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Abstract

Weight loss results in obligatory reductions in energy expenditure (EE) due to loss of
metabolically active fat-free mass (FFM). This is accompanied by adaptive reductions (i.e.
adaptive thermogenesis) designed to restore energy balance while in an energy crisis. While the
‘3500-kcal rule’ is used to advise weight loss in clinical practice, the assumption that EE remains
constant during energy restriction results in a large overestimation of weight loss. Thus, this
work proposes a novel method of weight-loss prediction to more accurately account for the
dynamic trajectory of EE. A mathematical model of weight loss was developed using ordinary
differential equations relying on simple self-reported inputs of weight and energy intake to
predict weight loss over a specified time. The model subdivides total daily EE into resting EE,
physical activity EE, and diet-induced thermogenesis, modelling obligatory and adaptive
changes in each compartment independently. The proposedmodel was tested and refined using
commercial weight-loss data from participants enrolled on a very low-energy total-diet
replacement programme (LighterLife UK, Essex). Mathematical modelling predicted post-
intervention weight loss within 0.75% (1.07 kg) of that observed in females with overweight or
obesity. Short-term weight loss was consistently underestimated, likely due to considerable
FFM reductions reported on the onset of weight loss. The best model agreement was observed
from 6 to 9 weeks where the predicted end-weight was within 0.35 kg of that observed. The
proposed mathematical model simulated rapid weight loss with reasonable accuracy.
Incorporated terms for energy partitioning and adaptive thermogenesis allow us to easily
account for dynamic changes in EE, supporting the potential use of such a model in clinical
practice.

Introduction

The energy balance (EB) principle, that is, the first law of thermodynamics, states that energy
can be neither created nor destroyed, but only transformed. The human body is considered an
open system, where energy (kcal) is added in the form of food (‘calories in’) and transformed to
combustion to produce heat (‘calories out’)(1). Thus, EB represents the relationship between
energy intake (EI) and energy expenditure (EE). Any imbalance between EI and EE results in a
shift in energy stores and a subsequent change in weight as fat mass (FM) and fat-free
mass (FFM).

The EB equation provides the basis of weight-loss strategies currently implemented in
clinical practice. The ‘3500-kcal rule’ is a guidance used in clinical weight management that
advises that a reduction of 500 kcal/d will result in 1 lb (~0.5 kg) weight loss per week(2). This
approach relies on the assumption that FFM accounts for 25% of total weight loss with the
remaining 75% lost as FM. This represents a ‘static model of weight loss’, where weight is lost at a
fixed rate, decreasing in a linear manner during periods of dynamic weight loss(3).

However, while the principle of EB appears straightforward, quantifying energy imbalance
during periods of energy restriction ismuchmore complex. The first inaccuracy of the 3500-kcal
rule lies in the assumption that the proportion of weight lost as FM and FFM remains constant
during the weight-loss phase(2). In actuality, the fraction of weight lost as either component
changes during the weight-loss phase ranges between 20–40% for FFM and 60–80% FM,
respectively(4), resulting in dynamic shifts in energy imbalance.

Second, while traditionally assumed to be independent variables, the components of EB, that
is, EI and EE, are in fact functionally interdependent, with changes in one side of the equation
corresponding with alterations in the other side(5,6). The evidence is very clear that if you restrict
calories, EE will decline simultaneously(7). This typically occurs in two ways: (i) obligatory
reductions in EE resulting from a loss of metabolic tissue and (ii) adaptive reductions in EE
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resulting from ‘adaptive thermogenesis’ (AT), defined as the
underfeeding-associated fall in resting energy expenditure (REE)
independent of changes in FFM and FM(8,9).

Thus, a 500-kcal deficit per day does not directly translate into
1 lb (0.5 kg) weight loss as traditionally assumed, resulting in less-
than-predicted weight loss(10,11).

To account for such shifts in EB during the weight-loss phase,
various mathematical models(12) (also referred to as dynamic
models) have been developed based on the EB principle, simulating
the non-linear nature of weight loss by modelling the dynamic
changes in EE resulting from FFM loss and AT. Such models vary
in complexity depending on (i) the way EE is subdivided and (ii)
the way body mass is compartmentalised. While accurate models
do exist, they often require complex parameters that are
unobtainable in a clinical setting, often limited to simple
demographics (e.g. gender and age) and anthropometric measures
(e.g. height, weight, waist circumference).

