X-ab-free : : : « » s . def out
I — I (cf. the discussion entitled “Groups” in §0). Write II;, = IIg x Ig and

def Ut o5 ab-free H H
Hygab-see = Ilg X I . Thus, we have a commutative diagram

1 Hg ]:[Ig—ab—free —_ Ig-ab-free 1
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—where the horizontal sequences are exact, the upper vertical arrows are injective, the
lower vertical arrows are surjective, and the two right-hand squares are Cartesian. Next, let
us observe that we may assume without loss of generality that S is equal to the set of all

y € VCN(G) such that s(I¢) < Dy. Now since s(Ig) < Dy = Cri, (1) (cf. assertion (i)) for
every y € S, it holds that, for each y € S, some open subgroup of the image J C Il TZ-ab-free

of Ig > My, — Il;s-ab-ee is contained in Cry,y g (). In particular, it follows from (8,
G
Props. 3.8(i) and 3.9(i)—(iii)] that:

e every pair of edges € S abut to a common vertex € S}

o the distance between any two vertices € S is <2 (cf. Definition 1.1(iii)), and the edges
“e1,...,e,” and vertices “vg,...,v,” of Definition 1.1(iii) may be taken to be € S;

e if ¢€ S is an edge, then V(e) C S.

It is now a matter of elementary combinatorial graph theory (cf. also [8, Lem. 1.8]) to
conclude that S C Star(v) for some o € Vert(G), as desired. This completes the proof of
assertion (ii).

Next, we verify assertion (iii). Since s(Ig) < Dz, the action of some open subgroup of I
on G determined by s|;,, fixes Z € VCN(G). Thus, it follows from the definition of G, that,
if, for v € G5, we write 27 € VCN(?) for the image of z by the action of v € G4, then the
action of some open subgroup of I on G fixes 27 € VCN(Q~)7 that is, s(Ig) < Dz~ for every
v € G.

Now suppose that Z € Edge(G). Then it follows from assertion (ii) that there exists
a vertex © € Vert(G) such that {27|y € Gy} C £(7). Now if {27]|y € G, } =1, then it
is immediate that Gy C Dz. On the other hand, if {Z7|y € G,}* > 2, then one verifies
immediately from the various definitions involved (cf. also [8, Lem. 1.8]) that the action of
G, fixesv € Vert(é ), which thus implies that G5 C D3. This completes the proof of assertion
(iii) in the case where z € Edge(@.

Next, suppose that z € Vert(G). Then it follows from assertion (ii) that the set Ss of
vertices v € Vert(G) such that

o S:E{P|yeG,}CVIE(D);

e any edge € Edge(G) that abuts to two distinct elements of Sz (hence is fixed by the action,
determined by s|j,, of some open subgroup of Ig—cf. [8, Prop. 3.9(ii)]) necessarily abuts
to v

is nonempty. If the action of G, fixes some y € VCN(GV), then G, C Dy. Thus, we may

assume without loss of generality that the action of G5 does not fix any element of VCN(G).

In particular, it follows that the (nonempty!) sets Sz and Ss—Dboth of which are clearly

preserved by the action of G4 —are of cardinality > 2. In a similar vein, S5\ (SsNS%) is

either empty or of cardinality > 2. Moreover, the latter case contradicts [8, Lem. 1.8. Thus,
we conclude that S5 C S5, which, by the definition of Sy and Ss, implies that S5 = S5, that
is, that, for any two distinct 27, Zo € S, there exists a (unique, by [8, Lem. 1.8]) € € Edge(&)
such that V(e) = {z1,22}. But, in light of the definition of S5, this implies that Sg =2, and
hence that Edge(gN) contains an element fixed by the action of G5 —a contradiction! This
completes the proof of assertion (iii) in the case where 2 € Vert(G), hence also of assertion
(iii). Assertion (iv) follows immediately from a similar argument to the argument applied

in the proof of assertion (iii). This completes the proof of Lemma 1.11. 0
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LEMMA 1.12 (Triviality via passage to abelianizations). Let G and J be profinite groups,
and let ¢: J — G be a continuous homomorphism. Then the following hold:

(i) Let~y € G be such that, for every open subgroup H C G of G that contains vy, the image
of v in H® is trivial. Then ~ is trivial.

(ii) Suppose that, for every open subgroup H C G of G, the composite ¢~ (H) L H - Hob
is trivial. Then ¢ s trivial.

Proof. First, we verify assertion (i). Assume that 7 is nontrivial. Then it is immediate
that there exists a normal open subgroup N C G of G such that v ¢ N. Write H C G for
the closed subgroup of G topologically generated by N and 7. Then the image of + in the
abelian quotient H — H/N is nontrivial. This completes the proof of assertion (i). Assertion
(ii) follows immediately from assertion (i). This completes the proof of Lemma 1.12. 0

THEOREM 1.13 (The combinatorial section conjecture for outer representations of
ENN-type). Let ¥ be a nonempty set of prime numbers, let G be a semi-graph of anabelioids
of pro-¥X PSC-type, let G be a profinite group, and let p: G — Aut(G) be a continuous
homomorphism that is of ENN-type for a conducting subgroup I C G (cf. Definition 1.7(i)).
Write Ilg for the (pro-X) fundamental group of G and HZP for the tempered fundamental
group of G (cf. [17, Exam. 2.10]; the discussion preceding [17, Prop. 3.6]). (Thus, we have
a natural outer injection Htgp — Ilg—cf. [11, Lem. 3.2(i)]; the proof of [11, Prop. 3.3(i) and
(i1)].) Write 1lg def Ilg e (cf. the discussion entitled “Topological groups” in [9, §0]);

out

Hg’ def Htgp X G; ”gv—> g, g~tp — G for the universal pro-3 and pro-tempered coverings of G
corresponding to Ilg, Htgp; VCN(—) for the set of vertices, cusps, and nodes of the underlying
(pro-)semi-graph of a (pro-)semi-graph of anabelioids (cf. Definition 1.1(i)). Thus, we have
a natural commutative diagram

1 ey g G 1
1 Ilg Ig G 1

—where the horizontal sequences are exact, the vertical arrows are outer injections, Hg)
acts naturally on G*°, and g acts naturally on G. Then the following hold:

(i)  Suppose that p is I-cyclotomically full (cf. Definition 1.7(ii)) for somel € X. Let s: G —
IIg be a continuous section of the natural surjection llg — G. Then, relative to the
action of llg on VCN(&) via conjugation of VCN-subgroups, the image of s stabilizes
some element of VCN(G).

(ii) Let s: G — Hg’ be a continuous section of the natural surjection Hg’ — G. Then,
relative to the action of Hg’ on VCN(gth) via conjugation of VCN-subgroups (cf.
Definition 1.9), the image of s stabilizes some element of VCN(G').

(iii) Write Sect(Ilg/G) for the set of Ilg-conjugacy classes of continuous sections of

the natural surjective homomorphism Ilg — G and Sect(Hg)/G) for the set of

https://doi.org/10.1017/nmj.2023.39 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.39

24 Y. HOSHI AND S. MOCHIZUKI

Htgp-conjugacy classes of continuous sections of the natural surjective homomorphism

Hg’ — G. Then the natural map
Sect(TY /G) — Sect(Ilg/G)

1s injective. If, moreover, p is l-cyclotomically full for some | € 3, then this map is
bijective.

Proof. First, we verify assertion (i). Let us first observe that by replacing Is by a
suitable open subgroup of I and G by the pro-I completion of the finite étale covering of
G determined by a varying normal open subgroup H C Il such that s(G) C H (cf. Lemma
1.8; [11, Lem. 1.5]), it follows immediately from the well-known fact that a projective limit
of nonempty finite sets is nonempty that we may assume without loss of generality that
X ={l}.

Next, let us observe that we may assume without loss of generality that G has at least one
node. In particular, it follows immediately from Lemma 1.11(iii) that, to verify assertion
(i), by replacing Il by a suitable open subgroup of Ilg, we may assume without loss of
generality—that is, by arguing as in the discussion entitled “Curves” in [21, §0]—that the
pro-I completion Ilg of the topological fundamental group of the underlying semi-graph G
of G is a free pro-I group of rank > 2, hence, in particular, center-free.

Then we claim that the following assertion holds:

Claim 1.13.A: For every connected finite étale Galois subcovering H — G of G—G
that determines a normal open subgroup of Ilg, the action of Ig on H, via s,
fixes an element of VCN(H).

To verify Claim 1.13.A, let us observe that, by replacing H by G (cf. [11, Lem. 1.5]), we may
assume without loss of generality that H = G. Next, let us observe that since the underlying

semi-graph G of G is finite, the continuous action of G on G factors through a finite quotient
out

G — @, that is, by a normal open subgroup of G. Write Ilg,/q def IIg x @ (i.e., notation
which is well-defined since Ilg is center-free—cf. the discussion entitled “Topological groups”
in [9, §0]; the notational conventions of Lemma 1.6, in the case where “¥” is taken to be
{l}). Thus, we obtain a commutative diagram

1 IIg IIg G 1
1 Ig g, /0 Q 1
—where the horizontal sequences are exact, and the vertical arrows are surjective. Write

I — Ig for the (finite) quotient of I determined by the quotient G — @, N¢ def Ker(G —

@), and Ny & Ker(Ig — Ig). Now let us observe that

(a) since @ is finite, it is immediate that Ng, N; are open in G, Ig, respectively, and,
moreover,

(b) it follows from the definition of the term “ENN-type” that, by replacing G — @ by
a suitable quotient of @ if necessary, we may assume without loss of generality that

Iél}-ab-free (

the quotient I — Ig factors through the quotient I — cf. the discussion

entitled “Groups” in §0), hence is cyclic of order a power of L.
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Next, let us observe that the composite Ng — G = IIg — Ilg//q@ determines a
commutative diagram

N; — Ng
|
IIg = Ilg

—where the upper horizontal arrow is the natural inclusion. Now we claim that the following
assertion holds:

Claim 1.13.B: The left-hand vertical arrow N; — Ilg of the above diagram is the
trivial homomorphism.

Indeed, let H C IIg be an open subgroup and write Ny gz C N; and Ng g C Ng for the
open subgroups obtained by forming the inverse image of H C Ilg via the vertical arrows
of the above commutative diagram. Thus, Ng g normalizes N7 g; the action of Ng g on
H by conjugation induces the trivial action of Ng g on H abNext, let us observe that
since H?" is a free Z;-module, the left-hand vertical arrow under consideration determines
a homomorphism N I{g{_ ab-free _ frab of free Z;-modules of finite rank (cf. Definition 1.7(i)),
which is Ng g-equivariant (with respect to the actions of Ng g by conjugation). On the
other hand, since the action of Ng g on H?P is trivial, the Ng_g-equivariant homomorphism
NI{’ZI}; ab-free _ fab factors through a quotient of N}{’ZI}; ab-free on which Ng, g acts trivially.

{l}-ab-free
NI H

Thus, since p is l-cyclotomically full, and Ng g acts on via the cyclotomic

character (cf. Definition 1.7(i); [9, Lem. 5.2(ii)]), we conclude that the N¢ g-equivariant
homomorphism Nl{ll}gab'free — H? is trivial. In particular, Claim 1.13.B follows from
Lemma 1.12(ii). This completes the proof of Claim 1.13.B.

Next, let us observe that it follows immediately from Claim 1.13.B that the section s

determines a section of the natural surjection

e/ire = Ugyjoxqle = Io
Thus, it follows immediately from the resp’d portion of Lemma 1.6(iv) together with the
observation (b) discussed above (cf. also Remark 1.13.1 below), that Claim 1.13.A holds.
This completes the proof of Claim 1.13.A.

Now, by allowing the subcovering H in Claim 1.13.A to vary, we conclude immediately
(from the well-known fact that a projective limit of nonempty finite sets is nonempty) that
s(I¢) stabilizes some element of VCN(G). Thus, it follows from Lemma 1.11(iii) that the
image s(G) stabilizes some element of VCN(G). This completes the proof of assertion (i).

Assertion (ii) follows, by applying [8, Prop. 3.9(i)], from a similar argument to the
argument applied to prove [17, Ths. 3.7 and 5.4]. That is to say, instead of considering
“subjoints” (i.e., paths of length 2) as in the proof of [17, Th. 3.7], the content of [8, Prop.
3.9(i)] requires us to consider paths of length 3. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). Let s, t: G — II{} be sections of the surjection II{f — G
such that there exists an element v € IIg such that the composite 5: G = Hg? — Ilg is the

conjugate by v € Ilg of the composite tGL Hg) — Ilg. Thus, it follows from assertion
(ii) (applied to both s and t) that there exist elements 7, Z € VCN(G'™) such that if we
write 27 € VCN(GV) for the image of z by the action of v, then § stabilizes both y and z7. In
particular, we conclude from Lemma 1.11(ii) that the distance between 3y and z7 is finite,
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hence that, for each subcovering H — G of G — G that arises from an open subgroup
of Htgp, the distance between the images of z and zZ” in H is finite, which implies that
v E Hz;p. This completes the proof of the injectivity portion of assertion (iii). Since (one
verifies immediately that) every element of VON(G) lies in the IIg-orbit of an element of
VCN(G'™), the final portion of assertion (iii) follows immediately from assertion (i). This

completes the proof of Theorem 1.13. 1

REMARK 1.13.1. We observe in passing, with regard to the application of Lemma 1.6(iv)
in the proof of Theorem 1.13(i) that, in fact, Lemma 1.6(iv) is only applied in the case where
the group “G” of Lemma 1.6 is cyclic and of order a power of [. That is to say, we only
apply Lemma 1.6(iv) in the case that, as discussed in Remark 1.6.2(i) admits a relatively
simple proof.

COROLLARY 1.14 (A combinatorial version of the Grothendieck conjecture for outer rep-
resentations of ENN-type). Let X be a nonempty set of prime numbers; G, H semi-graphs
of anabelioids of pro-Y PSC-type; Gg, Gy profinite groups; B: Gg = G# a continuous
isomorphism; pg: Gg — Aut(G), pp: Gy — Aut(H) continuous homomorphisms that are
of ENN-type for conducting subgroups Iq, C Gg, Ia, C Gy (cf. Definition 1.7(i)) such
that B(Ig,) = I, ; | € ¥ a prime number such that pg and py are l-cyclotomically full (cf.
Definition 1.7(ii)). Suppose further that pg is verticially quasi-split (cf. Definition 1.7(1)).
Write lg, Iy for the (pro-X) fundamental groups of G, H, respectively. Let a: Tlg — Iy
be a continuous isomorphism such that the diagram

Gg 2% Aut(G) — Out(Ilg)

| !

Gn % Aut(H) — Out(Ily)

—where the right-hand vertical arrow is the isomorphism obtained by conjugating by «
—commutes. Then « is graphic (cf. [18, Def. 1.4(i)]).

Proof. First, let us observe that by [18, Cor. 2.7(i)], it follows from our assumption that
pg and py are [-cyclotomically full that o: IIg = Il is group-theoretically cuspidal. Thus,
by applying [18, Prop. 1.5(ii)] and [8, Lem. 1.14], we conclude that it suffices to verify
that « is group-theoretically verticial under the additional assumption that G and H are
noncuspidal. Write Ilg,, Ilg,, for the profinite groups “Ilg” (cf. Theorem 1.13) associated
with pg, px. Then it follows immediately from our assumption that pg is verticially quasi-
split that we may assume, after possibly replacing G¢g and Gy by corresponding open
subgroups, that there exists a section sg: Gg — llg, such that the image of the restriction
of sg to I, commutes with some verticial subgroup of Ilg. In particular, sg satisfies the
conditions imposed on the section “s: G — IIg” in Lemma 1.11(ii), for some nonempty
subset “S.” Moreover, it follows from Theorem 1.13(i) that the isomorphism Ilg, = g,
determined by o and 8 maps sg to a section sy : Gy — Ilg,, that is contained in the
normalizer in Ilg,, of a VCN-subgroup of IlIy. In particular, after possibly replacing Gg
and Gy by corresponding open subgroups, we may assume (cf. [18, Prop 1.2(ii)] and [8, Rem.
2.7.1]) that the image of the restriction of sy to I,, commutes with some nontrivial verticial
element of I3 (cf. [10, Def. 1.1]). Thus, by restricting these sections sg, sy to the respective
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conducting subgroups and forming appropriate centralizers [cf. [8, Lem. 3.6(i)], applied to
the restriction of sg to Ig,], we conclude from the assumption that /5 is compatible with the
respective conducting subgroups that a: IIg = II3, maps some nontrivial verticial element
of Ilg to a nontrivial verticial element of II. In particular, it follows from the implication
(3) = (1) of [10, Th. 1.9(i)] that « is group-theoretically verticial, as desired. 0

REMARK 1.14.1. It is not difficult to verify that the assumption in the statement of
Corollary 1.14 that 5(Ig,) = Ig,, cannot be omitted. Indeed, if one omits this assumption,
then a counterexample to the graphicity asserted in Corollary 1.14 may be obtained as
follows: let J be a semi-graph of anabelioids of pro-¥X PSC-type and eg, ey distinct nodes
of J. Write G (resp. H) for the semi-graph of anabelioids of pro-X PSC-type J .Node(7)\{eg}
(resp. JNode(J)\{es}) Obtained by deforming the nodes of J that are # eg (resp. # ey)
(cf. [9, Def. 2.8)); I, (resp. Ig,,) for the (necessarily normal—cf. [9, Th. 4.8(i) and (v)])
closed subgroup of Aut!{ee- ¢} (7) (cf. [9, Def. 2.6(i)]) generated by the profinite Dehn
twists that arise from the direct summand of the direct sum decomposition in the display
of [9, Th. 4.8(iv)], labeled by eg (resp. e3). Next, let Gg = G be a closed subgroup of
Autltes-e3( 7) such that:

e (g = Gy contains both Ig, and Ig,,,

e the natural inclusion Gg = Gy — Aut(J) is l-cyclotomically full for some [ € ¥, and,
moreover,

e if we write pg (resp. py ) for the continuous injection Gg — Aut(G) (resp. Gy — Aut(H))
obtained by forming the composite of the natural inclusion Gg = Gy — Autl{eo-cn}l(7)
and the injection Autl{eo- e} (7) — Aut(G) (resp. Aut!{eoen}(7) — Aut(H)) (cf. [9,
Prop. 2.9(ii)]), then pg is verticially quasi-split.

(Note that one verifies easily the existence of such a closed subgroup of Autltes-¢#}(7)
by considering, for instance, a homomorphism Gg = G — Aut(J) of EPIPSC-type that
arises from a suitable stable log curve—cf. also Remark 1.7.1, [9, Lem. 5.4(ii)], and [9, Prop.
5.6(ii)].) Then if one takes the “a” of Corollary 1.14 to be the outer isomorphism determined
by the specialization outer isomorphisms ®7_ . . (7)\{eg}s PTnoae(@)\ferd (cf. [9, Def.
2.10]) and the “B” of Corollary 1.14 to be the identity isomorphism, then one verifies
immediately from [9, Cor. 3.9(i)] and [9, Cor. 5.9(iii)] that one obtains a counterexample
as desired.

Let R be a complete discrete valuation ring whose residue characteristic we denote by p
(so p may be zero); K a separable closure of the field of fractions K of R;

Xlog

a stable log curve (cf. the discussion entitled “Curves” in [9, §0]) over the log regular log
scheme Spec(R)°® obtained by equipping Spec(R) with the log structure determined by
the maximal ideal mr C R of R. Suppose, for simplicity, that X'°8 is split, that is, that the

natural action of Gal(K/K) on the dual semi-graph I 1. associated with the geometric
special fiber of X'°¢ is trivial. Write X'°® Lt ylos K Vert(X'°8) (resp. Cusp(X'8);
Node(X98)) for the set of vertices (resp. open edges; closed edges) of I yis, that is, the set

of connected components of the complement of the cusps and nodes (resp. the set of cusps;
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the set of nodes) of the special fiber of X''°8;

VCN(X'o8) e Vert(X'°8) LI Cusp(X'°8) LINode( X °8).

Before proceeding, we recall that

to each element z € VCN(X'°8), one may associate, in a way that is functorial with
respect to arbitrary automorphisms of the log scheme X%, a discrete valuation
that dominates R on the residue field of some point of X, which is closed if and
only if z is a cusp.

Indeed, this is immediate if z is a vertex, since a vertex corresponds to a prime of height 1
of X. This is also immediate if z is a cusp, since the residue field of the closed point of X
that corresponds to z is finite over (the complete discrete valuation field) K, which implies
that the discrete valuation of K extends uniquely to a discrete valuation on the residue field
of a cusp. Now suppose that z is a node that is locally defined by an equation of the form
$182 —a, for some a € mp (cf., e.g., the discussion of [9, Def. 5.3(ii)]). By descent, we may
assume without loss of generality that a admits a square root b in R. Then one associates
with z the discrete valuation determined by the exceptional divisor of the blowup of X
at the locus (s1,s2,b). (One verifies immediately that this construction is compatible with
arbitrary automorphisms of X'°8.)

COROLLARY 1.15 (Fixed points associated with Galois sections). Let ¥ be a set of
prime numbers; X1 C ¥ a subset; 1 € £t R a complete discrete valuation ring of residue

characteristic p € X1 (so p may be zero); K a separable closure of the field of fractions K
of R;

Xlog

a stable log curve (cf. the discussion entitled “Curves” in [9, §0]) over the log reqular log

scheme Spec(R)'°® obtained by equipping Spec(R) with the log structure determined by the
mazimal ideal of R. Write G def Gal(K/K) for the absolute Galois group of K; Ix C G
def

for the inertia subgroup of G ; X'°8 = X8 x p K ; X%Og def ylog xpK;

AXlog

for the pro-% log fundamental group of X%Og (i.e., the maximal pro-¥ quotient of the log
fundamental group of X%Og );

HXlog

for the geometrically pro-Y log fundamental group of X'°8 (i.e., the quotient of the log
fundamental group of X'°% by the kernel of the natural surjection from the log fundamental
log

group of XF onto Axies ). Thus, we have a natural exact sequence of profinite groups

1— Axiog — 510 — G — 1.
Write X'°8 — X108 for the profinite log étale covering of X'°8 corresponding to I xie. If
Ylog — X8 s  finite connected subcovering of X'°8 — X198 that admits a stable model

V'8 over the normalization Ry of R in Y, then let us write Iy for the dual semi-graph
determined by the geometric special fiber of Y'°8 over Ry ; Vert(Y'°8) (resp. Cusp(Y'°8);
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Node(Y°8)) for the set of vertices (resp. open edges; closed edges) of T'yios, that is, the set
of connected components of the complement of the cusps and nodes (resp. the set of cusps;
the set of nodes) of the geometric special fiber of Y'°% over Ry ;

Edge(Y'°#) o Cusp(Y'°8) LUNode(Y08);

VON(Y'05) % Vert(Y1°8) U Edge(Y°%);

VON(X'°8) < 1im VCN(Y1%),
where the projective limit is over all finite connected subcoverings Y108 — X108 of Xlog
X2 as above, and, moreover, for each finite connected subcovering Yllog — Xlog of Xlog
X'°8 that admits a stable model y{"g over the normalization of R in Yy, the transition map
for a finite connected subcovering Y,°® — Y°% of X8 — Y/°% that admits a stable model
198 gver the normalization of R in Yy is defined, for z € VCN(Y,°%), as follows:

e If the connected component/cusp/node corresponding to z maps, via the extension y;‘)g —
y}og of Y2log — Yllog (¢f., e.g., [14, Th. C]), to a cusp or node of the geometric special
fiber of Y1, then the image of z € VCN(Y,°%) in VCN(Y,°%) is defined to be the element
of Edge(Y,°%) corresponding to the cusp or node.

o [f the generic point of the connected component/cusp/node corresponding to z maps, via
the extension Y& — V%% of Y,°8 — Y%, to a point of the geometric special fiber of Y
that is neither a cusp nor node, then the image of z € VCN(Y;°8) in VON(Y,{°%) is defined
to be the element of Vert(Yllog) corresponding to the connected component on which the
point lies.

If z ¢ VCN()Z'lOg), and Y'°8 — X198 s g finite connected subcovering of X8 — X1°8 that
admits a stable model Y'°® over the normalization of R in Y, then let us write Z(Y'°8) €
VCN(Y'°8) for the element of VON(Y'°8) determined by Z. Let H C Gk be a closed subgroup
such that the image of

In ¥ HAI C Ik

via the natural surjection I —» I}y to the pro-Xt completion IIE<T of I is an open subgroup
»t
of I and

s: H — Il xiog

a section of the restriction to H C G of the above exact sequence 1 — Axiog — I x10s —
Gk — 1. Then the following hold:

(i) If we write A;log for the mazimal pro- quotient of Axwe and regard, via the
specialization outer isomorphism with respect to X'°2, the pro-Xt group A;log as
the (pro-X1) fundamental group of the semi-graph of anabelioids of pro-X1 PSC-type
determined by the geometric special fiber of the stable model X'°8 (cf. [18, Exam. 2.5]),
then the natural outer Galois action

H— Out(A;_]Og)
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determined by the above exact sequence is of EPIPSC-type for the conducting subgroup
Iy C H (c¢f. Definition 1.7(i)). If, moreover, H is l-cyclotomically full, that is, the
image of H C Gk wvia the l-adic cyclotomic character on Gy is open, then the above
outer Galois action is l-cyclotomically full (cf. Definition 1.7(ii)).

(i) Suppose that the residue field of R is countable. Let 3 € VON(X°8) and S = {Y'°8 —
X081 g cofinal system consisting of finite Galois subcoverings Y& — X1°& of Xlos
X8 such that Y'°8 admits a split stable model over the normalization Ry of R in Y.
Then there exist a valuation vy on the residue field of some point of the underlying
scheme X of Xlog (i.e., a bounded multiplicative seminorm—cf., e.g., [2, §81.1 and
1.2]) and a countably indexed cofinal subsystem S’ of S such that if Z'°& — X'°8 js
a member of S', then, as Y'°8 — X198 ranges over the members of S’ that lie over
Z'°8 | the discrete valuations on residue fields of points of the underlying scheme Z
of Z'°¢ determined by the elements Z(Y'°2) € VCN(Y'°8) (cf. the discussion preceding
the present Corollary 1.15) converge in the “Berkovich space topology”—that is, as
bounded multiplicative seminorms—to the valuation on the residue field of some point
of Z determined by vs.

(iii) Write Stab(s) C VON(X'98) for the subset consisting of elements Z € VCN(X'°8) such
that the image of s stabilizes z. Suppose that H is l-cyclotomically full (cf. (i)). Then
it holds that

Stab(s) # 0.

In particular, if Z € Stab(s), and the residue field of R is countable, then the image of
s lies in the decomposition group of any valuation vz as in (ii).

(iv) Let Y'°8 — X'°8 be q finite connected subcovering of Xog — X108 that admits a stable
model over the normalization Ry of R in Y; Z1, Zo € Stab(s) (cf. (iii)). Then one of
the following four (mutually exclusive) conditions is satisfied:

(a) Z1(Y'°8), Zy(Y'o®) € Vert(Y'°®), and &(z1(Y'°8),Z5(Y'°8)) < 2 (cf. Definition
1.1(iii)).

(b) Z1(Y'°8), Zy(Y'°8) € Edge(Y'°®), and, moreover, V(z1(Y1°2)) NV(Z2(Y°2)) £ (.

(c) Z1(Y'°8) € Vert(Y'°8), Z,(Y'°8) ¢ Edge(Y'°8), and, moreover, VO<1(Z,(Y'°8)) N
V(Z(Y'98)) £ 0 (cf. Definition 1.10(i)).

(d) zZ(Y'°8) € Edge(Y'9®), Zy(Y'°8) € Vert(Y'®), and, moreover, V(Z1(Y'°8))N
VISL(Zy(Yo8)) £ ).

v) In the situation of (iv), suppose, moreover, that the following assertion—that is,
In the situation of (i that the followi tion—that i
concerning “resolution of nonsingularities” (cf. Remark 1.15.1 below)—holds:
(TRNS): Let Y'°5 — X198 be o finite connected subcovering of X'°& — X'og
that admits a stable model Y'°8 over Ry and yey qvnode of Y. Then there
exists a finite connected subcovering Z'° — Y198 of X198 — Y198 that admits

a stable model Z'°% over Ry such that the fiber over y of the morphism
Z — Y determined by Z'°8 — Y'°8 is not finite.

Then every finite connected subcovering Y'°8 — X8 of X8 — X8 that admits a
stable model over Ry satisfies one of the following four (mutually exclusive) conditions:

(&) Z1(Y®), Zp(Y'98) € Vert(Y'°®), and 2z, (Y'°8) = Z,(Yo8).
(') Z1(Y®), Zy(Y'°8) € Edge(Y'98), and, moreover, V(Z1(Y'°8)) NV (Zo(Y'°8)) # ().
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() Z1(Y'8) € Vert(Y'8), Zy(Y'°8) € Edge(Y'°®), and, moreover, 7z (Y'°®) €

V(Zo(Y08)).

(d) zZ1(Y'°®) € Edge(Y'©8), Z(Y'°®) € Vert(Y'°®), and, moreover, Zo(Y'°®) €
V(Z1(Yo8)).

(vi) Wrz'te Ag’log for the Y-tempered fundamental group of Xlog (cf. [11, Def. 3.1(i1)]);

Xlog for the geometrically Y-tempered fundamental group of X& (i.e., the quotient
of the tempered fundamental group of X'°% by the kernel of the natural surjectzon from
the tempered fundamental group of X—Og onto A%

Xlog) Thus, we have a natural exact
sequence of topological groups

1— A® It

Xlog Xlog GK 1.

Write Sect(Ilx0s /H) for the set of A xies-conjugacy classes of contmuous sections of
the restriction to H C G of the natural surjection Il yis — Gg and Sect(IT ios/H) for

the set of Axlog
of the natural surjection II%2

conjugacy classes of continuous sections of the restriction to H C G
—» G . Then the natural map

JH) — Sect(Il x5 /H)

Xlog

Sect (Ht}?log

is injective. If, moreover, H is l-cyclotomically full (cf. (i)), then this map is bijective.

