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Abstract. A C°° metric is constructed on S2 whose geodesic flow has positive measure
entropy.

By the uniformization theorem, we can induce a metric of constant negative
curvature on the sphere minus three points. Each deleted point gives rise to a cusp
going to infinity, which we cut off at some finite point and replace in a smooth way
with a cap formed from a surface of revolution. The cap that we use has the property
that a diverging family of geodesies that enters the cap will focus once while in the
cap and then again be diverging when leaving the cap. The Clairaut integral of
motion on a surface of revolution helps us to design this cap.

Using Wojtkowski's invariant cone-field technique, we show that almost every
point has a non-zero Lyapunov exponent. Positive entropy then follows by Pesin's
formula. Our construction can be applied to surfaces of any genus yielding similar
results.

0. Introduction
On a compact surface M of negative curvature, the geodesic flow behaves stochasti-
cally. The original results in this field go back to Hedlund and Hopf, who showed,
respectively, that the flow has dense orbits and is ergodic. A geodesic is determined
by a point and direction, so the geodesic flow g, occurs in the unit tangent bundle
SM, and a dense orbit comes arbitrarily close to every point and direction. Ergodicity
is meant relative to the invariant Liouville measure /u.. These results are only
applicable to surfaces of genus g ^ 2 since, by the Gauss-Bonnet theorem, the
average curvature over the surface equals 2ir(2-2g).

Do there exist metrics on the sphere, g = 0, and torus, g = 1, for which the geodesic
flow behaves stochastically? On the standard sphere, the geodesies are given by the
great circles and are all periodic. On the flat torus, K = 0, the direction of a geodesic
stays constant, the flow is an integrable system and SM decomposes into invariant
tori. Under small perturbations of the flat metric, the K.A.M. theory asserts that
some of the invariant tori continue to exist, so the system remains non-ergodic.

In this paper, we show that the sphere and torus can be given smooth metrics
for which the geodesic flow has positive measure entropy. Positive entropy does
not imply ergodicity. Rather, by results of Pesin [16], it implies that the system has
components of positive measure on which the flow is ergodic and on which it
exhibits the very strongest stochastic behaviour.
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532 V. J. Donnay

THEOREM 1. Every compact, orientable surface can be given a C°° Riemannian metric
for which the geodesic flow has positive measure entropy.

For surfaces of genus g ^ 2 this result is well known since the geodesic flow on
a surface of negative curvature is Anosov [1].

For our examples, the geodesic flow is actually ergodic [9]. Applying a perturbation
argument to our examples, K. Burns and M. Gerber [6] have produced analytic
metrics on the sphere and torus whose geodesic flow has positive entropy and is
ergodic. Their proof of ergodicity, which is different from ours, is more general,
applying to both the C°° and analytic examples.

The sphere we construct is an abstract surface; it can not be isometrically
embedded in R3. Do there exist spheres embeddable in R3, or better yet, convex
spheres in R3 whose geodesic flow is ergodic? At present, the answer is not known.

To construct our example, we start by deleting three (one) or more points from
the sphere (torus). By the uniformization theorem, the universal cover of this
punctured surface is the disk. The Poincare metric on the disk induces a metric of
constant negative curvature on the punctured surface. A theorem of Hilbert [7]
asserts that a complete surface of constant negative curvature cannot be embedded
in R3. However, in a neighborhood of a deleted point, we can embed the surface,
getting a rotationally symmetric cusp (pseudo-sphere) which goes to infinity. We
cut off the end of the cusp along a circle and replace it with a cap (figure 1). In the
transitional region, where the K = -l surface has been symmetrically tapered to
attach to the cap, the curvatue should satisfy K < 0.

(b)

FIGURE 1. (a) Cusp, (b) Cusp with cap.

In this approach we follow R. Osserman who, using a half-sphere for the cap,
created a C1, but not C2, metric on the sphere whose geodesic flow was ergodic
with positive entropy [15]. His proof relied heavily on the symmetry of a half-sphere
[see Appendix A.3]. We use a surface of revolution for the cap and are thereby
able to maintain smoothness.

For geodesic flow, entropy is a measure of the average exponential rate at which
nearby geodesies diverge from one another. A family of geodesies, a variation, that
is initially diverging in the negatively curved region will continue to diverge until
it reaches a cap. The positive curvature in the cap causes the geodesies to converge.
We want a cap that makes the geodesies focus before leaving the cap, so that the
variation will again be diverging when it returns to the negatively curved region
(figure 2). The variation will then continue to diverge until its next return to the cap.
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K<0 Cap K < 0

FIGURE 2. Diverging variation focuses in cap.

On a surface of revolution, the geodesic flow has an integral of motion, the
so-called Clairaut Integral. This integral allows us to determine explicitly the motion
of geodesies in the cap and thereby design a cap that focuses variations in the
desired way (§§ 3-6). We call such a cap a focusing cap.

Using M. Wojtkowski's method of invariant cones [17,18], we show that the
geodesic flow on our surface has almost everywhere non-zero Lyapunov exponents
(§ 8). By Pesin's formula [16] (§ 2), this implies that the measure entropy is positive.

One can also apply this construction of deleting points, but now one or more,
and adding caps to a surface of genus g>2. The resulting metric will have conjugate
points (§ 2 and Remark 6.2), and the geodesic flow will have non-zero Lyapunov
exponent almost everywhere. The previous examples of stochastic geodesic flow on
surfaces of genus g a 2 came from metrics without conjugate points [2].

Using our focusing cap, we give a second example of a metric on the torus: a
flat torus with cap (figure 3). Here the curvature outside the cap is predominately
K = 0, rather than K = -1 as in the first example. This example illustrates the more
general conditions under which a surface with focusing caps will have non-zero
Lyapunov exponent almost everywhere (Theorem 8.5).

FIGURE 3. Flat torus with cap.

If we weaken the conditions on our cap, we can still produce positive entropy
providing we are more careful in how we attach the cap (§9).