The aim of this study is to produce a working mathematical
model of weight loss requiring only simple baseline parameters to
more accurately describe the dynamic trajectory of weight loss over
a given time. Subsequently, the model will be tested and refined
using a large database of female clients enrolled on a commercial
weight management programme (LighterLife, Essex, United
Kingdom).

Methods

The present study describes a mathematical model of weight loss
developed based on estimates of the components of EB and how
these change during periods of weight loss. Values used in the
development of the model are determined based on existing
observational weight-loss data.

Model development

The proposed mathematical model uses baseline inputs of weight
(kg), EI (kcal), and physical activity level (PAL) to predict weight
loss over a specified time. The model subdivides total daily energy
expenditure into resting energy expenditure (REE), physical
activity energy expenditure (PAEE), and diet-induced thermo-
genesis (DIT), modelling each compartment independently. An
energy conversion of 7700 kcal per kg is assumed to convert energy
deficit to weight loss as described by Equation 1:

dw
dt

¼ 1
7700

EI� REEþ PAEEþ DITð Þ½ �

Equation 1: Simple equation for weight loss. dwdt represents the rate
of weight change over a given time. Weight loss is assumed as the
discrepancy between EI and EE. EI is energy intake in kcal/d.
Energy expenditure is subdivided into REE, PAEE, andDIT. REE is
resting energy expenditure in kcal/d, PAEE is physical activity
energy expenditure in kcal/d, and DIT is diet-induced thermo-
genesis in kcal/d. An energy conversion of 7700 kcal/kg is assumed
to convert energy deficit to weight loss.

Energy intake and energy expenditure

EI (kcal/d) is used as a model input and is assumed true to that
reported. REE (kcal/d) is estimated using the Cunningham
Equation based on FFM(13). Baseline FFM% is estimated using
gender-specific expressions developed by our group as described
by Equation 2:

FFM %ð Þmales ¼
0:25w0 þ 43:5ð Þ

w0

FFM %ð Þfemales ¼
0:25w0 þ 24:9ð Þ

w0

Equation 2: Predictive equations for starting FFM (%). A linear
relationship between starting body weight and FFM (kg) was
assumed where starting values for FFM of a lean male and female
were obtained from the literature and excess body weight was
assumed to be composed of 75% FM and 25% FFM. This value was
divided by starting body weight, allowing us to predict baseline
FFM (%). FFM, fat-free mass; FM, fat mass; w0, weight (kg).

PAL index(14) is used to account for PAEE (kcal/d), where TEE
is calculated as REEmultiplied by PAL (TEE=REE x PAL). Values
range from 1.2 (chair-bound/bed-bound) to 2.4 (strenuous work
or highly active leisure) and are self-reported to most accurately
reflect the individual’s lifestyle. DIT (kcal/d) is assumed a direct
product of EI and is estimated using a coefficient of 10% in a lean
population and 5% in an overweight/obese population(15).

Obligatory changes in energy expenditure

FFM is modelled as a function of weight loss. An exponential
increase in FFM% is assumed on the onset of weight loss, persisting
until an overall weight loss of 10% is achieved at which point FFM
% stabilises approximately 10 percentage points higher than
baseline. The predicted value for FFM% is multiplied by body
weight at any given time to produce a predicted value for FFM (kg),
as described by Equation 3:

FFM kgð Þ ¼ cþ 0:1 1� e�w0þw tð Þ� �� �
w tð Þ

Equation 3: Original expression for FFM change.
FFM, fat-free mass; c, baseline fat-free mass (%); w0, starting

weight; w(t), weight at any given time.

Adaptive changes in energy expenditure

AT is modelled as a function of weight loss. An exponential increase
in AT is assumed during the weight-loss phase, persisting until a
total weight loss of 10% is achieved, at which point AT stabilises at a
value equivalent to 15% of REE(16,17) as described by Equation 4:

AT %ð Þ ¼ 0:15 1� e
�70 1�w tð Þ

w0

� � !