Proof. Assertion (i) follows immediately from the definition of the term “IPSC-type”
(cf. [8, Def. 2.4(i)]), together with the well-known structure of the maximal pro-3' quotient
of I'x. Next, we verify assertion (ii). Let us first observe that it follows immediately from
our countability assumption on the residue field of R that the following three assertions
hold:

o If Y8 — X% i5 a member of S, and Z(Y'°8) & Cusp(Y'°®8), then the function field of
Y admits a subset which is countable and dense, that is, with respect to the topology
determined by the discrete valuation determined by the element Z(Y1°8) € VCN(Yo®).

o If Y8 — X9 is 3 member of S, and Z(Y'°8) € Cusp(Y'°8), then the normalization Ry of
R in Y admits a subset which is countable and dense, that is, with respect to the topology
determined by the discrete valuation determined by the element z(Y°8) € VCN(Yo2).

e There exists a countably indexed cofinal subsystem of S (cf., e.g., [21, Lem. 2.1]).

Thus, assertion (ii) follows immediately, by applying a standard argument involving Cantor
diagonalization, from the well-known (local) compactness of Berkovich spaces (cf., e.g., [2,
Th. 1.2.1]). Here, we recall in passing that this compactness is, in essence, a consequence
of the compactness of a product of copies of the closed interval [0,1] C R. This completes
the proof of assertion (ii). We refer to Theorem A.7 in the Appendix for another approach
to proving assertion (ii).

Assertion (iii) follows immediately from the observation that, by applying Theorem
1.13(i) (cf. also Remark 1.7.1; assertion (i) of the present Corollary 1.15; [18, Prop. 1.2(i)]),
together with the well-known fact that a projective limit of nonempty finite sets is nonempty,
to the various finite connected subcoverings of Xlog 5 X log " one may conclude that the
action of G, via s, on X'°5 fixes some clement 7, € VON(X'°8) of VON(X'°8). (Here, we
note that when one applies Theorem 1.13(i) to the various finite connected subcoverings of
Xlog 5 X log the conducting subgroup “Ig” of Theorem 1.13(i) must be allowed to vary
among suitable open subgroups of the original conducting subgroup I;.) Assertion (iv)
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follows immediately (cf. also Remark 1.7.1; assertion (i) of the present Corollary 1.15) from
Lemma 1.11(ii).

Next, we verify assertion (v). Let us first observe that it follows immediately from
assertion (iv) that if Y8 — X!°& is a finite connected subcovering of Xlos —, Xlog that
admits a stable model over Ry, then Z;(Y'°®) and Z(Y'°®) lie in a connected sub-semi-
graph I'* of I'y10e such that

VCN(I'*)* = Vert(I')* + Edge(I'*)* <3+2=5.

Now one verifies immediately that this uniform bound “5” implies that there exists a cofinal
system S = {Y1°¢ — X981 consisting of finite Galois subcoverings Y108 — X8 of Xlog —,
X'°8 such that Y'°% admits a stable model over Ry, and, moreover, I'yi: admits a connected

sub-semi-graph I'j,,,, such that:

o Z1(Y'°8) and Z(Y'®) lie in I'}.,;
e VCN(I'%,.,)f <5;
e the semi-graphs I

*

y1oe Map isomorphically to one another as one varies ylos  Xlog,

Write V*(Yo8) def Vert(I'}1;). Then it follows immediately from assertion (iv) that, to
complete the verification of assertion (v), it suffices to verify that the following assertion

holds:
Claim 1.15.A: V*(Y'o8)# < 1.

Indeed, suppose that V*(Y'°8)F > 2. Then it follows immediately that there exists a
compatible system of nodes e(Y'°8) of I}, (i.e., compatible as one varies Y08 — X'08
in S), each of which abuts to distinct vertices v, (Y'°8), vg(Y1°8) of I'}.,,. (Thus, one may
assume that the vertices v, (—) [resp. vg(—)] form a compatible system of vertices.) But this
implies that for every Z'°¢ — X'°8 in S that lies over Y8 — X108 in S, if we write J'°8,
Z'8 for the respective stable models of Y'°8 Z1°¢ (so the morphism Z'°¢ — Y'°8 extends
to a morphism Z°8 — Y1°8cf. e.g., [14, Th. C]), then the inverse image in Z'°8 of the
node e(Y'°8) admits at least one isolated point (i.e., e(Z'°8)), and hence (since the covering
Z9& — Y198 is Galois) the entire inverse image in Z°¢ of e(Y'°®8) is of dimension zero. On
the other hand, this contradicts the assertion (1*N°) in the statement of assertion (v). This
completes the proof of assertion (v).

Finally, we verify assertion (vi). The injectivity portion of assertion (v) follows imme-
diately from the injectivity portion of Theorem 1.13(iii) (cf. also Remark 1.7.1; assertion
(i) of the present Corollary 1.15), applied to the various finite connected subcoverings of

Xlog —, X8 where we take the “X” of Theorem 1.13 to be Xt (cf. also the fact that, in
the notation of Theorem 1.13, “Htgp” is dense in “IIg” in the profinite topology). Here, we
note that

e when one applies Theorem 1.13(iii) to the various finite connected subcoverings of Xlog
X2 the conducting subgroup “Ig” of Theorem 1.13(iii) must be allowed to vary among
suitable open subgroups of the original conducting subgroup Ig, and that

e it follows immediately from the final portion of Lemma 1.11(iv) that the resulting

conjugacy indeterminacies that occur at various subcoverings are uniquely determined up
tp

Xlog
passes to an appropriate subsequence of the system of subcoverings under consideration).

to profinite centralizers of the sections that appear, hence converge in A (i.e., if one
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If H is l-cyclotomically full, then the surjectivity of the map

Sect(Hglglog JH) — Sect(Ilxos /H)

follows formally (cf. the proof of the final portion of Theorem 1.13(iii)) from the
nonemptiness verified in assertion (iii). This completes the proof of assertion (vi). 0

REMARK 1.15.1. It follows from [29, Th. 0.2(v)] that if K is of characteristic zero, the
residue field of R is algebraic over [F),, and ¥ = Primes, then the assertion (TRNS) in the
statement of Corollary 1.15(v) holds.

REMARK 1.15.2.

(i) Corollary 1.15(iii) and (v) (cf. also [17, Lem. 5.5]) may be regarded as a generalization
of the Main Result of [26]. These results are obtained in the present paper (cf. the proof
of Theorem 1.13(i)) by, in essence, combining, via a similar argument to the argument
applied in the tempered case treated in [17, Ths. 3.7 and 5.4] (cf. also the proof of
Theorem 1.13(ii) of the present paper), the uniqueness result given in [8, Props. 3.8(i)
and 3.9(1)—(iii)] (cf. the proof of Lemma 1.11(ii)), with the existence of fixed points of
actions of finite groups on graphs that follows as a consequence of the classical fact that
(discrete or pro-X) free groups are torsion-free (cf. Remarks 1.6.2 and 1.13.1; the proof
of Lemma 1.6(ii)). One slight difference between the profinite and tempered cases is
that, whereas, in the tempered case, it follows from the discreteness of the fundamental
groups of graphs that appear that the actions of profinite groups on universal coverings
of such graphs necessarily factor through finite quotients, the corresponding fact in the
profinite case is obtained as a consequence of the fact that, under a suitable assumption
on the cyclotomic characters that appear, any homomorphism from a “positive slope”
module to a torsion-free “slope zero” module necessarily vanishes (cf. the proof of
Claim 1.13.B in Theorem 1.13(i)). That is to say, in a word, these results are obtained
in the present paper as a consequence of

abstract considerations concerning abstract profinite groups acting on
abstract semi-graphs that may, for instance, arise as dual semi-graphs of
geometric special fibers of stable models of curves that appear in scheme
theory, but, a priori, have nothing to do with scheme theory.

This a priori irrelevance of scheme theory to such abstract considerations is reflected
both in the variety of the results obtained in the present §1 as consequences of Theorem
1.13, as well as in the generality of Corollary 1.15. This approach contrasts quite
substantially with the approach of [26], that is, where the main results are derived
as a consequence of highly scheme-theoretic considerations concerning stable curves
over complete discrete valuation rings, in which the theory of the Brauer group of the
function field of such a curve plays a central role (cf. [26, §4]).

(ii) The essential equivalence between the issue of considering valuations fixed by Galois
actions and the issue of considering vertices or edges of associated dual semi-graphs
fixed by Galois actions may be seen in the well-known functorial homotopy equivalence
between the Berkovich space associated with a stable curve over a complete discrete
valuation ring and the associated dual graph (cf. [3, Ths. 8.1 and 8.2]). Moreover, the
issue of convergence of (sub)sequences of valuations fixed by Galois actions is an easy
consequence of the well-known (local) compactness of Berkovich spaces (cf. the proof of
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Corollary 1.15(ii); [2, Th. 1.2.1]), that is, in essence, a consequence of the well-known
compactness of a product of copies of the closed interval [0,1] C R. That is to say,
there is no need to consider the quite complicated (and, at the time of writing, not
well understood!) structure of inductive limits of local rings, as discussed in [26, §1.6].

REMARK 1.15.3. Recall that in Corollary 1.15(ii) and the final portion of Corollary
1.15(iii), we assume that the residue field of R is countable. In fact, however, it is not
difficult to see that, in the situation of Corollary 1.15, there exists a complete discrete
valuation ring R' that is dominated by R, and whose residue field is countable such that

e the smooth log curve X8,
e the closed subgroup H C Gk, and
e the section s: H — Il xiog

descend to the field of fractions of Rf. Indeed, let us first observe that since the moduli
stack of pointed stable curves of a given type over Z is of finite type over Z, there exists
a complete discrete valuation ring R that is dominated by R, and whose residue field
is countable such that the smooth log curve X'°8 descends to the field of fractions of R?.
Next, let us observe that since (cf., e.g., [15, Prop. 2.3(ii)]) the geometric fundamental group
“Axios” associated with the smooth log curve X'°¢ (i.e., over the field of fractions of R)
is naturally isomorphic to the geometric fundamental group “A xi.s” associated with the
descended smooth log curve (i.e., over the field of fractions of R*), it follows that both of
these geometric fundamental groups are topologically finitely generated (cf., e.g., [23, Prop.
2.2(ii)]), and hence that there exists a countably indexed open basis

- CUpy1 CUR C - CUy CU; CUp = Axros

of characteristic open subgroups of A yie. In particular, there exists a complete discrete
valuation ring R' that is dominated by R, and whose residue field is countable such that,
for each positive integer n, the finite collection of finite étale coverings (which are defined
by means of finitely many polynomials, with finitely many coefficients) corresponding to

e the finite quotient Ilyie — (), determined by the image of the composite of the
conjugation action Iy — Aut(Axies) and the natural homomorphism Aut(A xios) —
Aut(A xs/U,) and

e the subgroup H, C @, obtained by forming the image of the composite of the section
s: H — Il e and the natural surjective homomorphism Il yios = Qp

descends to the field of fractions of RT.

§2. Discrete combinatorial anabelian geometry

In the present section, we introduce the notion of a semi-graph of temperoids of HSD-type
(i.e., “hyperbolic surface decomposition type”—cf. Definition 2.3(iii)) and discuss discrete
versions of the profinite results obtained in [8], [9], [10], [11]. A semi-graph of temperoids
of HSD-type arises naturally from a decomposition (satisfying certain properties) of a
hyperbolic topological surface and may be regarded as a discrete analogue of the notion of
a semi-graph of anabelioids of PSC-type. The main technical result of the present section
is Theorem 2.15, one immediate consequence of which is the following (cf. Corollary 2.19):
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An isomorphism of groups between the discrete fundamental groups of a pair of
semi-graphs of temperoids of HSD-type arises from an isomorphism between the
semi-graphs of temperoids of HSD-type if and only if the induced isomorphism
between profinite completions of fundamental groups arises from an isomorphism
between the associated semi-graphs of anabelioids of pro-Primes PSC-type.

In the present §2, let ¥ be a nonempty set of prime numbers.

DEFINITION 2.1.
(i)  We shall refer to as a semi-graph of temperoids G a collection of data as follows:

e a semi-graph G (cf. the discussion at the beginning of [17, §1]),

e for each vertex v of G, a connected temperoid G, (cf. [17, Def. 3.1(ii)]),

e for each edge e of G, a connected temperoid G., together with, for each branch
b € e abutting to a vertex v, a morphism of temperoids b.: Ge — G, (cf. [17, Def.
3.1(iii))).

We shall refer to a semi-graph of temperoids whose underlying semi-graph is connected
as a connected semi-graph of temperoids. Given two semi-graphs of temperoids, there
is an evident notion of (1-)morphism (cf. [17, Def. 2.1]; [17, Rem. 2.4.2]) between
semi-graphs of temperoids.

(ii) Let 7 be a connected temperoid. We shall say that a connected object H of T is X-finite
if there exists a morphism J — H in 7 such that J is Galois (hence connected—cf.
[17, Def. 3.1(iv)]), and, moreover, Aut(.J) is a finite group whose order is a X-integer
(cf. the discussion entitled “Numbers” in §0). We shall say that an object H of T
is X-finite if H is isomorphic to a disjoint union of finitely many connected Y-finite
objects. We shall say that an object H of T is a finite object if H is Primes-finite. We
shall write

TZ
for the connected anabelioid (cf. [16, Def. 1.1.1]) obtained by forming the full
subcategory of 7 whose objects are the X-finite objects of 7. Thus, we have a natural
morphism of temperoids (cf. Remark 2.1.1 below)
T — T
We shall write
’/7: d:ef T‘Btimeﬁ

(cf. the discussion entitled “Numbers” in §0). Finally, we observe that if 7 = B*P(II),
where II is a tempered group (cf. [17, Def. 3.1(i)]), and “B*P(—)” denotes the category
“Btemp ()" of the discussion at the beginning of [17, §3], then 7> may be naturally
identified with B(II¥), that is, the connected anabelioid (cf. [16, Def. 1.1.1]; the
discussion at the beginning of [16, §1]) determined by the pro- completion IT* of II.
(ili) Let G be a semi-graph of temperoids (cf. (i)). Then, by replacing the connected
temperoids “G(_y” corresponding to the vertices and edges “(—)” by the connected
anabelioids “Q(ﬁ_)” (cf. (ii)), we obtain a semi-graph of anabelioids, which we denote by

gZ
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(cf. [17, Def. 2.1]). Thus, it follows immediately from the various definitions involved
that the various morphisms “G(_y — Q(Z_)” of (ii) determine a natural morphism of
semi-graphs of temperoids (cf. Remark 2.1.1 below)

G—G*.

‘We shall write 3 def G¥rimes  (Ope verifies easily that if G is a connected semi-graph of
temperoids (cf. (i)), then G* is a connected semi-graph of anabelioids.

(iv) Let G be a connected semi-graph of temperoids (cf. (i)). Suppose that (the underlying
semi-graph of) G has at least one vertex. Then we shall write

B(G) € B(G)

(cf. (iii); the discussion following [17, Def. 2.1]) for the connected anabelioid determined
by the connected semi-graph of anabelioids G.

(v) Let G be a semi-graph of temperoids. Then we shall write Vert(G), Cusp(G), Node(G),
Edge(G), VCN(G), V, C, N, &, and ¢ for the Vert, Cusp, Node, Edge, VCN, V, C, N,
&, and 0 of Definition 1.1(i)—(iii), applied to the underlying semi-graph of G.

(vi) Let G be a connected semi-graph of temperoids (cf. (i)). Suppose that (the underlying
semi-graph of) G has at least one vertex. Then we shall write

B™(g)

for the category whose objects are given by collections of data

{Sv, de}

where v (resp. e) ranges over the elements of Vert(G) (resp. Edge(G)) (cf. (v));
for each v € Vert(G), S, is an object of the temperoid G, corresponding to v; for
each e € Edge(G), with branches by, b abutting to vertices vy, v, respectively,
be: ((b1)+)*Su, = ((b2)4)*Sy, is an isomorphism in the temperoid G, corresponding
to e—and whose morphisms are given by morphisms (in the evident sense) between
such collections of data. In particular, the category (i.e., connected anabelioid) B(G)
of (iv) may be regarded as a full subcategory

B(G) € B™(9)

of B (G). One verifies immediately that any object G’ of B**(G) determines, in a
natural way, a semi-graph of temperoids G’, together with a morphism of semi-graphs
of temperoids G’ — G. We shall refer to this morphism G’ — G as the covering of
G associated with G’. We shall say that a morphism of semi-graphs of temperoids
is a covering (resp. finite étale covering) of G if it factors as the post-composite of
an isomorphism of semi-graphs of temperoids with the covering of G associated with
some object of B*P(G) (resp. of B(G)(C B*(G))). We shall say that a covering of G is
connected if the underlying semi-graph of the domain of the covering is connected.

REMARK 2.1.1. Since every profinite group is tempered (cf. [17, Def. 3.1(i)]; [17, Rem.
3.1.1)), it follows immediately that a connected anabelioid (cf. [16, Def. 1.1.1]) determines,
in a natural way (i.e., by considering formal countable coproducts, as in the discussion
entitled “Categories” in [17, §0]), a connected temperoid (cf. [17, Def. 3.1(ii)]). In particular,
a semi-graph of anabelioids (cf. [17, Def. 2.1]) determines, in a natural way, a semi-graph of
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temperoids (cf. Definition 2.1(i)). By abuse of notation, we shall often use the same notation
for the connected temperoid (resp. semi-graph of temperoids) naturally associated with a
connected anabelioid (resp. semi-graph of anabelioids).

DEFINITION 2.2.

(i) Let T be a topological space. Then we shall say that a closed subspace of T' (resp.
a closed subspace of T'; an open subspace of T') is a circle (resp. a closed disk; an
open disk) on T if it is homeomorphic to the set {(s,t) € R?|s?>+t> =1} (resp.
{(s,t) eR?|s2+12 < 1}; {(s,t) € R?| s> +1% < 1}) equipped with the topology induced
by the topology of R2. If D C T'is a closed disk on T, then we shall write 9D C D for the
circle on T determined by the boundary of D regarded as a two-dimensional topological
manifold with boundary (i.e., the closed subspace of D corresponding to the closed
subspace {(s,t) € R?|s?2+t2 =1} C{(s,t) €R?|s2+t?<1}) and D° défD\OD cD
for the open disk on T obtained by forming the complement of 0D in D.

(ii) Let (g,r) be a pair of nonnegative integers. Then we shall say that a pair X =
(X,{D;}I_;) consisting of a connected orientable compact topological surface X of
genus g and a collection of r disjoint closed disks D; C X of X (cf. (i) is of HS-type
(where the “HS” stands for “hyperbolic surface”) if 29 —2+7r > 0.

(iii) Let X = (X,{D;}7_,) be a pair of HS-type (cf. (ii)). Then we shall write

r

Ux = X\(UDY)

i=1

(cf. (1)) and refer to Ux as the interior of X. We shall refer to a circle on Ux determined
by some 0D; C Ux (cf. (i) as a cusp of Ux, or alternatively, X. Write 0Ux C Ux for
the union of the cusps of Ux; Ix for the group of homeomorphisms ¢: X = X such
that ¢ restricts to the identity on Ux. Suppose that ¥ = (Y,{E;}5_,) is also a pair
of HS-type. Then we define an isomorphism X =Y of pairs of HS-type to be an Ix-
orbit of homeomorphisms X = Y such that each homeomorphism 1 that belongs to
the Ix-orbit induces a homeomorphism Ux = Uy-.

(iv) Let X = (X,{D;}/_,) be a pair of HS-type (cf. (ii)) and {Y;},;c;s a finite collection
of pairs of HS-type. For each j € J, let ¢;: Uy, — Ux (cf. (iii)) be a local immersion
(i.e., a map that restricts to a homeomorphism between some open neighborhood of
each point of the domain and the image of the open neighborhood, equipped with
the induced topology, in the codomain) of topological spaces. Then we shall say that
a pair ({Yj}jes,{tj}jes) is an HS-decomposition of X if the following conditions are
satisfied:

(1) UX = UjEJ[‘j(UYj)'

(2) For any j € J, the complement of the diagonal in Uy, Xy Uy, is a disjoint union
of circles, each of which maps homeomorphically, via the two projections to Uy,
to two distinct cusps of Uy, (cf. (iii)). (Thus, by “Brouwer invariance of domain,”
it follows that ¢; restricts to an open immersion on the complement of the cusps

(3) For any j, j' € J such that j # j’, every connected component of Uy, Xy, Uy,
projects homeomorphically onto cusps of Uy, and ij,.
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(4) For any (i.e., possibly equal) j, j' € J, we shall refer to a circle of Uy, Xy Uy,
that forms a connected component of Uy, xuy Uy,, as a pre-node (of the HS-
decomposition ({Yj};jes,{tj}jes)) and to the cusps of Uy,, Uy,, that arise as the
images of such a pre-node via the projections to Uy;, ij/ as the branch cusps of
the pre-node. Then we suppose further that every pre-node maps injectively into
Ux, and that the image in Ux of the pre-node has empty intersection with dUx, as
well as with the image via ¢, for j” € J, of any cusp of Uy,,, which is not a branch
cusp of the pre-node. We shall refer to the image in Ux of a pre-node as a node (of
the HS-decomposition ({Y;};jes,{¢;}jes)). Thus, (one verifies easily that) every
node arises from a unique pre-node. We shall refer to the branch cusps of the pre-
node that gives rise to a node as the branch cusps of the node. (Thus, by “Brouwer
invariance of domain,” it follows that, for any pre-node of Uy, Xy Uy,,, the maps
tj, tj» determine a homeomorphism of the topological space obtained by gluing,
along the associated node, suitable open neighborhoods of the branch cusps of
Uy;, Uy,, onto the topological space constituted by a suitable open neighborhood
of the associated node in Ux.)

(5) For any j € J, every cusp of Uy, maps homeomorphically onto either a cusp of Ux
or a node of ({Yj}jer,{tj}jes) (cf. (4)). Moreover, every cusp of Ux arises in this
way from a cusp of Uy, for some (necessarily uniquely determined) j € .J. (Thus,
by “Brouwer invariance of domain”—together with a suitable gluing argument
as in (4)—it follows that every cusp of Ux admits an open neighborhood that
arises, for some j € J, as the homeomorphic image, via ¢;, of a suitable open
neighborhood of a cusp of Uy,.)

If ({Y;},{¢;}) is an HS-decomposition of X, then we shall refer to the triple
(X, {Y;}.{¢;}) as a collection of HSD-data (where the “HSD” stands for “hyperbolic
surface decomposition”). If X = (X,{Y;},{¢;}) is a collection of HSD-data, then we
shall refer to the topological space Ux (resp. [the closed subspace of Ux corresponding
to] an element of the [finite] set {Y}}; a cusp of Ux; a node of ({Y;},{¢;}) [cf. (4)]) as
the underlying surface (resp. a vertex; a cusp; a node) of X. Also, we shall refer to a
cusp or node of X as an edge of X.

DEFINITION 2.3. Let X = (X,{Y;},{¢;}) be a collection of HSD-data (cf. Definition
2.2(iv)).

(i)  We shall refer to the semi-graph
Gx

defined as follows as the dual semi-graph of X: we take the set of vertices (resp. open
edges; closed edges) of Gx is the (finite) set of vertices (resp. cusps; nodes) of X (cf.
Definition 2.2(iv)). For a vertex v and an edge e of X, we take the set of branches
of e that abut to v to be the set of natural inclusions (i.e., that arise from X—cf.
Definition 2.2(iv)) from the edge of X corresponding to e into the topological space
Uy, associated with the Y} corresponding to the vertex v.

(ii) We shall refer to the connected semi-graph

Ox
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of temperoids (cf. Definition 2.1(i)) defined as follows as the semi-graph of temperoids
associated with X: we take the underlying semi-graph of Gx to be Gx (cf. (i)). For
each vertex v of Gyx, we take the connected temperoid of Gx corresponding to v to
be the connected temperoid determined by the category of topological coverings with
countably many connected components of the topological space Uy, (cf. Definition
2.2(iil)) associated with the Y; corresponding to the vertex v. For each edge e of
Gx, we take the connected temperoid of Gx corresponding to e to be the connected
temperoid determined by the category of topological coverings with countably many
connected components of the circle (cf. Definition 2.2(i)) on Ux corresponding to the
edge e. For each branch b of Gyx, we take the morphism of temperoids corresponding to
b to be the morphism obtained by pulling back topological coverings of the topological
spaces under consideration.

(iii) We shall say that a semi-graph of temperoids is of HSD-type if it is isomorphic to the
semi-graph of temperoids associated with some collection of HSD-data (cf. (ii)).

EXAMPLE 2.4 (Semi-graphs of temperoids of HSD-type associated with stable log curves).

Let (g,r) be a pair of nonnegative integers such that 2g —2+r > 0. Write S et Spec(C).
In the following, we shall apply the notation and terminology of the discussion entitled
“Curves” in [9, §0].

(i) Let S — (Mg, )c be a C-valued point of (M, ,)c. Write S°¢ for the fs log scheme

obtained by equipping S with the log structure induced by the log structure of (ﬂ;i)c;
Xl _, §log for the stable log curve over S'°8 corresponding to the resulting strict
(1-)morphism S'°8 — (ﬂ;o’f)c; d for the rank of the group-characteristic of S8 (cf.
[23, Def. 5.1(i)]), that is, the number of nodes of X'°&; X1°8 — Slog for the morphism
of fs log analytic spaces determined by the morphism X8 — Sl°&. X — S, for
the underlying morphism of analytic spaces of X8 — Slog. xlog(C) Slog(C) for the
respective topological spaces “X'°8” defined in [12, (1.2)] in the case where we take the
“X7 of [12, (1.2)] to be X8 Slos that is, for T € {X, S},

an ’ an

def

T(C) = {(t,h)|t € Tun, h € Homgp(Mjgﬂi“t,Sl) such that

h(f)=f@)/|f(t)] for every feOF , CMp }

al

— where we write S! % {ueC|lu|=1} and My, for the sheaf of monoids on Ty, that
defines the log structure of T:°¢. Then, by considering the functoriality discussed in [12,
(1.2.5)] and the respective maps X'°8(C) — X,,, S%8(C) — S, induced by the first
projections, we obtain a commutative diagram of topological spaces and continuous
maps

Xi#(C) —— Xan
| l
S1%(C) —— San.

Now one verifies immediately from the various definitions involved that S.8(C) is
homeomorphic to a product (S*)*? of d copies of S'; moreover, it follows from [24, Th.
5.1] that the left-hand vertical arrow of the above diagram is a topological fiber bundle.
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Let s € S°¢(C). Thus, since (one verifies easily that) (S')*? is an Filenberg—Maclane
space (i.e., its universal covering space is contractible), the left-hand vertical arrow of
the above diagram determines an exact sequence

1 — m(X28(C)s) — m(X28(C)) — mi (S22 (0)) (=28 — 1,

where we write X°8(C)|, for the fiber of the left-hand vertical arrow X198(C) — S°8(C)
of the above diagram at s, which thus determines an outer action

m1(S328(C)) (= Z%9) — Out(m (X;38(C)1,))-

Write N C X,,, for the finite subset consisting of the nodes of X!°8, C' C X,, for the

an ?
finite subset consisting of the cusps of X8, U C Xon \ (VUC) C Xap, and mo(U)
for the finite set of connected components of U. For each node z € N (resp. cusp
y € C; connected component F € m(U) of U), write C; (resp. Cy; Yr) C X108(C)|,
for the closure of the inverse image of {z} (resp. {y}; F) C Xan via the composite
Xlog(C)|, =} X18(C) — X,,—where the second arrow is the upper horizontal arrow of
the above diagram. Then one verifies immediately from the various definitions involved
that there exists a uniquely determined, up to unique isomorphism (in the evident

sense), collection of data as follows:

e a pair of HS-type Z = (Z,{D;}:_,) of type (g,r) (cf. Definition 2.2(ii));

e a homeomorphism ¢: X'98(C)|, = Uz of X°8(C)|s with the interior Uz of Z (cf.
Definition 2.2(iii)) such that ¢ restricts to a homeomorphism of | |, . Cy C X log(C)s
with Uz =| |_; 8D; C Uz (cf. Definition 2.2(iii)).

Moreover, there exists a uniquely determined, up to unique isomorphism (in the evident
sense), HS-decomposition of Z (cf. Definition 2.2(iv)) such that the set of vertices
(resp. nodes; cusps) (cf. Definition 2.2(iv)) of the resulting collection of HSD-data (cf.
Definition 2.2(iv)) is {¢(YF)} per(v) (xesp. {#(Cz) teen; {0(Cy)}yec). We shall write

gxlog

for the semi-graph of temperoids of HSD-type associated with this collection of HSD-
data (cf. Definition 2.3(ii)) and refer to Gz as the semi-graph of temperoids of
HSD-type associated with X'°8. Then one verifies immediately from the functoriality
discussed in [12, (1.2.5)] applied to the vertices, nodes, and cusps of the data under
consideration, that the locally trivial fibration X°8(C) — S8(C) determines an action

m1(S328(C)) (2 Z%) — Aut(Gxros),
which is compatible, in the evident sense, with the outer action
M1 (SxE(C)) — Out(m (X5 (C)[s))

discussed above.

(ii) Let S'# be the fs log scheme obtained by equipping S with the log structure given
by the fs chart N> 1+ 0 € C and X'°% — §'°¢ a stable log curve of type (g,r) over
S8 (cf. [18, Exam. 2.5] in the case where k = C). Then one verifies easily that the

o . 1 .
classifying (1-)morphism $'°& — (M gof)c of X'°8 — §l°8 factors as a composite S'°8 —

—1 .
T's — (Mg(ji)c—where the first arrow is a morphism that induces an isomorphism
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between the underlying schemes, and the second arrow is strict—and, moreover, if
we write Y18 — T'°¢ for the stable log curve determined by the strict (1-)morphism

—log . .
T8 — (M g.-)C; then we have a natural isomorphism over S log
XlOg ;) YlOg XTlog Slog.