The flat torus with cap is similar to an example constructed by Bangert [4]. He
was studying the question of when the invariant tori of an integrable Hamiltonian
system break up. In relating this problem to our example (§ 10), we discuss the
effect non-focusing caps have on the geodesic flow.

Finally, we construct a light-bulb shaped cap (§11) which gives a flow that has
positive entropy but is non-ergodic. This example illustrates that integrable and
stochastic motion can co-exist within one system.
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534 V. J. Donnay

Our focusing argument was motivated by Wojtkowski's work on billiards [18]
and thus provides further evidence of the link between billiards and geodesic flow
on surfaces. One thinks of a billiard table as a two-sided surface with 'infinite'
curvature along the boundary. A billiard trajectory on the table gives rise to a
geodesic on this 'surface'. A convex boundary component corresponds to positive
curvature; reflection at the boundary causes a diverging family of trajectories to
converge. Hence, we think of a convex table as analogous to a (convex) sphere.
Bunimovitch [5] and Wojtkowski have constructed billiard tables with convex
boundary components whose flows behave stochastically. In their examples, the
boundary is never smoother than C'. Indeed, for a smooth, strictly convex boundary,
Lazutkin [12] has shown that the flow cannot be ergodic, although it might have
positive entropy. Thus it appears that stochastic behaviour is more easily produced
on a sphere than on a convex billiard table.
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PhD thesis [8]. The thesis was supervised by Professor Peter Sarnak who suggested
the topic and offered help and advice while the work was in progress. The author
also benefited from discussions with Professors Y. Katznelson, J. Moser and D.
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helpful in revising the paper.

The author thanks the Mathematics Department, Stanford University and the
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2. Background Material
2.1. Lyapunov exponents
Given the Riemannian metric ( , } on M, one canonically induces a metric on SM,
also denoted by < ) [10]. Let X: T(SM) -> SM be the connection map and n: SM -» M
the projection map. For £, rj e TX(SM),

We describe this metric more fully when discussing Jacobi fields. This metric induces
a norm || || on T(SM).

Define the Lyapunov exponent A(x, £) at the point x in the direction f by

A(x,£)=IIm"iln||Dg,£||. (2)
I->oo t

By linearity, A can assume at most 3 distinct values A"(x)< A°(x)< A+(x) on
TX(SM). The Multiplicative Ergodic Theorem [14], applied to our system, implies
that for almost every x e SM, the lim sup in (2) is actually a limit for all £ € TX(SM)
and that \'(x) = -A+(x).

Pesin's formula [16] gives the measure entropy /iM as the average of the Lyapunov
exponents,

[ \+(x)dn(x), (3)
SM
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so that positive entropy follows if, on a set of positive measure in SM, the Lyapunov
exponent A+ is positive.

2.2. Variations
Using the metric (1), we define an orthonormal, right-handed frame {V, V±, <E>} for
TX(SM). The vector V is in the flow direction,

g,x.
(=0

The horizontal subspace, defined to be the kernel of the operator 3if, is spanned by
{V, V1-} and is isomorphic to TnxM. The vertical subspace is the kernel of d-ir and
is spanned by {<£}.

To understand this frame geometrically, think of a tangent vector £e TX(SM) as
a family of geodesies, a variation. Let y(s) = (ny(s), v(s)), s e [—e, e], be a curve
in SM going through x with tangent vector £ -y(O) = x and -y'(O) = £ Viewed on the
surface M, y(s) consists of a curve of basepoints ny(s) with vectors v(s) attached
at every point. We call (nyis), v(s)) a variation based at x and identify it with the
vector f € TX(SM). (To be precise, we should identify £ with the germ of the
variation.)

The component of £ in the horizontal subspace can be identified with the tangent
to the curve of basepoints,

diT^ = — iry{s).
ds s = 0

The vertical component is given by the covariant derivative of the vector field v(s)
in the direction of the curve iry(s),

We think of £, as having basepoint (horizontal) and angle (vertical) components.

2.3. Jacobifields
The vectors in the perpendicular subspace of TX(SM), the span of {Vx, <!>}, are
identified with special variations: the (perpendicular) Jacobi fields based at x. Let
yx be the geodesic on M determined by x and n(t) a continuous field of unit
normals along yx. Let J(t) be a solution of the Jacobi equation

J"(t) + K(t)J(t) = 0, (4)

where K(t) is the curvature along the geodesic yx, K{t) = K(yx(t)). Then J(t)n(t)
is a Jacobi field along yx, i.e. a vector field obtained from a variation of geodesies
through yx [7]. A solution to (4) is uniquely determined by its initial conditions
(/(0), J'(0)). We refer to the pair of initial conditions as the Jacobi field. We say
the Jacobi field is diverging if J'/J^ 0.

To £ in the perpendicular subspace of TX(SM),

we associate the Jacobi field

6 , J'(0) = &. (5)
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The variation y(s) = (vy(s), v(s)) corresponding to £ determines a 1-parameter
family of geodesies g,y(s) and hence a Jacobi field,

d
J(t)n(t) =

ds

The value 7(0) is given by the basepoint component £1 of £ By interchanging order
of differentiation, one finds that

Dt
J(t)n{t)

= angle component £2 of £

The vector Dg,g is in the perpendicular subspace of TgiX(SM) and has norm

t), (6)

(for details, see Eberlein [10]).

Definition 2.1. Two points x and y = g,tx are conjugate (focal) along the geodesic
yx if there is a solution to (4) with 7(0) = 0, 7'(0) = l and ./(/*) = 0 (7'(f*) = 0). A
surface has no conjugate (focal) points if no two points are conjugate (focal) along
any geodesic. Non-positive curvature implies no focal points which implies no
conjugate points.

