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1. Introduction

Mathematics offers us a puzzling contrast. On the one hand it is
supposed to be the paradigm of certain and final knowledge: not fixed
to be sure, but a steadily accumulating coherent body of truths ob-
tained by successive deduction from the most evident truths. By the
intricate combination and recombination of elementary steps one is led
incontrovertibly from what is trivial and unremarkable to what can be
non-trivial and surprising.

On the other hand, the actual development of mathematics reveals a
history full of controversy, confusion and even error, marked by peri-
odic reassessments and occasional upheavals. The mathematician at
work relies on surprisingly vague intuitions and proceeds by fumbling
fits and starts with all too frequent reversals. In this picture the
actual historical and individual processes of mathematical discovery
appear haphazard and illogical.

The first view is of course the currently conventional one which
descends from the classic work of Euclid. Following Frege, Russell,
and Hilbert it has in this century been given a theoretical formulation
in terms of the logical analysis of the structure of mathematics. With
formal systems as the principal technical object of study, this meta-
mathematics has undergone extraordinarily intensive development.

There is also a more isolated tradition which undertakes to dis-
cern patterns in the actual dynamic progress of mathematical thought;
it dates back to Pappus and can be traced through the writings of
Descartes, Leibniz, and Bolzano. Most notable in our time have been
the extensive studies by George Polya of patterns of plausible reason-
ing in mathematical problem-solving and demonstration. Imre Lakatos
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has taken this as one point of departure for his "rational recon-
struction" of the growth of mathematical knowledge in what he calls
the logic of mathematical discovery or heuristic. Lakatos' view of
mathematics is philosophically much more sweeping and radical than
Polya's. It is situated within a general account of all rationally
gained knowledge which owes its debt to Karl Popper's (so-called)
logic of scientific discovery. Lakatos rejects the Euclidean de-
ductivist infallibilist view and replaces it by one of mathematics as
a body of fallible knowledge being improved incessantly in response to
ongoing critical assaults. To describe this he formulates what is
supposed to be a kind of logic of proofs and refutations. At first
this was directed by him at the detailed examination of particular
problem-situations of both historical and mathematical interest.
Later, he turned his attack on the search for "certain and final"
foundations of mathematics within global formal systems.

Many of those who are interested in the practice, teaching, and/or
history of mathematics will respond with eager sympathy to Lakatos1

program. (One may add that it fits well with the increasingly crit-
ical and anti-authoritarian temper of these times.) Personally, I
have found much to agree with both in his general approach and in his
detailed analysis. Clearly, logic as it stands fails to give a direct
account either of the historical growth of mathematics or the day-to-
day experience of its practitioners. It is also clear that the search
for ultimate foundations via formal systems has failed to arrive at
any convincing conclusion. Nevertheless, the opinion I reach about
Lakatos1 own program is that it is far too single-minded and much more
limited than he tries to make out. Speaking metaphorically, he plays
only one tune on a single instrument—admittedly with a number of sat-
isfying variations—where what is wanted is much greater melodic
variety and the resources of a symphonic orchestra.

My plan here is to outline Lakatos' general views together with an
indication of how they are elaborated in his case studies. The latter
half of the paper is largely taken up with an extensive critique.
This is followed by (i) a brief comparison with Polya's work and (ii)
a defense of logic as a means to analyze the underlying structure of
mathematics. In conclusion I try to suggest directions for a possible
rapprochement or synthesis of the opposing viewpoints. Fittingly,
such would be in accord with Lakatos' own dialectical conception of
the progress of human understanding.

2. L's Writings

There are two principal sources for Lakatos' writings on the nature
of mathematics. One is his relatively well-known book Proofs and

Refutations: the Logic of Mathematical Discovery [7] . The other con-
sists of the first five essays in volume 2 of his Philosophical Papers
[8]. Both of these appeared after his death in 1974, and count among
them significant portions which had never been published because—true
to his philosophical attitude—Lakatos was not completely satisfied
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with them. He had also planned to improve those parts which had been
previously published, including the main body of [7]. Nevertheless,
there are ideas and themes which are reiterated with sufficient fre-
quency and emphasis that we can be confident that they were well es-
tablished in his mind.

The body of [7] consists of a case study in the rational recon-
struction of mathematical progress. It is a presentation in dialogue
form of the amazingly tangled history—spanning most of the 19th
century—surrounding the (Descartes-) Euler conjecture for polyhedra.
This is a very simple equation (namely, V - E + F = 2) which ex-
presses an invariable relationship between the number of vertices (V),
edges (E), and faces (F) of any polyhedron. The choice of this ex-
ample as an object of heuristic study (originally suggested to Lakatos
by Polya), has much to recommend it, besides its surprising ins-and-
outs. For one thing, the concepts reach back to Greek geometry and,
in the form established by Poincare, bring us forward to the very
doorsteps of modern combinatorial topology. In addition, the concepts
involved are relatively elementary and the logic of the situation can
be followed by anyone having a modicum of appreciation of mathematical
proofs. The dialogue is often a delight to read and the entire pre-
sentation is a brilliantly sustained tour de force. Eventually,
though, the relentless examination and re-examination of concepts,
putative results, criticisms, and counter-examples is extremely fa-
tiguing; one must be rather determined to see it through to the end,
with little additional insight as reward.