‘We shall write

gxlog dZEf gylog
(cf. (1)) and refer to Gxs as the semi-graph of temperoids of HSD-type associated with
X2 Then, by pulling back the action of the second to last display of (i) via the
homomorphism 7 (SX8(C)) — 71 (7198(C)) induced by the morphism §°8 — T8 we
obtain an action

TS (C)) (2 Z) — Aut(Gxos),
together with a compatible outer action
18358 (C)) — Out(my (X28(C)s))-

REMARK 2.4.1. One verifies easily that the discussion of Example 2.4(ii) generalizes

immediately to the case of arbitrary fs log schemes S'°8 with underlying scheme S =
Spec(C).

PROPOSITION 2.5 (Fundamental groups of semi-graphs of temperoids of HSD-type). Let
G be a semi-graph of temperoids of HSD-type associated (cf. Definition 2.3(ii) and (iii)) to
a collection of HSD-data X (cf. Definition 2.2(iv)). Write Ux for the underlying surface of
X (¢f. Definition 2.2(iv)) and

B (Ux)

for the connected temperoid (cf. [17, Def. 3.1(ii)]) determined by the category of topological
coverings with countably many connected components of the topological space Ux. Then the

following hold:
(i) We have a natural equivalence of categories
B (Ux) = B™®(G)
(cf. Definition 2.1(vi)). In particular, B®(G) is a connected temperoid. Write
Ilg

for the tempered fundamental group (which is well-defined, up to inner automorphism,)
of the connected temperoid B (G) (cf. [17, Rem. 3.2.1]; the discussion of “Galois-
countable temperoids” in [22, Rem. 2.5.3(i)]). (Thus, the tempered group Ilg admits
a natural outer isomorphism with the topological fundamental group, equipped with the
discrete topology, of the topological space Ux.) We shall refer to this tempered group
Ilg as the fundamental group of G.

(ii) Ewery connected finite étale covering H — G (cf. Definition 2.1(vi)) admits a natural
structure of semi-graph of temperoids of HSD-type.
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(iii) The connected semi-graph of anabelioids G= (cf. Definition 2.1(iii)) is of pro-X PSC-
type (cf. [18, Def. 1.1(i)]). Write llgs for the (pro-X) fundamental group of G*.
Then the natural morphism G — G= of semi-graphs of temperoids of Definition 2.1 (iii)
induces a natural outer injection

Hg — ng
(cf. (i)). Moreover, this natural outer injection determines an outer isomorphism
Iy = Igs,

where we write Hg for the pro-% completion of Ilg.

(iv) Let z € VCN(G) (cf. Definition 2.1(v)). Write llg_ for the tempered fundamental group
(cf. [17, Rem. 3.2.1]) of the connected temperoid G, of G corresponding to z. Then the
natural outer homomorphism

Ilg, — Ilg

is a X-compatible injection (cf. the discussion entitled “Groups” in §0).
(v) In the notation of (iii) and (iv), the closure of the image of the composite

ng — Hg — ng

of the outer injections of (iit) and (iv) is a VCN-subgroup of llgs (cf. (iii); [9, Def.
2.1(i)]) associated with z € VCN(G) = VCN(G*).

Proof. A natural equivalence of categories as in assertion (i) may be obtained by
observing that, after sorting through the various definitions involved, an object of B*(Ux)
(i.e., a topological covering of Ux) amounts to the same data as an object of B'(G).
Assertion (ii) follows immediately from the various definitions involved.

Next, we verify assertion (iii). The assertion that G* is of pro-X PSC-type, as well as the
assertion that the morphism G — G* determines an outer isomorphism HE = Mgs, follows
immediately from the various definitions involved. Thus, the assertion that the morphism
G — G* determines an outer injection Ilg < Ilg= follows from the well-known fact that the
discrete group Ilg injects into its pro-I completion for any [ € Primes (cf., e.g., [27, Prop.
3.3.15]; [17, Th. 1.7]).

Next, we verify the injectivity portion of assertion (iv). Let us first observe that it follows
immediately from the various definitions involved that the composite

g, — g — Ilg
(cf. Definition 2.1(iii)) of the outer homomorphism under consideration and the outer
injection of assertion (iii) (in the case where ¥ = Primes) factors as the composite

g, — 15 —1lg

of the outer homomorphism Ilg, — ng induced by the morphism G, — C?Z of Definition
2.1(ii) and the natural outer inclusion Iz < Ig (cf. [17, Prop. 2.5(i)]). Thus, to complete
the verification of the injectivity portion of assertion (iv), it suffices to verify that the outer
homomorphism IIg, — g is injective. On the other hand, this follows from the well-known
fact that IIg_ injects into its pro-I completion for any I € Primes (cf., e.g., [27, Prop. 3.3.15];
[17, Th. 1.7]). This completes the proof of the injectivity portion of assertion (iv). Assertion
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(v) follows immediately from the various definitions involved. Finally, it follows immediately
from assertions (iii) and (v), together with the evident pro-¥ analogue of [17, Prop. 2.5(i)],
that the natural outer injection of assertion (iv) is X-compatible. This completes the proof
of assertion (iv), hence also of Proposition 2.5. 0

REMARK 2.5.1. In the notation of Proposition 2.5, as is discussed in Proposition 2.5(i),
the fundamental group Ilg of the semi-graph of temperoids of HSD-type G is naturally
isomorphic, up to inner automorphism, to the topological fundamental group, equipped
with the discrete topology, of the compact orientable hyperbolic topological surface with
compact boundary Ux. In particular, Ilg is finitely generated, torsion-free, and center-free
and injects into its pro-/ completion for any [ € Primes (cf. Proposition 2.5(iii)). Moreover,
it holds that Cusp(G) # 0 (cf. Definition 2.1(v)) if and only if Ilg is free.

REMARK 2.5.2. In the situation of Example 2.4(ii), write Gxis for the semi-graph of
temperoids of HSD-type associated with X'°g; Q)E(bg for the semi-graph of anabelioids of
pro-Y PSC-type of Proposition 2.5(iii) in the case where we take the “G” of Proposition
2.5(iii), to be Gxiog; g§§g-2 for the semi-graph of anabelioids of pro-3 PSC-type associated
with X8 (cf. [18, Exam. 2.5]). Then it follows from Proposition 2.5(iii) that we have a

natural outer isomorphism ngl . = ngl . On the other hand, by associating finite étale
o xlog

coverings of X1°8(C) to log étale coverings of Kummer type of X'°& (cf. [12, Lem. 2.2]) and
then restricting such finite étale coverings to X'°8(C)|, (cf. Example 2.4(i)), we obtain an
outer homomorphism ngl M ng§c.z. Then one verifies immediately from the various
© X log
definitions involved that the composite of the two outer homomorphisms
HgE

o Hg — llgpsc-s
xlog xlog

Xxlog

is a graphic outer isomorphism (cf. [18, Def. 1.4(i)]), that is, arises from a uniquely
determined isomorphism of semi-graphs of anabelioids

P ~ PSC-X
gXlog — gXlog .

Finally, one verifies easily that the above discussion generalizes immediately to the case of
arbitrary fs log schemes S'°¢ with underlying scheme S = Spec(C) (cf. Remark 2.4.1).

DEFINITION 2.6. Let G be a semi-graph of temperoids of HSD-type. Write Ilg for the
fundamental group of G.

(i) Let z € VCN(G) (cf. Definition 2.1(v)). Then we shall refer to a closed subgroup of
IIg that belongs to the Ilg-conjugacy class of closed subgroups determined by the
image of the outer injection of the display of Proposition 2.5(iv) as a VCN-subgroup
of TIg associated with z € VCN(G). If, moreover, z € Vert(G) (resp. € Cusp(G); €
Node(G); € Edge(G)) (cf. Definition 2.1(v)), then we shall refer to a VCN-subgroup of
IIg associated with z as a verticial (resp. a cuspidal; a nodal; an edge-like) subgroup
of Ilg associated with z.

(ii) Write C: — G for the universal covering of G corresponding to Ilg. Let z € VCN(Q~)
(cf. Definition 2.1(v)). Then we shall refer to the VCN-subgroup IIz C Ilg (cf. (i))
determined by Z € VON(G) as the VCN-subgroup of Il associated with Z € VCN(G).
If, moreover, Z € Vert(G) (resp. € Cusp(G); € Node(G); € Edge(G)) (cf. Definition
2.1(v)), then we shall refer to the VCN-subgroup of Ilg associated with Zz as the
verticial (resp. cuspidal; nodal; edge-like) subgroup of g associated with Z.
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(iii) Let (g,7) be a pair of nonnegative integers such that 2g —2+r > 0 and v € Vert(G).
Then we shall say that v is of type (g,r) if the “(g,r)” appearing in Definition 2.2(ii)
for the pair of HS-type corresponding to v coincides with (g,r). Thus, one verifies
easily that v is of type (g,r) if and only if the number of the branches of edges of G
that abut to v is equal to r, and, moreover,

rankz (I127) = 2g + max{0,r — 1},
where we use the notation II, to denote a verticial subgroup associated with v.

REMARK 2.6.1. In the notation of Definition 2.6, it follows from Proposition 2.5(iv)
that every verticial subgroup of Ilg is naturally isomorphic, up to inner automorphism,
to the topological fundamental group, equipped with the discrete topology, of a compact
orientable hyperbolic topological surface with compact boundary. In particular, every
verticial subgroup of Ilg is finitely generated, torsion-free, and center-free and injects into
its pro-I completion for any [ € Primes (cf. Proposition 2.5(iii)). Moreover, it follows from
Proposition 2.5(iv) that every edge-like subgroup of Ilg is naturally isomorphic, up to inner
automorphism, to the topological fundamental group, equipped with the discrete topology,
of a unit circle (hence isomorphic to Z).

DEFINITION 2.7. Let G and H be semi-graphs of temperoids of HSD-type. Write Ilg,
I14 for the fundamental groups of G, H, respectively.

(i) We shall say that an isomorphism of groups Ilg — Ily is group-theoretically verti-
cial (resp. group-theoretically cuspidal; group-theoretically nodal) if the isomorphism
induces a bijection between the set of the verticial (resp. cuspidal; nodal) subgroups (cf.
Definition 2.6(i)) of IIg and the set of the verticial (resp. cuspidal; nodal) subgroups
of II;. We shall say that an outer isomorphism IIg = Il is group-theoretically
verticial (resp. group-theoretically cuspidal; group-theoretically nodal) if it arises from
an isomorphism ITg — IT3 that is group-theoretically verticial (resp. group-theoretically
cuspidal; group-theoretically nodal).

(i) We shall say that an outer isomorphism Ilg = Ily is graphic if it arises from an
isomorphism G = H. We shall say that an isomorphism IIg = Iy is graphic if the
outer isomorphism IIg = IT3; determined by it is graphic.

DEFINITION 2.8. Let G be a semi-graph of temperoids of HSD-type. Write G for the
underlying semi-graph of G. Also, for each z € VCN(G), write G, for the connected temperoid
of G corresponding to z.

(i) Let H be a sub-semi-graph of PSC-type (cf. [9, Def. 2.2(i)]) of G. Then one may define
a semi-graph of temperoids of HSD-type

Glu

as follows (cf. Figure 2 of [9]): we take the underlying semi-graph of G|y to be H; for
each vertex v (resp. edge e) of H, we take the temperoid corresponding to v (resp. €) to
be G, (resp. Ge); for each branch b of an edge e of H that abuts to a vertex v of H, we
take the morphism associated with b to be the morphism G, — G, associated with the
branch of G corresponding to b. We shall refer to G|y as the semi-graph of temperoids
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of HSD-type obtained by restricting G to H. Thus, one has a natural morphism
Glu—G

of semi-graphs of temperoids.

(ii) Let S C Cusp(G) be a subset of Cusp(G) (cf. Definition 2.1(v)) which is omittable (cf.
9, Def. 2.4(i)]) as a subset of the set of cusps Cusp(QA ) of the semi-graph of anabelioids
of pro-Primes PSC-type G (cf. Proposition 2.5(iii) in the case where ¥ = Primes)
relative to the natural identification Cusp(G) = Cusp(G). Then, by eliminating the
cusps contained in S, and, for each vertex v of G, replacing the temperoid G, by the
temperoid of coverings of G, that restrict to a trivial covering over the cusps contained

in S that abut to v, we obtain a semi-graph of temperoids of HSD-type

goS

(cf. Figure 3 of [9]). We shall refer to Ges as the partial compactification of G with
respect to S.

(iii) Let S C Node(G) be a subset of Node(G) (cf. Definition 2.1(v)) such that the semi-
graph obtained by removing the closed edges corresponding to the elements of .S from
the underlying semi-graph of G is connected, that is, in the terminology of [9, Def.
2.5(1)] that is not of separating type as a subset of the set of nodes Node(é) of the
semi-graph of anabelioids of pro-Primes PSC-type G (cf. Proposition 2.5(iii) in the

case where ¥ = Primes) relative to the natural identification Node(G) = Node(G).
Then one may define a semi-graph of temperoids of HSD-type

G-5s

as follows (cf. Figure 4 of [9]): we take the underlying semi-graph of G. g to be the
semi-graph obtained by replacing each node e of G contained in S such that V(e) =
{v1,v2} C Vert(G) (cf. Definition 2.1(v))—where vy, v9 are not necessarily distinct—by
two cusps that abut to vy, vy € Vert(G), respectively, which we think as corresponding
to the two branches of e. We take the temperoid corresponding to a vertex v (resp.
node e) of G. g to be G, (resp. G.). (Note that the set of vertices (resp. nodes) of G, g
may be naturally identified with Vert(G) (resp. Node(G)\ S).) We take the temperoid
corresponding to a cusp of G, ¢ arising from a cusp e of G to be G.. We take the
temperoid corresponding to a cusp of G, g arising from a node e of G to be G.. For
each branch b of G, g that abuts to a vertex v of a node e (resp. of a cusp e that
does not arise from a node of G), we take the morphism associated with b to be the
morphism G, — G, associated with the branch of G corresponding to b. For each branch
b of G. g that abuts to a vertex v of a cusp of G, g that arises from a node e of G, we
take the morphism associated with b to be the morphism G, — G, associated with the
branch of G corresponding to b. We shall refer to G, s as the semi-graph of temperoids
of HSD-type obtained from G by resolving S. Thus, one has a natural morphism

g>—S — g
of semi-graphs of temperoids.

REMARK 2.8.1. One verifies immediately that the operations of restriction, partial
compactification, and resolution discussed in Definition 2.8(i)—(iii) are compatible (in the
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evident sense) with the corresponding pro-¥ operations—that is, as discussed in [9, Defs.
2.2(ii), 2.4(ii), and 2.5(ii)]—relative to the operation of passing to the associated semi-graph
of anabelioids of pro-X PSC-type (cf. Proposition 2.5(iii)).

REMARK 2.8.2. We take this opportunity to correct an unfortunate misprint in [9, Def.
2.5(ii)]: the phrase “by two cusps that abut to vy, ve € Vert(G), respectively” of [9, Def.
2.5(ii)] should read “by two cusps that abut to v, vy € Vert(G), respectively, which we
think as corresponding to the two branches of e.”

DEFINITION 2.9. In the notation of Definition 2.8, let S C Node(G) be a subset of
Node(G) (cf. Definition 2.1(v)). Then we define the semi-graph of temperoids of HSD-type

Gos
as follows (cf. Figure 5 of [9]):

(i)  We take Cusp(G-.s) o Cusp(G) (cf. Definition 2.1(v)).

(ii) We take Node(Gw.s) % Node(G)\ S (cf. Definition 2.1(v)).

(iii) We take Vert(G..s) (cf. Definition 2.1(v)) to be the set of connected components of
the semi-graph obtained from G by omitting the edges e € Edge(G)\ S (cf. Definition
2.1(v)). Alternatively, one may take Vert(G..g) to be the set of equivalence classes of
elements of Vert(G) with respect to the equivalence relation “~” defined as follows:

for v, w € Vert(G), v ~ w if either v = w or there exist n elements ey,...,e, € S of

S and n+ 1 vertices vg,v1,...,v, € Vert(G) of G such that vy def v, Up def w, and, for

1 <i<m, it holds that V(e;) ={v;—1,v;} (cf. Definition 2.1(v)).

(iv) For each branch b of an edge e € Edge(G-.s) (= Edge(G) \ S—cf. (i) and (ii)) and each
vertex v € Vert(G..g) of G5, b abuts, relative to G..g, to v if b abuts, relative to G,
to an element of the equivalence class v (cf. (iii)).

(v) For each edge e € Edge(G-.s)(= Edge(G) \ S—=cf. (i) and (ii)) of G..g, we take the
temperoid of G..g corresponding to e € Edge(G-.s) to be the temperoid G..

(vi) Let v € Vert(G..g) be a vertex of G.,s. Then one verifies easily that there exists a
unique sub-semi-graph of PSC-type (cf. [9, Def. 2.2(i)]) H, of the underlying semi-
graph of G whose set of vertices consists of the elements of the equivalence class v (cf.
(iii)). Write

T, = Node(Glu,)\ (SN Node(Glu, )
(cf. Definition 2.8(i)). Then we take the temperoid of G._.g corresponding to v €
Vert(G..s) to be the temperoid B®((G|m,)s~1,) (cf. Definition 2.1(vi); Proposition
2.5(1); Definition 2.8(iii)).

(vii) Let b be a branch of an edge e € Edge(G-.s)(= Edge(G) \ S—cf. (i) and (ii)) that
abuts to a vertex v € Vert(G..g). Then since b abuts to v, one verifies easily that
there exists a unique vertex w of G which belongs to the equivalence class v (cf. (iii))
such that b abuts to w relative to G. We take the morphism of temperoids associated
with b, relative to G, g, to be the morphism naturally determined by post-composing
the morphism of temperoids G. — G,, corresponding to the branch b relative to G
with the natural morphism of temperoids G,, — B ((G|m,)~1,) (cf. (vi)).

We shall refer to this semi-graph of temperoids of HSD-type G..g as the generization of
G with respect to S.
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REMARK 2.9.1. One verifies immediately that the operation of generization discussed in
Definition 2.9 is compatible (in the evident sense) with the corresponding pro-3 operation—
that is, as discussed in [9, Def. 2.8]—relative to the operation of passing to the associated
semi-graph of anabelioids of pro-3 PSC-type (cf. Proposition 2.5(iii)).

REMARK 2.9.2. We take this opportunity to correct an unfortunate misprint in [9, Def.
2.8(vii)]: the phrase “equivalent class” should read “equivalence class.”

PROPOSITION 2.10 (Specialization outer isomorphisms). Let G be a semi-graph of
temperoids of HSD-type, and let S C Node(G) be a subset of Node(G). Write Ilg for the
fundamental group of G and llg_, for the fundamental group of the generization G.s of G
with respect to S (cf. Definition 2.9). Then there exists a natural outer isomorphism

Qg _s:1lg s — 1Ilg

which is functorial, in the evident sense, with respect to isomorphisms of the pair (G,S)
and satisfies the following three conditions:

(a) ®g_ 4 induces a bijection between the set of cuspidal subgroups (cf. Definition 2.6(i))
of llg_ . and the set of cuspidal subgroups of 1lg.

(b) ®g_ . induces a bijection between the set of nodal subgroups (cf. Definition 2.6(i)) of
IIg . and the set of nodal subgroups of Ilg associated with the elements of Node(G)\ S.

(¢) Let v e Vert(G.g) be a vertex of G.s; H,, T, as in Definition 2.9(vi). Then ®g_
induces a bijection between the Ilg_ -conjugacy class of any verticial subgroup (cf.
Definition 2.6(i)) 11, C g . of g _, associated with v € Vert(G..s) and the Ilg-
conjugacy class of subgroups obtained by forming the image of the outer homomorphism

gl )z, — g

induced by the natural morphism (Glu,)s1, — G (cf. Definition 2.8(i) and (iii)) of
semi-graphs of temperoids.

We shall refer to this natural outer isomorphism ®g_. as the specialization outer
isomorphism with respect to S.

Proof. An outer isomorphism that satisfies the three conditions in the statement of
Proposition 2.10 may be obtained by observing that, after sorting through the various
definitions involved, an object of B'*(G..s) amounts to the same data as an object of
B*®(G). This completes the proof of Proposition 2.10. [

REMARK 2.10.1. One verifies immediately that the specialization outer isomorphism
discussed in Proposition 2.10 is compatible (in the evident sense) with the corresponding
pro-X outer isomorphism—that is, as discussed in [9, Prop. 2.9]—relative to the operation
of passing to the associated semi-graph of anabelioids of pro-¥ PSC-type (cf. Proposition
2.5(iii)).

LEMMA 2.11 (Infinite cyclic coverings). Let G be a semi-graph of temperoids of HSD-
type. Suppose that (Vert(G)?,Node(G)¥) = (1,1), that is, the semi-graph of anabelioids of
pro-PBrimes PSC-type G (cf. Proposition 2.5(iii) in the case where ¥ =Brimes ) is cyclically
primitive (cf. [9, Def. 4.1]). Write llg for the fundamental group of G; G for the underlying
semi-graph of G; llg(= Z) for the discrete topological fundamental group of G; Goo — G for
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the connected covering of G (cf. Definition 2.1(vi)) corresponding to the natural surjection
IIg — Ig; lg__ e Ker(Ilg — Ilg). Then the following hold:

(i)  Fiz an isomorphism Ilg = Z. Then there exists a triple of bijections

V :7Z "5 Vert(Goo), N :Z == Node(Go),

C : Z x Cusp(G) — Cusp(Guo)
(cf. Definition 2.1(v)) that satisfies the following properties:

o The bijections are equivariant with respect to the action of llg = Z on Z by
translations and the natural action of llg on “Vert(—),” “‘Node(—),” “Cusp(—).”

e The post-composite of C with the natural map Cusp(Go,) — Cusp(G) coincides with
the projection 7 x Cusp(G) — Cusp(G) to the second factor.

e For each a € Z, it holds that £(V(a)) ={N(a),N(a+1)}U{C(a,z)|z € Cusp(G) }
(cf. Definition 2.1(v)).

Moreover, such a triple of bijections is unique, up to post-composition with the
automorphisms of “Vert(—),” “‘Node(—),” “Cusp(—)” determined by the action of
a (single!) element of Ilg.

(ii) Let a <b be integers. Write Giq ) for the (uniquely determined) sub-semi-graph of
PSC-type (cf. [9, Def. 2.2(i)]) of the underlying semi-graph of Goo whose set of vertices
is equal to {V(a),V(a+1),...,V(b)} (cf. (i)). Also, write Gjq ) for the semi-graph of
temperoids obtained by restricting Goo to Giap (in the evident sense—cf. also the
procedure discussed in Definition 2.8(i)). Then Gqp) is a semi-graph of temperoids of
HSD-type.

(ili) Let a <b be integers. For an integer ¢ such that a <c¢ <b (resp. a+1<c<b), let
My () Cllg, ,, (resp. Un() C1lg, ) be a verticial (resp. nodal) subgroup of llg
associated with V (c) € Vert(Gqp) (resp. N(c) € Node(Gap))) (cf. (i) and (ii)) such
that, for a+1<c<b, it holds that Ty C Uy (c—1) NIy (). Then the inclusions
Wy ey, In(e) — Ug, ,, determine an isomorphism

lim (My () <= My as1) = My apr) < = Ty oty < ey = My )

Hg[a’b],

where lim denotes the inductive limit in the category of groups.

(iv) Let a < b be integers. Then the composite g[a,b] — Goo — G determines an outer
injection g < Ilg. Moreover, the image of this outer injection is contained in
the normal subgroup Ilg__ C1lg.

(v)  There exists a collection

{D[fa,a] }lgaEZ

of subgroups D(_, q) C g indexed by the positive integers which satisfy the following
properties:

o Di_,q Cllg, belongs to the llg-conjugacy class (of subgroups of Ilg) obtained by
forming the image of the outer injection lg,_, , — g of (iv).
o D[—a,a] - D[—a—l,a—‘,—l}'
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o The inclusions Di_g 4 — Ilg (where a ranges over the positive integers) determine
an isomorphism

lim (Dy_y 1) < Dj_g9) = D_g g = ---) — g,

where lim denotes the inductive limit in the category of groups.

(vi) In the situation of (v), since llg injects into its pro-l completion for any | € Primes
(cf. Remark 2.5.1), let us regard subgroups of Ilg as subgroups of the pro-% completion
Hg of llg. Let a be a positive integer. Write @_aﬂ} C Hg Jor the closure of Di_g q)
n Hé. Let 7 € Hg. Suppose that Dy, _q) N7 - Diq,—q) A=t #£ {1}. Then the image of
~ye Hg in the pro-% completion IZ of lg is contained in g C II%.

(vil) In the situation of (vi), suppose, moreover, that7 is contained in the closure Tlg_ C HE
of Hgoo m Hg. Then /’)\/ S E[aﬁa} .

Proof. Assertions (i) and (ii) follow immediately from the various definitions involved.
Assertion (iii) follows immediately from a similar argument to the argument applied in
the proof of [20, Prop. 1.5(iii)]. Next, we verify assertion (iv). The injectivity portion of
assertion (iv) follows immediately—by considering a suitable finite étale subcovering of
Goo — G and applying a suitable specialization outer isomorphism (cf. Proposition 2.10)—
from Proposition 2.5(iv). The remainder of assertion (iv) follows immediately from the
various definitions involved. This completes the proof of assertion (iv). Assertion (v) follows
immediately from assertion (iii).

Next, we verify assertion (vi). Write G* for the semi-graph of anabelioids of pro-¥ PSC-
type determined by G (cf. Proposition 2.5(iii)), G= — G for the universal covering of the
semi-graph of anabelioids of pro-X PSC-type G* corresponding to (the torsion-free group)
gg (cf. Proposition 2.5(iii); [23, Rem. 1.2.2]), and G* for the underlying pro-semi-graph of
G*. Then it follows immediately—that is, by considering a suitable finite étale subcovering
of Goo — G and applying a suitable specialization outer isomorphism (cf. Proposition 2.10)—
from [8, Lem. 1.9(ii)] that our assumption that Dy, N7 Dig,_q -7~ # {1} implies that
the respective sub-pro-semi-graphs of G* determined by Dig—ay 7 Dig,—a) -7 " C I
(cf. Proposition 2.5(v)) either contain a common pro-vertex or may be joined to one
another by a single pro-edge. But this implies that ¥ maps G[_, 4 to some Ilg-translate
of G[_q4,q4), hence, in particular, that the image of 7 € Hg in Hé is contained in Ilg C Hé,
as desired. This completes the proof of assertion (vi). Assertion (vii) follows immediately—
that is, by considering a suitable finite étale subcovering of G,, — G and applying a
suitable specialization outer isomorphism (cf. Proposition 2.10)—from the commensurable
terminality (cf. [18, Prop. 1.2(ii)]) of E[a,_a] in a suitable open subgroup of HE containing
TIg_ (cf. also [8, Lem. 1.9(ii)]). This completes the proof of Lemma 2.11. 0

The content of the following lemma is entirely elementary and well-known.
LEMMA 2.12 (Action of the symplectic group). Let g be a positive integer. For each
positive integer n and v = (v1,...,v,) € Z¥", write vol(v) € Z for the (uniquely determined)

nonnegative integer that generates the ideal Z-vy+---+Z- vy, C Z; M, (Z) for the set of n
by n matrices with coefficients in Z; GL,(Z) C M, (Z) for the group of matrices A € M, (Z)
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such that det(A) € {1,—1}; Spy,(Z) C GLay(Z) for the subgroup of 2g by 2g symplectic
matrices, that is, B € GLag(Z) such that

0 1\ ,, (0 1
o (G o) ()
(Note that one wverifies immediately that, for every A € GL,(Z), it holds that vol(v) =
vol(vA).) Then the following hold:

(i) Letv=(v1,...,v4) € Z®9. Then there exists an invertible matriz A € GL4(Z) such that
g—1

vA = (vol(v),0,...,0).

(ii) Let v =(v1,...,va9) € Z®?9. Then there exists a symplectic matriz B € Spy,(Z) such

2g—1

that vB = (vol(v),0,...,0).

(iii) Let N C Z%%9 be a submodule of Z%29 and v € Z%929. Suppose that N # {0}. Then
there exist a monzero integer n € Z\ {0} and a symplectic matriz B € Spy,(Z) such
that n-vB € N.

(iv) Let N CZ%29 be a submodule of Z9%9 and w: 2929 — 7 a surjection. Suppose that N
is of infinite index in Z®?9. Then there exists a symplectic matriz B € Spy,(Z) such
that N - B C Ker(r).

Proof. First, we verify assertion (i). Let us first observe that if v =0 (i.e., vol(v) = 0),
then assertion (i) is immediate. Thus, to verify assertion (i), we may assume without loss of
generality that v # 0. In particular, to verify assertion (i), by replacing v by vol(v)~!-v €
799, we may assume without loss of generality that vol(v) = 1. On the other hand, since
vol(v) = 1, one verifies immediately that Z®9/(Z-v) is a free Z-module of rank g — 1, hence
that there exists an injection Z®9~1 «— Z%9 that induces an isomorphism (Z-v) @ Z®9~1 =
7Z®9. This completes the proof of assertion (i).

Next, we verify assertion (ii). Since (one verifies easily that) Sp,(Z) = SL2(Z) = {B €
GL2(Z)| det(B) = 1}, assertion (ii) in the case where g =1 follows immediately from
assertion (i) (in the case where we take “g” in assertion (i) to be 2), together with the
(easily verified) fact that

{det <Z Z) , det <‘C‘ :Z)} = {1,—1)} for every (‘CL Z) € GLy(2).