Equation 4: Expression for adaptive thermogenesis.
AT, adaptive thermogenesis; w0, starting weight; w(t), weight at

any given time.
Using the expressions above, a mathematical model of weight

loss was assembled and defined as an ordinary differential equation
as described by Equation 5:

dw
dt

¼ 1
7700

ðEI � PAL 1� 0:15 1� e
�70 1�w tð Þ

w0

� � ! !
�
22:8 cþ 0:1 1� e�w0þw tð Þ� �� �

w tð Þ þ 484
� ��� β EIð Þ

�

Equation 5: Original mathematical model of weight loss. dw
dt

represents the rate of weight change over a given time, w0 is the
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starting weight, and w(t) is the weight at any given time. EI is
energy intake in kcal/d. PAL is physical activity level, and a value
of 1.6 is assumed representing a moderately active lifestyle(14).
This value is multiplied by REE to account for PAEE. REE is
estimated using the Cunningham equation(13) based on FFM,
adjusted for AT. An exponential increase in AT is assumed
during the weight-loss phase, persisting until a total weight loss of
10% is achieved, at which point AT stabilises at a value equivalent
to 15% of REE. The parameter c represents FFM% which is
estimated using gender-specific expressions developed by our
group and multiplied by w(t) to produce a value for FFM (kg). An
exponential increase in FFM% is assumed during the weight-loss
phase, persisting until a total weight loss of 10% is achieved at
which point FFM% stabilises approximately 10 percentage points
higher than baseline. The parameter β represents DIT coefficient
which is assumed a value of 0.05 in an overweight/obese
population(18,19). This value is multiplied by EI to account for
DIT. An energy conversion of 7700 kcal per kg is assumed to
convert energy deficit to weight loss.

Model validation

The proposed mathematical model is tested using weight-loss data
from a large retrospective database of female clients provided by
LighterLife UK Ltd (LL; Essex, UK). Relevant data was extracted
from the client database and anonymised by LL personnel prior to
sharing with the study investigators for analysis.

Dietary intervention: LL is a commercial weight management
company that offers a very low-energy total-diet replacement
(TDR) plan. Clients consume four food packs per day (e.g. soups,
shakes, pots, and meals) replacing all conventional food, providing
600–800 kcal/d, >50 g protein, 50–75 g carbohydrate, ~17 g fat,
14 g fibre and 22–28 essential micronutrients. Following the active
weight-loss phase, clients follow a standardised protocol for food
reintroduction where food packs are gradually decreased and
replaced with conventional foods. Clients attend weekly group
meetings delivered by trained LL counsellors consisting of weigh-
ins and optional behaviour support.

Inclusion criteria: Individuals self-referring to a very low-
energy TDR programme for 6–12 weeks from the years 2017–2021
were considered eligible for inclusion in the extracted data. Clients
were considered ineligible if they had previously enrolled on a LL
programme and/or gained weight during the programme.
Once an appropriate study population was determined, clients
were anonymised by LL personnel using a client ID. The
anonymised data were then disseminated to the study investigators
for analysis.

Data extraction: Demographic and anthropometric data from
LL clients enrolled in TDR programme were extracted.
Interventions 6–12 weeks in duration were examined to reflect a
typical TDR programme duration. The proposed mathematical
model was used to predict:

1.) End-weight and weight loss in LL participants enrolled on
VLED programmes of different intervention lengths (6–12
weeks).

2.) End-weight and weight loss at 7-d intervals in a subset of LL
participants with sequential weight measures.

Mean error, that is, the mean difference between actual
and predicted end-weight expressed as a percentage of actual end-
weight, was determined post-intervention and at weekly intervals.

Mean errorðδÞ ¼ actual� predicted end weight
actual end weight

� 100

Modelling energy intake: In the LL cohort, a step function was
used to describe EI, where a one-step increase in kcal intake was
assumed from week 10 to account for those in the food
reintroduction phase and due to expected deviation from dietary
prescription in the later stages of the intervention as described by
Equation 6:

EI ¼ 800 t< 70
1200 otherwise

�

Equation 6: Step function for EI consisting of two intervals of
different constant values with a jump between the horizontal line
segments. For dieting durations<10 weeks, an intake of 800 kcal/d
is assumed. For dieting durations >10 weeks, an intake of
1200 kcal/d is assumed. EI, energy intake; t, time.