I think one gets a clearer and quicker idea of Lakatos' general
views and program by reading the two appendices to [7] and the first
two essays of [8], Though these contain illustrations from mathe-
matics of a less elementary conceptual character than the Euler con-
jecture, they could hardly discourage anyone seriously interested in
their subject matter.

3. A Summary of L's General Views

(In presenting the gist of these I shall move freely between [7]
and [8], quoting liberally as well as paraphrasing.)

Modern mathematical philosophy is deeply embedded in general
epistemology and is only to be understood with reference to its basic
controversy: that is between the dogmatists—who claim that we can
know—and the skeptics—who claim that we cannot know, or at least
cannot know what it is that we know. The skeptical argument that it
is hopeless to find foundations for knowledge is based on infinite
regress both for meaning and for truth. Three major rationalist
(dogmatist) enterprises have been developed to try to stop these twin
infinite regresses: (1) the Euclidean program, (2) the Empiricist
program, and (3) the Inductive program. The first of these is nor-
mally associated with mathematics, the latter two with scientific
theories. Each organizes knowledge within (not necessarily formal)

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192475 Published online by Cambridge University Press

https://doi.org/10.1086/psaprocbienmeetp.1978.2.192475


312

deductive systems. In a Euclidean system truth "flows downwards
through the deductive channels" from the indubitably true axioms,
while in an Empiricist system falsity "flows upwards" from those
basic statements which turn out to be untrue. The Inductive pro-
gram also attempts to find conditions for truth to flow upwards from
the basic statements; this will not concern us further here.

None of the rationalist programs can withstand the criticism of
the skeptics. However, there is a fourth program which can answer
them, namely Popper's critical fallibilism. This takes infinite
regress in proofs and concepts seriously and does not pretend to
stop them. In a Popperian theory "we never know, we only guess."
But guesses can be criticized and then improved. The old problems
of reduction and justification of knowledge become pseudo-problems.
Instead of asking How do you know? one asks How do you improve your
guesses? There is now no concern if the skeptic complains that you
cannot know the answer to that, since in fact your answer itself is
only a guess. "There is nothing wrong with an infinite regress of
guesses."

The Euclidean program for mathematics is hereby abandoned (indeed
rejected), but mathematics can be regarded as a quasi-empirical
theory under the new stance. By such is meant an empirical theory
whose basic statements are not of a singular spatio-temporal character.
For example, they may be elementary arithmetical statements or even
entire bodies of already accepted informal statements about which one
has developed some confidence. Individual mathematical conjectures
• and whole mathematical theories can be tested for their consequences
among such basic statements and be modified or even rejected, A
quasi-empirical theory is always conjectural, at best well-corrobo-
rated. As in empirical theories, the axioms are used to explain those
basic statements which appear as consequences. Euclidean theories
are rigid and anti-speculative; by contrast, the quasi-empirical ap-
proach is uninhibitedly speculative and advocates a proliferation of
"bold, imaginative" hypotheses.

4. The Logic of Proofs and Refutations (Lakatos1 ideas, cont'd.)

Instead of growing through the steady accumulation of indubitably
established theorems, mathematics grows through the "incessant im-
provement of guesses by speculation and criticism," by the logic of
proofs and refutations. While this is a very general pattern of math-
ematical discovery, it was itself only discovered in the 1840's.
Naive conjectures and concepts must pass through the crucible of
proofs and refutations. The results are improved conjectures (theo-
rems) and improved (proof-generated or theoretical) concepts. The
logic of mathematical discovery "is neither psychology nor logic, it
is an independent discipline" also called heuristic. While mathe-
matics is a product of human activity, it acquires a certain autonomy
with its own laws of growth, its own dialectic. This is the subject
of heuristic, which it studies through history and the rational recon-
struction of history.
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The method of proofs and refutations is also called proof-analy-
sis. Its skeleton is as follows ([7], pp. 127-128): There is

(1) a primitive conjecture and

(2) an informal proof.

The latter is a thought-experiment or argument which decomposes the
primitive conjecture into subconjectures or lemmas. Subsequently

(3) "global" counterexamples emerge,

i.e., counterexamples to the primitive conjecture. Finally,

(4) the proof is re-examined for a hidden lemma to which the global
counterexample is a local counterexample. This is built into the
improved conjecture (theorem); its principal new feature is the
proof-generated concept.