For i € {1,...,g}, write M; for the submodule of Z®29 generated by
(0,...,0,1,0,...,0), (0,...,0,1,0,...,0) € Z®29,

where the “1’s” lie, respectively, in the ith and (g + ¢)th components. Then, by applying
assertion (ii) in the case where g =1 (already verified above) to the M;’s, we conclude
that, to complete the verification of assertion (ii), we may assume without loss of generality
that v; =0 for every g+1 <17 <2g. Write v<, et (v1,...,v5) € Z%9. Then let us observe that
it follows from assertion (i) that there exists an invertible matrix A € GL,(Z) such that
v<gA = (vol(v<y),0,...,0) = (vol(v),0,...,0). Thus, assertion (ii) follows immediately from

https://doi.org/10.1017/nmj.2023.39 Published online by Cambridge University Press


https://doi.org/10.1017/nmj.2023.39

COMBINATORIAL ANABELIAN TOPICS IV 51

the (easily verified) fact that

A 0
<0 tAl) ESng(Z)'

This completes the proof of assertion (ii).
Assertion (iii) follows immediately from assertion (ii). Assertion (iv) follows
immediately—by applying the self-duality of Z%29 with respect to the symplectic

_01 (1)>from assertion (iii). This completes the proof of

Lemma 2.12. 0

form determined by <

LEMMA 2.13 (Automorphisms of surface groups). Let g be a positive integer, 11 the
topological fundamental group of a connected orientable compact topological surface of genus
g, m: Il = Z a surjection, and J CII a subgroup of I such that the image of J in 1I*" is of
infinite index in II*". (For example, this will be the case if J is generated by 2g—1 elements.)
Then there exists an automorphism o of I such that o(J) C Ker(m).

Proof. Write H o Hom(I1,Z) = Homgz (11>, Z). Let us fix isomorphisms H = Z®29 and
H?(I1,Z) = Z. Then it follows from the well-known theory of Poincaré duality that the cup
product in group cohomology

Hx H=H'I1,Z)x H'(11,Z) — H*(I,Z) = 7Z
determines a perfect pairing on H; moreover, if we write Autpp(H) C Aut(H) (=
GLoy(Z)—cf. the notation of Lemma 2.12) for the subgroup of automorphisms of H that
are compatible with this perfect pairing, then—by replacing the isomorphism H = Z®29
by a suitable isomorphism if necessary—the isomorphism Aut(H) = GLay(Z) determines
an isomorphism Autpp(H) = Spay(Z) (cf. the notation of Lemma 2.12). On the other
hand, recall (cf., e.g., the discussion preceding [7, Th. 5.13]) that the natural homo-
morphism Aut(Il) — Aut(H) determines a surjection Aut(Il) - Autpp(H)(C Aut(H)).
Thus, Lemma 2.13 follows immediately from Lemma 2.12(iv). This completes the proof of
Lemma 2.13. 0

LEMMA 2.14 (Finitely generated subgroups of surface groups). Let G be a semi-graph of
temperoids of HSD-type and J Cllg a finitely generated subgroup of the fundamental group
Ilg of G. Then the following hold:

(i)  Suppose that Cusp(G) # 0. Then there exist a subgroup F C Ilg of finite index and
a surjection F'— J such that J C F, and, moreover, the restriction of the surjection
F — J to J CF is the identity automorphism of J.

(i) Suppose that (Vert(G)*, Cusp(G)* Node(G)*) = (1,0,1). Thus, since we are in the
situation of Lemma 2.11, we shall apply the notational conventions established in
Lemma 2.11. Suppose that the image of J in Hgb is of infinite index in Hgb. (For
example, this will be the case if J is generated by rankZ(Hgb) —1 elements.) Then
there exists an automorphism o € Aut(Ilg) of Ilg such that o(J) C1lg__ .

(iii) In the situation of (ii), suppose, moreover, that J CIlg_ . Then there exists a positive
integer a € Z such that J C Di_, q (cf. Lemma 2.11(v)).
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Proof. Assertion (i) follows from [17, Cor. 1.6(ii)] together with the fact that IIg is a
finitely generated free group (cf. Remark 2.5.1). Assertion (ii) follows from Lemma 2.13.
Assertion (iii) follows from Lemma 2.11(v) together with our assumption that J is finitely
generated. This completes the proof of Lemma 2.14. U

THEOREM 2.15 (Profinite conjugates of finitely generated ‘PBrimes-compatible sub-
groups). Let IT be the topological fundamental group of a compact orientable hyperbolic
topological surface with compact boundary (cf. Remark 2.5.1) and H, J C II subgroups.
Since 11 injects into its pro-l completion for any | € Primes (cf., e.g., [27, Prop. 3.3.15];
[25, Th. 1.7]), let us regard subgroups of II as subgroups of the profinite completion I of
II. Write H, J C I for the closures of H, J in ﬁ, respectively. Suppose that the following
conditions are satisfied:

(a) The subgroups H and J are finitely generated.
(b) If J is of infinite index in 1L, then J is of infinite index in 11.

(Here, we note that condition (b) is automatically satisfied whenever 11 is free—cf. [17, Cor.
1.6(i1)].) Then the following hold:

(i) It holds that J = JNII.
(ii) Suppose that there exists an element 7 € 11 such that

HCcy-J-57L
Then there exists an element 6 € Il such that
HC6-J 6L

Proof. Let us first observe that, to verify Theorem 2.15, we may assume without loss of
generality that II is the fundamental group Ilg of a semi-graph of temperoids of HSD-type
G (cf. Definition 2.3).

Next, we claim that the following assertion holds:

Claim 2.15.A: Theorem 2.15 holds in the case where J is of finite index in Ilg.

Indeed, write N C 1lg for the normal subgroup of Ilg obtained by forming the intersection
of all IIg-conjugates of J. Then since J is of finite index in Ilg, it is immediate that N
is of finite index in IIg. Thus, by considering the images in IIg/N of the various groups
involved, one verifies immediately that Theorem 2.15 holds in the case where J is of finite
index in Ilg. This completes the proof of Claim 2.15.A. Thus, in the remainder of the proof
of Theorem 2.15, we may assume without loss of generality that J is of infinite index in
Ilg, which implies that J is of infinite index in IIg (cf. condition (b)).
Next, we claim that the following assertion holds:

Claim 2.15.B: Let F' CIlg be a subgroup of finite index such that J C F'. Suppose
that the assertion obtained by replacing IIg in assertion (i) by F holds. Then
assertion (i) holds, and, in the situation of assertion (ii), there exists a Ilg-
conjugate of H that is contained in F. If, moreover, the assertion obtained by
replacing Ilg in assertion (ii) by F holds, then assertion (ii) holds.

Indeed, let us first observe that since the natural inclusion F' < IIg is Primes-compatible (cf.
the discussion entitled “Groups” in §0), the profinite completion F' of F' may be identified
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with the closure F of F in ﬁg. In particular, the closure of J in Fis naturally isomorphic to
the closure J of J in ﬁg. Thus, it follows from Claim 2.15.A applied to F' that the assertion
obtained by replacing Ilg in assertion (i) by F implies assertion (i). Next, let us observe
that in the situation of assertion (ii), since (one verifies immediately that) Ilg - F = Ilg, by
replacing H by a suitable IIg-conjugate of H, we may assume without loss of generality that
A € F. In particular, since H C7-J-37 1 C%-F-5-! =F, it follows that H C FNIlg = F
(cf. Claim 2.15.A). Thus, one verifies easily that the assertion obtained by replacing IIg in
assertion (ii) by F' implies assertion (ii). This completes the proof of Claim 2.15.B.

Next, we verify Theorem 2.15 in the case where Cusp(G) # ). Suppose that Cusp(G) # ().
Then it follows from Lemma 2.14(i) that there exist a subgroup F' C Ilg of finite index
and a surjection 7: F' — J such that J C F, and, moreover, the restriction of 7 to J C F
is the identity automorphism of J. Now it follows immediately from Claim 2.15.B that,
by replacing Ilg by F, we may assume without loss of generality that IIg = F. Next,
let us observe that since (it is immediate that) J C JN1lg, to complete the verification
of assertion (i) in the case where Cusp(G) # 0, it suffices to verify that JNIlg C J.
Moreover, since J C JNIIg(C J), it follows immediately from the equality 7|5 = id5
(where we write 7: ﬁg —» J for the surjection induced by ) that, to verify the inclusion
JnNIlg C J, it suffices to verify that 7(JNIIg) C w(J). On the other hand, one verifies easily
that

#(TNILg) C7(llg) = J = 7(J),

as desired. This completes the proof of assertion (i) in the case where Cusp(G) # 0.
Next, to verify assertion (ii) in the case where Cusp(G) # 0, let us observe that, by
replacing 3 by 7-7(771), we may assume without loss of generality that 7 € Ker(7). Now

we claim that the following assertion holds:
Claim 2.15.C: It holds that H C75-J -5~ %

Indeed, since (one verifies easily that) ¥~'-H -5, J C J, it follows immediately from the
equality 7|7 = id5 that, to verify Claim 2.15.C, it suffices to verify that 7(y~!- H-5) C7(J).
On the other hand, since 74 € Ker(7), it holds that

A3 H-7) = 7(H) CR(llg) = J = 7(J),

as desired. This completes the proof of Claim 2.15.C. In particular, it follows immediately
from [22, Th. 2.6] (i.e., in essence, the argument given in the proof of [1, Lem. 3.2.1]), that
there exists an element ¢ € IIg such that ! -H-§ =7"'-H -~ C J. This completes the
proof of assertion (ii) in the case where Cusp(G) # (), hence also of Theorem 2.15 in the
case where Cusp(G) # 0.

Next, we verify Theorem 2.15 in the case where Cusp(G) = (). Suppose that Cusp(G) = 0.
First, we observe that since .J is of infinite index in ﬁg, it follows immediately that [IIg :
J-N]— 400 as N ranges over the normal subgroups of IIg of finite index, hence (cf. Claim
2.15.B; the fact that J is finitely generated) that, by replacing IIg by a suitable subgroup
of finite index in Ilg that contains J, we may assume without loss of generality that the
image of J in Hgb is of infinite index in Hgb (cf. Remark 2.5.1). Moreover, by considering
suitable specialization outer isomorphisms (cf. Proposition 2.10), we may assume without
loss of generality that the equality (Vert(G)*,Cusp(G)* Node(G)*) = (1,0,1) holds. Thus,
since we are in the situation of Lemma 2.11, we shall apply the notational conventions
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established in Lemma 2.11. Moreover, it follows from Lemma 2.14(ii) that, by considering
a suitable automorphism of Ilg, we may assume without loss of generality that J CIlg__.
Thus, it follows from Lemma 2.14(iii) that there exists a positive integer a € Z such that
JC D_q,q Cllg,..

Next, let us observe that since Ilg/Ilg_ = Ilg(= Z) injects into its profinite completion,
it follows that JNIIg C Ilg_. In particular, by applying Lemma 2.14(iii), we conclude
that, for any given fixed element o € JNIlg, we may assume, by possibly enlarging a, that
a € D_g4 q- Next, let us observe—that is, by considering a suitable finite étale subcovering
of Goo — G and applying a suitable specialization outer isomorphism (cf. Proposition 2.10)—
that the natural inclusion Dj_, 4 < Ilg is ‘Brimes-compatible (cf. Proposition 2.5(iv)). In
particular, by replacing G by G_, 4 (cf. Lemma 2.11(ii)), we conclude that assertion (i)
in the case where Cusp(G) = 0 follows from assertion (i) in the case where Cusp(G) #
0 (already verified above). This completes the proof of assertion (i) in the case where
Cusp(G) = 0.

Finally, to verify assertion (ii) in the case where Cusp(G) =0, let us observe that if
H = {1}, then assertion (ii) is immediate. Thus, we may assume without loss of generality
that H # {1}. Next, let us observe that since J C Dj_, ) CIlg__, and Ilg/Ilg = Ilg (= Z)
injects into its profinite completion, one verifies immediately that H C 1Ig_ . Thus, since
H C1lg_ is finitely generated, it follows from Lemma 2.14(iii) that, by possibly enlarging
a, we may assume without loss of generality that H C Dj_, 4. Since, moreover, {1} # H C
ﬁ[,a’a] ny-J-A71C E[,ma] ﬂﬁ-b[,a,a] 371 it follows from Lemma 2.11(vi) that the image
of y € ﬁg in the profinite completion ﬁG of Ilg is contained in Ilg C ﬁ(@,, which thus implies
that there exists an element 7/ € IIg such that '3 € Ilg_. In particular, by replacing H
by v'-H-(vy")~! and possibly enlarging a, we may assume without loss of generality that
7y € Ilg_. . Thus, again by applying the fact that {1} # D[_q o7 Di—q,q -7 ', we conclude
from Lemma 2.11(vii) that 5 € D{_, 4. In particular, since, as discussed above (cf. the
discussion immediately preceding the proof of assertion (i) in the case where Cusp(G) = ),
the natural inclusion D|_, 4 — Ilg is PBrimes-compatible, by replacing G by G|_4,q), We
conclude that assertion (ii) in the case where Cusp(G) = () follows from assertion (ii) in the
case where Cusp(G) # 0 (already verified above). This completes the proof of assertion (ii)
in the case where Cusp(G) = 0, hence also of Theorem 2.15. 0

REMARK 2.15.1. In passing, we observe that the analogue of Theorem 2.15 for arbitrary
31 2 Primes is false. Indeed, if, in the statement of Theorem 2.15, one replaces “IT” by the
group Z, then it is easy to construct counterexamples to assertions (i) and (ii). One may
then obtain counterexamples in the case of the original “II” by considering the case where
the original “II” is the fundamental group Ilg of a semi-graph of temperoids of HSD-type
G such that Edge(G) # () and considering suitable edge-like subgroups (i.e., isomorphic to
Z') of Hg.

LEMMA 2.16 (VCN-subgroups of infinite index). Let G be a semi-graph of anabelioids
of pro-¥ PSC-type (resp. of temperoids of HSD-type). Write g Hg‘ (resp. g Iig) for
the (pro-X [resp. discrete]) fundamental group of G. Let H C J be a VCN-subgroup of J.
Consider the following two (mutually exclusive) conditions:

(1) H=J.
(2) H is of infinite index in J.
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Then we have equivalences
(1) <= (1); (2) &= (2))
with the following two conditions:

(') H is verticial, and Node(G) = 0.
(2') Either H is edge-like, or Node(G) # ().

Proof. The implication (1) = (1) follows immediately from the various definitions
involved. Thus, one verifies immediately (by considering suitable contrapositive versions
of the various implications involved) that, to complete the verification of Lemma 2.16, it
suffices to verify the implication (2') = (2). To this end, let us observe that if H is edge-like,
then since H is abelian, and every closed subgroup of J of finite index is center-free (cf.,
e.g., Remark 2.5.1; [18, Rem. 1.1.3]), we conclude that H is of infinite index in J. Thus,
we may assume without loss of generality that H is verticial and Node(G) # (). Now since
Node(G) # 0, it follows from a similar argument to the argument in the discussion entitled
“Curves” in [21, §0] that, by replacing G by a suitable connected finite étale covering of G,
we may assume without loss of generality that the underlying semi-graph of G is loop-ample
(cf. the discussion entitled “Semi-graphs” in [21, §0]). In particular, since (one verifies easily
that) the abelianization of the (pro-3 completion of the) topological fundamental group of
a noncontractible semi-graph is infinite, the image of H in the abelianization of J is of
infinite index, which thus implies that H is of infinite index in J, as desired. This completes
the proof of Lemma 2.16. [

COROLLARY 2.17 (Profinite conjugates of VCN-subgroups). Let G and H be semi-graphs
of temperoids of HSD-type. Write llg, Ily for the respective fundamental groups of G, H.
Thus, we obtain a semi-graph of anabelioids of pro-“Primes PSC-type H (cf. Proposition
2.5(4) in the case where ¥ =Primes). Let zg € VCN(G), 23y € VCN(H), 1., C1lg a VCON-
subgroup of Ilg associated with zg € VCN(G), 1I,,, C Iy a VCN-subgroup of Il associated
with zy € VCN(H),

a: Hg ;H’H

an isomorphism of groups, and y € ILg an element of the (profinite) fundamental group 115
of H. Let us fix an injection Uz — Il such that the induced outer injection is the outer
injection of Proposition 2.5(iii) and regard subgroups of 113 as subgroups of Il by means
of this fized injection. Write I1,,, C I for the closure of 11, in Ilg. (Thus, 1L, C g s
a VON-subgroup of Ilg associated with z3 € VCN(H) = VCN(H)—cf. Proposition 2.5(v).)
Then the following hold:
(i) It holds that 11,,, =1I,,, N1ly.
(ii) Suppose that

a(ll,) C7-1L,, AL

Then there exists an element 6 € 11y such that
a(ll,,) C6-1,,, -6

Proof. First, let us observe that it follows immediately from Definition 2.3(ii), together
with the well-known structure of topological fundamental groups of topological surfaces,
that II., and II.,, are finitely generated. Thus, it follows immediately from Theorem 2.15
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that, to complete the verification of Corollary 2.17, it suffices to verify that the following
assertion holds:

If I1,,, # I3, then II,,, is of infinite index in Iy

To this end, let us observe that since II,, # Ily, it follows from Lemma 2.16 (in the
case where “G” is a semi-graph of temperoids of HSD-type) that either z3, is an edge, or
Node(H) # (). On the other hand, in either of these two cases, it follows immediately from
Lemma 2.16 (in the case where “G” is a semi-graph of anabelioids of PSC-type), together
with Proposition 2.5(v), that IL,,, is of infinite index in Il;. This completes the proof of
Corollary 2.17. O

COROLLARY 2.18 (Properties of VCN-subgroups). Let G be a semi-graph of temperoids
of HSD-type. Write Ilg for the fundamental group of G. Also, write G — G for the universal
covering of G corresponding to llg. Then the following hold:

(i) Fori=1, 2, let v; € Vert(G) (cf. Definition 2.1(v)). Write I, C Ilg for the verticial
subgroup of llg associated with v; (cf. Definition 2.6(ii)). Consider the following three
(mutually exclusive) conditions (cf. Definition 2.1(v)):

(1) 8(2,7) = 0.
(2) 6(W1,7) = 1.
(3) 8(T1,7s) > 2.

Then we have equivalences
(1) = (1); (2) = (2'); 3) = (3)
with the following three conditions:
(1) 1y, =1lg,.
(2/) Iz, NIy, #* {1}, but 11z, %+ Iy, .
(3) Iy NIy, ={1}.

(ii) In the situation of (i), suppose that condition (2), hence also condition (2'), holds.
Then it holds that (£(v1) NE(V2))* =1 (cf. Definition 2.1(v)), and, moreover, if we
write € € E(v1) NE(v2) for the unique element of E(v1) NE(v2), then Iz NIly, = Iz,
I # Iy, ; Iz # 10, . R

(iii) Fori=1, 2, let e; € Edge(G) (cf. Definition 2.1(v)). Write Ilz, CIlg for the edge-like
subgroup of llg associated with €; (cf. Definition 2.6(ii)). Then Iz, N1, # {1} if and
only if e1 = €3. In particular, Iz, N1ls, # {1} if and only if 1z, =1z, (cf. Remark
2.6.1).

(iv) Let ¥ € Vert(G), ¢ € Bdge(G). Write 1l, Iz C Ilg for the VCN-subgroups of Ilg
associated with v, €, respectively. Then zN1lz # {1} if and only if € € E(V). In
particular, Iz N1 # {1} if and only if Iz C 1l (cf. Remark 2.6.1).

(v) Ewery VCN-subgroup of llg is commensurably terminal in Ig.

Proof. Write G" — G for the universal profinite étale covering of the semi-graph of
anabelioids of pro-Jrimes PSC-type G (cf. Proposition 2.5(iii) in the case where ¥ = Primes)
determined by G — G and 115 for the (profinite) fundamental group of G determined by the

universal covering G —G. Thus, one verifies easily that one obtains a natural morphism of
(pro-)semi-graphs of temperoids (cf. Remark 2.1.1) G — G” that induces injections Ilg — I15

(cf. Proposition 2.5(iii)) and VCN(G) < VON(G") (cf. [3, Def. 1.1(iii)]) such that
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e the injection VCN(G) < VCN(G") is compatible with the respective “8’s” (cf. Definition
2.1(v); [8, Def. 1.1(viii)]), and, moreover,

e for each Z € VCN(G), the closure ITz C Iz of the image of the VCN-subgroup 11z C g of
g associated with z via the injection llg < Ilz coincides with the VCN-subgroup of 11z

(cf. [9, Def. 2.1(i)]) associated with the image of Z via the injection VCN(G) — VCN(G")
(cf. also Proposition 2.5(v)).

First, we verify assertion (i). The equivalence (1) < (1’) follows immediately from the
equivalence (1) < (1’) of [8, Lem. 1.9(ii)], together with the discussion at the beginning of
the present proof. Next, let us observe that, by considering the edge-like subgroup associated
with an element of £(v1)NE(v2), we conclude that condition (2) implies the condition that
Iz, NII5, # {1}. Thus, the implication (2) = (2) follows immediately from the equivalence
(1) & (1). The implication (2') = (2) follows immediately from Corollary 2.17(i) and the
implication (2') = (2) of [8, Lem. 1.9(ii)], together with the discussion at the beginning of
the present proof. The equivalence (3) < (3') follows immediately from the equivalences
(1) & (1’) and (2) < (2'). This completes the proof of assertion (i).

Assertion (iii) (resp. (iv)) follows immediately from [8, Lem. 1.5] (resp. [8, Lem. 1.7]),
together with the discussion at the beginning of the present proof. Assertion (v) follows
formally from assertions (i) and (iii) (cf. also the proof of [18, Prop. 1.2(ii)]).

Finally, we verify assertion (ii). Suppose that condition (2) (in the statement of assertion
(1)), hence also condition (2’) (in the statement of assertion (i)), holds. Then the assertion
that (£(v1)NE(v2))* =1 follows immediately from the fact that the underlying semi-graph
of G is a tree. The remainder of assertion (ii) follows immediately—in light of assertion
(iii)—from Corollary 2.17(i) and [8, Lem. 1.9(i)] (cf. also Remark 2.6.1), together with the
discussion at the beginning of the present proof. This completes the proof of assertion (ii),
hence also of Corollary 2.18. U

COROLLARY 2.19 (Graphicity of outer isomorphisms). Let G, H be semi-graphs of
temperoids of HSD-type. Write Q\, H for the semi-graphs of anabelioids of pro-Primes PSC-
type determined by G, H (cf. Proposition 2.5(iii) in the case where ¥ = Primes ), respectively;
Ug, Iy for the respective fundamental groups of G, H; g, Iy for the respective (profinite)

fundamental groups of é, H. Let
Q Hg ;> H'H

be an outer isomorphism. Write Q: g = Iz for the outer isomorphism determined by

the outer isomorphism o and the natural outer isomorphisms ﬁg = g, ﬁH = g of
Proposition 2.5(iii). Then the following hold:

(i) The outer isomorphism « is group-theoretically verticial (resp. group-theoretically
cuspidal; group-theoretically nodal; graphic) (cf. Definition 2.7(i) and (ii)) if and only
if a is group-theoretically verticial (cf. [18, Def. 1.4(iv)]) (resp. group-theoretically
cuspidal [cf. [18, Def. 1.4(iv)]]; group-theoretically nodal [cf. [8, Def. 1.12]]; graphic
[cf. [18, Def. 1.4(i)]]).

(ii) The outer isomorphism « is graphic if and only if a is group-theoretically verticial,
group-theoretically cuspidal, and group-theoretically nodal.

Proof. Assertion (ii) follows immediately, in light of Corollary 2.18, from a similar
argument to the argument applied in the proof of [18, Prop. 1.5(ii)]. Thus, it remains
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to verify assertion (i). The necessity portion of assertion (i) follows immediately from
Proposition 2.5(v). Next, let us observe that inclusions of verticial subgroups of the
fundamental group of a semi-graph of temperoids of HSD-type are necessarily equalities
(cf. Corollary 2.18(i) and (ii)); a similar statement holds concerning inclusions of edge-
like subgroups (cf. Corollary 2.18(iii)). Thus, the sufficiency portion of assertion (i) follows
immediately—in light of assertion (ii) and [18, Prop. 1.5(ii)]—from Corollary 2.17(ii). This
completes the proof of Corollary 2.19. O

COROLLARY 2.20 (Discrete combinatorial cuspidalization). Let ¥ C Primes be a subset
which is either equal to Primes or of cardinality one, (g,7) a pair of nonnegative numbers
such that 2g —2+1r >0, n a positive integer, and X a topological surface of type (g,r) (i.e.,
the complement of r distinct points in an orientable compact topological surface of genus g).
For each positive integer i, write X; for the ith configuration space of X (i.e., the topological
space obtained by forming the complement of the various diagonals in the direct product of
i copies of X ); I1; for the topological fundamental group of X;; II¥ for the pro-X completion
of I1;; ﬁz for the profinite completion of 11;;

OutFC(HZ-) Q OutF(Hl) g Out(Hz)

for the subgroups of the group Out(IL;) of outomorphisms of I1; defined in the statement of
[20, Cor. 5.1] (cf. also the discussion entitled “Topological groups” in [9, §0]);

Out™(ITF) € Out™ (ITF) C Out(IlF)

for the subgroups of the group Out(II¥) of outomorphisms of 1T consisting of FC-
admissible, F-admissible (cf. [20, Def. 1.1(ii)]; the discussion entitled “Topological groups”
in [9, §0]) outomorphisms, respectively. Then the following hold:

(i)  The group I1,, is normally terminal in TIZ (cf. Proposition 2.5(iii)). In particular, the
natural homomorphism

Out™ (I1,,) — Out® (I1%)

is injective. In the following, we shall regard subgroups of OutF(Hn) as subgroups of
Out™ (I12).

(ii) It holds that Out® (IL,) N Out™(IL,,) = Out" (IL,,).

(iii) Consider the commutative diagram

Out? (I,41) —— Out™ (IL,i11)

| |

out’(11,) —— OutF(Il,)

—uwhere the horizontal arrows are the injections of (i), and the vertical arrows are
the homomorphisms induced by the projection X,+1 — X, obtained by forgetting the
(n+1)st factor. Suppose that the right-hand vertical arrow of the diagram is injective
(cf. Remark 2.20.1 below). Then the commutative diagram of the above display is
Cartesian. In particular, the left-hand vertical arrow of the diagram is injective.

(iv) The image of the left-hand vertical arrow of the commutative diagram of (iii) (where
we do not impose the assumption that the right-hand vertical arrow be injective) is
contained in Out(IL,) € Out¥ (I1,,).
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(v) Consider the commutative diagram

Out™ (11,4 1) —— Out™(Il,41)

| |

Ouwt™(I,,) —— Out™(Il,)

—uwhere the horizontal arrows are the injections induced by the injections of (i), and the
vertical arrows are the homomorphisms induced by the projection X, 11 — X, obtained
by forgetting the (n+1)st factor. This diagram is Cartesian, its right-hand vertical
arrow 1s injective, and its left-hand vertical arrow is bijective.

(vi) Write
2, if(g,r)=(0,3),
e def 3, if (g,7) #(0,3) and r #0,
4, ifr =0.

Suppose that n > npc. Then it holds that
Out™(I1,,) = Out™ (I1,,);
the left-hand vertical arrow
Out”(II,,41) — Out™ (II,,)
of the commutative diagram of (iii) is bijective.

Proof. Let us first observe that, to verify assertion (i), it suffices to verify that II,, is
normally terminal in IT>. Moreover, once one proves the desired normal terminality in the
case where n =1, the desired normal terminality in the case where n > 2 follows immediately
by induction (cf. the proof of [20, Cor. 5.1(i)]). Thus, we conclude that, to verify assertion
(i), it suffices to verify the normal terminality of II; in IIT.

Next, we claim that the following assertion holds:

Claim 2.20.A: Let F be a free nonabelian group. Then F' is normally terminal in
the pro-3 completion of F.

Indeed, since F is conjugacy [l-separable (cf. [25, Th. 3.2]) for every [ € ¥, Claim 2.20.A
follows from a similar argument to the argument applied in the proof of [1, Lem. 3.2.1].
This completes the proof of Claim 2.20.A.

Next, let us observe that one verifies easily that there exist a semi-graph of temperoids
of HSD-type G and an isomorphism of II; with the fundamental group llg of G. In the
following, we shall identify 1Ig with 1I; by means of such an isomorphism. If G has a cusp,
then it follows from Remark 2.5.1 that II; is a free nonabelian group. Thus, the desired
normal terminality follows from Claim 2.20.A. In the remainder of the proof of assertion
(i), suppose that G has no cusp. In particular, we may assume without loss of generality,
by applying a suitable specialization outer isomorphism (cf. Proposition 2.10), that G has a
node. Let 7 € Nyyz(II;) be an element of the normalizer of I1; in I17 and II, C Ilg a verticial
subgroup of IIg. Then, by applying Corollary 2.17, (ii) (i.e., in the case where we take the
“(G,H,11,,,,11.,,7)" of Corollary 2.17 to be (G,G,11,,11,,7) and the “a” of Corollary 2.17
to be the automorphism of IIg obtained by conjugation by %), we conclude immediately (cf.
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also Corollary 2.18(i) and (ii)) that we may assume without loss of generality, by multiplying
4 by a suitable element of IIg, that the element 5 € 11T normalizes I1,,, hence also the closure
I, of II, in IIT. In particular, it follows from Proposition 2.5(v) and [18, Prop. 1.2(ii)] that
7 € II,. On the other hand, since G has a node, it follows from Proposition 2.5(iv) and
Remark 2.6.1 that II, is a free nonabelian group, and II, may be identified with the pro-X
completion of II,,. Thus, it follows from Claim 2.20.A that 7 € II,, C Ilg, as desired. This
completes the proof of assertion (i).