Statistical analysis: Data are presented as mean and standard
deviation. The Shapiro–Wilk test was used to test the normality of
the data. A two-way ANOVA multiple comparisons test was
performed to evaluate differences in actual weight loss vs. predicted
weight loss across several timepoints. A one-way ANOVA or non-
parametric Kruskal–Wallis test was performed to evaluate weekly
weight changes. P-value <0.05 was considered as statistically
significant.

Results

A total of 983 females were included in the present analysis. Clients
were on average 47 years old with a mean body weight of
93.31 ± 19.18 kg and BMI of 34.51 ± 6.52 kg/m2. The largest
proportion of individuals enrolled in the programme for 8 weeks
(n= 175), and the smallest proportion enrolled for 12 weeks
(n= 84). The mean intervention length was 9 weeks.

Prediction of post-interventional weight loss

Across all intervention lengths, an overall mean weight loss of
7.90 ± 4.63 kg was observed. On average, participants lost
8.45 ± 4.55% of their starting body weight. Our mathematical
model was associated with an average mean error of 0.75 ± 5.12%
equivalent to 1.07 ± 4.52 kg. The best agreement between actual
and predicted end-weight was observed in those enrolled on a 6-
week intervention, with a mean error of –0.28 ± 4.22%
(0.16 ± 3.65 kg). Mean error increased with intervention length,
with the largest mean error observed in those enrolled on a 12-
week intervention (2.36 ± 6.26% equivalent to 2.45 ± 5.57 kg).
Table 1 summarises the post-intervention mean error of our
mathematical model across all timepoints.

Prediction of weekly weight loss

Total weight loss increased with dieting duration (r= 0.96) ranging
from 2.28 ± 1.56 kg at week 1 to 9.55 ± 4.92 at week 11. In contrast,
a negative correlation was observed between the rate of weight loss
and dieting duration (r= 0.75), decreasing from 2.28 ± 1.56 kg/
week at week 1 to 0.74 ± 5.13 kg/week at week 12. Absolute weight
loss (P <0.0001) and rate of weight loss (P < 0.0001) changed
significantly over time as determined by one-way ANOVA.

Figure 1 summarises the mean error of our model at weekly
intervals for 12weeks ranging from –1.44± 2.52% (–1.13± 2.14 kg)
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at week 3 to 2.09 ± 6.07% (2.24 ± 5.39 kg) at week 12. The best
agreement was observed in 7–9-week interventions, predicting
end-weight within 0.50% (<0.50 kg) of that observed.

When translated into predicted weight loss, our model
underestimated weight loss in the first 7 weeks of the intervention
and overestimated weight loss from week 8 onwards (Table 2).

Actual weight loss can be compared with predicted weight loss
using the Bland and Altman method as illustrated in Fig. 2. Mean
bias between actual weight loss and weight loss predicted by
mathematical modelling was 0.61 ± 3.19 kg. The 95% confidence
interval for the difference was –5.65–6.86 kg.

Discussion

In the present study, a proposed mathematical predicted post-
intervention end-weight within 0.75% of that observed in females
enrolled on a 6–12 weeks TDR intervention, reflecting a mean
weight-loss overestimation of 1.07 kg. Mean error increased with
intervention length, from –0.28%, equivalent to 0.16 kg in 6-week
interventions, to 2.36% equivalent to 2.45 kg in 12-week
interventions.

The extraction of weekly weights allowed us to determine where
our mathematical model was most and least accurate. Findings
showed that our model underestimated weight loss in the first 6
weeks of the intervention, particularly in the first week where
weight loss was 75% greater than that predicted. This is likely due
to the rapid depletion of glycogen pools and associated water and
electrolytes (stored in a proportion of 1:3 g, respectively) in the first
7–10 d equivalent to a total weight loss of 1.5–2.0 kg(1,20–22).

Alternatively, mathematical modelling overestimated weight
loss beyond week 8, possibly due to relaxed compliance in those
enrolled on the programme for longer durations.

While data on the number of TDR products purchased per week
were provided, this may not necessarily equate to TDR products
consumed, particularly in participants enrolled on the intervention
for over 8 weeks who may be using partial meal replacement or
transitioning to a weight maintenance phase. Furthermore, the
frequency of diet relapse is likely to increase with intervention
length, particularly in those not participating in a gradual food
reintroduction process, where rapid carbohydrate refeeding can
result in a significant surge in hunger hormones and appetite. It is

noteworthy that only 8.5% of the study population enrolled on the
programme for 12 weeks, meaning relaxed compliance in one given
participant will significantly impact mean weight loss.