The method frequently has further ramifications. The lemma may be
hidden in other proofs and the new concept may be used to improve
them; counterexamples open up into new fields of inquiry, and so on.

The method of proof-analysis might not improve a proof. This only
happens when the analysis turns up unexpected aspects of the naive
conjecture. That might not be the case in mature theories but it is
always the case in young, growing theories.

It should also be noted that other strategies than proof-analysis
have been used historically to deal with the problems presented by
counterexamples. These are the methods of monster barring and ex-
ception barring. The former attempts to restrict concepts involved
specifically to exclude pathological cases. In the second, one
searches for a "safe" domain of objects for which the conjecture is
valid, without seeking the most general domain of validity.

5. Getting Down to Cases

There are only two cases that Lakatos presents in any detail to
support his thesis, though features of a number of other cases are
taken up too. These are the Euler conjecture which, as has already
been mentioned, is treated at length in the main body of [7] and
Cauchy's theorem on limits of series of continuous functions ([7],
App. 1). Actually, the latter serves to illustrate the method of
proof-analysis in a somewhat clearer way than the former, so we look
at it here.

The external history of this theorem runs briefly as follows.
Cauchy took the first successful steps to give a rigorous foundation
for the calculus without using the troublesome concept of infini-
tesimal. These became well-known through publication of his book
Cours d'Analyse in 1821. (Actually, much the same achievement had
been made by Bolzano several years earlier, but his 1817 publication
seems to have received no attention in the mathematical world at that
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2
time. ) The first concepts which needed re-examination were those of
limit and continuous function, for which Cauchy provided new defin-
itions. These are not as precise as the 'e ,<5 ' definitions we use to-
day and which we owe instead to Weierstrass (around mid-century).
Indeed, there is a kind of ambiguity about them which is disturbing
by today's standards of rigor.

Cauchy stated and presented an argument for the following theorem:
CO

Suppose E , f (x) converges to f(x) for each x and that each

f (x) is continuous; then f(x) is continuous.
n
The hypothesis is expressed in terms of limits by

lim s (x) = f(x) where s (x)
. n n

:" f (x) .
m=l m

According to our present-day interpretation of limits and continuity
this theorem is false and there are many simple counterexamples. The
curious part of this history is that a series which could serve as a
counterexample was already known to Cauchy and not recognized as such.
This was

sin x —r- sin 2x+-̂ - sin 3x-7- sin 4x+... or t"n=l sin nx

which appeared in the famous 1807 memoir by Fourier on the propagation
of heat. It was shown there to converge to a function with the broken
straight line graph:

-3TT i3ir

(At the points mr the series converges to 0 .)

There had been much controversy over Fourier's memoir and his as-
sertion about the representability of "arbitrary" functions by trig-
onometric series. It seems that Cauchy1s theorem, which would hardly
have been considered worth stating before, was designed to put Four-
ier's work definitively into question (this is the view of Grattan-.
Guinness [3], p. 78). Be that as it may, no one protested the theorem
until 1826, when Abel pointed out that there were "exceptions" such as
the series above. But instead of examining Cauchy's putative proof to
see where it broke down, Abel took the exception-barring route: he re-
stricted attention to the "safe" domain of power-series functions, for
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which he obtained definitive convergence results. It was not until
1847 that Seidel (a student of Dirichlet's) re-examined Cauchy's ar-
,gument and found the "hidden" lemma which makes the conclusion cor-
rect. This is analyzed by Lakatos as follows, writing out the con-
cepts involved in modern terms. We assume:

(1) (convergence) for each x and e > 0, there exists N such that

|f(x) - s (x)| < e for all n 2 N , and

(2) (continuity of each f , hence of each s ) for each x and
* , n n

e > 0 there exists S > 0 such that |y-x| < 6 implies

|sn(y) - sn(x)| < e .

The desired conclusion is
(3) (continuity of f ) for each x and e > 0 there exists 5 > 0

such that |y-x| < 6 implies [f (y) - f (x) | < e .

The proof idea is to relate |f(y) - f(x) | to |s (y) - s (x)| for

suitably large n . By the "triangle inequality" we have

|f(y) -f(x)| _< |f(y) -sn(y) |+ |sn(y) - sn(x) | + |sn(x)-f(x)| .

Thus |f(y) -f(x) | < e if each of |f(y)-sn(y)| , |sn(y) - sn(x) |

and |f(x) -s (x)| is less than e/3 . For any n the second can be

arranged using (2). By (1) we can choose N such that
|f(x) -s (x) | < e/3 for n ^ K and for any y we can choose N.. such

that |f(y) -s (y) | < e/3 for n _> N . But while x in (3) is con-

ceived to be fixed, y must be variable, and the N. associated with

y may vary too. What is needed to carry through the proof is a uni-
form choice of N independent of x (hence applicable to any y )
in (1): .