2.4. Riccati equation
If (J{t; x), J'(t; x)) is a Jacobi field based on x, we call the function

(7)

a Riccati solution. At those times when 7 ^ 0, u satisfies the Riccati equation

u\t;x) = -K{t;x)-u\t;x), (8)

where K(t; x) = K(v«g,x). When 7(0 = 0, i.e. 7 focuses, we identify plus and
minus infinity and set u(t) = ±oo. For K <0, the behaviour of Riccati solutions is
well understood [13].

3. Surface of revolution
In this section, we describe the basic properties of the geodesic flow on a surface
of revolution. These properties show that for certain caps the geodesic flow on the
complete surface is clearly non-ergodic. So as not to role out the possibility of an
ergodic system, we require that the caps satisfy a simple condition.

We define a surface of revolution in terms of geodesic polar coordinates (/, 6),
with /e[0, L], 0e[0,2ir). In these coordinates, the surface is determined by the
function r(/), which we require to be C°°, that gives the radius of the cap as a
function of distance / from the top of the cap. The metric is then

ds2 = dl2+r2(l)d$2. (9)

At the top of the cap, r(0) = 0 and r'(0) = l. The curvature K is given by K(l) =
-r"{l)/r{l). We call the base of the cap, the parallel r(L) = R, the equator.

https://doi.org/10.1017/S0143385700004685 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700004685


Geodesic flow on the two-sphere, Part I 537

In these coordinates, the equations of motion for a geodesic (l(t), 6(t)) are

O = o,
(10)

t) = 0.

The meridians 6 = constant are geodesies. A necessary and sufficient condition for
a parallel r(l) = constant to be a geodesic is that (dr/dl)(l) = 0.

The geodesic flow on a surface of revolution has an integral of motion, the Clairaut
Integral [7]. Let <f> denote the angle a tangent vector makes with the parallel
r = constant. Then

r cos 4> = constant along orbits. (11)

The integral follows by noting that cos </> = rd' and that, by (10), r2d' is constant
along orbits.

Using the Clairaut Integral, we can describe qualitatively the behaviour of
geodesies in the cap. Suppose a geodesic y^ starts on the equator with angle
<f>0 e (0, TT). Its behaviour is independent of the coordinate 6. The value c of the
Clairaut Integral is given by

c(<f>0) = R cos <j>0=r{L) cos </>0. (12)

As the geodesic moves through the cap, (11) implies that <j> decreases (increases)
as r decreases (increases). The geodesic will climb the cap until it first approaches
a point /min for which r(/min) = c(<£0). For / > /min, the angles <My<*o(0) are positive.

If y^, reaches r(/min), then by (11) one has <f>(lmin) = 0; the geodesic has flattened
out. Solutions of the geodesic equations are unique, so the parallel r(/min) cannot
be a geodesic. By symmetry, the geodesic y^ will then descend the cap, crossing
the equator with angle — <j>0.

If y^ does not reach the parallel r= r(/min), then y^ becomes asymptotic to it.
Uniqueness of solutions implies that this parallel is a geodesic, and so

Now consider a geodesic y^,o,ro that starts inside the cap on a parallel ro = r(/0),
lo<L, with angle <j>0. If its Clairaut Integral, c(r0, <f>0) = r0cos <j>0, is greater than
R, the radius of the equator, then the preceding analysis implies that the geodesic
will turn around before reaching the equator and thus spend all its time in the cap.
Such a situation would occur if r(/) had a local maximum at /0 (see the light-bulb
example in § 11).

If the geodesic flow on the complete surface is to be ergodic, then geodesies must
not get stuck in the cap.

PROPOSITION 3.1. Ifr(l) satisfies

Jl for/€[0,L), (13)

then every geodesic that enters or starts inside the cap will leave the cap.
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4. Rotation function A0(<f>)
For a cap satisfying (13), any geodesic that enters the cap with angle <j>0 will leave
the cap with angle -<j>0. The net effect of the cap on a geodesic is thus determined
by the rotation function, denoted by A0(<f>), that measures the angle, about the axis
of revolution, through which a geodesic rotates before leaving the cap (figure 4).

FIGURE 4. Rotation function A0.

For a half-sphere, A0{<j>) = v. For a general cap, one uses the Clairaut Integral to
solve the equations of motion and finds that along an orbit

where c = value of Clairaut Integral = R cos <f>0 [7]. The minus (plus) sign holds
when the geodesic is ascending (descending) the cap. Integrating (14) and using
the symmetry of the ascending and descending motions, the rotation function is
given for <f> e (0, TT/2) by

dl

r(/)Vr2(/)-c2'
where c = R cos <f> and r(l<t,) = c. The meridians are geodesies so that

A0(TT/2) = TT

= lim A0(<f>). (16)

For </> € (TT/2, TT), we define A0 using symmetry. A geodesic entering the cap at
angle <j> rotates counter-clockwise by the same amount that a geodesic entering at
angle (TT — (f>) rotates clockwise. Hence we could define A0{<f>) = — A0(TT — <f>) for
4> e (IT/2, TT). The resulting function would be discontinuous at <f> = TT/2. Instead,
we define

The resulting function is now continuous at <f> = TT/2.

LEMMA 4.1. The rotation function A0(<l>), defined by equations (15-17), is C°°.

Proof. The geodesies cross the equator transversely. The implicit-function theorem,
together with the smoothness of the geodesic flow, implies the result. •

When we say the rotation function is given by (15), we mean (15) holds for
</> e (0, TT/2) and (16) and (17) give the values of AO(<f>) for 0 € [TT/2, TT).
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To attach the cap smoothly to the surface, it may be necessary to shrink the cap.
Such a process does not effect the rotation function.

Scaling Lemma 4.2. The rotation function is invariant under scalings of the cap.
Let r(l), /e[0, L], define a cap with rotation function AO((f>). Then the function

r(l) = sr(l/s), I e [0, sL] = [0, L], defines a rotation function A0(<£) which satisfies
A6(<f>) = A§(4>). To see this, draw the path of a geodesic on a cap and scale the
picture.