Overall, our model was associated with a mean error of 0.60%,
reflecting an average weight-loss overestimation of 0.27 kg. The
best agreement between actual and predicted weight loss was
observed from weeks 6–9 (ns p> 0.3827), representing the
intervention length of ~48% of study participants, where predicted
end-weight was within 0.30% (0.35 kg) of the observed.
Furthermore, this range encompasses the mean intervention
length of 8.7 weeks suggesting our model can produce intervention
end-weight with reasonable accuracy. Despite this, our weekly
analysis identifies points of the weight-loss phase where our model
requires further refinement.

Based on present findings, the following refinements were
applied to our mathematical model: (i) new predictor equation for
REE: REE is estimated using theMifflin equation based on FFM(23),
developed in a population with both lean and obese individuals,
thus more reflective of our study population, and (ii) new
formulation for FFM: FFM is modelled as a function of weight loss.
A linear increase in FFM% is assumed during the weight-loss
phase, persisting until a total weight loss of 20% at which point
FFM% stabilises approximately 10 percentage points higher than
baseline, as described by Equation 7:

FFM kgð Þ ¼ cþ 0:1 w0�w tð Þ
0:2w0

< 20% weight loss
cþ 0:1 otherwise

� 	� �
w tð Þ

Equation 7: Refined expression for FFM change.
FFM, fat-free mass; c, baseline fat-free mass (%); w0, starting

weight; w(t), weight at any given time.

Strengths and limitations

The proposed model requires only simple inputs of EI and PAL
and thus can be used without expensive lab equipment. While
several mathematical weight-loss models do exist, few rely only on

Table 1. Post-intervention mean error of mathematical model in the LighterLife
study

Weeks n δ

6 193 –0.28 (4.22)

7 181 0.59 (4.37)

8 196 0.40 (4.70)

9 158 0.47 (4.93)

10 155 1.09 (6.03)

11 133 1.75 (5.72)

12 93 2.36 (6.26)

Overall 1109 0.75 (5.12)

Data presented as mean (SD). Participants followed a very low-energy total-diet replacement
intervention for 6–12 weeks providing 600–800 kcal/d. End-weight was predicted by our
mathematical model and compared to that observed in LighterLife participants. δ, mean
error ([actual-predicted end-weight/actual end-weight] × 100).

Fig. 1. Mean error of mathematical model at weekly intervals. Data presented as
mean (SEM). End-weight in LighterLife participants was predicted by our mathemati-
cal model and compared to that observed. Week 1, –1.14 ± 1.68%, n= 713; week 2,
–1.41 ± 2.4%, n= 656; week 3, –1.44 ± 2.5%, n= 606; week 4, –1.30 ± 2.93%, n = 599;
week 5, –1.30 ± 3.64%, n = 565; week 6, –1.82 ± 4.09%, n= 578; week 7, –0.46 ± 4.4%,
n = 465; week 8, –0.40 ± 4.91%, n = 388; week 9, –0.26 ± 5.27%, n= 277; week 10,
0.43 ± 6.28%, n = 190; week 11, 1.06 ± 5.96%, n= 121; week 12, 2.10 ± 6.07%, n = 59. δ,
mean error ([actual-predicted end-weight/actual end-weight] × 100).
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clinically available anthropometric and demographic variables that
are readily available in a clinical environment. Such a model may
be used for (i) prescribing dietary intake in terms of energy deficit,
(ii) setting target weights and timescales, (iii) monitoring dietary
compliance, and (iv) patient/client motivation and self-
management.

A key strength of the study is a large sample size strengthening
the validity and reliability of our results. Individuals are self-
referring and self-funding clients and thus are likely to be
motivated and may exhibit higher levels of adherence.

The present study represents the nature of weight loss in free-
living individuals, rather than study participants participating in a
tightly regulated clinical trial. As such, the proposed mathematical
model can be used to identify those deviating from the expected
weight-loss trajectory who may require additional input. However,
the accuracy of the proposed model is limited by the reliance on

assumptions regarding EI and EE implemented to improve model
applicability.