(1)' (uniform convergence) for each e > 0 there exists N such that

|f(x) -s (x) I < e for all x and all n > N .
i n i _

This assumption was hidden in Cauchy's argument. The improved theorem
is that (1)' and (2) implies (3). The Fourier series which was a
counter-example to Cauchy's formulation of the theorem now becomes a

CO

counter-example to the "guilty lemma" that 2 _ f (x) converges uni-
formly to f(x) if it converges: indeed, it converges but not uni-
formly. The proof-generated concept of uniform convergence is incor-
porated as the principal feature of the improved theorem.

Lakatos credits the method of proof-analysis to Seidel. He says
that "Seidel discovered the proof-generated concept of uniform con-
vergence and the method of proof-analysis at one blow. He was fully
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conscious of his methodological discovery which he stated with great

clarity."3'4

There is no time here to go into the treatment of the Descartes-
Euler conjecture in [7]. It should be remarked that a difficulty with
the dialogue form of presentation used there is that one is never sure

which of the participants' views are shared by Lakatos. Fortunately,
Lakatos has provided many (scholarly) footnotes which parallel the text
as well as suppplementary comments.

6. A Critical Examination of Lakatos1 Views and Program

The details of this and other examples spelled out (or indicated) in
[7] would seem to show that one must take Lakatos' analysis of mathe-
matical progress rather seriously. Nevertheless, I have a number of

questions to raise and criticisms to make. These will concern both
what Lakatos tells us and matters about which he says nothing at all.

(i) What happened before 1847? According to the quotation given just
a moment ago, the method of proof analysis appears to be a relative
late-comer in the history of mathematics (1847). But this is said to
be the same as the method of proofs and refutations, which is the only
theoretical pattern offered by Lakatos to account for the progress of
mathematics. It would seem then that Lakatos has nothing to tell us
about the growth of mathematics prior to 1847. Actually, he has var-
ious things to say: for example, the methods of monster-barring and
exception-barring were practiced before that date as moves to respond
to criticism. Shouldn't a logic which is supposed to account for
changes in a fallible body of knowledge account for any significant
kinds of changes? A related question is whether the method of proofs
and refutations is supposed to be descriptive or normative. It seems
at best that it could be descriptive of progress since 1847. But much
of the tenor of the discussion leads one to view it as normative.

(ii) Is the method most appropriate to describe mathematics in tran^
sitional foundational periods? The example from Cauchy's rigorization
of analysis would seem to suggest that; witness also the statement that
the method is more appropriate to young, growing theories. But the
example of Euler's conjecture is not of this character, though it turned
out that the concepts were less clear than one had imagined. On the
other hand, there were a number of foundational moves which took place
without response to specific criticism or counter-examples, e.g.,
those establishing the use of imaginary numbers or points at infinity
(in projective geometry) or continuous probability measures. Finally,
the method tells us nothing about progress by internal organizational
foundational moves. These proceed by finding suitable abstract con-
cepts around which to wind large parts of the subject in an under-
standable way. They do not arise as responses to critical examination
of fallacious proofs. Examples are: linear algebra, linear analysis,
point-set topology, group theory, etc.
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(iii) How does this "logic of mathematical discovery" relate to work-
ins experience? Most mathematicians throughout the history of theo-
retical mathematics work at a safe distance from troublesome foun-
dational questions. This is not to say that the concepts used at any
given time are all clearly understood (e.g., the nature of geometrical
objects, infinitesimals, imaginary numbers, sets, etc.). Rather, the
mathematician is usually engaged in a project "mid-stream" which seems
hardly affected by foundational considerations. That project usually
consists in developing conjectures and seeking proofs of those con-
jectures. The tests for whether one has succeeded in obtaining such a

proof are informal but fairly decisive. It is common experience that
proof-attempts proceed by fits and starts and involve reversals;
(self-) critical examination is an essential element, but this does not
necessarily mean that counter-examples form their principal feature.

(iv) Is there no end to guessing? Again what Lakatos suggests here
does not square with ordinary experience. The professional mathe-
matician knows rather well what sort of thing will work for certain
kinds of problems and what won't. So guesswork is minimized from the
outset. Moreover, the guesswork finishes with the mathematician's
successful struggle to solve a problem or complete a proof. It is
true that results are viewed in changing perspective over historical
periods. Their significance is reassessed, they are generalized and
understood in wider settings. (A marvelous example is provided by
Pythagoras' Theorem.) But this is quite a different picture from that
given by Lakatos of endless guesswork.

