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Abstract. This article presents an overview of the published results for planetary nebulae
based on images and spectroscopy from the PACS, SPIRE, and HIFI instruments on board the
Herschel satellite.
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1. Introduction
Grains play an important role in many environments, including planetary nebulae

(PNe), because of extinction, photoelectric heating, their influence on the charge and
ionization balance of the gas, as catalysts for grain-surface chemical reactions and as
seeds for freeze-out of molecules. Previous satellite missions such as IRAS, ISO, Spitzer,
and AKARI have allowed us to study the dust in PNe, but unfortunately the angular
resolution of these instruments was too low to get detailed information on the spatial
distribution of the dust. This has changed with the Herschel satellite, which has allowed
us to study the spatial structures in unprecedented detail.

2. Herschel and its instruments
The Herschel Space Observatory (Pilbratt et al. 2010) was launched on May 14 2009

and operated for nearly four years. It carried the largest, most powerful infrared telescope
ever flown in space and three sensitive scientific instruments. Herschel’s observations
finished on April 29 2014 when the tank of liquid helium used to cool the instruments
finally ran dry.

The three instruments on board were: PACS (Photoconductor Array Camera and Spec-
trometer), SPIRE (Spectral and Photometric Imaging REceiver), and HIFI (Heterodyne
Instrument for the Far Infrared), a high-resolution spectrometer. These instruments were
designed for deep, wideband photometry with high spatial resolution and full spectral
coverage, making Herschel the first space facility to completely cover the far infrared and
submillimeter range from 55 to 672 μm.

PACS (Photodetecting Array Camera and Spectrometer) (Poglitsch et al. 2010) was
an imaging camera and low-resolution spectrometer covering wavelengths from 55 to
210 μm. The spectrometer had a spectral resolution between R = 1000 and R = 5000. It
operated as an integral field spectrograph, combining spatial and spectral resolution. The
imaging camera was able to image simultaneously in two bands (either 60 − 85 / 85 −
130 μm and 130 − 210 μm) with a detection limit of a few mJy.

† Herschel is an ESA space observatory with science instruments provided by European-led
Principal Investigator consortia and with important participation from NASA.
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SPIRE (Spectral and Photometric Imaging Receiver) (Griffin et al. 2010) was an imag-
ing camera and low-resolution spectrometer covering 194 to 672μm wavelength. The
spectrometer had a resolution between R = 40 and R = 1000 at a wavelength of 250μm
and was able to image point sources with brightnesses around 100 mJy and extended
sources with brightnesses of around 500 mJy. The imaging camera observed simultane-
ously in three bands, centred at 250, 350 and 500μm, each with 139, 88 and 43 pixels
respectively. It was able to detect point sources with brightness above 2 mJy.

HIFI (Heterodyne Instrument for the Far Infrared) (de Grauw et al. 2010) is a hetero-
dyne detector able to electronically separate radiation of different wavelengths, giving a
spectral resolution up to R = 107 . The spectrometer was operated within two wavelength
bands, from 157 to 212μm and from 240 to 625 μm.

3. PACS and SPIRE imaging results
The extended circumstellar envelopes of evolved low-mass AGB stars display a large

variety of morphologies. Understanding the various mechanisms that give rise to these
extended structures is important to trace their mass-loss history. The data presented
by Cox et al. (2012) showed for the first time the variety of interaction between the
circumstellar shell and the interstellar medium, which can be divided in roughly four
categories: “fermata”, “eyes”, “irregular”, and “rings”. In particular the star’s peculiar
space velocity and the density of the ISM appear decisive in detecting emission from bow
shocks or detached rings. Tentatively, the “eyes” class objects are associated with (visual)
binaries, while the “rings” generally do not appear to occur for M-type stars, only for C
or S-type objects that have experienced a thermal pulse. The occurrence of the observed
eye-shape of AGB detached shells is most strongly influenced by the interstellar magnetic
field, the stellar space motion, and density of the interstellar medium (van Marle et al.
2014). Observability of this transient phase is favoured for lines-of-sight perpendicular
to the interstellar magnetic field direction. The simulations of van Marle et al. (2014)
indicate that “eye” shapes of such pre-PN circumstellar shells can strongly affect the
shape and size of PNe.