Assertion (ii) follows immediately from Corollary 2.19(i). Next, we verify assertion (iii).
Let us first observe that since (we have assumed that) the right-hand vertical arrow of
the diagram of assertion (iii) is injective, it follows immediately from assertion (i) that all
arrows of the diagram of assertion (iii) are injective. Let a € Out® (Il,) be such that the
image of « in Outp(ﬁn) lies in the image of the right-hand vertical arrow of the diagram of
assertion (iii). Then it follows from [9, Th. A(ii)] that the image of a in Out® (IL,,) is FC-
admissible. Thus, it follows from assertion (i) that o € Out"°(II,,). In particular, it follows
from [8, Cor. 6.6] that there exists a uniquely determined element of Out"“(Il,,, ) whose
image in Out™ (II,,) coincides with a € Out" (II,,). Thus, since all arrows of the diagram of
assertion (iii) are injective (as verified above), we conclude that the diagram of assertion (iii)
is Cartesian. This completes the proof of assertion (iii). Assertion (iv) follows immediately
from [9, Th. A(ii)], together with assertion (ii). Assertion (v) follows immediately from a
similar argument to the argument applied in the proof of assertion (iii), together with the
injectivity portion of [8, Th. B]. Assertion (vi) follows immediately from [10, Th. A(ii)]
together with assertions (i), (ii), and (v). This completes the proof of Corollary 2.20.  [J

REMARK 2.20.1. It follows from [10, Th. A(i)] that if either n # 1 or r # 0, then the
right-hand vertical arrow of the diagram of Corollary 2.20(iii) is injective.

REMARK 2.20.2. In the notation of Corollary 2.20, the bijectivity of the left-hand
vertical arrow Out™C(I,,;) — Out¥(IL,,) of the diagram of Corollary 2.20(v) is proven
in [8, Cor. 6.6] by applying, in essence, a well-known result concerning topological surfaces
due to Dehn—Nielsen-Baer (cf. the proof of [20, Cor. 5.1(ii)]). On the other hand, the
equivalences of Corollary 2.19(i) (cf. also the injection of Corollary 2.20(i)), together with
a similar argument to the argument applied in the proof of the bijectivity portion of [8,
Th. B]—that is, in essence, the argument applied in the proof of [20, Cor. 3.3]—allow
one to give a purely algebraic alternative proof of this bijectivity result in the case where
n > max{3,npc} (cf. Corollary 2.20(vi)).

COROLLARY 2.21 (Discrete/profinite Dehn multi-twists). In the situation of Example
2.4(i), write Gxog for the semi-graph of anabelioids of pro-Primes PSC-type of Proposition
2.5(iii) in the case where we take “(G,X)” to be (Gxuos, Primes); lg .., Héxnog for the
respective fundamental groups of Gxos, Gxos; llg . for the profinite completion of lg

(so we have a natural outer isomorphism Ilg_, . — Héxlog —cf. Proposition 2.5(iii));

Dehn(gXlog) g Out(Hg

Xlog)

for the subgroup consisting of the Dehn multi-twists of Gxos, that is, of a € Out(nglog)
such that the following conditions are satisfied:

(a) « is graphic (cf. Definition 2.7(ii)) and induces the identity automorphism on the
underlying semi-graph of Gxios.
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b) Let II, CII ~ be a wverticial subgroup of 11 . Then the outomorphism of 1I,
G xlog G xlog
induced by restricting « (cf. (a); Corollary 2.18(v); the evident discrete analogue of
[10, Lem. 3.10]) is trivial.

Then the following hold:
(i)  The composite of natural outer homomorphisms

Hg - ﬁgxlog ;) HA

xlog

determines an injection

Out(Illg ,,, ) = Out(Ilz ).

gxlog

(ii) If one regards subgroups of Out(llg,, . ) as subgroups of Out(Ilz 1 ) by means of the
X

og

injection of (i), then the equality
Dehn(G o) = Dehn(Gy1o:) NOut(Ilg ., )

(cf. [9, Def. 4.4]) holds.
(iii) The homomorphism of the final display of Example 2./ (i) determines, relative to the

natural outer isomorphism w1 (X198(C)|s) = Ilg an isomorphism

1 (S(}:I)lg (C)) L> Dehn(gXlog )

of free Z-modules of rank Node(Gxe:)?. Moreover, the image of this isomorphism is
dense, relative to the profinite topology, in Dehn(Gxog).

Proof. Assertion (i) follows from Corollary 2.20(i). Next, we verify assertion (ii). The
inclusion Dehn(Gxz) € Dehn(Gxos) NOut(Ilg ., ) follows immediately from the various

definitions involved. To verify the reverse inclusion, let o € Dehn(é x106) NOUt(llg . ). Then

~

it follows immediately from Corollary 2.19(i) together with the definition of Dehn(G xios),
that the outomorphism « of Ilg_, , satisfies the condition (a) in the statement of Corollary
2.21. Moreover, it follows immediately from Proposition 2.5(v) and Corollary 2.20(i),
together with the definition of Dehn(g x1os ), that the outomorphism « of Ilg _, - satisfies the
condition (b) in the statement of Corollary 2.21. This completes the proof of assertion (ii).

Finally, we verify assertion (iii). First, let us observe that it follows immediately from
the various definitions involved that the homomorphism of the final display of Example
2.4(i) factors through Dehn(Gyis) and has dense image (i.e., relative to the profinite
topology) in Dehn(Gyioe) (cf. [9, Prop. 5.6(ii)]). Next, let us recall from [9, Th. 4.8(ii)

~

and (iv)] that if, for e € Node(Gx1e) = Node(Gxiog ), we write S, def Node(Gxoz) \ {€} and
(Gx0x)L, g, for the semi-graph of anabelioids of pro-PBrimes PSC-type of Proposition 2.5(iii),
in the case where we take “(G,%)” to be ((Gxior)s,,Brimes) (cf. Definition 2.9) and
regard Dehn((Gx1s)2, ) as a closed subgroup of Dehn (G yioe) via the specialization outer
isomorphism of [9, Def. 2.10] (cf. also Remark 2.9.1 and Proposition 2.10 of the present
paper), then we have an equality

Dehn(é\xlog) = @ Dehn((QXlog)ﬁse),

e€Node(F y10g)
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where each direct summand is (noncanonically) isomorphic to 7. Here, we note that
these specialization outer isomorphisms are compatible (cf. [9, Prop. 5.6(ii)—(iv)]) with the
corresponding homomorphisms of the final display of Example 2.4(i). Thus, in light of the
density assertion that has already been verified, one verifies immediately that, to complete
the verification of assertion (iii), it suffices to verify that the image of Dehn(G o) via the
projection to any direct summand of the direct sum decomposition of the above display is
contained in some submodule of the direct summand that is isomorphic to Z. To this end, let
us recall from [9, Th. 4.8(iv)] that such an image via a projection to a direct summand may
be computed by considering the homomorphism of the first display of [9, Lem. 4.6(ii)], that
is, which determines an isomorphism between the direct summand under consideration and
any profinite nodal subgroup ﬁe associated with the node e corresponding to the direct
summand. On the other hand, it follows immediately—in light of the definition of this
isomorphism—from Proposition 2.5(v) and Corollary 2.17(i) that the image of Dehn(G yiog)
under consideration is contained in a suitable discrete nodal subgroup II. (= Z) associated
with e (cf. Remark 2.6.1). This completes the proof of assertion (iii). 0

DEFINITION 2.22. Suppose that 3 =‘PBrimes. Let (g,7) be a pair of nonnegative integers
such that 29 — 247 > 0; n a positive integer; k def C; Sloe def Spec(k)'°8 the log scheme
obtained by equipping S def Spec(k) with the log structure determined by the fs chart
N — k that maps 1 — 0; X8 = X}Og a stable log curve of type (g,r) over S'°&. For each
(possibly empty) subset £ C {1,...,n}, write

log
XE

for the E*-th log configuration space of the stable log curve X'°8 (cf. the discussion
entitled “Curves” in [9, §0]), where we think of the factors as being labeled by the
elements of E C {1,...,n} (cf. the discussion at the beginning of [10, §3] in the case where
(3,k) = (Primes,C)). For each nonnegative integer n and each (possibly empty) subset
E C{1,...,n}, write (X}é)g)am — S for the morphism of fs log analytic spaces determined
by the morphism X}E‘)g — Gloe, (X}EOg)an(C), Slog(C) for the respective topological spaces
“X'o8” defined in [12, (1.2)] in the case where we take the “X” of [12, (1.2)] to be (X58)an,
Slog (cf. the notation established in Example 2.4(i)). Let s € S'°8(C). Write

def O
Xp = (X}Eg)an((cﬂs
for the fiber of the natural morphism (X18),,(C) — S195(C) at s;
Mg m(Xp)

for the discrete topological fundamental group of Xg;

def def disc def +di
%n = %{1,...,71}; X = %17 Hnlsc = H{lls’CJL}

Thus, for sets E' C E C{1,...,n}, we have a projection
paEn/E/ . %E — :{E’

obtained by forgetting the factors that belong to E'\ E’. For sets B/ C E C {1,...,n} and
nonnegative integers m < n, write

mdise | rdisc disc
Pe/p: g™ — U
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for some fixed surjection (that belongs to the collection of surjections that constitutes the
outer surjection) induced by p%E“/ I

dlSC

H%i%,, Ker(pE/E, ) C Hdlsc

an def an

Pujm = P}/ {1,m} Xn = X

Trdise dEf Trdise disc disc.
Pojm = P{i,n}/{1,.my s e = I

def HdlSC HdlSC

disc
1 {1,...,n}/{1,.. ,m} =

n/m

Finally, we shall write “ﬁ?if‘;” for the profinite completion of “H‘(ﬁf‘;.” Thus, we have a
natural outer isomorphism

ﬁ%isc L HE7
where Il is as in the discussion at the beginning of [10, §3]. In the following, we shall also
write X108 = def Xﬁg’w’n}; m, & gy, ny-

DEFINITION 2.23. In the notation of Definition 2.22, let i € E C {1,...,n}; z € X,,(C)
a C-valued geometric point of the underlying scheme X,, of X8

(i) We shall write

gdisc
for the semi-graph of temperoids of HSD-type associated with X'°¢ (cf. Example
2.4(ii));

Gith

for the semi-graph of temperoids of HSD-type associated with the geometric fiber
(Cf Example 2.4(ii); Remark 2.4.1) of the projection pE/(E\{ % Xlog — XE\{ } over

xE\{ } —>X§§’{ y (cf. [10, Def. 3.1(1)));

Hgdisc 3 Hg?éb}%z

for the respective fundamental groups of G45¢, gzdelsgm (cf. Proposition 2.5(i));

Hgd:sc

i€EE,x

for the profinite completion of Hgdlbc . Thus, it follows from the discussion of Remark

5.2 that we have a natural graphic (cf [18, Def. 1.4(i)]) outer isomorphism
Hgdli(‘ L Hg’iEE,z’

1€EE,x

where Gicp, is the semi-graph of anabelioids of pro-PBrimes PSC-type of [10
Def. 3.1(iii)], and hence a natural isomorphism of semi-graphs of anabelioids

d ~
gzelslg’ x giEE,:m
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where we write ézdelsb%x for the semi-graph of anabelioids of pro-PBrimes PSC-type

of Proposition 2.5(iii) in the case where we take “(G,X)” to be (gfei%@,mtimes).
Moreover, it follows immediately from the discussion of Example 2.4 that we have
a natural H%isc—orbit (i.e., relative to composition with automorphisms induced by
conjugation by elements of II45¢) of isomorphisms

(5 2) Wgjp i) — W |
One verifies immediately from the various definitions involved that the diagram

TTdi ~ T
Ugievey — gasg

zl lz
Mg/ iy — gicp.

—where the upper horizontal arrow is an element of the ﬁ%isc—orbit of isomorphisms
induced by the H%isc—orbit of isomorphisms of the above discussion; the lower horizontal
arrow is an element of the IIg-orbit of isomorphisms of [10, Def. 3.1(iii)]; the left-
hand vertical arrow is the isomorphism obtained by forming the restriction of an
isomorphism ﬁ%?sc 5 IIg that belongs to the outer isomorphism of the final display
of Definition 2.22; the right-hand vertical arrow is an isomorphism that belongs to
the outer isomorphism of the above discussion—commutes up to composition with
automorphisms induced by conjugation by elements of I1g.

(i) We shall say that a vertex v € Vert(gfeisg’x) is a(n) (E-)tripod of X,, if v is of type
(0,3) (cf. Definition 2.6(iii)). Thus, one verifies easily that v € Vert(Gis ) is a(n)
(E-)tripod if and only if the corresponding vertex of Gcp . via the graphic outer
isomorphism ﬁg?és];z S gy, of (i) is a(n) (E-)tripod of X & (cf. [10, Def. 3.1(v)]).
We shall refer to a verticial subgroup of Tlgaie —associated with a(n) (E-)tripod of X,
as a(n) (E-)tripod of TIdisc,

(iii) Let P be a property of (E-)tripods of IL,, (cf. [10, Def. 3.3(i)]) or X% (e.g., the property
of being strict—cf. [10, Def. 3.3(iii)]; the property of arising from an edge—cf. [10, Def.
3.7(1)]; the property of being central—cf. [10, Def. 3.7(ii)]). Then we shall say that a(n)
(E-)tripod of T145¢ or X,, (cf. (ii)) satisfies P if the corresponding (E-)tripod of IT,, or
Xlog gatisfies P.

(iv) Let T CTI¥¢ be an E-tripod of I1¢¢ (cf. (ii)). Then one may define the subgroups

Out®(T), Out®(T)°*P, Out®(T)?, Out®(T)>+ C Out(T)

of Out(7") in an entirely analogous fashion to the definition of the closed subgroups
“«Out®(T),” “Out®(T)sp” “Out®(T)2,” “Out®(T)2*” of “Out(T)” given in [10,
Def. 3.4(i)]. We leave the routine details to the reader.
THEOREM 2.24 (Outomorphisms preserving tripods). In the notation of Definition 2.22,
let EC{1,...,n} be a subset and T C IS¢ an E-tripod of 114¢ (cf. Definition 2.23(ii)).
Let us write

Out® (11915¢)[T] € Out™ (11ds)

for the subgroup of OutF(HgiSC) (cf. the notational conventions introduced in the statement
of Corollary 2.20) consisting of a € Out™ (I195°) such that the outomorphism of TILs
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determined by o preserves the 1195 -conjugacy class of T C T1¢s¢;

def

OutFC (H?Lisc)[ ] Out (Himc)[T] N Outh (Hiisc) C OutFC (Hgisc)

(cf. the notational conventions introduced in the statement of Corollary 2.20); 11 def 11y ;

Trdise 4f IIise; Out®(IIdise) = < Ou t5C (11dise) ; Out® (11 )def Owt¥“(I1). Then the following
hold:

(i)  Write T for the profinite completion of T. Then the natural homomorphism
Out(T) — Out(T)

is injective. If, moreover, one regards subgroups of Out(T) as subgroups of Out(f) via
this injection, then it holds that

Out®(T) = Out®(T) N Out(7T),
Out®(T)°™P = Out®(T)°™P N Out(T),
Out®(T)? = Out®(T)* NOut(T),

Out®(T)2* = out®(T)*+ NOout(T)

(cf. Definition 2.23(iv); [10, Def. 3.4(i)]).
(i1) It holds that

Out®(T)°*P = Out®(T)» = OutY(T)A+ = 7/2Z,

Out®(T) = 7./2Z x &3,

where we write Gs for the symmetric group on 3 letters.
(iii) The commensurator and centralizer of T € H%isc satisfy the equality

Thus, by applying the evident discrete analogue of [10, Lem. 3.10] to outomorphisms of
14se determined by elements of Out® (TI95¢)[T], one obtains a natural homomorphism

Tp: Out™ (1459) [T) — Out (7).
(iv) Suppose that n >3, and that T is central (cf. Definition 2.23(iii)). Then it holds that
Out™ (T1915¢) = OQut® (11dise) 7).
Moreover, the homomorphism
Tp: Out? (I145) = Out™ (114¢)[7] — Out(T")
of (i1i) determines a surjection
Out™C(11dis¢) = Out®(T)2+ (2 72/27).

We shall refer to this homomorphism as the tripod homomorphism associated with
Hgisc‘
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(v)  The profinite completion T determines an E-tripod of I1,,, which, by abuse of notation,
we denote by T'. Now suppose that T is E-strict (cf. Definition 2.23(iii)). Then it holds
that

Out® (4= [T] = Out” (I1,,)[T] N Out" (1I1is)

(cf. [10, Th. 3.16]).

(vi) Suppose that the semi-graph of anabelioids of pro-“Primes PSC-type G associated with
X8 (cf. [10, Def. 3.1(ii)]) is totally degenerate (cf. [9, Def. 2.3(iv)]). Recall that
G may be naturally identified with the semi-graph of anabelioids of pro-Primes PSC-
type determined by GY5¢ (cf. Proposition 2.5(iii); the discussion of Definition 2.25(i)).
Then one has an equality

Aut(GH) ™ = Aut(G) N Out® (1)~ (C Out®(ID))

—uwhere the superscript “~ ’s” denote the closure in the profinite topology—of subgroups
of Out®(IT) (¢f. Corollary 2.20(i)).

Proof. First, we verify assertion (i). The injectivity portion of assertion (i) follows from
Corollary 2.20(i). The first equality follows from Corollary 2.20(ii). Thus, the second and
third equalities follow immediately from the various definitions involved; the fourth equality
follows from Corollary 2.20(v). This completes the proof of assertion (i).

Next, we verify assertion (ii). The inclusions Out®(T)2T C Out®(T)2 C Out®(T)cwsp
follow from assertion (i), together with [10, Lem. 3.5]. The inclusion Out®(T)sP C
Out®(T)2+ and the assertion that Out®(T)°"P = 7,/27 follow immediately from [20, Cor.
5.3(1)], together with a classical result of Nielsen (cf. [20, Rem. 5.3.1]). This completes the
proof of the first line of the display of assertion (ii). Now since Out®(T)2 = Out®(T)°"sP, by
considering the action of OutC(T ) on the set of the T-conjugacy classes of cuspidal inertia
subgroups of T, we obtain an exact sequence

1 — Out®(T)» — Out®(T) — &3 — 1.

By considering outomorphisms of 7' arising from automorphisms of analytic spaces, one
obtains a section of this sequence; moreover, it follows from the definition of Ou‘cC(T)A
that this section determines an isomorphism Out®(T)? x &3 = Out®(T’). This completes
the proof of assertion (ii).

Next, we verify assertion (iii). Recall that every finite index subgroup of 7' is normally
terminal in its profinite completion (cf. Corollary 2.20(i)) and center-free (cf. Remark 2.6.1).
Thus, assertion (iii) follows immediately from [10, Th. 3.16(i)]. This completes the proof of
assertion (iii).

Next, we verify assertion (iv). First, let us observe that it follows immediately from the
definition of the notion of a central tripod (cf. Definition 2.23(iii); [10, Def. 3.7(ii)]) that
we may assume without loss of generality that n = 3. To verify the equality of the first
display of assertion (iv), we mimick the argument in the profinite case given in the proof of
20, Cor. 1.10(1)]: let a € Out™ (119¢), & € Aut(I145¢) a lifting of o. Write dy € Aut(TIgs¢)
for the automorphism induced by &. Now observe that since a € Out® (I195¢) it follows
immediately from Corollary 2.20(iv) that & determines an element of Out*“ (I13%*¢), hence
that dy preserves the I1$°-conjugacy class of inertia groups associated with the diagonal
cusp of any of the fibers of pgr/ll (cf. Definition 2.22; the discussion of [20, Rem. 1.1.5]). Thus,
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by replacing a by the composite of & with a suitable inner automorphism, we may assume
without loss of generality that cy preserves the inertia group associated with some diagonal
cusp of a fiber of p3},. Now the fact that a € Out™ (I1d5) [T follows immediately from
Corollary 2.17(ii); [10, Th. 1.9(ii)] (cf. the application of [20, Prop. 1.3(iv)] in the proof of
20, Cor. 1.10(i)]). The assertion that the restriction to Out™® (I145¢) of the homomorphism
Out™ (I1d5¢) — Out(T) of assertion (iii) factors through Out®(T)2* C Out(T) follows
immediately from from assertions (i) and (ii), together with [10, Th. 3.16(v)]. The assertion
that the resulting homomorphism is surjective follows immediately from the fact that
the (unique) nontrivial element of Out®(T)2* is the outomorphism induced by complex
conjugation (cf. [20, Rem. 5.3.1]), together with the (easily verified) fact that the pointed
stable curve over C corresponding to the given stable log curve X'°8 may be assumed,
without loss of generality—that is, by applying a suitable specialization isomorphism (cf.
the discussion preceding [20, Def. 2.1] as well as [9, Rem. 5.6.1]) and observing that such
specialization isomorphisms are compatible with the various discrete fundamental groups
involved (cf. Remarks 2.9.1 and 2.10.1)—to be defined over R. This completes the proof of
assertion (iv).

Next, we verify assertion (v). It follows immediately from the classification of E-strict
tripods given in [10, Lem. 3.8(ii)] that we may assume without loss of generality that
E* =n < 3. When n = 3, assertion (v) follows formally from assertion (iv). When n = 1,
assertion (v) follows immediately from Corollary 2.17(ii). Thus, it remains to consider the
case where n = 2, that is, where the tripod T arises from an edge. In this case, assertion
(v) follows from a similar argument to the argument applied in the proof of assertion (iv).
That is to say, let a € Out™ (II$5°), & € Aut(I1¢%°) a lifting of a. Write a; € Aut(I1¢i)
for the automorphism induced by «; B € Aut(IIy), E € Aut(Il;) for the automorphisms
determined by a. Then we must verify that a € Out™ (I1¢5) [T] under the assumption that
B determines an element [ € OutF(Hg)[f]. Now observe that it follows immediately from
the computation of the centralizer given in [10, Lem. 3.11(vii)] that 1 preserves the II;-
conjugacy class of edge-like subgroups of II; determined by the edge that gives rise to the
tripod T. Thus, we conclude from Corollary 2.17(ii) that, by replacing & by the composite of
a with a suitable inner automorphism, we may assume that o preserves a specific edge-like
subgroup of I1{%¢ corresponding to the edge that gives rise to the tripod 7. Note that this
assumption implies, in light of the commensurably terminality of edge-like subgroups (cf.
[18, Prop. 1.2(ii)]), that ﬁ preserves the ITy/1-conjugacy class of the tripod T.In particular,
we conclude, as in the proof of assertion (iv), that is, by applying Corollary 2.17(ii), that
o € Out" (T19%°) [T, as desired. This completes the proof of assertion (v).

Finally, we verify assertion (vi). First, let us observe that it follows immediately from
Corollary 2.20(v) that both sides of the equality in question are C Out¥C(IIgis¢)~ C
Out™(II5) (C Out®(II)). Also, we observe that, by considering the case where X'°2 is
defined over R (cf. the proof of assertion (iv)), it follows immediately that both sides of
the equality in question surject, via the tripod homomorphism of assertion (iv), onto the
finite group of order two that appears as the image of this tripod homomorphism (cf. also
the fact that the topological group Out(f) is profinite, hence, in particular, Hausdorff).
In particular, to complete the proof of assertion (v), it suffices to verify that the evident
inclusion

Aut(G45) ™ NOwtFC(II5)%° € Aut(G) N Out®(I14)~ N Out™C (115)8*°
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—where we write Out¥®(II3)ge C Out™“(II3) for the kernel of the tripod homomorphism
on Out™(I13) (cf. [10, Def. 3.19])—of subgroups of Out®(II) is, in fact, an equality. On the
other hand, since Dehn(G) is a normal open subgroup of both Aut(G45¢)~ N Out™® (II3)&*°
and Aut(G) N Out®(I19¢)~ N Out™(I13)&®° (cf. Corollary 2.21(iii); [9, Th. 4.8(i)]; the
commutative diagram of [10, Cor. 3.27(ii)]), and Aut(G9s°)~ N Out™(I13)s° clearly
surjects onto the finite group of automorphisms of the underlying semi-graph of Gdisc,
the desired equality follows immediately from [10, Cor. 3.27(ii)]. This completes the proof
of assertion (vi). 0

REMARK 2.24.1. It is not clear to the authors at the time of writing whether or not
one can remove the strictness assumption imposed in Theorem 2.24(v). Indeed, from the
point of view of induction on n, the essential difficulty in removing this assumption may
already be seen in the case of a non-E-strict tripod when E* = n = 2. From another point
of view, this difficulty may be thought of as arising from the lack of an analogue for discrete
topological fundamental groups of nth configuration spaces, when n > 2, of Corollary 2.17.

REMARK 2.24.2.

(i) In the notation of Theorem 2.24, let us observe that it follows from Corollary 2.19(i)
that we have an equality

Aut(G4¢) = Aut(G) N Out® (114 (C Out®(1I))

of subgroups of Out®(II) (cf. Corollary 2.20(i)). On the other hand, it is by no means
clear whether or not the evident inclusion

Aut(G4¢)™ C Aut(G) N Out®(I4)~ (C Out®(1I)) (%)

—where the superscript “~’s” denote the closure in the profinite topology—is an
equality in general. On the other hand, when X'°8% is totally degenerate, this equality
is the content of Theorem 2.24(vi).

(ii) We continue to use the notation of (i). Write Mg for the moduli stack of hyperbolic
curves of type (g,r) over Q and Cg — Mg for the tautological hyperbolic curve over
M. Thus, for appropriate choices of basepoints, if we write Il¢ et m1(Cq), I et

71 (M) for the respective étale fundamental groups, then we obtain an exact sequence

of profinite groups
l—Acypm — e — Ty — 1

—where Ac/pq is defined so as to render the sequence exact—as well as a natural
outer representation

om: gy — OutC(H)

—where, by choosing appropriate basepoints, we identify II with A¢/(—and a natural
outer surjection

Iy — Go

onto the absolute Galois group Gg of Q (cf. the discussion of [10, Rem. 3.19.1]). Write
Gr C G for the decomposition group (which is well-defined up to Gg-conjugation) of
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the unique archimedean prime of Q. In the spirit of [4]-[6], let us write
= Out®(I=) (S Out(M); T = pus(Tas X G)

(cf. Corollary 2.20(i)). Thus, for appropriate choices of basepoints, I' is equal to the
closure of I' in Out®(II). If & is a simplex of the complex of profinite curves L(II)
studied in [4]-[6] that arises from IT19¢, then the stabilizer in T' of ¢ is denoted T',,
while the stabilizer in I" of the image of ¢ in the profinite curve complex corresponding
to I is denoted I'y. Then [6, Th. 4.2] (cf. also [4, Prop. 6.5]) asserts that

The natural inclusion I' C ', is, in fact, an equality.

Translated into the language of the present paper, this assertion corresponds precisely
to the assertion that the inclusion (x) considered in (i) is, in fact, an equality. In
particular, Theorem 2.24(vi) corresponds, essentially, to a special case (i.e., the totally
degenerate case) of [6, Th. 4.2]. At a more concrete level, when Node(G)* = 1, and o
arises from a single simple closed curve that corresponds to the unique node e of G,
this assertion corresponds precisely to the assertion that

the profinite stabilizer in T of the II-conjugacy class of nodal subgroups of II
determined by e coincides with the closure in I' of the discrete stabilizer in
I" of the II4*°-conjugacy class of nodal subgroups of I14*¢ determined by e

—cf. Theorem 3.3, Remark 3.3.1, and Corollary 3.4 in §3 below. As discussed in (i),
this sort of assertion is highly nontrivial. That is to say, this sort of coincidence between
a profinite stabilizer and the closure of a corresponding discrete stabilizer is, in fact,
false in general, as the example given in (iv) below demonstrates. In particular, this
sort of coincidence is by no means a consequence of superficial “general nonsense”-type
considerations, but rather, when true (cf., e.g., the case treated in Theorem 2.24(vi)),
a consequence of deep properties of the specific groups and specific spaces (on which
these groups act) under consideration.

(iii) In closing, we observe that many of the results derived in [6] as a consequence of
the assertion discussed in (ii) were, in fact, already obtained in earlier papers by the
authors. Indeed, the faithfulness asserted in [6, Th. 7.7]—that is, the injectivity of the
restriction of paq to a section G — Il arising from a hyperbolic curve of type (g,7)
defined over a number field F—is a special case of [8, Th. C]. On the other hand, in [9,
Th. D], a computation is given of the centralizer in OutC(H) of an open subgroup of .
Thus, the computation of centers given in [6, Cor. 6.2] amounts to a special case of [9,
Th. D]. Finally, [6, Cor. 7.6]—which may be regarded as the assertion that the inverse
image via pyq of the centralizer of I' in Out®(II) maps trivially to Gg—amounts to a
concatenation of

e the computation of the centralizer given in [9, Th. D] with
e the fact, stated in [8, Cor. 6.4] that p);(I') maps trivially to Gg.

(iv) Let n >3 be an integer. Consider the natural conjugation action of the special linear
group SL,,(Z) with coefficients € Z on the module M,,(Z) of n by n matrices with
coefficients € Z. Write A € M,,(Z) for the diagonal matrix whose entries are given by
the integers 1,...,n. Then one verifies immediately that the stabilizer

SL.(Z) A
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of A, relative to the conjugacy action of SL,,(Z), is equal to the subgroup of diagonal
matrices of SL,,(Z), hence isomorphic to the finite group given by a product of n —1
copies of the finite group of order two {£1}. On the other hand, if one considers the
action of the special linear group SL,,(Z) with coefficients € Z on the module M, (Z) of
n by n matrices with coefficients € Z, then one verifies immediately that the stabilizer

SL,(Z) 4

of A, relative to the conjugacy action of SL, (A) is equal to the subgroup of diagonal
matrices of SL,, ( ), hence isomorphic to a product of n—1 copies of ZX, a group of
uncountable cardinality. That is to say,

The profinite stabilizer SLn(z)A is much larger than the profinite completion
of the discrete stabilizer SL,,(Z)a

Here, we recall that since, as is well-known, the congruence subgroup problem has been
resolved in the affirmative, in the case of n > 3, the topological group SL,, (i) may be
identified with the profinite completion of the group SL,(Z). A similar example may
be given in the case of the symplectic group Sp,,, (Z).