(v) What constitutes improvement in a proof? Lakatos gives no theo-
retical criterion for this. He merely produces examples and shows the
change which takes place in the situation in response to criticism and/
or counter-examples. Evidently—both for him and for us—improvement
has taken place. It is my contention, which I shall elaborate below,
that in fact we have informal criteria for what constitutes an ade-
quate proof and that these criteria can be explained in logical terms;
improvement is described in the passage from inadequate proofs to ade-
quate ones. It seems to me that Lakatos must implicitly accept this,
or something like it. I believe further that he refuses to say any-
thing explicitly in this direction since doing so would undermine his
sweeping rejection of the deductivist account of mathematics. In con-
nection with both this and the preceding point, recall Lakatos' state-
ment that not all proofs can be improved, especially not those in ma-
ture theories. In other words, one reaches resting points where there
comes an end to improvement of proofs under criticism. Of course there
is always the possibility of improvement of results by generalization,
which is quite a different matter (as just described above).

(vi) What constitutes an initial proof? Where does it come from?
Lakatos tells us that this is a thought-experiment or naive proof-
idea. But in the examples he gives us the idea for the proof is al-
ready well-advanced. It has significant structure and steps; it
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pretends to be a rational chain from hypotheses to conclusion. We
cannot imagine that such a proof springs full blown, following formu-
lation of a conjecture. Should not a heuristic theory account for
the development of such a proof? Indeed, Pdlya—but not Lakatos—has

significant things to say here (cf., Section 7 below.)8

(vii) What is the form of conjectures? All the examples of con-
jectures given by Lakatos take the form

(1) for all objects satisfying given hypotheses A , a conclusion B

holds,

which is symbolized logically by

(2) Vx[A(x) •* B(x)] .9

But there are a number of other forms of statements of mathematical
(and historical) interest. For example, there are singular state-

ments, such as e = - l , o r 1 - — + — - y + . . . = T - > o r that 641
2""divides 2 + 1 . Of course such statements have logical structure

when the concepts involved are analyzed, and there is the theoretical
possibility of "infinite regress" in such an analysis. But we are
interested here in a description of the naive form of a statement,
i.e., as it presents itself to the working mathematician. There are
also existential statements

(3) ax A(x)

to consider, for example that the 17-sided regular polygon is con-
structible by ruler and compass, or that there exists a decision
method for the elementary theory of real numbers, or that there
exists an equation of degree 5 with rational coefficients which is
not solvable by radicals. In refinement of (2), one is very often
concerned with statements of the form:

(4) Vx[A(x) •> ay B(x,y)] ,

for example, that every complex polynomial of degree > 0 has at
least one complex root, or that every Jordan curve in space has a
minimal spanning surface. The statement that there exist infinitely
many prime numbers and the conjecture that there exist infinitely
many twin primes are actually both of this form (for every integer n
there exists a larger prime, resp., twin prime) though usually here we
think of a representation

(5) Vn 3m B(n,m)
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where the variables 'n', 'm1 range over the non-negative integers. As
an example of increasing complexity in the same direction we have the
statement of Waring's conjecture:

Vk 3n Vm 3q ... 3q [m = q + ... + q ] .

Finally, there are interesting statements of the form

(6) Yx A(x) -> V x B(x) ,

for example, the statement Con(ZF) ->• Con(ZF + AC+ GCH) which says
that if the system ZF of Zermelo-Fraenkel set theory is consistent,
i.e., if there is no proof of a contradiction within it, then there is
no contradiction to be obtained when we adjoin the axiom of choice and
the generalized continuum hypothesis. Now one can expect that methods
of attack on a conjecture will be sensitive to the (naive or logical)
form of the conjecture. We should be suspicious of a supposed logic
of mathematical discovery which only concerns itself with statements
of the form (2).

(viii) Can ordinary logical analysis account for the same examples as
the method of proofs and refutations? I believe it can, somewhat as
follows. The primitive conjectures considered by Lakatos as we have
seen take the form

(1) Vx [A(x) -*• B(x)] .

The structure of the informal proof is supposed to decompose (1) into
a series of subconjectures or lemmas, i.e.,

(2) Vx [A(x) - ^ ( x ) ] (i = l,...,n)

where

(3) Vx [A^x) A ... A An(x) * B(x)]

is supposed to hold. There can be various kinds of troubles, including
the following two. First, in (2) we may not be clear enough about the
concepts involved in A(x) to be sure that the lemmas indeed follow.
This is the first issue which is raised concerning Euler's conjecture
([7], p. 8). Secondly, we may be pretty clear about the concepts in-
volved and (2) holds but (3) may not be logically valid. This is the
case where we look for a "hidden lemma", i.e., a property A .. (x)
such that

(3)' Vx [A1(x) A ... A An(x) A An+1(x) -> B(x)]

is valid. But now the lemmas have to be re-examined, because we do not
necessarily have

(2)1 Vx [A(x) -> An+1(x)] .
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Indeed, in the situation contemplated by the method there is a global
counter-example c , i.e., one such that A(c) holds but not B(c) .
Then (2), (2)', and (3)' are of course logically impossible. How-
ever, in this case we seek an "improvement" of the conjecture

(D* Vx [A*(x) -> B(x)]

for which

(2)* Vx [A*(x) •»• A±(x)] (i = 1 n+1)

now holds, as well as (3)'. This may be done by "incorporating" the
hidden lemma into the hypothesis (most simply by taking
*

A (x) = A(x) A A +-,(x) ).