5. Focusing cap

A cap satisfying the following properties is called a focusing cap.

(a) (d/dl)r(l) > 0 for Ie[0,L).
(b) On the equator, the curvature is zero.
(c) The equator is a geodesic.
(d) The rotation function is monotone decreasing,

— A0(0) = A0'(</>)<O for tf> e (0, TT).
d<f>

(18)

Condition (b) allows us to attach the cap smoothly to the K < 0 part of the
surface. Condition (d) means that the smaller the angle of entry, the more a geodesic
rotates before leaving the cap. Together with (c), it implies that a variation that is
diverging when entering the cap will also be diverging when leaving the cap, which
is the crux of Theorem 8.4.

Give the unit tangent space of the equator coordinates (6, <f>), 0e[O,2n), <f>e
[0,2TT). Let (#',$') be the variation corresponding to the tangent vector f=
6'X0 + (t>'X^. The equator is a geodesic, so covariant differentiation simplifies, and
the condition for a variation, entering the cap, to be divergent is </>'/&'<0. The
vectors in the variation are pointing away from one another. When the vectors leave
the cap, the condition A0'(</>) < 0 insures that the variation is again diverging, since
the relative order of the vectors in the variation has been preserved (figure 5).

e

Entering

FIGURE 5. Diverging variation goes to diverging variation.

In § 9-11, we show that, providing the equator remains a geodesic, we can weaken
the other conditions on the cap and still produce positive entropy.

THEOREM 5.1. There exist focusing caps.

Proof. For a cap satisfying (a)-(c), one has A6'(<f>)<0 for small <j> (Proposition
Al.l). If A0'(</>) is not negative for all <f>, we produce a new cap with this property.
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We attach a cylinder of height A to the base of the original cap. A geodesic
entering the bottom of the cylinder with angle <f> e (0, TT/2) will leave at the top with
the same angle haying rotated by an amount

— cot<£.
K

For the cylinder, the smaller the angle of entry, the more the rotation. The combina-
tion of cap and cylinder is again a cap with rotation function A0 = 2A0C + A0. Since
A0($) is C\ its derivative, when positive, is bounded. Hence for A sufficiently large,
A0'(0)<O for <j> € (0, TT/2). Since A<9' is continuous and by (17), one then has
A0'(<£) < 0 for all <f> e (0, TT). The reason that adding a region of zero curvature can
help produce exponential growth of Jacobi fields, i.e. non-zero exponents, is dis-
cussed in § 9.

The focusing cap we have produced is not necessarily smooth. In Appendix A.I,
we generalize this argument to produce C°° smooth focusing caps.

Burns and Gerber [6] give a different construction of focusing caps. They show
that if the curvature of a cap satisfying (b), (c) is non-increasing,

jjK(l)^O, /e[0,L],

then the rotat ion function is non-increasing,

—
dq>

If a geodesic starting with angle <f> goes through a point at which dK/dl(l)<0,

then (d/d<f>)Ad((j>)<0.

6. Effect of the cap on Jacobi fields
We determine the value of a Jacobi field when it leaves a focusing cap (18) in terms
of its value when it enters the cap.

Since Jacobi fields are parametrized using arc-length, we use the length coordinate
p rather than the angle coordinate 0 to parametrize the equator. We get a new
rotation function

Ap(<A) = KA0(</>), (19)

where R is the radius of the equator. The quantity -Ap'(</>) sin <f> will come up
often in our calculations, we denote it by

h(<t>) = -AP'(<j>)sin<t>, « M ( 0 , i r ) , (20)

and since Ap ' ($ )<0 , we have h(<f>)>0. Under scalings of the cap, as in Lemma
4.2, Ap '(</>) changes by the scale factor, but does not change sign.

PROPOSITION 6.1. A Jacobi field that has value (J, J'), when entering the cap at (p, <f>),

will have value (J, J') when leaving the cap at (p + Ap($)(mod 2TTR), -<j>) with

(JJ') = -(J + J'h(<t>),J'). (21)

Under the identification of ( / , / ' ) with -(J,J'), the map (21) is shown in figure 6.
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J'

Cap Map

FIGURE 6. Jacobi field: entering and leaving cap.

Remark 6.2. A focusing cap has conjugate points. By (21), if J = 0 and J'=\, then
/ < 0. Thus J must vanish for a second time while it is in the cap.

To prove Proposition 6.1, first project the Jacobi field onto a variation based on
the equator. Let Sf= {(p, <j>): p e [0, 2TTR), <p e (0, v)} be the set of geodesies entering
the cap. These coordinates induce a basis {Xp, X^} for T(p^)&

>. At (p, <j>), there is
also the orthonormal basis {V, V±, $} for T{Pt4>){SM) (§2). Let £ be the vector
corresponding to the Jacobi field (/, J').

£ = JV± + J'(£>. (22)

Project £ in the V direction to get a vector

^ p A p + iJA^e /(ft*)j. (23)

PROJECTION LEMMA 6.3. The relation between the (J,J') and (p ' , </>') coordinates is

s i n </>'
so that

sin <£

Proo/ Since X& and $ are both unit vectors in the fiber direction,

(24)

(25)

X* = * . (26)

The equator is a geodesic, so Xp lies in the horizontal subspace spanned by {V, V"1},

Xp = (cos <t>) V+ (-sin ^ ) Vx.

Thus the projection of Vx, in the V direction, onto Xp is

1

sin
p'

(27)

The negative sign results from differing orientation in the definition of V± and Xp.
Combining (26)-(27) proves the result. •

Proof of Proposition 6.1. (i) Project the (J,J') variation onto the equator to get a

(p', (}>') variation £

„ = J_x

* s i n <f> p *
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(ii) Under the geodesic flow the incoming variation (p',<j>') at the point
(p, <f>) gets sent to an outgoing variation (p', <£') at the point (p, <£) =
(p + Ap(<£)(mod27rR), -<f>) with

(iii) Project the outgoing (p', <£') variation at (p, <£) to the outgoing Jacobi field (J, J')

J' = 4>', / = p ' s i n \4>\ = p ' s i n <f>.