COROLLARY 2.25 (Characterization of the archimedean local Galois groups in the global
Galois image associated with a hyperbolic curve). Let F be a number field (i.e., a finite
extension of the field of rational numbers); p an archimedean prime of F; F, an algebraic
closure of the p-adic completion F, of F (so F\ is isomorphic to C); F C Fy the algebraic

closure of F in Fp; X8 a smooth log curve over F. Write Gy, ot Gal(F,/F,) C Gr o

Gal(F/F); X228 X125 x p F; X128 X P2 xp Fy; X8 S X2 p Fy;
Fy
™ (X28)
or the log fundamental group of X2,
F
dle (XIOg)

for the (discrete) topological fundamental group of the analytic space associated with the
interior of the log scheme X%ﬂ’g,
P

W?ISC (XL;?)/\

for the profinite completion of WdlSC(XIFOf);

pxies: Gp — Out(m (X2%))
for the natural outer Galois action associated with X 1°g
di . di 1
plie, + Gy — Out(miise(X12%))

for the natural outer Galois action associated with X}?pg. Thus, we have a natural outer
isomorphism

P (X0,
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which determines a natural injection

Out(m{*¢ (X 1°%)) — Out(m, (X1%%))

p

(cf. Corollary 2.20(i)). Then the following hold:

(i) We have a natural commutative diagram

disc

pxlog

Gy

! !

P log

Gr —  Out(m (X2*))

Out( disc (Xl—;g))

P

—where the vertical arrows are the natural inclusions, and all arrows are injective.
(ii) The diagram of (i) is Cartesian, that is, if we regard the various groups involved as
subgroups of Out(m; (X%g)), then we have an equality

Gy = GpNOut(mi*c(X2%)).
P
Proof. Assertion (i) follows immediately from the injectivity of the lower horizontal
AITOW ) y 1o (cf. [8, Th. CJ), together with the various definitions involved.

Finally, we verify assertion (ii). Write (X3)2% for the 3-rd log configuration space of
X?g. Then it follows immediately from [8, Th. B] that the group Out™(m ((X#)®)) of

FC-admissible outomorphisms of the log fundamental group m; (X% )log ) of (X )10g may be

regarded as a closed subgroup of Out(T['l(leOg)). Moreover, it follows immediately from the
disc

X}gg’p) of the natural

various definitions involved that the respective images Im(p X?g), Im(p

. . i . . 1 1 . . .
outer Galois actions Pxlces p‘;(lifg . associated with X%, X I;’pg are contained in this closed
F

subgroup Out¥® (7 ((X7)¥%)) C Out(m (Xlog)). Thus, to verify assertion (ii), one verifies
immediately from Corollary 2.20(v) that it sufﬁces to verify the equality

Im(p§i ) = Im(pxiee) NOUt (7™ (X5, )5*%))

—where we write (Xfp)éog def (X7)28 x% Fy and W?isc((Xfp)l;g) for the (discrete)

topological fundamental group of the analytic space associated with the interior of the

log scheme (Xfp)gog. On the other hand, since the “py10:” that occurs in the case where
F

we take “X)28” to be the smooth log curve associated with P\ {0,1,00} is injective (cf.
assertion (i)), this equality follows immediately—by considering the images of the subgroups

Im(pise ) € Im(pyioe) N Out(mi™ ((X7,)5*))

of Out(Tr‘f“SC((Xfp )gog)) via the (manifestly compatible!) tripod homomorphisms associated

with 75((X7 )5®) (cf. Theorem 2.24(iv)) and m1((X7)5*) (cf. [10, Th. 3.16(i) and
(v)])—from [1, Th. 3.3.1]. This completes the proof of assertion (ii), hence also of
Corollary 2.25. [
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REMARK 2.25.1. Corollary 2.25 is a generalization of [1, Th. 3.3.2] (cf. also the footnote
of [1] following [1, Th. 3.3.2]). Although the proof given here of Corollary 2.25 is by no means
the first proof of this result (cf. the discussion of this footnote of [1] following [1, Th. 3.3.2];
[8, Cor. 6.4]), it is of interest to note that this result may also be derived in the context of
the theory of the present paper, that is, via an argument that parallels the proof given in
[11] of [11, Th. B] in the p-adic case (for which no alternative proofs are known!).

§3. Canonical liftings of cycles

In the present section, we discuss certain canonical liftings of cycles (cf. Theorems 3.10
and 3.14 below). These canonical liftings are constructed in a fashion illustrated in Figure
1. This approach to constructing such canonical liftings was motivated (cf. Remark 3.10.1
below) by the arguments of [5], where these canonical liftings were applied, in the context
of the congruence subgroup problem for hyperelliptic modular groups, to derive certain
injectivity results (cf. [5, §2]), which may be regarded as special cases of [8, Th. B].
Unfortunately, however, the authors of the present paper were unable to follow in detail
these arguments of [5], which appear to be based to a substantial extent on geometric
intuition concerning the geometry of topological surfaces. Although, in the development
of the present series of papers on combinatorial anabelian geometry, the authors were
motivated by similar geometric intuition, the proofs of the results given in the present
series of papers proceed by means of purely combinatorial and algebraic arguments
concerning combinatorial (e.g., graphs) and group-theoretic (e.g., profinite fundamental
groups) data that arise from a pointed stable curve. From the point of view of arithmetic
geometry, the geometric intuition which underlies the topological arguments given in
[5] involving objects such as topological Dehn twists is of an essentially archimedean
nature, hence, in particular, is fundamentally incompatible, at least from the point of
view of establishing a rigorous mathematical formulation, with the highly nonarchimedean
properties of profinite fundamental groups, as studied in the present series of papers—cf.
the discussion of [17, Rem. 1.5.1]. It was this state of affairs that motivated the authors
to give, in the present section, a formulation of the constructions of [5, §2] in terms
of the purely combinatorial and algebraic techniques developed in the present series of
papers.

In the present section, let (g,7) be a pair of nonnegative integers such that 29 —2+r > 0;
n a positive integer; ¥ a set of prime numbers which is either equal to the entire set of
prime numbers or of cardinality one; k an algebraically closed field of characteristic & 3;
Glog def Spec(k)'©8 the log scheme obtained by equipping S def Spec(k) with the log structure
determined by the fs chart N — k that maps 1+ 0; X8 = X }Og a stable log curve of type
(g,7) over S'°8. For each (possibly empty) subset E C {1,...,n}, write

log
XE

for the E*-th log configuration space of the stable log curve X'°& (cf. the discussion entitled
“Curves” in [9, §0]), where we think of the factors as being labeled by the elements of
EC{l,...,n}

IIg
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for the maximal pro-X quotient of the kernel of the natural surjection Wl(X}sg) —» 71 (S08);
1 1 1
pEoiE/: XEog - XEO/g, p%/E,: Il — Ig,

def def o def
HE/E’ = Ker(pg/E’) Cllg, Xrllog = Xil%...,n}’ 1L, = H{l,...,n},

log def log . log log
Prm = Piind/{1,my X o = X%

def
Pg/m = p?l,...,n}/{l,...,m}: 1, — Iy,

def
Wym = W, ny/qn,my € i,

g, G, Hga giEE,wv ]'_‘[gieE,z

for the objects defined in the discussion at the beginning of [10, §3]; [10, Def. 3.1]. In
addition, we suppose that we have been given a pair of nonnegative integers (¥g,Yr) such
that 2¥g—2+4Yr > 0 and a stable log curve Y108 = Y% of type (Yg,¥r) over $'°8. We shall
use similar notation

log Y Y log . y-log log Y, II .Y Y-
YE y HE, pE/E’YE —>YE,, pE/E’ HE—» HE/,

def og def < -lo def
Mpp = Ker("pgp) C g, 8 S Y5 VL= Yy,

Yy, log defy log . yviog log
njm = Pl n/qnmy Y Y

y, 11 defy 11 LY Yy
pn/m = p{l,...m}/{l,...,m}‘ Hn - Hm7

def
My = Mt nyyg1my € 1,

Y, Y, Y,
g7 G7 HYQ? giGE,yv HygieE.y

for objects associated with the stable log curve Y18 = Yllog to the notation introduced above
for X'°& (cf. the discussion at the beginning of [10, §3]]; [10, Def. 3.1]).

LEMMA 3.1 (Graphicity in the case of a single node). In the notation of the discussion
at the beginning of the present §3, suppose that Node(G)! = Node(YG)* = 1. Write

e € Node(G) (resp. Ye € Node(¥G))

for the unique node of G (resp. YG). Let I, C1I; (resp. Ilv, C Y111 ) be a nodal subgroup of
II; S 1lg (resp. Y111 = Ivg) associated with e € Node(G) (resp. Ye € Node(¥G)); e2 € Xa(k)
(resp. Yey € Yo (k) ) a k-valued point of the underlying scheme Xo (resp. Ya) of the log scheme
X% (resp. Y, ) that lies, relative to pl2°/g1 (resp. ng)/gl), over the k-valued point of X (resp.
Y) determined by the node e € Node(G) (resp. Ye € Node(¥G)). Thus, we obtain an outer
isomorphism

~ Y ~
1_[2/1 nge{l,Z},EQ (resp. H2/1 - Hyg2e{1,2}7ye2)
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(cf. [10, Def. 3.1(iii)]) that may be characterized, up to composition with ele-
ments of AUEP(Gocrr ) .,) C Out(llg,.,,,,.) (resp. AutE™I(G,cav,) C
Out(HYgze{m}’Yq)) (cf. [9, Def. 2.6(i)]; [10, Rem. 4.1.2]), as the group-theoretically
cuspidal (cf. [18, Def. 1.4(iv)]) outer isomorphism such that the semi-graph of anabelioids
structure on Gocg1,2},e, (T€SP. YQQG{LQ}’yeQ) 1§ the semi-graph of anabelioids structure
determined (cf. [8, Th. A) by the resulting composite outer representation

Il = II; — OUt(HQ/l) = OUt(HQZE{l,Q},Ez)

(resp. My, — YTI; — Out(yﬂg/l) = Out(HyQQE{M}’YGQ))

—where the second arrow s the outer action determined by the exact sequence 1 —
oy — Iy — II; — 1 (resp. 1 — YH2/1 — YII, — YII; — 1)—in a fashion compatible
with the restriction Iy — gy (resp. YH2/1 —» YH{g}) ofp?m}/{z} (reip. ngl,2}/{2}) to
y/y C Iy (resp. YH2/1 C YTl,) and the given outer isomorphisms Moy — Iy — Ilg (resp.
YH{z} = YH1 = YHg) Let
v € Vert(Goc12y.c,) (resp. v e Vert(YQZE{LQ}’yez))

be the {1,2}-tripod (cf. [10, Def. 3.1(v)]) that arises from e € Node(G) (resp. Ye € Node(YG))
(cf. [10, Def. 8.7(i)]); Ty C Mg,y ... & a1 (resp. My, C Hyg2e(1,z},Ye2 < YMy1) a
{1,2}-tripod in ly (resp. Y1ly) associated with the tripod v (resp. Yv) (cf. [10, Def. 3.3(i)]);

Q Hg ;> HYg
an outer isomorphism of profinite groups. Suppose that the following conditions are satisfied:

(a) The outer isomorphism o is group-theoretically nodal (cf. [8, Def. 1.12]), that is,
determines a bijection of the set of Ilg-conjugates of 11, C Ilg and the set of Ilvg-
conjugates of Iy, C Ilvg.

(b) The outer isomorphism « is 2-cuspidalizable (cf. [10, Def. 3.20]), that is, the outer
isomorphism

(0%
I, 5 Tl = Myg «<— Y11,
arises from a (uniquely determined, up to permutation of the 2 factors—cf. [8, Th. B)
PFC-admissible (cf. [9, Def. 1.4(iii)]) outer isomorphism Iy = YTI. (In particular,
the outer isomorphism a is group-theoretically cuspidal.)

Then the following hold:

i ere exists a ~admissible isomorphism &y : Iy = Y1l that lifts o suc at the
i) Th ists a PFC-admissible i hism da: Iy = Y1y that | h that th
composite

~ ~ Y ~
Hg2€{1,2},62 H2/1 H2/1 Hygze{1,2},ye2

—uwhere the second arrow is the restriction of ca—is graphic (cf. [18, Def. 1.4(i)]).
(ii) The outer isomorphism as: Iy = Y1l determined by the isomorphism & of (i) induces
a bijection between the set of Ils-conjugates of IL, C Iy and the set of YIly-conjugates
of Iy, C YTIy. Moreover, if we think of IL,, Ily, as the respective (pro-X) fundamental
groups of Goc(1,2},esv Ygge{m}’yez\yv (cf. [9, Def. 2.1(%ii)]; [9, Rem. 2.1.1]), then
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the induced outer isomorphism 1L, = Ilv, (cf. [10, Th. 3.16(i)]) is group-theoretically
cuspidal.
(iii) The outer isomorphism o is graphic.

Proof. In light of conditions (a) and (b), assertion (i) follows immediately from [8,
Th. A] (cf. also our assumption that Node(G)* = Node(YG)* = 1, which implies that the
outer representation Il — Out(Ilg, ,, ,, . ) [resp. IIv, — Out(HYg2€{1ﬁ2}’Y62)] is nodally

nondegenerate!). Next, let us observe that the Ilg,_, ,, . - (vesp. IIvg -) conjugacy

2€{1,2},Yey

class of I, C g, ., ,, ., (resp. Iy, CIlvg ) may be characterized as the unique

2¢{1,2},Ye
Hgse (12y.00" (resp. HYQQE(M%YQ-) conjugacy {cla}ss éf verticial subgroups that fails to map
injectively via the surjection I, ,; — II2; (resp. Y11, /1> YH{Q}). Now assertion (ii) follows
immediately from assertion (i). Assertion (iii) follows immediately—in light of [20, Prop.
1.2(iii)|—from assertions (i) and (ii), together with the various definitions involved. This
completes the proof of Lemma 3.1. 0

Before proceeding, we pause to observe that Lemma 3.1 may be applied to obtain an
alternative proof of a slightly weaker version of Theorem 3.3 below, as follows.

PROPOSITION 3.2 (Graphicity of group-theoretically nodal 2-cuspidalizable outer iso-
morphisms). In the notation of the discussion at the beginning of the present §3, let

(6N Hg ;Hyg

be an outer isomorphism of profinite groups. Suppose that the following conditions are
satisfied:

(a) The outer isomorphism o is group-theoretically nodal (cf. [8, Def. 1.12]).
(b) The outer isomorphism « is 2-cuspidalizable (cf. [10, Def. 3.20]), that is, the outer
isomorphism

«
I, =5 Tl 5 Mvg <& Y11,

arises from a (uniquely determined, up to permutation of the 2 factors—cf. [8, Th. B])
PFC-admissible (cf. [9, Def. 1.4(iii)]) outer isomorphism Iy = YTl,. (In particular,
the outer isomorphism « is group-theoretically cuspidal—cf. [18, Def. 1.4(iv)].)

Then the outer isomorphism « is graphic (cf. [18, Def. 1.4(i)]).

Proof. Let us first observe that it follows from condition (a), together with [18, Prop.
1.2(i)] that o determines a bijection Node(G) = Node(¥G), so Node(G)* = Node(YG)*. We
verify Proposition 3.2 by induction on Node(G)* = Node(YG). If Node(G) = Node(¥G) = 0,
then Proposition 3.2 is immediate. Thus, we may assume without loss of generality that
Node(G), Node(YG) # ). Let e € Node(G). Write Ye € Node(YG) for the node of ¥G that
corresponds, via a, to e. Write G .y (resp. ng{Ye}) for the generization of G (resp.
YG) with respect to {e} C Node(G) (resp. {¥Ye} C Node(¥G)) (cf. [9, Def. 2.8]); B for the
composite outer isomorphism

-1
q>g\,,{e} a Yg«»{ye}

Mg ., 5 Mg —>Tlg —> Il

~{Ye}
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(cf. [9, Def. 2.10]); vo € Vert(Go.qey) (resp. Yvg € Vert(¥G. vey)) for the (uniquely
determined) vertex of the generization QM{e} (resp. ng{Ye}) that does not arise from a
vertex of Vert(G) (resp. Vert(*G)). Let IT,, CIlg_,,, (resp. Ilv,, C HYgM{Ye}) be a verticial
subgroup associated with vy € Vert(G._.(c}) (resp. Yvg € Vert(YG._ (v¢y)); He C Iy, (resp.
IIy, CIlv,,) a subgroup that maps to a nodal subgroup associated with e in Ilg (resp. to
Ye in Ilvg). Thus, it follows immediately from [8, Lem. 1.9(i) and (ii)] (cf. also [8, Lem.
1.5]; condition (2) of [9, Prop. 2.9(i)]) that IL,, (resp. Ilv,,) may be characterized as the
unique verticial subgroup of Ilg_ ., (resp. HYgM{ye}) that contains II. (resp. Ilv,).

Next, let us observe that, by applying the induction hypothesis to 5, we conclude that (5 is
graphic. Thus, it follows immediately—in light of [18, Prop. 1.5(ii)]—from the definition of
the generizations under consideration (cf. condition (3) of [9, Prop. 2.9(i)]) that, to complete
the verification of Proposition 3.2, it suffices to verify that the following assertion holds:

Claim 3.2.A: Let H C1I,, Cllg ., be a closed subgroup of II,, whose image in
IIg is a verticial subgroup. Then the image of H via the composite

K3
B YO Yoy
ng{e} - Hyg - HYQ

~{Ye}

is a verticial subgroup.

To verify Claim 3.2.A, let us observe that since g is graphic, it follows immediately from
the above characterization of IL,,, Ilv,, that g maps IL,, bijectively onto a Hygv{ye}—
conjugate of Ilv, . Thus, it follows immediately from condition (b), together with the
evident isomorphism (i.e., as opposed to outomorphism—cf. [10, Rem. 4.14.1]) version of [10,
Lem. 4.8(i) and (ii)] that, in the notation of [10, Def. 4.3], the outer isomorphism IT, = YTl
of condition (b) induces compatible outer isomorphisms (IL,,)2 = (IIv,, )2, 1L,y — v, . In
particular, by applying Lemma 3.1(iii) to these outer isomorphisms, one concludes that
Claim 3.2.A holds, as desired. This completes the proof of Proposition 3.2. O

THEOREM 3.3 (Graphicity of profinite outer isomorphisms). Let ¥y be a nonempty set
of prime numbers; H, J semi-graphs of anabelioids of pro-Xg PSC-type; 1y, 117 the (pro-
Yo) fundamental groups of H, J, respectively;

(67 H’H AN HJ
an outer isomorphism of profinite groups. Then the following conditions are equivalent:

(i)  The outer isomorphism « is graphic (cf. [18, Def. 1.4(i)]).

(ii) The outer isomorphism « is group-theoretically verticial and group-theoretically
cuspidal (cf. [18, Def. 1.4(iv)]).

(iii) The outer isomorphism « is group-theoretically nodal (cf. [8, Def. 1.12]) and group-
theoretically cuspidal.

Proof. The implication (i) = (ii) (resp. (ii) = (iii)) follows from the various definitions
involved (resp. [8, Lem. 1.9(i)]). Thus, it suffices to verify the implication (iii) = (i). Suppose
that condition (iii) holds. Then, to verify the graphicity of «, it follows from [18, Th. 1.6(ii)]
that it suffices to verify that « is graphically filtration-preserving (cf. [18, Def. 1.4(iii)]). In
particular, by replacing 113, II 7 by suitable open subgroups of 113, 11 7, it suffices to verify
that « determines isomorphisms
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b-ed ~ b-ed - ~ -
H,E;{ edge Haj e ge’ H’a}-;:) vert Hf}b vert7

. b-ed i
where we write “II?7°98¢ 7 «JJab-vert»

for the closed subgroups of the abelianization “HaE)”
of “Il(_y” topologically generated by the images of the edge-like, verticial subgroups of
“IT(_).” Here, we may assume without loss of generality that H and J are sturdy, hence
admit compactifications (cf. [18, Rems. 1.1.5 and 1.1.6]). Now the assertion concerning
“H?E')edge” follows immediately from condition (iii). On the other hand, the assertion

concerning “H?E')Vert” follows immediately from the duality discussed in [18, Prop. 1.3]
applied to the compactifications of H, J, together with condition (iii). This completes the
proof of Theorem 3.3. U

REMARK 3.3.1. Here, we observe that results such as [6, Cor. 6.1]; [6, Cor. 6.4(ii)]; [6,
Th. 6.6] amount, when translated into the language of the present paper, to a special case
of the result obtained by concatenating the equivalence (i) < (iii) of Theorem 3.3, with the
computation of the normalizer given in [9, Th. 5.14(iii)] (i.e., in essence, [18, Cor. 2.7(iii)
and (iv)]). Moreover, the proof given above of this equivalence (i) < (iii) of Theorem 3.3 is,
essentially, a restatement of various results from the theory of [18]. That is to say, although
the statements of these results that occur in the present series of papers and in [6] are
formulated and arranged in a somewhat different way, the essential mathematical content
that underlies these results is, in fact, entirely identical; moreover, this state of affairs is
by no means a coincidence. Indeed, this mathematical content is given in [18] as [18, Prop.
1.3]; [18, Prop. 2.6]. In [6], this mathematical content is given as [6, Lem. 5.11] (and the
surrounding discussion), which, in fact, was related to the author of [6] by the senior author
of the present paper in the context of an explanation of the theory of [18].

COROLLARY 3.4 (Graphicity of discrete outer isomorphisms). Let H, J be semi-graphs
of temperoids of HSD-type (cf. Definition 2.3(iii)); llyy, 117 the fundamental groups of H,
J, respectively (cf. Proposition 2.5(1));

[ HH = HJ
an outer isomorphism. Then the following conditions are equivalent:

(i)  The outer isomorphism « is graphic (cf. Definition 2.7(ii)).

(i) The outer isomorphism o« is group-theoretically wverticial and group-theoretically
cuspidal (cf. Definition 2.7(i)).

(ili) The outer isomorphism « is group-theoretically nodal and group-theoretically cuspidal
(cf. Definition 2.7(i)).

Proof. This follows immediately from Theorem 3.3, together with Corollary 2.19(i). [J

DEFINITION 3.5. Let (YG,S CNode(¥G),4: YG.s = G) be a degeneration structure on
G (cf. [10, Def. 3.23(i)]) and e € S.

(i) We shall say that a closed subgroup J C II; of II; is a cycle-subgroup of II; (with
respect to (YG,S C Node(YG),¢: YG..s = G), associated with e € S) if J is contained
in the II;-conjugacy class of closed subgroups of II; obtained by forming the image of

a nodal subgroup of Ilvg associated with e via the composite of outer isomorphisms
@;;MS

Mg = Mvg , "oTlg 11,
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—where the first arrow is the inverse of the specialization outer isomorphism ®vg
(cf. [9, Def. 2.10]), the second arrow is the graphic outer isomorphism IIvg . = Ilg
induced by ¢, and the third arrow is the natural outer isomorphism IIg = IT; of [10,
Def. 3.1(ii)] (cf. the left-hand portion of Figure 1).

(ii) Let n be a positive integer. Then we shall say that a cycle-subgroup of II; is
n-cuspidalizable if it is a cycle-subgroup of II; with respect to some n-cuspidalizable
degeneration structure on G (cf. [10, Def. 3.23(v)]).

REMARK 3.5.1. Let J CII; be a cycle-subgroup of II; with respect to a degeneration
structure (YG,S C Node(¥G),¢: YG.s = G), associated with a node e € S. Then it follows
immediately from [18, Prop. 1.2(i)] that the node e of ¥G is uniquely determined by the
subgroup J C II; and the degeneration structure (YG,S C Node(¥G),¢: YG.s = G).

DEFINITION 3.6. Let J CII; be a 2-cuspidalizable cycle-subgroup of II; (cf. Definition
3.5(1) and (ii)).

(i) It follows immediately from the various definitions involved that we have data as
follows:

(a) a 2-cuspidalizable degeneration structure (YG,S C Node(¥G), ¢: YG.5s — G) on G
(cf. [10, Def. 3.23(i) and (v)]),

(b) an isomorphism YTI; = II; that is compatible with the composite of the display
of Definition 3.5(1) (cf. also [10, Def. 3.1(ii)]) in the case where we take the
“YG,S C Node(YG),¢: YG_.s = G)” of Definition 3.5 to be the degeneration
structure of (a),

(c) a PFC-admissible isomorphism YIIy = Ilp that lifts the isomorphism of (b),
and

(d) a nodal subgroup I, C YII; of YII; associated with a (uniquely determined—cf.
Remark 3.5.1) node e of ¥G

such that the image of the nodal subgroup II, C YTI; of (d) via the isomorphism
YTI, = 10, of (b) coincides with J C II;. We shall say that a closed subgroup 7' C I, /1
of Il ; is a tripodal subgroup associated with J if T' coincides—relative to some choice
of data (a), (b), (c), (d) as above (but cf. also Remark 3.6.1!)—with the image, via the
lifting YTl = I of (c), of some {1, 2}-tripod in ¥TI, 4 € ¥I, (cf. [10, Def. 3.3(i)]) arising
from e (cf. [10, Def. 3.7(i)]), and, moreover, the centralizer Z,(T') maps bijectively,
via pg/l: Iy — IIy, onto J CIIy (cf. [10, Lem. 3.11(iv) and (vii)]).

(ii) Let T'CIIy/; be a tripodal subgroup associated with J (cf. (i)). Then we shall refer to
a closed subgroup of T that arises from a nodal (resp. cuspidal) subgroup contained in
the {1,2}-tripod in YTy, C YTl of (i) as a lifting cycle-subgroup (resp. distinguished
cuspidal subgroup) of T (cf. the right-hand portion of Figure 1).

REMARK 3.6.1. Note that, in the situation of Definition 3.6, (i), it follows immediately
from Lemma 3.1(ii) (i.e., by considering the generization of ¥G with respect to Node(YG)\
{e}—cf. [9, Def. 2.8]), together with the computation of the centralizer given in [10, Lem.
3.11(vii)], and the commensurable terminality of J CII; (cf. [18, Prop. 1.2(ii)]), that the
II;/;-conjugacy class of a tripodal subgroup 7' is completely determined by the cycle-
subgroup J CII;.
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REMARK 3.6.2.

(i) Suppose that we are in the situation of Definition 3.5(i). Recall the module Ag, that
is, the cyclotome associated with G, defined in [9, Def. 3.8(i)]. Thus, as an abstract
module, Ag is isomorphic to the pro-> completion 7% of Z. Recall, furthermore, from
[9, Cor. 3.9(v) and (vi)] that one may construct a natural, functorial {+}-orbit of
isomorphisms

1L " Avg

—where I, C YTI; = Ivg (cf. [10, Def. 3.1(ii)]) denotes a nodal subgroup associated
with e. Thus, by applying the natural, functorial (outer) isomorphisms Avg — Avg s
(cf. [9, Cor. 3.9(i)]) and @;glvs: IIvg = Hvg_ . (cf. [9, Def. 2.10]), together with the

(outer) isomorphisms Avg_, — Ag and IIvg_ = IIg induced by ¢, we obtain a natural
{z£}-orbit of isomorphisms

T Ag

associated with the cycle-subgroup J C II;. Note that this {+}-orbit of isomorphisms is
functorial with respect to automorphisms « of II; such that «(J) = J, and, moreover,
the outer automorphism of Ilg obtained by forming the conjugate of o by the natural
outer isomorphism I1; = Ilg is graphic (cf. the equivalence (i) < (iii) of Theorem 3.3).
In this context, it is natural to refer to either of the two isomorphisms in this {#+}-orbit
as an orientation on the cycle-subgroup J.

(il) Now suppose that we are in the situation of Definition 3.6(i) and (ii). Then let
us observe that the natural outer surjection YII, /1 YH{Q} 5 YII; determined by
Yp?m} /12} induces a natural isomorphism

~

AYQZE{LQ},EQ Ayg

(cf. [9, Cor. 3.9(ii)]), where we write ey € Ya(k) for a k-valued point of Y5 that lies,
relative to Yp12°/g1, over the k-valued point of Y determined by the node e. Write v for

the vertex of Yg2€{1’2}7e2 that gives rise to the tripodal subgroup 7' C I, /;. Thus, we
have a natural isomorphism

AU Aygze{LQ},eQ

(cf. [9, Cor. 3.9(ii)]). Now suppose that e* is a node of YGoey1 2}, that abuts to v
and, moreover, gives rise to a lifting cycle-subgroup J* C T of the tripodal subgroup
T. Thus, one verifies immediately that the natural outer surjection Il;,; — Il;9) S
determined by p?m} /{2y induces a natural isomorphism .J* = J (cf. [10, Lem. 3.6(iv)]).
Let IL- C Ilvg,_,, ,, .. be a nodal subgroup associated with e*. Then the (unique!)
branch of e¢* that abuts to v determines a natural isomorphism

e — Ay

(cf. [9, Cor. 3.9(v)]). Thus, by composing the isomorphisms of the last three displays
with the isomorphism Avg = Avg_, = Ag discussed in (i) and the inverse of the
tautological isomorphism I~ = J*, we obtain a natural isomorphism

T Mg
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associated with the lifting cycle-subgroup J* CT'. Note that this natural isomorphism
is functorial with respect to FC-admissible automorphisms as of I3 such that aq(J*) =
J*, as(T) =T, and, moreover, the outer automorphism of Ilg obtained by forming the
conjugate, by the natural outer isomorphism II; = Ilg, of the outer automorphism of
I1; determined by «s is graphic (cf. the equivalence (i) < (iii) of Theorem 3.3; [10, Lem.
3.11(vii)]). Finally, one verifies immediately from the construction of the isomorphisms
of [9, Cor. 3.9(v)] that if one composes this isomorphism J* = Ag with the inverse
of the natural isomorphism J* = J discussed above, then the resulting isomorphism
J = Ag is an orientation on the cycle-subgroup .J, in the sense of the discussion of
(i), and, moreover, that, if we define an orientation on the tripodal subgroup T to
be a choice of a T-conjugacy class of lifting cycle-subgroups of T, then the resulting
assignment

{Orientations onT } — {orientations on J }

is a bijection [between sets of cardinality 2].