(ix) Are there no crystal-clear concepts? Certainly there have been
continual historical shifts in what has been regarded as clearly
understood. Throughout, though, the structure of positive integers
1,2,3,... has enjoyed a privileged status. To my mind, this is a
crystal-clear mathematical concept. At any rate, if anything is a
candidate for being such, this is it. Moreover, there has never been
voiced any real concern or confusion on this score in the entire

10
history of number theory (which stretches back to Euclid). At no
time has the criticism of proofs involved criticism of basic concepts
about numbers. A heuristic logic should give some account of progress
here. The fact that this subject is ignored by Lakatos is a sign that
it threatens his theses, in particular that there are no crystal-
clear concepts. (Note that this is a separate issue from whether
there is such a thing as conceptual finality. For example, the con-
cept of natural number is often defined these days in terms of the
notion of set, thereby reducing a completely clear concept to one that
is quite unclear. Of course, in the light of such moves one can always
claim there is infinite regress.)

To complete this critique, we ask finally:

(x) What is distinctive about mathematics? Lakatos makes no effort to
tell us what there is about the conceptual content of mathematics or
about its verification structure which sets it off from other areas of
knowledge. Obviously he has informal criteria, since he chooses to
discuss only examples from mathematics. But he offers no theoretical
criteria. It seems to me that there is nothing he says about the gen-
eral idea of "proof" which could not apply equally well to "more or
less convincing argument"; there is nothing about the "logic of mathe-
matical discovery" which could not be read equally well as a "logic of.
rational discovery", i.e., of the process of reaching convictions
rationally. If I am right, then such a logic could hope to account
only for a few gross features of the actual growth of mathematics. In
any case, all of my preceding comments (i) - (ix) reveal that Lakatos1

"logic" hardly begins to be equal to the tasks called for in his grand
program.
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7. Comparison with Pdlya's Work

P6"lya has written extensively on heuristic and plausible reasoning
in mathematics ([9] - [11]). In the context of the present discus-
sion, T would characterize this work of my esteemed colleague briefly
as follows (cf., also footnote 5) .

(i) Polya does not voice philosophical doubts about the certainty of
mathematics; he does not raise foundational issues. The concepts and
problems with which he deals are supposed to be clearly understood.
Moreover, we are supposed to understand what constitutes a demon-
stration; it is accepted that logic gives a theoretical explanation
of that.

(ii) In [9] and [11] he concentrates on tactics and methods for find-
ing solutions to problems and, to a lesser extent, on finding proofs
of theorems. P6"lya's motivation here is more toward helping people
make their way effectively through mathematics than to establish a
theory of heuristic. But in the process he develops well-structured
sets of strategic rules.

(iii) In [10] Polya concentrates on the processes which lead one to
formulate general conjectures and to see what counts as support for
them. In this connection he formulates a logic of plausible reasoning
(or degrees of credibility); this includes a number of simple rules,
of which the following is typical:

A implies B

B true

A more credible .

(iv) Polya makes use of a wealth of mathematically and/or historically

interesting examples to illustrate his points and rules.

Anybody who has read Polya1s works or heard him lecture knows that
he is peerless within the framework for which he has set his heuristic.
In contrast to Lakatos, he plumbs the relatively safe mid-stream of
mathematics. But this is where most of the day-to-day experience of
the subject is going on. Students and teachers could ask for nothing
more. What professional mathematicians might want, though, is a con-
tinuation along the same lines which concentrated on the ins and outs
of finding difficult proofs. That work is waiting to be carried on.

There is one aspect of mathematical progress which neither Polya nor
Lakatos have really attempted to deal with, namely that by convenient
conceptual development. How does one go about finding the technical
but general concepts that help organize masses of material and make
difficult proofs understandable? (Cf.,6 (ii) above.) Lakatos1 idea of
proof-generated concepts seems to me a first step in this direction.
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8. The Logical Analysis of Mathematics

There is little time here to mount a defense of the logical or
metamathematical approach, so I shall simply try to indicate the
nature of the position briefly (at least as I see it).

(i) Logic attempts to provide us with a theoretical analysis of the
underlying nature of mathematics as physics provides us with a theo-
retic analysis of the underlying nature of the physical world. Evi-
dently, in both cases, only a part of the experience is accounted for
and, in particular, various superficial and/or accidental features
cannot be treated at all.

(ii) In the case of logic, this theoretical analysis is supposed to
explain what constitutes the underlying content of mathematics and
what is its organizational and verificational structure.