A total of 18 well known PNe have been imaged with PACS and SPIRE instruments
in the framework of MESS and HerPlans programs. Seven PNe (NGC 6720, NGC 650,
NGC 7293, NGC 6853, NGC 3587, NGC 7027) were imaged by the MESS team. Mass
loss of Evolved StarS (MESS) was a Guarenteed Time Key Programme to study the
circumstellar environment of evolved post main sequence stars. A detailed description of
the program can be found in Groenewegen et al. (2011). An overview of the Herschel ob-
servations of PNe in the MESS program was presented in van Hoof et al. (2012). Eleven
PNe (NGC 40, NGC 2392, NGC 3242, NGC 6445, NGC 6543, NGC 6720, NGC 6781,
NGC 6826, NGC 7009, NGC 7026, Mz 3) have been observed in the Herschel Planetary
Nebulae Survey (HerPlanS). A data overview and first analysis was presented in Ueta
et al. (2014). HerPlaNS obtained far-infrared broadband images and spectra of eleven
well-known PNe with the PACS and SPIRE instruments. The target PNe all have dis-
tances less than ∼1.5 kpc and are dominated by relatively high-excitation nebulae as
they were selected from the Chandra Planetary Nebula Survey (ChanPlaNS; Kastner
et al. 2012)

Herschel PACS and SPIRE imaging showed that the dust emission in PNe has a very
clumpy structure for all nebula. There is excellent agreement between the H2 images and
the PACS 70 μm maps. For the Ring nebula (NGC 6720, Figure 1) it appears to be the
first observational evidence that H2 forms on oxygen rich dust grains. van Hoof et al.
(2010) developed a photoionisation model of the Ring nebula with Cloudy to investigate
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Figure 1. Herschel spectra of molecules in the Ring and Helix nebula

possible formation scenarios for H2. They concluded that the most plausible scenario is
that the H2 resides in high density knots which were formed after the recombination of
the gas started, when the central star luminosity dropped steeply after the central star
entered the cooling track. H2 formation may still be ongoing at this moment, depending
on the density of the knots and the properties of the grains in the knots (van Hoof et al.
2010). This is also a possible scenario for the formation of high density clumps in other
evolved nebula with a central star on the cooling track such as the Helix (NGC 7293,
Figure 1) and the Dumbell (NGC 6853).

Comparison between the 70 μm Herschel and corresponding optical maps showed that
they are very similar indicating that there is a very steep temperature gradient from
the ionized region to the dusty photodissociation region. For NGC6781 the PACS 70μm
map, showing the distribution of thermal dust continuum is very similar to what is seen
in the [Nii]λ658.4 nm image (Ueta et al. 2014). For the Helix it was also observed and
shown that the radiation field decreases rapidly outwards through the barrel wall (Fig.
9, Van de Steene et al. 2015).

Previous knowledge of the 3D structure of the nebula is extremely useful to correctly
interpret the far infrared images. For instance, the PACS and SPIRE images of the Helix
nebula could be understood based on the kinematic model of Zeigler et al. (2013) and the
Herschel images of NGC 6781 with the 3D model of Schwarz & Monteiro (2006). Both
show bipolar, barrel-like structures inclined to the line of sight, a frequent morphology
in PNe.

Herschel PACS imaging photometry was obtained for these 17 different PNe in the
MESS and HerPlanS projects (van Hoof et al. 2010, van Hoof et al. 2013, Van de Steene
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et al. 2015,Van de Steene et al. in preparation, Ueta et al. 2014, Ueta et al. in prepa-
ration) with the PACS and SPIRE instruments at 70, 160, 250, 350, and 500μm. This
photometry was complemented with photometry obtained from the literature at many
other wavelengths from the UV to radio wavelengths to construct full SEDs. The modified
black body fit to these SEDs revealed that the emission factor β is always close to 1.0, in-
dicating that the dust grains are mainly amorphous carbon (Menella et al. 1995, Boudet
et al. 2005). The fit to the SED also showed that the flux emitted in the far infrared is
significant: without far-IR data fitting constraints the dust mass is underestimated by
40%.