For the outgoing variation, the vectors Xp and V± are oriented the same way, so
there is no minus sign. Combining steps (i), (ii) and (iii) gives

s i n </>'

•*(P\ S') = l-^-+Ap'(4>)J', -A
\ s i n <f> I

•* (J, J') = (-J + AP'(4>W sin <f>,-J')

J'). D

7. Attaching the cap
To produce our metric on the sphere (or on surfaces of genus g > 1), we smoothly
attach a focusing cap (18) to the punctured surface of curvature K = — 1. Outside
the caps, the curvature will satisfy K < 0.

Take a focusing cap defined by a C°° function r,(/), /e [0, LJ, for which
( 2 k + l ) / r N
1 ^ 1 ; 2 ' + 1 L 1 ) 2 < ' + 2 ) , ( 2 8 )

with A:> 1.
The embedded K = - 1 cusp is rotationally symmetric. We choose the parallel on

the cusp at which we want the K = — 1 region to stop and assign it an arbitrary
arc-length coordinate L2 with L2 > L,. After our construction, L2 will be the distance
of this parallel from the top of the cap. The metric on the cusp is

ds2 = dl2 + r2
2(l)d02, /e(-co,L3] , (29)

where L, > L2 and L3 corresponds to the base of the cusp, i.e. the parallel at which
the cusp ceases to be embeddable. The curvature on the cusp is

K(l) = -r'i{l)/r2(l) = -\. (30)

The radius at the equator of the cap must satisfy r^L^Kr^L^, but this can
always be achieved by shrinking the cap. Such scalings do not effect the essential
properties of the cap (Lemma 4.2).

We now use a partition of unity function on the interval [L,, L2] to splice together
r, and r2 (see Appendix A.2 for details). To insure that K < 0 in this transitional
region, r,(/) must behave like an odd power of (/ —L,) for / near Lx.

8. Positive entropy
For the surfaces constructed in § 7, we use Wojtkowski's method of invariant cones
to show that almost every point x e SM has a non-zero Lyapunov exponent.
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THEOREM 8.1. Let M be a compact surface with C°° Riemannian metric that contains
focusing caps such that outside the caps the curvature satisfies K<0. Then the Lyapunov
exponents of the geodesic flow g, on SM are almost everywhere non-zero.

We have shown how to produce, on a compact surface of arbitrary genus, a metric
satisfying these assumptions. Thus this theorem, together with Pesin's formula (3),
implies Theorem 1.

For each xe SM, we will define a cone of tangent vectors <£(x) contained in the
perpendicular subspace of TXSM (§ 2). The family of perpendicular subspaces is
invariant under the linearized flow Dg,. We examine the time one flow gt and its
linearization Dgx.

The cone-field is said to be invariant if for almost every x,

The cone-field is strictly invariant if it is invariant and if for almost every x both
boundary lines of Dg,(x)C#(x)) are contained strictly inside ^(g^x)). Finally, the
cone-field is eventually strictly invariant if it is invariant and if for almost every x
there is an n(x) such that both boundary lines of Dg"(x)(x)(^(x)) are contained
strictly inside <^'(g"<x>(x)). The cone-field is measurable if ^(x) depends measurably
on x.

THEOREM 8.2. If there exists a measurable cone-field {^(x)}, x £ SM, that is eventually
strictly invariant under the time one map, then almost every point has a non-zero
Lyapunov exponent for the geodesic flow.

This theorem follows immediately from Theorem 2.2 [17] once we express the
map Dg, in terms of the basis {V, Vx, <&}.

The important thing to check when defining the cone-field is that it is strictly
invariant under returns to the cap. If this is so, one can easily define the cone-field
over the rest of SM. For each cap, let

#*, = {equator} x {vectors pointing into cap}

= {( f t*):pe[O,2utf) ,0e(O,ir)}. (31)

We set y equal to the union of these disjoint sets.
For x e &*, we define

+ J'<Z>e r x S M : 0 < r / J < + o o } . (32)

This cone corresponds to the diverging Jacobi fields based at x. By / ' / / = +oo we
mean 7 = 0.

When x leaves the cap, equation (21) gives that if (J, J')e 9?(x), then 0 < / ' / / <
h{<f>), where <f> is the angle with which x enters the cap.

Outside the cap, the evolution of J'/J is determined by the Riccati equation (8).
In curvature K ^ 0, a diverging Jacobi field stays diverging.

LEMMA 8.3. Let J'/J(t) be a solution of the Riccati equation with K(t)<0 for t >0.
(a) 7/0<77y(0)<+cxD, then 0 < / ' / / ( / ) < +<*> for t>0.
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(b) IfJ'/J(O)=O and there exists at*>0 such that K(t*)<0, then J'/J(t*)>0.
(c) (Ordering Property) Let J[/' Jx be a second solution of the same Riccati equation.

//0</',/./1(0}</'/./(0)<+oo then 0<J[/Mt)<J'/J(t)<+°o for t>0.

For our surfaces M, every point goes through strictly negative curvature between
returns to the cap. Hence if x returns to the cap at time r, at the point x,, we have
that Dgn(x)(<€(x)) is contained strictly inside ^(x,) .

To formalize the argument, we define the cone-field for all of SM. If x has
basepoint outside the caps, then we define ^(x) as in (32). If x' has basepoint in
a cap, then by Proposition 3.1 there is an xe£f that will hit x': for some / > 0 ,
g,x = x'. Choose the x e Zf for which t is minimal. We define

(33)

THEOREM 8.4. On a surface M satisfying the assumptions of Theorem 8.1, the cone-field
defined by (32) and (33) is almost everywhere eventually strictly invariant.