(iii) The study of content has received no final answer. There are a
number of conflicting positions about the nature of mathematics:
Platonist, constructivist, finltist, predicativist among them. How-
ever, what logic has succeeded in doing very well is formulating these
positions in precise terms by a variety of formal systems. It has
then gone on to give us significant information about the potential-
ities and limitations of each of these positions and about their
interrelationships. This part of logical achievement has been par-
ticularly stressed by Kreisel (cf., [6] among other of his publications).

(iv) The logical analysis of the structure of mathematics has been
especially successful. Again, there is not a single analysis, since
(for example) ordinary (Platonlstic) reasoning uses classical two-
valued logic while constructive reasoning uses a more restricted
("intuitionistic") logic. There are two parts to this logical
analysis. First is the logical syntax of language which gives a de-
scription of the structure of mathematical propositions. This ac-
cords very well with our informal experience: transforming mathe-
matical statements from informal to logical form and back is a direct
matter which is essentially unproblematic. (This is in contrast of
course with attempts to provide a logical syntax of ordinary language.)
Second comes the logical structure of proofs as described in certain
deductive systems. In this case the relationship with ordinary ex-
perience is more or less good: "less" for Hilbert-style systems and
"more" for Gentzen-style systems of natural deduction. It is com-
monly felt that logic gives us a good underlying analysis of the
structure of completed proofs (no gaps, no unsure assumptions or
steps). Indeed, I believe that the logical analysis of the structure
of mathematics comes much closer to explaining our everyday mathe-
matical experience than physics does to explaining our everyday physi-
cal experience. (For an elaboration of these views, cf., my paper [2].)
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(v) Though formal systems are normally conceived to represent
"slices" of mathematics in a "frozen" state, so to speak in vitro
as opposed to in vivo, one can use these systems to model growth
and change. First efforts to do so were via progressions of theo-
ries; but these took on an unreal character when extended into the
transfinite. A formalization of predicative mathematics by a growing
system without use of transfinite progressions has been proposed in my
paper [1].. This allows one to expand one's conceptual stock as more
and more things are proved which make such extensions admissible.

9. Conclusion

Lakatos1 fireworks briefly illuminate limited portions of mathe-
matics conceived as an active growing intellectual endeavor which is
subject to confusion, uncertainty, and error. In contrast logic
gives us a coherent picture of mathematics but which at first sight
appears ideal and static and which is irrelevant to everyday ex-
perience. However, it alone throws light on what is distinctive
about mathematics, its concepts and methods. Polya's heuristic pro-
vides one bridge from theory to practice. I believe that Lakatos' j!
successes should inspire us to seek a more realistic theory of mathe- . '
matics. But his failures and limitations should make us aware that
much more, from logic will have to be recognized as basic and incorpo-
rated into such a theory. It would be best to reserve the name "the
logic of mathematical discovery" for that which is yet to come.

Notes

This is not as well-known among mathematicians as it ought to be.
Recently Hersh [4] has engaged in bringing Lakatos' ideas, which he
largely favors, to the attention of the mathematical community.

2
It is the thesis of Grattan-Guinness [3] that Cauchy somehow got his

ideas from Bolzano without acknowledging them, but this has been dis-
puted. Actually, Bolzano was a bit clearer than Cauchy about basic
concepts. His revolutionary work (including anticipations of set
theory) was not widely publicized and appreciated until the 1870's.

3The concept of uniform convergence and its need for rigorous
proofs of certain basic theorems of analysis (such as concern also
interchange of integration and limits) was independently found by the
physicist Stokes (cf., [3]).

- Lakatos continued to be puzzled by Cauchy's failure to acknowledge
a difficulty when confronted with the counter-examples. He later
wrote a revisionist "history" of Cauchy1s misadventure in "Cauchy and
the Continuum," which appears as the third essay of [8]. In this
Lakatos seized on A. Robinson's theory of infinitesimals [12] to
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propose another interpretation: namely, Cauchy was a Leibnizean at
heart and still clung to actual infinitesimals. Furthermore, his
theorem is correct when read as a statement in Robinson's non-standard
analysis.

The following points should be made about this:

(i) Cauchy defined variables as quantities which "one considers as
having to successively assume many values different from one another."
For limits he says that "when the successive values attributed to a
variable approach indefinitely a fixed value so as to end by differing
from it as little as one wishes, this last is called the limit of all
the others." Then infinitesimals are said to be variables whose "nu-
merical value decreases indefinitely in such a way as to converge to
the limit 0." (cf., Kline [5], pp. 950-951).

(ii) In particular, Cauchy defined differentials dx (one principal
form in which infinitesimals had previously made their appearance) as
any finite variable quantity. Then, given a functional relationship
y = f(x) , one defines dy to be f'(x) dx . This "saves" the
equation dy/dx = f'(x) , in which f'(x) has been defined inde-
pendently in terms of limits by lim [f(x+h)-f(x)]/h . Infinitesi-

h -> 0
mals are thus treated here as a suggestive notational convenience.