The dust temperature obtained from the SED fits and the temperature maps made,
showed that the cool dust temperature of the PNe is around 30 to 100 K. For the Helix
nebula the gas kinetic temperature Tk was determined to be about 20 to 40 K (Zack
& Ziurys 2013, Etxaluze et al. 2014), which is similar the Helix’ dust temperature (Van
de Steene et al. 2015). The gas density of the H2 cometary globules is on the order
of n(H2)∼ (1-5) 105 cm−3 . Goldsmith (2001) found that for gas densities higher than
104.5 cm−3 the dust and gas temperatures will be closely coupled, also for the dust tem-
peratures determined for the Helix nebula.

The dust masses found so far for NGC 6781, NGC 7293, and NGC 650 are all a few
thousandths of solar masses. By integrating over the entire nebula, the dust column mass
density map the total mass of far emitting dust mass was determined to be 4 x 10−3 M�
for NGC 6781 at a distance of 950 pc and 3.5 x 10−3 M� for the Helix nebula at distance of
216 pc, while for NGC 650 the dust mass is about 1.4 x 10−3 M� at a distance of 1200 pc
based on Cloudy modeling (Ueta et al. 2014, Van de Steene et al. 2015, van Hoof et al.
2013)

One of the goals of HerPlaNS is to empirically obtain spatially resolved gas-to-dust
mass ratio distribution maps by deriving both the dust and gas column mass distribution
maps directly from observational data. For NGC 6781 direct comparison of the dust and
gas column mass maps constrained data allowed to construct an empirical gas-to-dust
mass ratio map, which showed a large range of ratios with the median of 195±110 and
hence, is generally consistent with the typical spatially-unresolved ratio between 100 and
400 widely used in the literature for the case of PNe and AGB stars (Ueta et al. 2014).

The MESS and HerPlaNS teams have collected not only photometry, but also other
spectroscopic data from the literature over the whole spectral range from X-rays to
radio to make the most comprehensive Cloudy models ever made of NGC 650 (van Hoof
et al. 2013) and NGC 6781 (M. Otsuki, this volume). For NGC 650 the Cloudy model
showed that the grains in the ionized nebula are large (assuming single-sized grains, they
would have a radius of 0.15 μm). Most likely these large grains were inherited from the
asymptotic giant branch phase. However the PACS 70/160 μm temperature map showed
evidence of two radiation components heating the grains. The first component is direct
emission from the central star, while the second component is diffuse emission from the
ionized gas (mainly Lyα). Unlike what was thought before, the neutral material resides
in dense clumps inside the ionized region. These may also harbour stochastically heated
very small grains in addition to the large grains. This is unusual for such a highly evolved
PN.

In the past, far-IR SED fitting with broadband fluxes were performed under the as-
sumption of negligible line contamination. With the Herschel data and Cloudy modeling
we verified that the degree of line contamination is approximately 8-20% (Ueta et al.
2014, van Hoof et al. 2013) and does not significantly affect the fitting results.
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4. PACS and SPIRE spectroscopic results
4.1. NGC 6781

The Herschel spectra obtained at various locations within NGC 6781 revealed both the
physical and chemical nature of the nebula. The spectra showed a number of ionic and
atomic lines such as [O iii] 52, 88 μm, [N iii] 57 μm, [N ii] 122, 205 μm, [C ii] 158 μm, and
[O i] 63, 146μm, as well as various molecular lines, in particular, high-J CO rotational
transitions, OH, and OH+ emission lines. Thermal dust continuum emission was also
detected in most bands in these deep exposure spectra. On average, the relative distri-
butions of emission lines of various nature suggested that the barrel cavity in NGC 6781
is uniformly highly ionized, with a region of lower ionization delineating the inner sur-
face of the barrel wall. The least ionic and atomic gas, molecular, and dust species are
concentrated in the cylindrical barrel structure.

Based on the PACS IFU spectral cube data, Ueta et al. (2014) derived line maps
in the detected ionic and atomic fine-structure lines. Next diagnostics of the electron
temperature and density using line ratios such as [O iii] 52/88 μm and [N ii] 122/205 μm,
resulted in (Te , ne) and ionic/elemental/relative abundance profiles for the first time in
the far-IR for any PN. The derived Te profile substantiated the typical assumption of
uniform Te = 104K in the main ionized region, while showing an interesting increase in
the barrel (up to 10% higher), followed by a sudden tapering off toward the halo region.
The ne profile of high-excitation species is nearly flat across the inner cavity of the nebula,
whereas the ne profile of low excitation species exhibits a radially increasing tendency
with a somewhat complex variation around the barrel wall. In fact, this ne [N ii] profile
is reflected in the physical stratification of the nebula revealed by the ionic/elemental
abundance analysis. The detected stratification is consistent with the previous inferences
made from the past optical imaging observations in various emission lines of varying levels
of excitation. The derived relative elemental abundance profiles showed uniformly low N
and C abundances, confirming the low initial mass (< 2 M�) and marginally carbon-
rich nature of the central star. However, the profiles did not appear to reveal variations
reflecting the evolutionary change of the central star, such as a radially increasing carbon
abundance.