LEMMA 3.7. (Induced outomorphisms of tripods). In the situation of Lemma 3.1,
suppose that X1°8 = Y18 Write c € Cusp(Gaeq1,2},e,) for the cusp arising from the diagonal
divisor in X X X. LetII. Clg,_,, ,, ., be a cuspidal subgroup ofIlg, ., ,, ., associated with
c. Write

Ay def T, (a2) € Out(IL,)
(cf. Lemma 3.1(ii); [10, Th. 8.16(1)]) for the result of applying the tripod homomorphism
T, to ag. (Thus, it follows immediately from Lemma 3.1(ii) that o, € Out®(I,).) Suppose,
moreover, that the following condition is satisfied:

(c) The cuspidal subgroup Il. C1lg,_, , . & 1lyy is contained in II,.
Then the following hold:

(i) Since I, may be regarded as the “Il;” that occurs in the case where we take “X'°8”
to be the smooth log curve associated with Py \{0,1,00} (cf. [10, Rem. 3.3.1]), there
exists a uniquely determined outomorphism

¢ € Out(IL,)

of 11, that arises from an automorphism of P\ {0,1,00} over k and induces a nontrivial
automorphism of the set N'(v). Write

|y | def a, € Out(Il,) (resp. |ay| def Lo, € Out(IL,))

if oy € Out®(I1,) <P (resp. & Out®(IL,)™P) (cf. [10, Def. 3.4(i)]). Then it holds that
|y € Out® (11, )eusp,

(ii) Let Ilipq C 113 be a central {1,2,3}-tripod of 113 (cf. [10, Defs. 3.3(i) and 3.7(i1)]).
Then every geometric (cf. [10, Def. 8.4(ii)]) outer isomorphism Ilipq — 11, satisfies the
following condition: let 3 € Out(Il;) = Out(Ilg) be an outomorphism of II; = Ilg that
is group-theoretically nodal and 3-cuspidalizable, that is, 5 € Out(Ily) arises from a(n)
(uniquely determined—cf. [8, Th. B]) FC-admissible outomorphism (3 € Out™(113).
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Then the image

Ttpq (83) € Out(Igpa)

(cf. [10, Def. 3.19]) coincides—relative to the outer isomorphism g — 1L, under
consideration—uwith

|Bv| € Out(11,)

(cf. (i)), where we write (3, L T, (B3) € Out(1l,). In particular, it holds that |B,| €
Out®(I1,)2+ (cf. [10, Def. 3.4(i)]).

Proof. Assertion (i) follows immediately from the various definitions involved. Next,
we verify assertion (ii). Let us first observe that the inclusion |8,| € Out® (I, )2 follows
immediately from the coincidence of Ty, ,(83) with |B,], relative to some specific geometric
outer isomorphism Ily,q — II,, together with the second displayed equality of [10, Th.
3.16(v)]. The inclusion |3,| € Out®(I1,)?* then follows from [10, Lem. 3.5]; [10, Th.
3.17(1)] (applied in the case where we take the “(Il2,7,7")” of [10, Th. 3.17(i)] to be
(II3/1,1L,,1Tpq)). Moreover, it follows immediately from the various definitions involved that
the inclusion |3,| € Out®(IL,)2 allows one to conclude that the coincidence of Ti1,,q (63)
with |3,|, relative to some specific geometric outer isomorphism Il;,q — II,, implies the
coincidence of T, ,(f3) with |3,], relative to an arbitrary geometric outer isomorphism
Ipa — II,. Thus, to complete the verification of assertion (ii), it suffices to verify the
coincidence of Ty, ,(83) with |3,[, relative to the specific geometric outer isomorphism
Itpa — I, whose existence is guaranteed by [10, Th. 3.18(ii)]. In the following discussion,
we fix this specific geometric outer isomorphism Il;pq — II,.

Next, let us observe that if 8, = |B,], that is, 8, € Out®(IL,)P, then it follows
immediately from [10, Ths. 3.16(v) and 3.18(ii)] that T, ,(83) € Out(Il;pq) coincides with
|By] € Out(Il,). Thus, to complete the verification of assertion (ii), we may assume without
loss of generality that 8, # |5,]|, that is, that g, ¢ OutC(HU)CUSp. Then let us observe that
collections of data consisting of smooth log curves that (by gluing at prescribed cusps) give
rise to a stable log curve whose associated semi-graph of anabelioids (of pro-¥ PSC-type)
is isomorphic to G may be parametrized by a smooth, connected moduli stack. Thus, one
verifies easily that, by considering the étale fundamental groupoid of this moduli stack,
together with a suitable scheme-theoretic automorphism of order 2 of a collection of data
parametrized by this moduli stack, one obtains a 3-cuspidalizable automorphism £ € Aut(G)
(— Out(Ilg)) of G such that &, (i.e., the “a,” that occurs in the case where we take “a” to
be &) coincides with ¢. Thus, by applying the portion of assertion (ii) that has already been
verified to o3, we conclude that, to complete the verification of assertion (ii), it suffices to
verify that Ty, ,(§3) = 1. On the other hand, this follows immediately from the fact that
¢ was assumed to arise from a scheme-theoretic automorphism (cf. also [10, Th. 3.16(v)]).
This completes the proof of assertion (ii) and hence of Lemma 3.7.

DEFINITION 3.8. Let J C1II; be a 2-cuspidalizable cycle-subgroup (cf. Definition 3.5(i)
and (ii)); let us fix associated data as in Definition 3.6(i.a)-(i.d). Relative to these data,
suppose that 7' C Ily/; is a tripodal subgroup associated with J CII; (cf. Definition 3.6(i)),
and that I C T is a distinguished cuspidal subgroup of T (cf. Definition 3.6(ii)). Note
that these data, together with the log scheme structure of Y'°& allow one to speak of
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geometric (cf. [10, Def. 3.4(ii)]) outomorphisms of 7. Then one verifies easily that there
exists a uniquely determined nontrivial geometric outomorphism of 7' that preserves the
T-conjugacy class of I Thus, since I is commensurably terminal in 7 (cf. [18, Prop.
1.2(ii)]), there exists a uniquely determined I-conjugacy class of automorphisms of T' that
lifts this outomorphism and preserves I C 7. We shall refer to this I-conjugacy class of
automorphisms of T as the cycle symmetry associated with I

Before proceeding, we pause to observe the following interesting “alternative formulation”
of the essential content of Lemma 3.7(ii).

LEMMA 3.9 (Geometricity of conjugates of geometric outer isomorphisms). Suppose that
we are in the situation of [10, Th. 3.18(ii)], that is, n >3, and T (resp. T") is an E- (resp.
E’-) tripod of I1,, for some subset E C {1,...,n} (resp. E' C{1,....n}). Let ¢: T =T" be a
geometric (cf. [10, Def. 3.4(ii)]) outer isomorphism. Then, for every o € Out™  (IL,)[T,T" :
{|C1}], the composite of outer isomorphisms

Tr@ ¢ T

~

T =T17>=17T = T
(cf. [10, Th. 3.16(i)]) is equal to ¢.

Proof. Let us first observe that the validity of Lemma 3.9 for some specific geometric
outer isomorphism “¢” follows formally from the commutative diagram of [10, Th. 3.18(ii)].
Thus, the validity of Lemma 3.9 for an arbitrary geometric outer isomorphism “¢” follows
immediately from the equality of the first display of [10, Th. 3.18(i)], that is, the fact that
Tr(a) commutes with arbitrary geometric outomorphisms of 7. This completes the proof
of Lemma 3.9. O

REMARK 3.9.1. One verifies immediately that a similar argument to the argument
applied in the proof of Lemma 3.9 yields evident analogues of Lemma 3.9 in the respective
situations of [10, Th. 3.17(i) and (ii)].

THEOREM 3.10 (Canonical liftings of cycles). In the notation of the discussion at the
beginning of the present §3, let I C 1,1 C1ly be a cuspidal inertia group associated with
the diagonal cusp of a fiber of plgo/gl; Iipa € I3 a 3-central {1,2,3}-tripod of I3 (cf. [10,
Def. 3.7(ii)]); Itpa C Hipa @ cuspidal subgroup of lipq that does not arise from a cusp of

ok
tpd

determine three distinct lipq-conjugacy classes of closed subgroups of ipq. (Note that one
verifies immediately from the various definitions involved that such cuspidal subgroups Iipq,
Jia, and J35y always exist.) For positive integers n>2, m <n, and a € Aut"C(11,) (cf.

[20, Def. 1.1(ii)]), write

a fiber ofpgo/gg; tpds Jipa © Hipa cuspidal subgroups of Ilypa such that Iipa, Ji,q, and

O € AutFC(I1,,)
for the automorphism of 11,,, determined by «o;
Aut¥(11,,, 1) € Aut¥O(I1,)
for the subgroup consisting of 8 € Aut"(I1,,) such that Bo(I) =1;
AutFO(I1,)¢ € Aut¥e(11,,)
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for the subgroup consisting of 5 € AutFC(Hn) such that the image of B via the composite
AutFC(I1,,) —» OutFO(I1,,) — Out™ (II;) — Out(Ilg) —where the second arrow is the natural
injection of [8, Th. B] and the third arrow is the homomorphism induced by the natural outer
isomorphism 1y = Ilg—is graphic (cf. [18, Def. 1.4(i)]);

Aut™C(L,, )¢ € AutTC(,, ) N AutC(II,,)S;

Cycle™(I1y)
for the set of n-cuspidalizable cycle-subgroups of 11y (cf. Definition 3.5(i) and (ii));
Tde(HQ/l)

for the set of closed subgroups T C 1l ,1 such that T is a tripodal subgroup associated with
some 2-cuspidalizable cycle-subgroup of 111 (cf. Definition 5.6(i)), and, moreover, I is a
distinguished cuspidal subgroup (cf. Definition 3.6(ii)) of T. Then the following hold:

(i) Let n>2 be a positive integer, a € Aut"“(II,,1)¢, J € Cycle"(II;), and T €
Tpd;(Ily/1). Then it holds that

a1(J) € Cycle™(II1), a(T) € Tpd;(Iy /).

Thus, Aut™C(I1,,,1)C acts naturally on Cycle™(IT;), Tpd;(Ily4).
(ii) Let n >2 be a positive integer. Then there exists a unique AutFC(Hn,I)G—equivarmnt

(cf. (i) map
€;: Cycle™(IIy) — Tpd;(I13/4)

such that, for every J € Cycle™(Ily), €;(J) is a tripodal subgroup associated with J.
Moreover, for every a € Aut™°(I1,,, )¢ and J € Cycle™(I1y), the isomorphism €;(J) =
Cr(a1(J)) induced by as maps every lifting cycle-subgroup (cf. Definition 3.6(ii)) of
¢ (J) bijectively onto a lifting cycle-subgroup of €r(aq(J)).

(iii) Let n >3 be a positive integer. Then there exists an assignment

Cycle"(Iy) 3 J + syng gy
—uwhere syny ; denotes an I-conjugacy class of isomorphisms Ipq — €1 (J)—such that

(a) syng ; maps Iipa bijectively onto I,

(b) syng ; maps the subgroups Jipar Jipa byectively onto lifting cycle-subgroups of
¢;(J), and

(¢) for a € AwtFC(I1,,, )G, the diagram (of Iipa-, I-conjugacy classes of isomor-
phisms)

Hipa ——  Ilipa

5t)n1,Jl lﬁnﬂz,al((l)

¢r(J) —— €rla(J))

—uwhere the upper horizontal arrow is the (uniquely determined—cf. the commen-
surable terminality of Lipq in Ilipq discussed in [18, Prop. 1.2()]) Lipq-conjugacy
class of automorphisms of Ilipa that lifts Tn, ,(o) (cf. [10, Def. 8.19]) and
preserves Ipq; the lower horizontal arrow is the I-conjugacy class of isomorphisms
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induced by ag (cf. (ii))—commutes up to possible composition with the cycle
symmetry of €r(a1(J)) associated with I (cf. Definition 3.8).

Finally, the assignment
J— syny g

18 uniquely determined, up to possible composition with cycle symmetries, by these
conditions (a), (b), and (c).

(iv) Let n >3 be a positive integer, a € Aut™C(I1,,, 1), and J € Cycle™(IL;). Suppose that
one of the following conditions is satisfied:

(a) The FC-admissible outomorphism of Il determined by as is € Out¥® (I13)8% (cf.
[10, Def. 3.19)).

(b) Cusp(G) # 0.

(c) n>4.

Then there exists an automorphism [ € AutFC(Hn,I)G such that the FC-admissible
outomorphism of Il3 determined by B3 is contained in OutFC(Hg)geo, and, moreover,
ay(J) = p1(J). Finally, the diagram (of Iipa-, I-conjugacy classes of isomorphisms)

Htpd _ Htpd
snnz,Jl lsnnlval(J)ZBUnlyﬁl(J)
¢ (J) —— €(aa(J)) =& (Bi(J))

—uwhere the lower horizontal arrow is the isomorphism induced by Po (cf. (ii))—
commutes up to possible composition with the cycle symmetry of €r(a1(J)) =€ (F1(J))
associated with I.

Proof. Assertion (i) follows immediately from the various definitions involved. Next,
we verify assertion (ii). The initial portion of assertion (ii) follows immediately from the
discussion of Remark 3.6.1, together with the fact that T is uniquely determined among its
115 /1-conjugates by the condition I C T (cf. [18, Prop. 1.5(i)]). The final portion of assertion
(i) follows immediately from Lemma 3.1(ii) (i.e., by considering a suitable generization
operation, as in the discussion of Remark 3.6.1). This completes the proof of assertion (ii).

Next, we verify assertion (iii). Let us fix data

(¥G,S CNode(¥G),¢: YG.s = G); Y11 S 11y

I, 5 Tl; T, € Y11,

for J € Cycle™(I1;) as in Definition 3.6(i.a)—(i.d), and let ¥T' C Y1l ; be a {1,2}-tripod as in
the discussion of Definition 3.6(i). Let YHtpd C YII5 be a 3-central tripod of YII5. Here, we
note that since J € Cycle™(Il;), and n > 3, it follows that the above isomorphism YTl = ITy
lifts to a PFC-admissible isomorphism YII5 = II5 that maps YHtpd to a Il3-conjugate of
Iipa (cf. [8, Th. BJ; [10, Th. 3.16(v)]; [10, Rem 4.14.1]).

Now one verifies immediately that, to verify the existence portion of assertion (iii), by
applying a suitable generization operation as in the discussion of Remark 3.6.1, we may
assume without loss of generality that Node(YG)! =1 (an assumption that will be invoked
when we apply Lemma 3.7 in the argument to follow). Then, by considering the geometric
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(hence, in particular, C-admissible) outer isomorphism of [10, Th. 3.18(ii)] in the case where
we take the “(T,T")” of [10, Th. 3.18(ii)] to be (YTLpq, Y T), we obtain an outer isomorphism
ITipa = ¢;(J). Moreover, by considering the composite of this outer isomorphism with a
suitable geometric outomorphism of Il;,q, we may assume without loss of generality that
this outer isomorphism Il;pq — €;(.J) maps the i q-conjugacy class of Iipq to the €7(J)-
conjugacy class of I. Thus, since [ is commensurably terminal in €;(J) (cf. [18, Prop.
1.2(ii)]), we obtain a uniquely determined I-conjugacy class of isomorphisms syny j: Hpq —
¢;(J) that lifts the outer isomorphism just discussed and satisfies condition (a). On the
other hand, one verifies immediately from the various definitions involved that syn; ; also
satisfies condition (b).

Next, we verify that shyn; ; satisfies condition (c). To this end, let us observe that it
follows immediately from the various definitions involved (cf. also our assumption that
Node(YG)* = 1), that a;(J) admits data as in Definition 3.6 (i.a)—(i.d) such that

e the portion of these data that correspond to the data of Definition 3.6(i.a) and (i.d) is
of the form

(¥G,S CNode(¥G),v: Y65 = G); T, C YT,

for some isomorphism : YG.,g¢ — G, and, moreover,
e the composite

a2
YH2 SAMNY ) PRAAN | APEA YH2

—where the first (resp. third) arrow is the isomorphism arising from the data (cf.
Definition 3.6(i.c)) for J (resp. a1(J)) € Cycle™(II;) under consideration— is the identity
automorphism.

Thus, to verify the assertion that syn; ; satisfies condition (c), it suffices to verify that
the I-conjugacy class of isomorphisms “syny j: ILipqg = ¢;(J)” constructed above from a
fixed choice of data as in Definition 3.6(i.a)—(i.d) does not depend on this choice of data.
On the other hand, this follows immediately from Lemma 3.7(ii) (cf. our assumption that
Node(YG)* =1).

Finally, we consider the final portion of assertion (iii) concerning uniqueness. To this end,
we observe that, by considering the case where YG, as well as each of the branches of the
underlying semi-graph of ¥G, is defined over a number field F, it follows immediately, by
considering automorphisms « € AutFC(Hn,I )& that arise from scheme theory, that given
any element vy € Out(Il;pq) that arises from an element of the absolute Galois group of
F, there exists an o € Aut¥“(II,,,1)C such that a(J) = J and Tn,,q () = 7. Thus, the
uniqueness under consideration follows immediately from the geometricity of elements of
Out(II;pq) that commute with the image of the absolute Galois group of F, that is, in other
words, from the Grothendieck Conjecture for tripods over number fields (cf. [28, Th. 0.3];
[13, Th. A]). This completes the proof of assertion (iii).

Finally, we verify assertion (iv). If condition (a) is satisfied, then, by taking the “5” of
assertion (iv) to be a, we conclude that assertion (iv) follows immediately from assertion
(iii), together with the definition of Out™® (IT,,)8%°. Next, let us observe that, by applying
assertion (iv) in the case where condition (a) is satisfied, we conclude that, to verify assertion
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(iv) in the case where either (b) or (c) is satisfied, it suffices to verify that the following
assertion holds:

Claim 3.10.A: Write
Out(H1 D) J) - Out(Hl)

for the subgroup of Out(II;) consisting of outomorphisms of II; that preserve the
II;-conjugacy class of J and

owt*C(11,)¢ ' AwtFC(1,)¢ /Inn(11,,) € Out™C(IL,).
Then every element of the image of the natural injection
Out™(11,,)¢ — Out™™ (11;)

(cf. [8, Th. B]) may be written as a product of an element of the image of the

natural injection Out¥® (I, )& — Out" (11, ) and an element of Out(IL; D .J)
Out(I; 2 J)NOut¥(11,)G.

G def

To verify Claim 3.10.A, write Out"°(II,,J)¢ C Out™(II,)¢ for the subgroup of
Out™(I1,)¢ obtained by forming the inverse image of the closed subgroup Out(II; D
J) C Out(II;) via the natural injection Out®(II,)% < Out™(II;). Then one verifies
immediately, by considering the exact sequence

T
1 — Out™O(I1,)5%° — OutFC(I1,) —%' Out®(ypq) 2T — 1

(cf. conditions (b) and (c); [10, Def. 3.19]; [10, Cor. 4.15]), that, to verify Claim 3.10.A, it
suffices to verify that the following assertion holds:

Claim 3.10.B: The composite

‘Intp
Out™ (11, J)¢ — Owt*C(IL,) =" OutC(Iypq) >+
is surjective.

To verify Claim 3.10.B, let (YQ,S - Node(Yg),qb: Y .¢ 5 G) be an n-cuspidalizable
degeneration structure on G with respect to which J is a cycle-subgroup such that YG is
totally degenerate (cf. [9, Def. 2.3(iv)]). (One verifies immediately that such a degeneration
structure always exists.) Now let us identify Out"(II,,) with Out"®(¥1I,,) via a(n) (uniquely
determined, up to permutation of the n factors—cf. [8, Th. B]) PFC-admissible (cf. [9, Def.
1.4(iii)]) outer isomorphism II, = YTI,, that is compatible with the outomorphism of the
display of Definition 3.5(i) (cf. [10, Prop. 3.24(i)]). Then it follows immediately from the
various definitions involved that the closed subgroup Out™“ (YL, )Pr* € Out™(¥1L,,) (cf.
[10, Def. 4.6(i)]) is contained in the closed subgroup Out*(Il,,,.J)¢ C Out*“(Il,,). On the
other hand, it follows immediately from the proof of [10, Cor. 4.15] that the composite

‘Intp
OutFe(Y1I,,)P*® < OutFe(Y1L,,) = Out*C(I1,) - Out®(Ipq) 2"

is surjective. This completes the proof of Claim 3.10.B, hence also of assertion (iv) in the
case where either (b) or (c¢) is satisfied. O
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REMARK 3.10.1.

(i) The content of Theorem 3.10(iv) may be regarded, that is, by considering the various
lifting cycle-subgroups involved, as a formulation of the construction of the two sections
discussed in [5, Prop. 2.7] (which plays an essential role in the proof of [5, Th. 2.4]), in
terms of the purely combinatorial and algebraic techniques developed in the present
series of papers.

(ii) In this context, we observe in passing that (one verifies immediately that) for arbitrary
nonnegative integers g, r such that

e 3g—3+r >0, and, moreover,
e if g=0, then r is even,

there exists a stable log curve of type (g,7) which admits an automorphism that is
linear over the base scheme under consideration and fixes a node of the stable log
curve, but switches the branches of this node. Thus, by considering the resulting
automorphism of the associated semi-graph of anabelioids of pro-> PSC-type, one
concludes that the diagrams of Theorem 3.10(iii) and (iv) fail to commute, in general,
if one does not allow for the possibility of composition with a cycle symmetry. This
situation contrasts with the situation discussed in [5, Prop. 2.7], where two independent
sections are obtained, by considering orientations on the various cycles involved.

(iii) The orientation-theoretic portion of [5, Prop. 2.7] referred to in (ii) above may be
interpreted, from the point of view of the present paper, as a lifting “@f” of the map
¢; of Theorem 3.10(ii) as follows. In the notation of Theorem 3.10, let us write

e Cycle™(II;)™ for the set of pairs consisting of a cycle-subgroup .J € Cycle”(II;) and
an orientation on J (cf. Remark 3.6.2(1));

e Tpd; (1'[2/1)jE for the set of pairs consisting of a tripodal subgroup T € Tpd;(Ily ;)
and an orientation on T (cf. Remark 3.6.2(ii)).

Thus, one has natural surjections Cycle"(Il;)* — Cycle"(Ily), Tpd;(Ily/1)* —
Tpd;(Ilz/1), which may be regarded as torsors over the group {£1}. Moreover, one
verifies immediately from the functoriality of the various isomorphisms that appeared
in the constructions of Remark 3.6.2(i) and (ii) that the action (cf. Theorem 3.10(i))
of Aut"(II,,1)C on the sets Cycle™(II;), Tpd;(Ily/1) lifts naturally to an action
of Aut¥C(IL,,,1)¢ on the sets Cycle™(II;)%, Tpd;(H5/1)%. Thus, the inverse of the
bijective correspondence of the final display of Remark 3.6.2(ii) determines a natural
AutFC(IL,, 1)C-equivariant lifting

¢7: Cycle"(I))* — Tpd;(y/1)*

of the map €; of Theorem 3.10(ii). (Thus, the Aut"®(Il,,I)%-equivariance of ¢+
implies, in particular, that QI;E does not factor through the natural surjection
Cycle™ (I} )* — Cycle™(II).) Moreover, if n > 3, and one regards the Il;,q-conjugacy
class of cuspidal subgroups of Il;,q determined by Jipa as being “positive,” then it
follows immediately from the definition of Tpd; (Il /1)jE that this lifting Cf naturally
determines an assignment

Cycle™(II))* 3 J* — st)n}:Ji
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—where J* — J € Cycle™(II1), and St)tlj-t s+ denotes an [-conjugacy class of isomor-

phisms Itp,q — €7(J) that coincides, up to possible composition with a cycle symmetry,
with the I-conjugacy class of isomorphisms syn;_; of Theorem 3.10(iii)—such that if, in
the diagram (of I;pq-, I-conjugacy classes of isomorphisms) in the display of Theorem
3.10(iii.c), one replaces “syn” by “syn*” then the diagram commutes, that is, even if
one does not allow for possible composition with cycle symmetries.

DEFINITION 3.11. Suppose that 3 = Primes, and that k£ = C, that is, that we are in
the situation of Definition 2.22. We shall apply the notational conventions established in
Definition 2.22. Moreover, we shall use similar notation

def o isc def
(Yé %)an(C)ls, YH?E = mDr), Dn

Ve =

def def

=Da,..n Y =D,
Yrdisc def yyrdisce Y, an . Y _I4s¢ | yypdisce Ydisc
I, = H{1,...,n}a pE/E"f‘gE—)ng” PE/E - HE™ — “1IE",
Yydisc  def Yy, I1dise Yypdisc
0%% = Ker("pg/p) C "HE™,

def
Phm = PRy my Dn = D,

Yy, T1dise def y pydise . Yypdise | Yyydisc
Pr/m = P{,..n}/{1,.,m}ys Wy = TR,
Yyrdisc def yydisc Yyrdisc  Y{ydisc
I = "Ha ayo.my © W70 IS,

YgdlSC’ Yg’zielSEnyy HYgdisc, HYg;lésEq v

for objects associated with the stable log curve Y8 = Yllog to the notation introduced in
Definitions 2.22 and 2.23.

DEFINITION 3.12. Let J be a semi-graph of temperoids of HSD-type (cf. Definition
2.3(iii)). Then we shall refer to a triple

(H,S C Node(H),¢p: Hes — T)

(cf. Definition 2.9) consisting of a semi-graph of temperoids of HSD-type #, a subset
S C Node(H), and an isomorphism ¢: H..s — J of semi-graphs of temperoids of HSD-
type as a degeneration structure on J (cf. [10, Def. 3.23(i)]).

DEFINITION 3.13. In the situation of Definition 3.11:

(i) Let (¥g¥sc,S C Node(YGdsc),¢: Ygdise 5 Gdisc) be a degeneration structure on
Gdise (cf. Definition 3.12), e € S, and J C II{*¢ a subgroup of I{*¢. Then we
shall say that J C II{#¢ is a cycle-subgroup of TI{¢ (with respect to [YG4%¢,§ C
Node(YGdis¢), ¢p: YGdise = Gdise]associated with e € S) if J is contained in the TT{isc-
conjugacy class of subgroups of II{% obtained by forming the image of a nodal
subgroup of Ilygaisc associated with e via the composite of outer isomorphisms

q);’;disc
NMS ~Y ~ M
HYgdisc — HYg:l/l)sg“ — Hgdisc — H(ihSC
—where the first arrow is the inverse of the specialization outer isomorphism @deissg
(cf. Proposition 2.10), the second arrow is the graphic (cf. Definition 2.7(ii)) outer
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isomorphism HdeisSc 5 Hgaise induced by ¢, and the third arrow is the natural outer

isomorphism Ilgaise — I1$5¢ of (the second to last display of) Definition 2.23(i) (cf. the
left-hand portion of Figure 1).
(i) Let J CII{*¢ be a cycle-subgroup of I1{#*¢ (cf. (i)). Thus, we have

~

(a) a degeneration structure (YG45¢, § C Node(YG415¢), ¢: YGdisg = Gdise) on Gdise (cf.
Definition 3.12),

(b) an isomorphism YTI{is¢ = TI¢#¢ that is compatible with the composite of the
display of (i) (cf. also [the second to last display of] Definition 2.23(i)) in the
case where we take the “(YG4is¢ S C Node(YG45¢), ¢p: YGIis¢ = Gdise)” of (i) to be
the degeneration structure of (a),

(c) an isomorphism YTI$¢ = TI$i¢ that lifts (cf. Corollary 2.20(v)) the isomorphism
of (b) and, moreover, determines a PFC-admissible isomorphism between the
respective profinite completions, and

(d) anodal subgroup II, C YTI{i¢ of YTI{is¢ associated with a (uniquely determined—
cf. Corollary 2.18(iii)) node e of YGdisc

such that the image of the nodal subgroup II, C YTI{#*¢ of (d) via the isomorphism
YTIgise 5 11¢is¢ of (b) coincides with J C II{5¢. We shall say that a subgroup 7' C Hg‘/sf of
Hgi/sf is a tripodal subgroup associated with J if T coincides—relative to some choice of
data (a), (b), (c), (d) as above (but cf. also Remark 3.6.1 and Corollary 2.19(i)!)—with
the image, via the lifting YTI$¢ = T13%¢ of (c), of some {1,2}-tripod in Yﬂgi/sf C YIgise
(cf. Definition 2.23(ii)) arising from e (cf. Definition 2.23(iii); [10, Def. 3.7(i)]), and,
moreover, the centralizer Zpgic(T) maps bijectively, via pQH/dllSC: g1 — T1¢¢ onto
J CII$ise (cf. Corollary 2.17(i); [10, Lem. 3.11(iv) and (vii)]).

(iii) Let J C I be a cycle-subgroup of I (cf. (i)) and T C Hgi/sf a tripodal subgroup
associated with J (cf. (ii)). Then we shall refer to a subgroup of T that arises from
a nodal (resp. cuspidal) subgroup contained in the {1,2}-tripod in YHSI/SIC C Y1Igise
of (ii) as a lifting cycle-subgroup (resp. distinguished cuspidal subgroup) of T (cf. the
right-hand portion of Figure 1).

(iv) Let J CII{*¢ be a cycle-subgroup (cf. (i)); T C Hgl/sf a tripodal subgroup associated
with J (cf. (ii)); I C T a distinguished cuspidal subgroup of T' (cf. (iii)). Then it follows
immediately from the various definitions involved, together with Theorem 2.24(i) that
there exists a unique outomorphlsm ¢ of T such that the induced outomorphlsm of
the profinite completlon T of T coincides with the outomorphlsm of T determined by
the cycle symmetry of T associated with the profinite completion Tofl (cf. Definition

3.8). Moreover, since I is commensurably terminal in 7' (cf. Corollary 2.18(v)), it
follows immediately from Corollary 2.17(ii) that there exists a uniquely determined
I-conjugacy class of automorphisms of T that lifts ¢ and preserves I CT. We shall
refer to this I-conjugacy class of automorphisms of T as the cycle symmetry of T

associated with 1.