(iii) Nevertheless, Cauchy's position on infinitesimals seems to be
equivocal, and it may be said that he continued to "practice infini-
tesimalism" (Grattan-Guinness [3], pp. 57 ff.).

,(iv) Robinson provided the first coherent theory of actual infinitesi-
mals in which a Leibnizean-style calculus could be interpreted. How-
ever, this reconstruction involves the use of logical concepts (such as
the distinction between internal and external properties in certain
formal languages) which are foreign to infinitesimal analysis as it had
been practiced.

(v) Robinson himself examined interpretations of earlier statements
involving infinitely small and large quantities in analysis and con-
sidered possible reinterpretations of them in his system, in particular
those given by Cauchy (Robinson [12], §10.5). Among these is the
statement about convergence of series of functions f (x) which we con-
sidered in the text. In his interpretation, Robinson allows the sub-
script n to take on infinite values, but considers x to range only
over standard real numbers. He found that additional assumptions, such
as uniform convergence, are still needed to obtain a correct theorem.
By contrast, Lakatos (in the essay mentioned) assumes in his interpre-
tation that x ranges over the full extended real number system (com-
prising infinitesimals) as well. For this alternative form, he verifies
Cauchy's theorem to be correct "as it stands."

(vi) My view is. that one can hardly credit Cauchy (or his predecessors)
with having a coherent use of infinitely small and large quantities
which merely awaited a Robinsonian-style foundation to legitimize it.
In his theory of infinitesimals, Cauchy looks forward to the current
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standard methods for their elimination, while in his practice he
slips backwards. The type of "rational reconstruction of history"
revealed at length by this example seems to me to provide a good il-
lustration of the dangers of Lakatos' free-wheeling "bold, imaginative"
approach.

According to Hersh [4] the one criticism Polya made of Lakatos1

treatment of the Euler conjecture was that it is "too witty." But
Polya added the following in .a recent conversation which I had with
him. In his view, Lakatos' method of proofs and refutations simply
boils down to the alternating procedure (going back to Polya and
SzegB in 1925) and described in [11], vol. 2, pp. 50-51, from which I
quote the following portions:

A problem to prove is concerned with a clearly stated assertion
A of which we do not know whether it is true or false: we are
in a state of doubt. The aim of the problem is to remove this
doubt, to prove A or to disprove it. ... If we cannot prove
the proposed assertion A we try to prove instead a weaker
proposition ( which we have more chances to prove). And, if we
cannot disprove the proposed assertion we try to disprove a
stronger proposition (which we have more chances to disprove).
... In this way, by working alternately on proofs and counter-
examples, we may attain a fuller knowledge of the facts.

No doubt Lakatos would have quarrelled with this and in particular with
the assumption that A is clearly stated; however, much of the Laka-
tosian dialectic is accounted for in Polya's alternating procedure.

I must confess to being ignorant of the critical literature on
Lakatos' work except for an excellent over-all essay review of the two
volumes of his Philosophical Papers by my colleague Ian Hacking, which
I have read in draft form. One specific critical question concerning
his mathematical philosophy is raised by Hersh [4], which is otherwise
extremely favorable (the same question is posed here in (x) p. 320).

Even Euler, that most inductivist of mathematicians, operating at a
time of low rigor, knew when he had a proof and when he didn't: "This
law, which I shall explain in a moment, is, in my opinion so much more
remarkable as it is of such a nature that we can be assured of its truth
without giving it a perfect demonstration. Nevertheless, I shall pre-
sent such evidence for it as might be regarded as almost equivalent to a
rigorous demonstration."(Euler, quoted by Polya in [10], vol. 1, p. 91).

Q

Lakatos tells us that Polya is concerned with the heuristic leading
to conjectures and that he takes up where P6lya leaves off. This is
false on two counts: Polya does concern himself as well with the heur-
istics of finding proofs (cf., Section 7 of this paper) while Lakatos
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says nothing about the big stretch from conjecture to first real
proof-ideas.

9
We use here and below the logical symbols 'A' , '->' , 'Vx' , 'Hx'

for 'and', 'implies', 'for all x ', and 'there exists x ', respectively.

Formalism has bred some skeptics who refuse to be convinced that
elementary number theory is consistent. There is even an occasional
loner who claims to have established its inconsistency; in these cases
critical examination by others has only hardened their position (i.e.,
there is no dialectic taking place).

R. Parikh asked whether Polya says anything about the rule in (iii)
above applied to the case that A = B A C and C is false. To my
knowledge he does not. Naturally, this sort of example doesn't arise
in practice. It also suggests that there are concepts implicit in the
actual situation (knowledge changing over time, relevance of state-
ments) which may need to be made explicit in such a logic in order to
give it significance.

12
By Turing, Kreisel, and myself.
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