To quantify one side of the EB equation, that is, EE, it is
important to keep the other side (EI) is as controlled as possible.
Thus, to minimise potential error, our model is validated using
weight-loss data from a TDR programme, using specially
formulated food products of known energy content. If used as
directed, TDR products are an accurate method of estimating EI.

However, it should be considered that there is likely much less
variation in EI using TDR products than would be using food-
based weight-loss programmes. Thus, it remains unclear if similar
accuracy can be observed in food-based dietary interventions.

Predictor equations are developed using linear regression
analysis which assumes a proportional increase in REE with
increasing body weight. However, in morbidly obese subjects,
excess weight is predominately FM rather than metabolic tissue.
Furthermore, excess FFM is predominantly low-metabolic skeletal
muscle rather than high-metabolic organs, for example, the brain,
liver, and kidney(24,25). Thus, REE increases at a slower rate in a
more curvilinear manner(26–28) rather than a linear increase as
assumed by most predictive equations(24).

Our model includes a term for AT based on observations from
clinical weight-loss studies. While longitudinal studies support the
existence of AT, significant between-individual variance is
observed(3). AT is suggested to be biologically determined, whereby
two existing phenotypes (‘thrifty’ and ‘spendthrift’) differ in their
capacities to regulate EE in response to altered energy avail-
ability(7,29). Subsequently, it should be considered that the term for
AT assumed by our model may not be representative of all study
participants. The proposed model assumes an immediate adaptive
response to energy deficit. However, the onset time for AT is a
matter of debate with a considerable amount of research suggesting
AT takes weeks to develop(15).

Finally, the proposed model relies on the assumption that those
purchasing over twenty-eight products per week are following the
prescribed four products per day. Additional intake from
conventional foods was not recorded and therefore our model
relies on assumptions regarding programme adherence. Thus,

Table 2. Actual versus predicted weight loss at weekly intervals in females enrolled on the LighterLife study

Week n Predicted weight loss (kg) Actual weight loss (kg) Difference (kg) P-value

1 713 1.29 (0.42) 2.28 (1.56) –0.99 (1.49) <0.001

2 656 2.55 (0.84) 3.70 (2.03) –1.15 (1.97) <0.001

3 606 3.60 (1.20) 4.73 (2.31) –1.13 (2.14) <0.001

4 599 4.64 (1.59) 5.58 (2.65) –0.95 (2.54) <0.001

5 565 5.61 (1.97) 6.46 (3.17) –0.85 (3.09) <0.001

6 578 6.64 (2.38) 6.97 (3.43) –0.34 (3.52) ns

7 465 7.56 (2.64) 7.57 (3.73) –0.01 (3.81) ns

8 388 8.44 (3.09) 8.34 (4.26) 0.10 (4.20) ns

9 277 9.64 (3.39) 9.39 (4.63) 0.24 (4.57) ns

10 190 10.41 (3.63) 9.47 (5.52) 0.93 (5.41) 0.0092

11 121 10.97 (3.43) 9.55 (4.92) 1.42 (5.12) 0.0006

12 59 11.18 (3.85) 8.94 (5.13) 2.24 (5.39) <0.001

Data presented asmean (SD). Participants followed a very low-energy total-diet replacement intervention for 6–12weeks providing 600–800 kcal/d. Weekly weight loss in LighterLife participants
was predicted by ourmathematical model and compared to that observed. The statistical significance of differences between actual and predicted weight loss was assessed using paired t-tests.

Fig. 2. Bland–Altman analysis to investigate the agreement between actual and
predicted weight loss. Participants followed a very low-energy total-diet replacement
intervention for 6–12 weeks providing 600–800 kcal/d. Average = (actual weight lossþ
predicted weight loss)/2. The dotted lines represent the upper and lower limits of
agreement ( ± 2 SD). The solid line represents the average difference (kg).
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despite the prescriptive nature of TDR, true values for EI remain
uncertain.

Conclusion

Mathematical models have been used to simulate EB and weight
dynamics for decades, yet application in clinical weight loss
remains limited. The model proposed in the present study
estimates energy deficit by simulating dynamic changes in EE
using simple baseline parameters of gender, weight, and EI. In a
large cohort of weight-reducing females, the proposed model was
associated with a mean bias of 0.61 kg. Limitations of model
assumptions need to be examined before clinical application;
however, there is no doubt that mathematical modelling has a
valuable place in the treatment of overweight and obesity.
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