
J. Fluid Mech. (2024), vol. 1001, A19, doi:10.1017/jfm.2024.1063
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Viscous gravity currents play a fundamental role in many natural and industrial
applications, where practical scenarios often involve the current propagating over
rigid curvilinear surfaces. In this study, we employ lubrication theory to develop
low-dimensional models for such two-dimensional and axisymmetric propagation,
resulting from the release of a finite volume of viscous fluid. A key dimensionless
parameter is identified, representing the volume ratio between the released fluid and
the curvilinear surface, which governs the current evolution. By simplifying the
curvilinear surface with linear–exponential and sinusoidal shapes, we observe distinct flow
behaviours. Over linear–exponential surfaces, the current may become trapped, bypass
the peak or flow downward, while over sinusoidal surfaces, the propagation is hindered
compared with the behaviour over horizontal straight surfaces. The low-dimensional
models are validated using the volume of fluid method in computational fluid dynamics,
showing consistent predictions of the current evolution over rigid curvilinear surfaces.
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1. Introduction

A variety of phenomena in fluid mechanics result from the release of a finite volume of
viscous fluid, such as the flow of honey on a disk or the geological sequestration of carbon
dioxide deep within the Earth (Huppert 2006; Huppert & Neufeld 2014; Ungarish 2020).
These flow patterns, known as viscous gravity currents, are characterized by the horizontal
intrusion of a denser fluid into a domain occupied by a less dense fluid.
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The propagation of viscous gravity currents has been successfully modelled
using low-dimensional approaches based on lubrication theory, effectively capturing
flow behaviour in both two-dimensional and axisymmetric configurations (Huppert
1982, 2006). These foundational models have facilitated further theoretical investigations,
particularly into how factors such as fluid rheology and boundary conditions influence
the flow dynamics. Understanding these effects is crucial, given the broad range of
applications in geophysics, oceanography and chemical engineering.

Progress in fluid rheology has enhanced our understanding of non-Newtonian,
power-law fluids in the context of viscous gravity currents. Sayag & Worster (2013) studied
the axisymmetric flow of power-law fluids, demonstrating that inertia dominates the early
evolution, while viscosity takes control later. Longo, Di Federico & Chiapponi (2015)
investigated how channel geometry influences the spread of power-law fluid currents,
highlighting that the channel shape plays a critical role in determining flow velocity
and front position. Further, Longo et al. (2021) explored the radially convergent viscous
gravity currents of power-law fluids, providing a second kind of self-similar solution that
accurately predicts current fronts.

Boundary conditions also play a crucial role in the propagation of viscous gravity
currents (Zheng & Stone 2022). For instance, over permeable surfaces, vertical drainage
significantly alters the amount of fluid in the main flow, as demonstrated by Acton,
Huppert & Worster (2001) and later refined by Liu, Zheng & Stone (2017) to include
capillary effects. Over elastic surfaces, the dynamics shifts, with early-stage flows being
gravity driven, while later stages flatten due to the surface stretching from accumulated
liquid (Zheng, Griffiths & Stone 2015). Similarly, Howell et al. (2016) investigated thin
films flowing over elastic beams, revealing distinct flow regimes influenced by beam
deformation and gravitational forces. These mechanisms, such as vertical drainage and
elastic deformation, largely depend on the current height, allowing for the application of
low-dimensional models that yield similarity solutions.

While low-dimensional models have proven effective in many cases, their generality
may be limited when applied to rigid curvilinear surfaces, particularly in both natural and
engineering contexts, where the surface characteristic length scale becomes a dominant
factor. Although previous studies, ranging from macro-scale gravity-driven lava flows
on hillsides to micro-scale capillary-induced coating films in microelectronic devices
(Kalliadasis, Bielarz & Homsy 2000; Saprykin et al. 2007; Hinton, Hogg & Huppert 2019;
Saville, Hinton & Huppert 2022), have focused on steady-state distributions of viscous
flows over curvilinear surfaces, less attention has been paid to the unsteady evolution of
these flows.

In this study, our focus is on the evolution and propagation of the viscous fluid over
rigid curvilinear surfaces, resulting from a finite volume, before reaching its steady
state. To represent curvilinear surfaces, we employ a linear–exponential shape for general
single-peak surfaces and a sinusoidal shape for surfaces with continuous peaks. Both
two-dimensional and axisymmetric configurations are explored.

The structure of the paper is as follows: § 2 develops low-dimensional models for viscous
fluids over rigid curvilinear surfaces. Section 3 characterizes the two types of curvilinear
surfaces and reveals a dimensionless parameter that reflects the interaction between
the released fluid and the surface geometry. Section 4 examines current evolution and
propagation over linear–exponential and sinusoidal surfaces. Section 5 provides numerical
validation using computational fluid dynamics, and § 6 concludes the study.
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Finite-volume viscous fluid over curvilinear surfaces
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Figure 1. Schematic diagram of a viscous gravity current over an impermeable and rigid curvilinear surface.

2. Methodology

2.1. Two-dimensional propagation
In a semi-infinite two-dimensional domain with a rigid and impermeable curvilinear
surface of shape f (x), a fluid with density ρ0 and viscosity μ0 initially fills the space. Then,
another denser fluid with density ρ (ρ > ρ0) and viscosity μ (μ > μ0) is horizontally
introduced from the left. Due to the density difference �ρ, the fluid propagates along
the curvilinear surface as a gravity current. If the fluid is highly viscous and no capillary
effect exists between the two fluids (the Bond number, Bo = �ρgl2/σ � 1, where g is the
acceleration due to gravity, l is a characteristic length and σ is the surface tension), the
viscous gravity current propagates slowly with a sharp interface, represented by h(x, t), as
illustrated in figure 1.