This together with Theorem 8.2 proves Theorem 8.1. Note that the crucial part
in making the cone-field strictly invariant was that geodesies went through some
point of strictly negative curvature while outside the caps (Lemma 8.3b). Hence we
have the following more general result.

THEOREM 8.5. Let M be a compact surface with C°° Riemannian metric that contains
focusing caps and such that
(a) outside the caps, the curvature satisfies K < 0 ,
(b) almost every geodesic, while outside the caps, goes through a point of strictly

negative curvature.
Then the Lyapunov exponents of the geodesic flow are non-zero almost everywhere.

Remark 8.6. The example of flat-torus with focusing cap (figure 3) will satisfy
conditions (a) and (b) providing we attach the cap to the K = 0 region by a collar
of strictly negative curvature.

We thank the referee for suggesting that we use the time one map to prove
Theorem 8.1. This approach is simpler than our original proof in [8]. There we
proved that almost every geodesic enters the caps infinitely often. Then, using the
cone-field (32), we showed that the Lyapunov exponents for the return map to 91

are positive almost everywhere, which implies Theorem 8.1.

9. Semi-focusing cap
A cap satisfying (18a-c) will have &0'(<t>)<0 for small <j>, but not necessarily for
all <j>. If there exists a <f> for which A0'($)>O, we call the cap semi-focusing. By the
cone-field argument, Theorem 8.5 will hold for semi-focusing caps as well, provided
we are careful in how we attach the cap to the K •& 0 region.

For x = (p,<f>)ey, we define the cone ^ ( p , </>) by

fJacobi fields based at (p, <f>) that are diverging both]
TO ( p , <p) — \ } (34)

(. when they enter and when they leave the cap. J
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For Ap'($) = RbO'(<t)) > 0, (21) implies that this cone is given by

\V"/ >- I «> . ,/ , •> . , i i • ( 3 5 )
J L Ap'(0)sin</>.'

For <f> with Ap'(<£) —0, ^(p , <£) is given by (32). These cones are not necessarily
invariant under returns to if.

To be specific, assume x = (p, <f>) e if leaves the cap at time f0 and returns at time
T, with angle </>*, where Ap'(^*)>0. If (7(0), J'(0))e <€(p, <f>), then J'/J(fo)e
[0, M(x)], where M(x) = l//i(</>) (see (20)) if Ap'(<£) <0and M(x) = +oo otherwise.

Let u(t; x) be the Riccati solution based at x satisfying the condition «(f0; x) =
M(x). For invariance to hold, it is necessary, and by the ordering property (Lemma
8.3c) also sufficient, that

1
Ap\0") sin 0*

Since Ap(<£) is C1, its derivative, when positive, is bounded. Hence the top of
the cones ^(p, <j>*) are bounded away from zero: if

inf * . (37)
• * >o> A p (<b ) s i n d>

then m>0. By the properties of the Riccati equation, M(T,; x) will be less than m
if, for a suitably long period of time immediately preceding T,, the curvature
K(<) —0 is sufficiently close to zero (suitable, sufficient depending on m). Thus
M(T[; X) < m will hold for all geodesies returning to the cap if next to the equator,
in the K < 0 region, we attach a strip of suitable width on which the curvature is
uniformly close to zero. This condition is similar to the type of requirements
Wojtkowski [18] places on his billiard tables. Once w(r,; x) < m holds for all x e Sf,
we can define an eventually strictly invariant cone-field on all of SM.

This discussion also shows why attaching a cylinder with K = 0 to the base of a
semi-focusing cap (Theorem 5.1) produces a focusing cap: one for which any
diverging Jacobi field that enters the cap is again diverging when it leaves. If
J'/Je[0, +oo] at the base of the cylinder then, providing the cylinder has height
A> 1/m, the Jacobi field satisfies J'/J<m when it reaches the semi-focusing cap.
By (34), (35) and (37), this insures that the Jacobi field will be diverging when it
leaves the semi-focusing cap, and it then stays diverging as it descends the cylinder.

10. Non-focusing caps
For a flat torus, the phase space of the geodesic flow decomposes into invariant
tori. Our focusing cap can be considered a perturbation of the flat metric. Bangert's
[4] result implies that, under this perturbation, all the invariant tori have broken
up. Clearly this result is necessary if the geodesic flow is to be ergodic.

Consider the flat torus with focusing cap as the end product of a one-parameter
family of metrics on the torus that start with the flat metric and for which the
intermediate metrics have caps given by (38). How far in this family must we go
until the entropy first becomes positive? Unfortunately, the cone-field technique
fails to prove positive entropy for any of the intermediate metrics.
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We take a cap for which the curvature on the equator is zero, but the equator is
not a geodesic. Such a cap is defined by

. . r'(/)>0, /€[0,L], and r"{L) = 0. (38)

The map from (J,J')>-*(J,J') is no longer given by (21). Outside the cap, the
curvature should still satisfy K < 0. For such a surface, the cones ^(x), xeSf,
defined by (34) will not be invariant under returns to if.

By the Clairaut Integral, a geodesic that is tangent to the equator will immediately
leave the cap and re-enter the K < 0 region. A diverging Jacobi field on this geodesic
stays diverging the 'whole time' it is in the cap, so is diverging when it leaves the
cap and then continues to diverge until its next return.

Any metric on the sphere has conjugate points [11]. To illustrate the obstruction
to an invariant cone-field, suppose that the geodesic starting at (p, $.,.)€ 5̂  has a
conjugate point in the cap.

A diverging Jacobi field based at (p, <£*) will again be diverging when it leaves
the cap, but now having focused once while in the cap. By continuity, there exist
angles between 0 and 0* for which the diverging variations start to converge while
in the cap, but not enough to focus. They will then be converging when they leave
the cap and stay converging until their next return.

This behaviour implies that for the cones given by (34), for any k e (0, oo) there
is an angle <f>k e (0, $*) such that

(39) 1

(compare with (35)). For geodesies that return to the cap at (p, (f>k) e if, with k large,
the cones will clearly not be invariant.