THEOREM 3.14 (Discrete version of canonical liftings of cycles). In the notation of
Definition 3.11, let I C Hg‘/sf C II$s¢ be a cuspidal inertia group associated with the diagonal

cusp of a fiber 0fp2/1, Hypa C I8¢ a 3-central {1,2,3}-tripod of II$¢ (cf. Definition 2.235(ii)
and (iii)); Iipa C ipa a cuspidal subgroup of Mipq that does not arise from a cusp of a
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fiber of p3s; Jipar Jipa € Hipa cuspidal subgroups of Ilipa such that Iipa, Jgq, and Jijy
determine three distinct Ilipq-conjugacy classes of subgroups of ipa. (Note that one verifies

immediately from the various definitions involved that such cuspidal subgroups Iipq, Jipas

and J3y always exist.) For a € AutC(I1d¢) (¢f. the notational conventions introduced in

the statement of Corollary 2.20), write
oy € AutFC(TI1¢ise)
for the automorphism of I determined by o;
AutFC(I1d, 1) € AutFC(11dise)
for the subgroup consisting of 8 € Aut™C(11$5¢) such that B(I) = I;
AutFC(I1dse)G ¢ AutFO(11dise)

for the subgroup consisting of 8 € AutFC(HSiSC) such that the image of B via the composite
AutFO(T1g¢) — Out™™C(11gs¢) = Out™(11§15¢) — Out(Tlgaiec) —where the second arrow is
the natural bijection of Corollary 2.20(v), and the third arrow is the homomorphism induced
by the natural outer isomorphism T$S¢ 5 Hgaise —is graphic (cf. Definition 2.7(ii));

AutFC(HgiSC,I)G déf AutFC(HgiSC,I) N AutFC(HgiSC)G;

Cycle(T1s¢)
for the set of cycle-subgroups of IS¢ (cf. Definition 3.13(i));
Tde(Hgi/Slc)
for the set of subgroups T C Hgi/sf such that T is a tripodal subgroup associated with some

cycle-subgroup of II{¢ (cf. Definition 3.13(ii)), and, moreover, I is a distinguished cuspidal
subgroup (cf. Definition 3.13(iii)) of T. Then the following hold:

(i) Let o € Aut™C(11g5¢, 1)G, J € Cycle(I1$°), and T € Tde(Hgi/Sf). Then it holds that

a1(J) € Cycle(T1¥°),  a(T) € Tde(Hgi/sf).

Thus, Aut®C(11g%¢ )G acts naturally on Cycle(I1$°), Tde(Hgi/sf).

(i) There exists a unique Aut™C(I135¢ NG _equivariant (cf. (i) map
¢r: Cyele(IT{*) — Tpd(I57Y)

such that, for every J € Cycle(II{#*¢), &;(J) is a tripodal subgroup associated with
J. Moreover, for every o € Aut"C(I1d5¢ G and J € Cycle(I1{s¢), the isomorphism
¢r(J) 5 €r(ar(J)) induced by o maps every lifting cycle-subgroup (cf. Definition
3.13(iii)) of €1(J) bijectively onto a lifting cycle-subgroup of €r(a1(J)).

(iii) There exists an assignment

Cycle(TI{*¢) 5 J + syny s

—where syny j denotes an I-conjugacy class of isomorphisms Ilipq 5 ¢1(J)—such that
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a) syny ; maps Iipq bijectively onto I in a fashion that s compatible with the natural
b p

isomorphism Iipq 5 I induced by the projection p?ld;(:B}/{LB}: [1gs¢ — H‘{“f%} and
the natural outer isomorphism Hf{iif%} = H?ilsz} obtained by switching the labels
27 and “3” (cf. Corollary 2.17(ii); Corollary 2.18(v); [10, Lem. 3.6(iv)]),

b) syny ; maps the subgroups J> ,, J'*, bijectively onto lifting cycle-subgroups o
9 ) tpd tpd
¢;(J), and

FC/1rdisc 71\G ; : -
) ’ t ’

(c) for ae Aut™~ (115, I)™, the diagram (of Iipa-, I-conjugacy classes of isomor-

phisms)

Htpd — Htpd

50“I,Jl lﬁnﬂz,alu)

¢(J) —— €r(a(J))

—uwhere the upper horizontal arrow is the (uniquely determined—cf. the commen-
surable terminality of Iipa of lipa discussed in Corollary 2.18(v)) ILipq-conjugacy
class of automorphisms of lipq that lifts Tn, ,(a) (cf. Corollary 2.20(v); Theorem
2.24(iv)) and preserves Iipq; the lower horizontal arrow is the I-conjugacy class of
isomorphisms induced by o (cf. (ii))—commutes up to possible composition with
the cycle symmetry of €r(aq(J)) associated with I (cf. Definition 3.13(iv)).

Finally, the assignment
J = sny g

18 uniquely determined, up to possible composition with cycle symmetries, by these
conditions (a), (b), and (c).

(iv) Let a € AutFC(11dse NG and J € Cycle(Il}). Then there exists an automorphism
B e AutFeIIdisc NG such that T, (B) (cf. Corollary 2.20(v); Theorem 2.2/ (iv))
is trivial, and, moreover, a1(J) = B1(J). Finally, the diagram (of ILipq-, I-conjugacy
classes of isomorphisms)

Htpd p— Htpd
5‘)"1,JJ{ J{5Unl,a1(‘]):5‘]n1,ﬁl(‘])
¢ (J) —— C(a(J)) =& (b1(J))

—uwhere the lower horizontal arrow is the isomorphism induced by B (cf. (ii))—
commutes up to possible composition with the cycle symmetry of €r(a1(J)) =€ (B1(J))
associated with I.

Proof. Assertion (i) follows from the various definitions involved. Assertion (ii) follows
immediately from the evident discrete version (cf. Corollaries 2.17(ii); 2.19(i)) of the
argument involving Remark 3.6.1 that was given in the proof of Theorem 3.10,(ii). The
existence portion of assertion (iii) follows, in light of Corollaries 2.17(ii); 2.20(i) and (v),
from a similar argument to the argument applied in the proof of the existence portion of
Theorem 3.10(iii) (cf. also the fact that the “shn; ;” of Theorem 3.10(iii) was constructed
from a suitable geometric outer isomorphism). The uniqueness portion of assertion (iii)
follows from the compatibility portion of condition (a), together with the computation of
discrete outomorphism groups given in Theorem 2.24(ii). Assertion (iv) follows immediately
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from assertion (iii), together with a similar argument to the argument applied in the proof
of the surjectivity portion of Theorem 2.24(iv) (cf. the argument given in the proof of
Theorem 3.10(iv)). This completes the proof of Theorem 3.14. 0

REMARK 3.14.1. One verifies immediately that the discrete constructions of Theorem
3.14(i)—(iv) are compatible, in an evident sense, with the pro-X constructions of Theorem
3.10(i)—(iv). We leave the routine details to the reader.

REMARK 3.14.2. One verifies immediately that remarks analogous to Remarks 3.6.2
and 3.10.1 in the profinite case may be made in the discrete situation treated in Theorem
3.14. In this context, we observe that the theory of the “modules of local orientations A”
developed in [9, §3] admits a straightforward discrete analogue, which may be applied to
conclude that the “orientation isomorphisms J = Ag” of Remark 3.6.2(i) are compatible
with the natural discrete structures on the domain and codomain. Alternatively, in the
discrete case, relative to the notation of Definition 2.2(iii), one may think of these modules
“A” as the Z-duals of the second relative singular cohomology modules (with Z-coefficients)

H?*(Ux,0Ux;7)

—cf. the discussion of orientations in [9, Introduction]. Then the discrete version of the key
isomorphisms (cf. the constructions of Remark 3.6.2) of [9, Cor. 3.9(v) and (vi)] may be
obtained by considering the connecting homomorphism (from first to second cohomology
modules) in the long exact cohomology sequence associated with the pair (Ux,0Ux). We
leave the routine details to the reader.

Appendix. Explicit limit seminorms associated with sequences of toric
surfaces

In the proof of Corollary 1.15(ii), we considered sequences of discrete valuations that arose
from vertices or edges of the dual semi-graphs associated with the geometric special fibers
of a tower of coverings of stable log curves and, in particular, observed that the convergence
of a suitable subsequence of such a sequence follows immediately from the general theory
of Berkovich spaces. In the present appendix, we reexamine this convergence phenomenon
from a more elementary and explicit—albeit logically unnecessary, from the point of view of
proving Corollary 1.15(ii)!—point of view that only requires a knowledge of elementary facts
concerning log regular log schemes, that is, without applying the terminology and notions
(e.g., of “Stone—Cech compactifications”) that frequently appear in the general theory of
Berkovich spaces (cf. the proof of [2, Th. 1.2.1]). In particular, we discuss the notion of a
“stratum” of a “toric surface” (cf. Definition A.1 below), which generalizes the notion of
a vertex or edge of the dual graph of the special fiber of a stable curve over a complete
discrete valuation ring. We observe that such a stratum determines a discrete valuation (cf.
Definition A.4) and consider, at a quite explicit level, the limit of a suitable subsequence of a
given sequence of such discrete valuations (cf. Theorem A.7 below). The material presented
in this appendix is quite elementary and “well-known,” but we chose to include it in the
present paper since we were unable to find a suitable reference that discusses this material
from a similar point of view.

In the present appendix, let R be a complete discrete valuation ring. Write K for the
field of fractions of R and S'°® for the log scheme obtained by equipping S def Spec(R) with
the log structure determined by the unique closed point of S.
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DEFINITION A.1.

(i) We shall refer to an fs log scheme X'°8 over S'°% as a toric surface over S°2 if the
following conditions are satisfied:

(a) The underlying scheme X of X'°% is of finite type, flat, and of pure relative
dimension one (i.e., every irreducible component of every fiber of the underlying
morphism of schemes X — S is of dimension one) over S.

(b) The fs log scheme X'°8 is log regular.

(c) The interior (cf., e.g., [23, Def. 5.1(i)]) of the log scheme X'°¢ is equal to the open
subscheme X xp K C X.

Given two toric surface s over S'°8, there is an evident notion of isomorphism of toric
surfaces over S'°8.

(ii) Let X'°8 be a toric surface over S'¢ (cf. (i)) and n a nonnegative integer. Write X" C X
for the n-interior of X8 (cf. [23, Def. 5.1(i)]) and X!~1 C X for the empty subscheme.
Then we shall refer to a connected component of X\ X"~ as an n-stratum of X%,
We shall write

Str™ (A1°8)

for the set of n-strata of X'°% (so Str” (X&) = () if n > 3) and

Str(xlos) € gypl(los) | G2 (ylos),

DEFINITION A.2. Let I be a totally ordered set that is isomorphic to N (equipped with
its usual ordering). In particular, it makes sense to speak of “limits i — 00” of collections of
objects indexed by i € I, as well as to speak of the “next largest element” 141 € I associated
with a given element 7 € I. Then we shall refer to a sequence of fs log schemes

Xlog

. Xlog :

i1 _ ..
—where i ranges over the elements of I —over S'°% (indexed by I) as a sequence of toric
surface s over S'°8 if, for each i € I, Xilog is a toric surface over §'°¢ (cf. Definition A.1(i)),
and, moreover, the morphism Xiligl — Xilog is dominant. Observe that the horizontal arrows
of the above diagram determine (by considering the induced maps of generic points of

strata) a sequence of maps of sets

e — Str(Xil_T_gl) N Str(XiIOg) — .

Finally, given two sequences of toric surface s over S'°8, there is an evident notion of
isomorphism of sequences of toric surface s over S'°8.

DEFINITION A.3. Let X!°% be a toric surface over S°8 and A a strict henselization of
X at (the closed point determined by) z € Str?(X'°8) (cf. Definition A.1(i) and (ii)). Write

F for the field of fractions of A; k for the residue field of A; m 4 for the maximal ideal of A;

x, Spec(A); My for the sheaf of monoids on X that defines the log structure of X'°8;

M for the fiber of My /O% at the maximal ideal of A;

Q ¥ Hom(M,Qs0) € P % Hom(M,Rso) € V < Hom(M,R)

—where we write Q>¢, R>¢ for the respective submonoids determined by the nonnegative
elements of the (additive groups) Q, R and “Hom(M,—)” for the monoid consisting of
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homomorphisms of monoids from M to “(—).” Thus, one verifies easily that V is equipped
with a natural structure of two-dimensional vector space over R. In the following, we shall
use the superscript “gp” to denote the groupification of any of the monoids of the above
discussion.

(i) We shall say that a submonoid L C P of P is a P-ray if L is the R>g-orbit of some
nonzero element of P, relative to the natural (multiplicative) action of R on P.

(ii) We shall say that a P-ray L C P (cf. (1)) is rational (resp. irrational) if LNQ # {0}
(resp. LNQ ={0}).

(iii) Let L C P be a rational P-ray (cf. (i) and (ii)). Then we shall write v: F* - QCR
for the discrete valuation associated with the irreducible component of the blowup of
X, associated with L C P, normalized so as to map each prime element 7 of R C F
to 1 € Q. That is to say, if A € L (which, by a slight abuse of notation, we regard as
a homomorphism M8 — R) maps ngp— 1€ Q (so A€ LNQ), and f € F lies in the
A*-orbit determined by m € M#®P, then

vr(f) = A(m) € Q.

Here, we observe that (one verifies easily that) the submonoid My, -1 (Q>0) € MeP
is isomorphic to Z x N. In particular, if we denote by Fr C F' the set of f € F' that
lie in the A*-orbits determined by m € My and write Ay C F' for the A-subalgebra
generated by f € Fr, then the “blowup of X, associated with L” referred to above may
be described explicitly as

XL déf Spec(AL) I Xz

Indeed, if we write pr, C Ay, for the ideal generated by the set of f € F' that lie in the A*-
orbits determined by the noninvertible elements m € My, then it follows immediately
from the simple structure of the monoid Z x N that py, is the prime ideal of height one
in Ay, that corresponds to the discrete valuation vy, and that the k-algebra Ay /pyp is
isomorphic to k[U,U "], where U is an indeterminate.

(iv) Write Ms for the sheaf of monoids on S that defines the log structure of S'°&; My for

the fiber of Ms/O3 at the unique closed point of S; Vg def Hom(MEg,R). Then one
verifies easily that Vi is a one-dimensional vector space over R, and that the morphism
x'log . Sl°8 determines an R-linear surjection V — Vg. Let eq, eg € P be such that
R>¢-eq+R>0-eg = P, and, moreover, the images of e,, eg in Vz coincide. (Note that
the existence of such elements e, eg € P follows, for example, from [14, Prop. 1.7].)
Then we shall refer to the (necessarily rational—cf. (ii)) P-ray R>o-(eq +€35) € P (cf.
(i)) as the midpoint P-ray at z € Str*>(X'°2). Here, we note that one verifies easily that
the P-ray R>( - (eq +e€3) does not depend on the choice of the pair (eq,eg).

(v) We shall refer to a valuation w: F* — R as admissible if w dominates A and maps
each prime element 7 of R C F' to 1 € R. Let w be an admissible valuation. Then, by
restricting w to the elements f € F that lie in the A*-orbits determined by m € M, one
obtains a nonzero homomorphism of monoids M — R>¢, that is, an element of P. We
shall refer to the P-ray L., determined by this element of P as the P-ray associated with
the admissible valuation w. Thus, if L,, is rational (cf. (ii)), then it follows immediately
from the definitions that, in the notation of (iii), the valuation of A determined by w
extends to a valuation of Ay (2 A).
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REMARK A.3.1. In the notation of Definition A.3, the usual topology on the real vector
space V naturally determines a topology on the subspace P C V, as well as on the set of
P-rays (i.e., which may be regarded as the complement of the “zero element” in the quotient
space P/R>q). Moreover, one verifies easily that, if e, and eg are as in Definition A.3(iv),
then the assignment

R 2 [0,1] 37— Ryg-(v-ea+(1—7)-€p)

determines a homeomorphism of the closed interval [0, 1] C R onto the resulting topological
space of P-rays, and that the subset of rational P-rays is dense in the space of P-rays.
In particular, it makes sense to speak of non-extremal (resp. extremal) P-rays, that is,
P-rays that lie (resp. do not lie) in the interior—that is, relative to the homeomorphism
just discussed, the open interval (0,1) C [0,1] (resp. the endpoints {0,1} C [0,1])—of the
space of P-rays. Finally, we observe that the two extremal P-rays are rational, and that a
rational P-ray is non-extremal if and only if its associated discrete valuation (cf. Definition
A.3(iii)) is admissible (cf. Definition A.3(v)).

DEFINITION A.4. Let X'°8 be a toric surface over S'°8; z € Str(X°8) (cf. Definition A.1
(i) and (ii)). Write F' for the residue field of the generic point of the irreducible component of
X on which (the subset of X determined by) z € Str(X''°8) lies. Then one may associate with
z € Str(X1°8) a collection of distinguished valuations on F, as well as a uniquely determined
canonical valuation on F, as follows:

(i) If z is a l-stratum, then we take both the unique distinguished valuation and the
canonical valuation associated with z to be the discrete valuation

F*—QCR

associated with the prime of height 1 determined by z, normalized so as to map each
prime element 7z of RC F to 1 € Q.

(ii) If z is a 2-stratum, then we take the collection of distinguished valuations associated
with z to be the discrete valuations

F* —QCR

determined by the restrictions of the discrete valuations associated with the rational
P-rays (cf. Definition A.3(iii)). We take the canonical valuation associated with z to be
the discrete valuation determined by the restriction of the discrete valuation associated
with the midpoint P-ray at z (cf. Definition A.3(iii) and (iv)).

Here, we note that the construction from z of either the collection of distinguished valuations
or the uniquely determined canonical valuation is functorial with respect to arbitrary
isomorphisms of pairs (X'°8 2) (i.e., pairs consisting of a toric surface over $'°¢ and an
element of “Str(—)” of the toric surface).

REMARK A.4.1. One verifies immediately that the (noncuspidal) valuations of the

discussion preceding Corollary 1.15 correspond precisely to the canonical valuations of
Definition A.4.

LEMMA A.5 (Valuations associated with irrational rays). In the notation of Definition
A.3, let L C P be an irrational P-ray (cf. Definition A.3(i) and (ii)), {L;}32, a sequence of
P-rays such that L =1im; .o L; (c¢f. Remark A.5.1), and {w;}$2, a sequence of admissible
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valuations such that, for each positive integer i, L; is the P-ray associated with w; (cf.
Definition A.3(v)). Then there exists an admissible valuation (cf. Definition A.3(v))

v F* — R
which satisfies the following conditions:

(a) The P-ray associated with vy, (cf. Definition A.3(v)) is equal to L.
(b) For each f € F*, it holds that
vr(f) = lm w;(f).
1—00
(c) If X € L maps a prime element mr of R to 1 € R, J is a nonempty finite set, {m;};jcs
is a collection of distinct elements of M®P, and {f;};cs is a collection of elements of
F such that f; lies in the A*-orbit determined by m;, then

v i) = min A\(m, R.
L(ny) Ijnel? (m;) €

jeJ
Moreover, this wvaluation vy is the unique admissible valuation (i.e., in the sense of
Definition A.3(v)) that satisfies condition (a). In particular, vy depends only on the P-
ray L C P, that is, is independent of the choice of the sequences {L;}32, and {w;}52,.

Proof. One may define a map vy : F* — R by applying the formula in the display of
condition (c) in the case where J* = 1. Then one verifies easily that this map vy, is a
homomorphism (with respect to the multiplicative structure of F'*) and satisfies condition
(b). Next, let us observe that since (we have assumed that) L is irrational, the map M#&P — R
determined by A € L is injective. Thus, it follows from condition (b), together with the
fact that each of the w;’s is a valuation, that the map vy, satisfies condition (c), which
implies that the map vy, is a (necessarily admissible) valuation on F. Moreover, it follows
immediately from the definition of vy, that vy satisfies condition (a). This completes the
proof of Lemma A.5. U

LEMMA A.6 (Convergence of midpoints of closed intervals). Let

def
co- C [@ig1,biv1) C [aibi] € [ai—1,bi—1] € -+ C [ag,bo) = [0,1] CR
—where i ranges over the nonnegative integers—be a sequence of inclusions of nonempty

closed intervals in [0,1]. For each i, write ¢; for the midpoint of the closed interval [a;,b;],

that is, ¢; 2 (a;+bi)/2 € |a;,b;]. Then the sequence of midpoints {c;}52, converges.

Proof. This follows immediately from the (easily verified) fact that the sequences
{a;}52,, {bi}2, converge. N

THEOREM A.7 (Explicit limit seminorms associated with sequences of toric surfaces).
Let R be a complete discrete valuation ring and I a totally ordered set that is isomorphic
to N (equipped with its usual ordering). Write K for the field of fractions of R and 8% for
the log scheme obtained by equipping S def Spec(R) with the log structure determined by the
unique closed point of S. Let

log log
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be a sequence of toric surface s over S'°¢ indexed by I (cf. Definition A.2) and

{zi}ier € lim Str(x;°%)
iel
(cf. Definitions A.1 (ii) and A.2). Then, after possibly replacing I by a suitable cofinal
subset of I, there exist sequences

{'Uil Fix — R}ie[, {Uzi}iel

—uwhere, for eachi € I, F; denotes the residue field of some point v; € X; xp K; v;: F)* =R
is a valuation; v, is a distinguished valuation associated with z; (cf. Definition A.J)—such
that

(a) v; maps each prime element of R C F; to 1 € R (which thus implies that v; dominates
R);

(b) the x;’s and v;’s are compatible (in the evident sense) with respect to the upper
horizontal arrows X,%4 — X,°® of the above diagram;

(¢c) for every nonzero rational function f on the irreducible component of X; containing z;
that is reqular at x;, hence determines an element f € F; (cf. Remark A.7.1 below), it

holds that
Uz(?) = lim Uz_,-(f )

j—o0
(cf. Definition A.J)—where j ranges over the elements of I that are > i, and we regard
v; as a map defined on F; by sending F; 30— —+o00.

Finally, these sequences of valuations {v;}icr, {vs, icr may be constructed in a way that
is functorial (in the evident sense) with respect to isomorphisms of pairs consisting of a
sequence of toric surfaces over 8% and a compatible collection of strata (i.e., “{z;}ier”).

Proof. Until further notice, we take, for each i € I, v,, to be the canonical valuation
associated with z; (cf. Definition A.4). Next, let us observe that one verifies easily that we
may assume without loss of generality, by replacing I by a suitable cofinal subset of I, that
there exists an element n € {1,2} such that every member of {z;} is an n-stratum, that is,
one of the following conditions is satisfied:

(1) Every member of {z;} is a 1-stratum.
(2) Every member of {z;} is a 2-stratum.

First, we consider Theorem A.7 in the case where condition (1) is satisfied. For each i € I,
write Z; C A for the reduced closed subscheme of X; whose underlying closed subset [C A;]
is the closure of the subset of X determined by the 1-stratum z;. Then let us observe that
if, after possibly replacing I by a suitable cofinal subset of I, it holds that, for each i € I,
the composite Z;11 — X;11 — A is quasi-finite, then the system consisting of the v,,’s (cf.
Definition A.4(i)) already yields a system of valuations {v;};c; as desired. Thus, we may
assume without loss of generality, by replacing I by a suitable cofinal subset of I, that, for
each ¢ € I, the composite 2,11 — Aj11 — A; is not quasi-finite, that is, that the image of
this composite is a closed point y; € &; of &;. Here, we observe that since we are operating
under the assumption that condition (1) is satisfied, it follows from the fact that z; 11 +— z;
that y; necessarily lies in the regular locus of &j.
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For each i € I, write B; for the local ring of X; at y; € &;, F; for the field of fractions
of B;, and v,,: E — R for the discrete valuation defined in Definition A.4(i). Thus, one
verifies immediately that the morphisms

. —_— l+1 —_— XZ — DR
induce compatible chains of injections

N B’L (SN Bi+1 — e

c_)EZ(_>E1,+1<_)

Moreover, if g is a prime element of R, then the discrete valuation v,, may be interpreted as
the discrete valuation of B; determined by the unique height one prime of B; that contains
mr. In particular, since B; is regular, hence a unique factorization domain, one verifies
immediately—by considering the extent to which positive powers of an element f € B; are
divisible, in B; or in B;41, by positive powers of mp—that, for each i € I and f € B;, it
holds that

(0 <) v(f) < vy (f)- (*)
For each ¢ € I, write

pi & {f€ B lim ., (f)=+o0} C By

Then since each v, is a (discrete) valuation, one verifies immediately that p; C B; is a prime
ideal of B;. Moreover, since g € p;, we conclude that the ideal p; is not maximal, that is,
that the height of p; is € {0,1}. Next, let us observe that if, after possibly replacing I by
a suitable cofinal subset of I, it holds that, for each ¢ € I, the prime ideal p; is of height 1,
then it follows immediately that p; determines a closed point x; of the generic fiber of Aj,
and that, if we write F; for the residue field of X; at z; and v;: F)* — R for the uniquely
determined (since F; is a finite extension of K) discrete valuation on F; that extends the
given discrete valuation on K and maps 7 — 1 € R, then the limit lim; . v., (=) (cf. (x))
determines a valuation on F; = (B;)y, /pi(B;)p, that necessarily coincides (since Fj is a finite
extension of K') with v;; in particular, one obtains a system of valuations {v; };cr as desired.

Thus, we may assume without loss of generality, by replacing I by a suitable cofinal subset
of I, that, for each i € I, the prime ideal p; is of height 0, that is, p, = {0}, hence determines
a generic point x; of some irreducible component of X; such that F; may be naturally
identified with the residue field F; of X; at ;. But this implies that, for f € E* = F/*, the
quantity

def ..
w2 Jim v, (f) € R

is well-defined (cf. (x)). Moreover, one verifies immediately that this definition of v;
determines a valuation on E; = F;. In particular, one obtains a system of valuations {v; };cr
as desired. This completes the proof of Theorem A.7 in the case where condition (1) is
satisfied.

Next, we consider Theorem A.7 in the case where condition (2) is satisfied. For each i € I,
write Q;, P;, V; for the objects “Q,” “P,” “V” defined in Definition A.3 in the case where
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we take the data “(X!°%,z € Str2(X1°%))” in Definition A.3 to be (X.°%,z; € Str?(X!°%)).

(] 7
Then one verifies easily that the morphism X% — Xilog determines a nontrivial R-linear

i+1
map V;11 — V; that maps Q;11, Piv1 C Vi ithro Q;, P; CV;, respectively.

Next, let us observe that if, after possibly replacing I by a suitable cofinal subset of
I, it holds that, for each i € I, the R-linear map V;41 — V; is of rank one, that is, the
image of P11 C V;41 in V; is a rational P;-ray L; (cf. Definition A.3(i) and (ii)), then
we may assume without loss of generality, by taking v,, to be the distinguished valuation
associated with the rational P;-ray L; (cf. Definition A.4(ii); Remark A.7.2 below) and then
replacing the pair (Xj,z;) by the pair consisting of the blow-up of X; and the 1-stratum of
this blow-up determined by L; (cf. the discussion of Definition A.3(iii)), that condition (1)
is satisfied. Thus, we may assume without loss of generality, by replacing I by a suitable
cofinal subset of I, that, for each i € I, the R-linear map V;11 — V; is of rank # 1, hence
(cf. the existence of the R-linear surjection “V — Vi” of Definition A.3(iv)) of rank two,
that is, an isomorphism.

Since the R-linear map V;;1 — V; is an isomorphism, it follows immediately from Lemma
A.6, together with Remark A.3.1, that, for each i € I, the sequence consisting of the images
in P; of the midpoint Pj-rays (cf. Definition A.3(iv)), where j ranges over the elements
of I such that j >4, converges to a (not necessarily rational) P;-ray L; .. C P;. If, after
possibly replacing I by a suitable cofinal subset of I, it holds that, for each ¢ € I, the P;-
ray L; o is rational, then we may assume without loss of generality, by taking v,, to be
the distinguished valuation associated with the rational Pj-ray L; o (cf. Definition A.4(ii);
Remark A.7.2 below) and then replacing the pair (X;,z;) by the pair consisting of the
blow-up of X; and the l-stratum of this blow-up determined by L; o (cf. the discussion
of Definition A.3(iii)), that condition (1) is satisfied. Thus, it remains to consider the case
in which we may assume without loss of generality, by replacing I by a suitable cofinal
subset of I, that, for each ¢ € I, the Pj-ray L; o is irrational. Then the system consisting of
the valuations vz, ’s of Lemma A.5 yields a system of valuations {v;};cs as desired. This
completes the proof of Theorem A.7. 0

REMARK A.7.1. In the situation of Theorem A.7, for I > j > i, write z]l for the
irreducible locally closed subset of X; determined by the image of the stratum z; in A;.
Thus, z} - z;- for all 7/ > j, and one verifies immediately that the intersection

i def ;
7 1€1] 7
Z = [ ] %

Jzi

is nonempty. Moreover, it follows immediately from the constructions discussed in the proof
of Theorem A.7 that if & € 2., then any element f of the local ring Ou, ¢, of X; at &
determines a rational function on the irreducible component of X; containing z; that is
regular at z; (cf. Theorem A.7(c)).

REMARK A.7.2. Although, in certain cases (cf. the final portion of the proof of Theorem
A7), the distinguished valuation v,, in the statement of Theorem A.7 is not necessarily
canonical, the system of valuations {v;};c; obtained in Theorem A.7 is nevertheless
sufficient (cf. the functoriality discussed in the final portion of Theorem A.7) to derive
the conclusion of Corollary 1.15(ii), that is, without applying the theory of [2].
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