4.2. SPIRE spectroscopy: OH+ and CO

Etxaluze et al. (2014) and Aleman et al. (2014) reported the first detection of extended
OH+ lines in emission in 5 PNe observed as part of the HerPlans in NGC 6445, NGC 6720
(Fig. 1a), and NGC 6781 and MESS in NGC 7293 (Fig. 1b). Also NGC 6853 shows OH+

in emission (Van de Steene et al., in preparation). All five PNe are molecule rich, with
dense clumpy structures and hot central stars (Teff > 100000 K). The OH+ emission is
most likely due to excitation in a photodissociation region. Although other factors such
as high density and low C/O ratio may also play a role in the enhancement of the OH+

emission. The fact that OH+ is not detected in objects with Tef f < 100000 K suggests
that the hardness of the ionising central star spectra could be an important factor in the
production of OH+ emission in PNe.

The Herschel spectra towards the Helix nebula also show, besides OH+, CO emission
lines (from J = 4 to 8), [N ii] at 1461 GHz from ionized gas, and [C i] (3P2−3P1). The
SPIRE spectral maps suggest that CO arises from dense and shielded clumps in the
western rims of the Helix nebula, whereas OH+ and [C i] lines trace the diffuse gas
and the UV and X-ray illuminated clump surfaces where molecules reform after CO
photodissociation. The [N ii] line traces a more diffuse ionized gas component in the
interclump medium (Etxaluze et al. 2014).
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For NGC 6781 the CO observations and analysis with higher-J transitions sampled a
much warmer CO gas component in the cylindrical barrel structure, probably located
closer to the equatorial region along the line of sight, compared with the previous CO
measurements and diagnostics by Bachiller et al. (1993). However, the amount of this
warm component was determined to be an order of magnitude smaller than the cold
component (Ueta et al. 2014).

4.3. Crystalline olivine

Blommaert at al. (2014) (GT1 “Forsterite dust in the circumstellar environment of
evolved stars”) presented 48 PACS spectra of evolved stars in the wavelength range of
67− 72 μm, covering the 69 μm band of crystalline olivine (Mg22xFe(2x)SiO4). For 27 ob-
jects in the sample, they detected the 69 μm band of crystalline olivine (Mg(22x)Fe(2x)SiO4).
The 69 μm band showed that all the sources produce pure forsterite grains containing
no iron in their lattice structure. They fit the 69μm band and used its width and wave-
length position to probe the composition and temperature of the crystalline olivine. The
fits showed that on average the temperature of the crystalline olivine is highest in the
group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The tem-
perature is lower for the other post-AGB stars and lowest for the PNe. A couple of the
detected 69 μm bands are broader than those of pure magnesium-rich crystalline olivine,
which can be due to a temperature gradient in the circumstellar environment of these
stars.

5. HIFI
5.1. HIFISTARS

The Herschel guaranteed time key programme HIFISTARS (Bujarrabal et al. 2012) aimed
to study the physical conditions, particularly the excitation state, of the intermediate-
temperature gas in proto-PNe and young PNe. The information that the observations
of the different components deliver is of particular importance for the wind-shock in-
teraction and hence understanding the evolution and shaping of PNe. They performed
Herschel/HIFI observations of intermediate-excitation molecular lines in the far-infrared
range of a sample of ten nebulae. The high spectral resolution provided by HIFI al-
lows the accurate measurement of the line profiles. The dynamics and evolution of these
nebulae are known to result from the presence of several gas components, notably fast
bipolar outflows and slow shells (that often are the fossil AGB shells), and the interaction
between them. Because of the diverse kinematic properties of the different components,
their emission can be identified in the line profiles. The observation of these high-energy
transitions allows an accurate study of the excitation conditions, particularly in the warm
gas, which cannot be properly studied from the low-energy lines. They detected far in-
frared lines of several molecules, in particular of 12CO, 13CO, and H2O. Emission from
other species, like NH3, OH, H2