Although one may try to define a different cone-family, we feel that the continuity
factor will always prevent it from being almost everywhere invariant. Thus new
techniques are needed to determine the Lyapunov exponents for a surface with caps
given by (38).

11. Positive entropy but non-ergodic surface
Take a cap in the shape of a light-bulb (figure 7). By the properties of the Clairaut
Integral, there will be a set of geodesies, of positive measure, that start inside the
cap but never leave it. The motion of these geodesies is integrable. The geodesies
that enter the cap will leave. Choose the cap so that the rotation function, as
measured from the neck of the light bulb, satisfies A6'(<f>)<0 for <£e(0, IT). That
such a cap exists can be shown by modifying the proof of Theorem 5.1.

If we now attach such caps to a surface satisfying the assumptions of Theorem
8.5, the resulting system is not ergodic. The geodesies that start either outside the
caps or inside the caps but leave the caps form an invariant set of positive measure.
By the cone argument, we can show that almost every point in this set has a non-zero
Lyapunov exponent, and so the entropy is positive.

Here the phase space decomposes into an integrable component, consisting of
the orbits that stay in the cap, and a stochastic component, consisting of the orbits
that have positive exponents.
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Equator

FIGURE 7. Light-bulb cap.

12. Appendix
A.I. Construction of focusing cap
The crucial part in building a cap with the desired properties is controlling the
behaviour of the rotation function for small <p. Let the equator be a geodesic on
which the curvature vanishes to a finite order, and let (d/dl)r(l)>0 for / near L.
For such a cap,

rHD
r(l) = r{L)+ ~{l-L)n + O({l-L)"+'), (Al.l)

n:

where le[0,L], «>3and r<n)(L)(/-L)" <0.

PROPOSITION Al.l. (1) For a cap given by (Al.l),

lim A6(d>) = +oo. (A1.2)

(2) For small <f>,

Proof. (1) Let y(t,d0, <f>) be the geodesic that at time f = 0 starts at the point 0O on
the equator with angle <f> > 0. After time t, the distance between this geodesic and
the equator is given by

d(y(t,60, <£)) = J(t)4> + O(<t>2).

J(t) is the solution of the Jacobi equation based on the equator at (60, <t> =0) with
initial conditions J(0) = 0 and J'(0) = 1. Since K(t) = 0 along the equator, we have
that J(t) = t. Hence for a given T>0, there exists a S>0 such that for 0< 0 < 5,
one has

d(y(t, do,<f>))>0 forO<f<T.

The geodesic has not yet crossed the equator. For such <f>, A0($)2 T/R.

(2) A sufficient condition for the limit in (A1.2) to be obtained monotonically is
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stated in (A1.9). This condition, satisfied by all functions of the form (Al.l), is
given in terms of (r, 0), rather than (/, 0), variables.

When r(l) is monotone, we can realize our cap by revolving a function z=f(r)
about the z-axis. In (r, 0) coordinates, the surface is given by x = r cos 0, y = r sin 0,
z=/ ( r ) . Let

then the metric is given by

ds2 = g2(r)dr2+r2d02. (A1.5)

Since l(r)=$r
og(s) ds, we have

dl/dr = g(r). (A1.6)

In these variables, the rotation function (15) becomes

= 2c\ , dr, c = R
Jc Nr -c

A0(<f>) = 2c\ , dr, c = R c o s <f>.
Jc Nr -c

LEMMA A1.2. Given a 8>0, there exists an roe (0, R) such that for all c € [r0, R),

m ) ^ [ U ) ( 0 ( ) ] 4 (
dc (R-c)Jc I 2 J rJr2-c2

The value ro(S) is independent of g.

This lemma, whose proof appears at the end of the section, implies that if

then for c sufficiently close to R, we have (d/dc)A0(c)>O. This implies that

^A0(cl>)
dc dip

is negative for 0 close to zero since dc/d<f> = -R sin </>.
Inverting (Al.l) gives

so that for the cap under consideration,

8{r)=fr = {R-r^ + O{(R-r]^4 ^ (AU1)

Omitting higher order terms,

> 0, for n > 2, r < R,

which, by the preceding comments, proves (A1.3). •

Proof of Theorem 5.1. Let r{l), le [0, L], define a cap with (d/dl)r(l) > 0 for /€ [0, L)
that satisfies (Al.l) and is C00. For simplicity let
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n > 3, for / near L. If this cap does not satisfy A0'($) < 0 for all </> e (0, IT), we will
produce a cap with this property by changing r(l) for r near R. This change will
result in a cap which is nearly flat, i.e. dr/dl is close to zero, for a long interval
next to the equator.

For r near R, the function g(r) = (dl/dr)(r) is given by

where k = k(an, n ) > 0 . By (A1.3), for small <£, A0'($)<O. To be specific, choose
8 > 0 such that

Jim jg'(r)(K - r) - (1 + S) ̂ J > 0.

Then using Lemma (A1.2), pick r, e (0, /?) such that

— A0(c)>—\ L'(r)(Ji_c)_(1 + 5)S(l>J _ * = > ( ) ( A U 4 )
d J?-c Jc I 2 J / 2 2

( ) \ ( ) ( ) ( )
2~c2rs/r2~c

for all c e [r,, /?)• Denote by 4>r the angle satisfying r = R cos </>r. A geodesic starting
at the equator with angle <f>r will turn around at radius r. Equation (A1.14) implies
that

For <j>e[<f>ri, 7T-</>ri], it remains to show that (d/d<f>)&0(tf>) is negative. For such
<f>, write the rotation function in two parts; the rotation between R and r2, and the
rotation between r2 and c, where r2 is an arbitrary radius satisfying rx < r2 < R.