18O, HCN, SiO, etc., has been also detected. Wide pro-
files showing sometimes spectacular line wings have been found. In the case of CRL 618
the 12CO and 13CO high excitation line profiles present a composite structure showing
spectacular wings in some cases, which become dominant as the energy level increases
(Soria-Ruiz et al. 2013). Bujarrabal et al. (2012) mainly studied the excitation proper-
ties of the high-velocity emission, which is known to come from fast bipolar outflows.
From comparison with general theoretical predictions, they find that CRL 618 showed a
particularly warm fast wind ∼300 K, hotter than previously estimated (Soria-Ruiz et al.
2013). In contrast, the fast winds in OH231.8+4.2 and NGC 6302 are cold, Tk∼30 K.
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Other nebulae, like CRL 2688, show intermediate temperatures, with characteristic val-
ues around 100 K. They argue that the differences in temperature in the different nebulae
can be caused by cooling after the gas acceleration (that is probably caused by shocks).
For instance, CRL 618 is a case of very recent acceleration of the gas by shocks, less than
∼100 yr ago, while the fast gas in OH 231.8+4.2 was accelerated ∼1000 yr ago. They also
find indications that the densest gas tends to be cooler, which may be explained by the
expected increase of the radiative cooling efficiency with density. The dense central core
of CRL 618 is characterised by a very low expansion velocity, ∼5 km s−1 , and a strong
velocity gradient. This component is very likely to be the unaltered circumstellar layers
that are lost in the last AGB phase, where the ejection velocity is particularly low. The
physical properties of the diffuse halo and the double empty shell, contribute to its line
profiles mainly in the low-J CO transitions (Soria-Ruiz et al. 2013).

5.2. Shapemol

Herschel/HIFI has opened a new window for probing molecular warm gas. On the other
hand, the software SHAPE (Steffen & Lopez 2006, Steffen et al. 2011) has emerged in
the past few years as a standard tool for determining the morphology and velocity field
of different kinds of gaseous emission nebulae via spatio-kinematical modelling. SHAPE
implements radiative transfer solving, but it is only available for atomic species and not
for molecules. Shapemol (Santander-Garcia et al. 2015) is a complement to SHAPE which
enables user-friendly, spatio-kinematic modelling with accurate non-LTE calculations of
excitation and radiative transfer in CO lines. Shapemol is a plug-in completely integrated
within SHAPE v5 . It allows radiative transfer solving in the 12CO and 13CO J =10 to
J = 1716 lines, but its implementation easily permits extending the code to different
transitions and other molecular species, either by the code developers or by the user.
Used along Shape, Shapemol allows easily generating synthetic maps and synthetic line
profiles to match against observations.

As an example of the power and versatility of Shapemol, a model of the molecu-
lar envelope of the planetary nebula NGC 6302 was made and compared with 12CO
and 13CO J = 21 interferometric maps from SMA and high-J transitions from HIFI.
Santander-Garcia et al. (2015) found that its molecular envelope has a complex, bro-
ken ring-like structure with an inner, hotter region and several fingers and high-velocity
blobs, emerging outwards from the plane of the ring. The Herschel spectra are extremely
rich, especially in terms of molecular line transitions.

HIFI data have also allowed a very detailed description of the young PN NGC 7027.
Santander-Garcia et al. (2012) also used Shapemol for radiative transfer,
spatio-kinematic modeling of the molecular envelope of the young planetary nebula
NGC 7027 in several high- and low-J 12CO and 13CO transitions observed by HIFI
and the IRAM 30 m radio telescope, and discussed the structure and dynamics of the
molecular envelope. They used this code to build a Russian doll model to account for the
physical and excitation conditions of the molecular envelope of NGC 7027. The model
nebula consisted of four nested, mildly bipolar shells plus a pair of high-velocity blobs.
The innermost shell is the thinnest and showed a significant increase in physical con-
ditions (temperature, density, abundance, and velocity) compared to the adjacent shell.
This is a clear indication of a shock front in the system, which may have played a role
in shaping the nebula. Each of the high-velocity blobs is divided into two sections with
considerably different physical conditions. The striking presence of H2O in NGC 7027, a
C-rich nebula, is likely due to photo-induced chemistry from the hot central star, although
formation of water by shocks cannot be ruled out.
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6. Outlook
Soon, the THROES atlas (Garcia-Lario et al. 2016, this volume) will be publicly avail-