where

= 2c
J

f
= 2c

r2 Nr2-c2

t. rVr - c

For </> 6 (<£r2, 7T-</>r2), the geodesies cross the parallel r=r2 transversely, so &02(<t>)
is a C'-function on (<̂ >r2, ir-<f>r2). Hence for </>e[(/>ri, 7r-<^>ri]c (<^r2,7r-</>r2), there
exists a constant c2 > 0 such that

Since c < r2, we can find the derivative of A0t directly. For <f> e [0 r i , TT -<£ri],

r fR

(-2/?sin^r2)-^ g(r)dr
« Jr2

- c , g(r)dr,

where c, = (2r2/R
2) sin <̂ r2 = c,(r2, /?) is independent of g. Combining (A1.17)-
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(A1.18) gives,

A0'(</.)<-c, \ gir)dr+c2, for </>€[<£„, TT-0 , , ] , (A1.19)

which will be negative providing

[ A (A1.20)
lr2 M

If (A1.20) is not satisfied, we can change g in a small neighborhood of R so that
it will become satisfied. We must be careful that after this change, (A1.15) remains
valid. Let

( \

where «, > n and fe, are chosen so that

gi(r)>g(r), re[r2,R),

and
r R

gl(r)dr>-. (A1.22)
J(r2+R)/2 C l

Let p(r) be a C°° partition of unity function satisfying p(r) = 0 for r< r2, p'(r)>0
for re[r2, (r2+R)/2] andp(r) = l for r>{r2 + R)/2. Define a new cap with rotation
function Afl by the function

g(r) = (1 -p(r))g(r) + /»(r)g,(r). (A1.23)
Then for ce[rlt R),

dc R-cJc 2 J rJr2-c2

by Lemma (A1.2) and choice of r,,

- j?T7j [^«i(f")-

by (A1.14), (A1.21). Therefore A(9'(^)<0 for <£e{(0, 0ri]u[ir-<£r,, TT)}. For 06
[</>r,, ir-(t>ri], the same estimates as before combined with (A1.22) now insure that

() •
Proof of Lemma A 1.2. To differentiate (A1.7) with respect to c, make the change of
variables

r = c+v(R-c), dr = (R-c)dv, (A1.24)

which gives

l-c))(R-c) dv
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Set

so that

a = a(c,v) = c+v(R-c), p = /3(c, v) = V2c + v(R-c), (A1.25)

. . n . (1g(a(c,v)WR-c dv
A6(c) = 2c — r~7=.

Jo a(c, v)P(c, v) Vv
Differentiation gives,

+ 2c

where

a' = —a(c,v)
dc

(A1.26)

(A1.27)

The terms involving a, /3, a ' , )3' are all uniformly bounded for u e [0 ,1] as c

approaches R and these bounds are independent of g. Combining the coefficients

for the g(a) term, we see that the main contribution is made by the l/y/R-c factor.

Hence

— - el'
dc ° ° Jo

— c dv

ap

Changing back to the r variable using (A1.24) gives

— Afl(c) = 2c
dc Jc

dr

rvr+c fR - cy/r - cJc

= —^- fR(g'(
(U-c)Jc r^Jr -c

which proves the Lemma. •

A.2. Attaching the cap
To splice together the functions rt and r2, we use a partition of unity function pd

given by the following lemma. Condition (v) will insure that K(l) < 0 for / € (L,, L2].

LEMMA A2.1. 77iere exists a do>O such that for all d>d0 there is a Cx function
pd(x) satisfying

(i) />,,(JC)-O, x<0 ,

(ii) p'Ax)>0, xe(0,d),
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(iii) Pd(x)>0, xe(0,d/2) and pd(x)<0, xe(d/2,d),
(iv) pd(x) = l, x>d,
(v) pd(x) + pd(x)>0, x>0, in particular for xe(d/2, d).

The existence of a function px satisfying (i-iv) is standard. The function pd(x) =
px(x/d), with

d>do= max \
xe[l/2,l] V/J1(l/2)

will satisfy (i-v).
The arc-length coordinate L2 should satisfy L2>d0. If necessary, scale the cap

so that

Lx<L2-d0,

rx{Lx)<r2{L2). (A2.2)

Extend r, in a C°° function from Lx to L2 so that

r'((l)>0, Ie (LU LJ (A2.3)

(r2-r,)(/)>0, /e[L,,L2] (A2.4)

(r'2-r[)(l)>0, lelL^L,]. (A2.5)

The feasibility of (A2.3) follows from (28), of (A2.4)-(A2.5) from (30) and (A2.1)-
(A2.2).

Define r(/) by

r(l) = (\-pd{l-Lx))rl(l)+pd(l-Lx)r2(l), /€[0,L3], (A2.6)

withpd as in Lemma A2.1 and d = L2 — Lx> d0. This gives a C°° metric for /€[0, L3]
such that r{l) = r2(l) for le [L2, L3].

The curvature K(l) = -r"(l)/r(l) will be negative in the transitional region,
/e (L , , L2], if /•"(/)> 0. From (A2.6),

r"(/) = ( l - ^ ) r ; ' + p d ^ + 2 ^ ( r 2 - r ; ) + ̂ ( '-2-'-1). (A2.7)

All the terms in (A2.7) are positive for / £ Lx, ((Lj + L2)/2). For / e [(L, + L2)/2, L2],

pS), by (30)

> 0, by choice of pd.

A.3. Osserman's example
Osserman's example has not been published. We outline the proof that on a surface
with K < 0 outside the caps and the caps given by half-spheres, the geodesic flow
is ergodic.

By the symmetry of the half-sphere, a geodesic that enters the cap with angle <f>
will leave the cap with angle -<f> having rotated exactly half-way around the cap.

Thus the flow outside the caps is the same as if we had removed the caps and
abstractly identified opposite sides of the equator. Preforming this identification
produces a compact Riemann surface of non-positive curvature and of rank 1. The
geodesic flow on such surfaces is known to be ergodic [3].
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From this result, we can conclude that the geodesic flow on the surface with caps
is also ergodic.
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