able through the Herschel science archive. THROES is a catalogue of fully reprocessed,
homogenously reduced PACS spectra of all evolved stars from the AGB to the PN stage,
including some massive red supergiants and LBVs, complemented with ancillary data
taken by other facilities. SPIRE spectra will be added later. The catalog will contain
more than 200 sources, originally part of more than 40 different research programs. This
will hopefully trigger additional research by the community.

A lot of Herschel observations of PNe are available to be exploited and more interesting,
scientific results await discovery.

Acknowledgements

I thank the SOC for inviting me to do this review talk. I am indebted to my colleagues of
the MESS and HerPlanS consortia who have closely collaborated with her on the Herschel
data. G. Van de Steene wishes to acknowledge support from FWO through travel grant
K1C8716N. G. Van de Steene and the MESS consortium wish to acknowledge support
from the Belgian Science Policy office through the ESA PRODEX programme.

References
Aleman, I., Ueta, T., & Ladjal, D., 2014, A&A, 566, A79
Bachiller, R., Huggins, P. J., Cox, P., Forveille, T., 1993, A&A, 267, 177
Bujarrabal, V., Alcolea, J., Soria-Ruiz, R., et al., 2012, A&A, 537, A8
Blommaert, J. A. D. L., de Vries, B. L.,Waters, L. B. F. M., et al., 2014, A&A, 565, A109
Boudet, N., Mutschke, H., Nayral, C., et al., 2005, ApJ., 633, 272
Cox N. L. J., Kerschbaum F., van Marle A.-J. et al., 2012, A&A, 537, 35
de Graauw, T., Helmich, F. P., Phillips, T. G. et al., 2010, A&A, 518, L4
Etxaluze, M., Cernicharo, J., Goicoechea, J. R., et al., 2014, A&A, 566, A78
Goldsmith, P. F., 2001, ApJ, 557, 736
Griffin, M. J., Abergel, A., Abreu, A., et al., 2010, A&A, 518, L3
Groenewegen, M. A. T., Waelkens, C., Barlow, M. J., et al., 2011, A&A, 526, A162
Kastner, J. H., Montez, R., Jr., Balick, B., et al., 2012, AJ, 144, 58
Mennella, V., Colangeli, L., & Bussoletti, E., 1995, A&A, 295, 165
Santander-Garcia M., Bujarrabal V., Alcolea J., 2012, A&A, 545, 114
Santander-Garcia M., Bujarrabal V., Koning N., Steffen W., 2015, A&A, 573, 56
Schwarz, H. E. & Monteiro, H., 2006, ApJ, 648, 430
Soria-Ruiz R., Bujarrabal V., Alcolea J., 2013, A&A, 559, 45
Steffen W. & Lopez J. A., 2006 Rev. Mexicana AyA 26 30
Steffen W., Koning N., Wenger S., Morisset C. and Magnor M., 2011, IEEE Transactions on

visualisation and computer graphics, 17, 454
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al., 2010, A&A, 518, L1
Poglitsch, A., Waelkens, C., Geis, N., et al., 2010, A&A, 518, L2
Ueta, T., Ladjal, D., Exter, K. M., et al., 2014, A&A, 565, A36
Van de Steene G. C., van Hoof P. A. M., Exter K. M., et al., 2015, A&A, 574, 134
van Hoof, P. A. M., Van de Steene, G. C., Barlow, M. J., et al., 2010, A&A, 518, L137
van Hoof, P. A. M., Barlow, M. J., Van de Steene, G. C., et al., 2012, IAU Symp., 283, 41
van Hoof, P. A. M., Van de Steene, G. C., Exter, K. M., et al., 2013, A&A, 560, A7
van Marle A. J., Cox N. L. J., Decin L., 2014, A&A, 570, 131
Zack, L. N. & Ziurys, L. M., 2013, ApJ, 765, 112
Zeigler, N. R., Zack, L. N., Woolf, N. J., & Ziurys, L. M., 2013, ApJ, 778, 16

https://doi.org/10.1017/S1743921317001971 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921317001971