We assume that the curvature of the curvilinear surface is sufficiently small, rendering
the centrifugal force induced by the curvature negligible. Additionally, while curvature
primarily influences the pressure distribution normal to the surface, under the thin-film
approximation, the film thickness is much smaller than the radius of curvature. As a result,
the impact of curvature on the normal pressure gradient is minimal. Moreover, regarding
the tangential pressure gradient, the effect of curvature is even less significant, because
the liquid film is primarily driven by the surface gradient. Therefore, in our modelling, we
disregard the effect of curvature and focus instead on the dominant influence of the surface
gradient on the flow.

Regarding surface gradient, the shape of the curvilinear surface primarily influences
the horizontal pressure gradient by altering the hydrostatic pressure distribution within
the fluid. Strictly speaking, the fluid should flow tangentially along the curvilinear
surface, which implies that the pressure gradient should be taken in the tangential
direction when constructing the lubrication model. However, we consider the surface
gradient to be limited, so that the difference between the tangential and horizontal
directions are negligible. Consequently, the main contribution to the pressure gradient
arises from changes in hydrostatic pressure relative to the horizontal position. Therefore,
we approximate the horizontal flow u(z, t) over the curvilinear surface using the classical
lubrication model, where the balance is maintained between the horizontal pressure
gradient and the viscous shear in the vertical direction in global coordinate system

∂p
∂x

= μ
∂2u
∂z2 . (2.1)

During current propagation, the pressure field is considered as hydrostatic

p(x, z) = p0 + ρ0g[D − h(x, t) − f (x)] + ρg[h(x, t) + f (x) − z], (2.2)

1001 A19-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1063


X. Di and H.E. Huppert

therefore
∂p
∂x

= ρg0

(
∂h
∂x

+ df
dx

)
, (2.3)

where p0 is atmospheric pressure, D is the total liquid depth and g0 = (�ρ/ρ)g is the
reduced gravity. The term df /dx indicates the contribution of the curvilinear surface,
altering the gravity-driven influence of the current height.

The current velocity field can be derived with two boundary conditions, including the
no-slip condition (u = 0 at z = f ) and the continuous shear stress at the interface (∂u/∂z =
0 at z = h + f ), to obtain

u = 1
2μ

∂p
∂x

[z2 − 2z(h + f ) + 2hf + f 2]. (2.4)

Utilizing the volume continuity equation for an incompressible current, we obtain

∂h
∂t

+ ∂

∂x

(∫ h+f

f
u dz

)
= 0. (2.5)

Therefore, the low-dimensional model for the height of a viscous gravity current is
established as

∂h
∂t

− β
∂

∂x

[
h3

(
∂h
∂x

+ df
dx

)]
= 0, (2.6)

where β = g0/(3ν) and ν = ρ/μ. With the above simplification, we have effectively
addressed the complex problem of flow over a curvilinear surface by accounting for the
impact of the surface gradient on the hydrostatic pressure distribution, making it more
practical for analysing and predicting the evolution of the viscous fluid over curvilinear
surfaces.

The low-dimensional model has physical constraints for the front of the current, denoted
as xf (t),

h[xf (t), t] = 0 (2.7)

and the volume conservation over time∫ xf (t)

0
h dx = q, (2.8)

where q is a constant for the release of a finite volume of fluid.
While the current front is moving, xf (t) is an unknown parameter that makes it difficult

to directly resolve the low-dimensional model. In spite of this, due to the fact that no
current exists in the region from the current front to the right end of the domain, [xf (t), l],
the right boundary condition can be transformed to

h(l, t) = 0, (2.9)

and then, the volume conservation equation is updated to∫ l

0
h dx = q. (2.10)

After integrating the low-dimensional model and meanwhile utilizing the right
boundary, the left boundary condition is obtained(

∂h
∂x

+ df
dx

)∣∣∣∣
x=0

= 0. (2.11)
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Finite-volume viscous fluid over curvilinear surfaces

We consider a finite-volume viscous fluid placed in a square with an initial height h0
and length x0 (x0 = q/h0) at t = 0, where

h(x, 0) =
{

h0 0 ≤ x ≤ x0

0 x > x0.
(2.12)

The above boundary and initial conditions complete the low-dimensional model for the
two-dimensional propagation of a viscous gravity current over an impermeable and rigid
curvilinear surface.

2.2. Axisymmetric propagation
Similarly, for the axisymmetric propagation of viscous gravity currents with height h(r, t)
over a rigid curvilinear surface f (r), the local volume continuity balance equation is
written as

∂h
∂t

+ 1
r

∂

∂r

(
r
∫ h+f

f
u dz

)
= 0. (2.13)

Because the axisymmetric hydrostatic pressure field is expressed as

p(r, z) = p0 + ρ0g[D − h(r, t) − f (r)] + ρg[h(r, t) + f (r) − z], (2.14)

and its radial gradient is

∂p
∂r

= ρg0

(
∂h
∂r

+ df
dr

)
= μ

∂2u
∂z2 , (2.15)

the low-dimensional model for the height of an axisymmetric viscous gravity current is
finally established as

∂h
∂t

− β

r
∂

∂r

[
rh3

(
∂h
∂r

+ df
dr

)]
= 0. (2.16)

Similar to the two-dimensional propagation, by transforming the domain from [0, rf (t)]
to [0, l], the updated right boundary condition and the volume conservation equation are

h[rf (t), t] = h[l, t] = 0 (2.17)

and

2π

∫ rf (t)

0
rh dr = 2π

∫ l

0
rh dr = q. (2.18)

Accordingly, the left boundary condition can be written as(
∂h
∂r

+ df
dr

)∣∣∣∣
r=0

= 0. (2.19)

We consider a finite volume of viscous fluid placed in a cylinder with an initial height
h0 and radius r0 = √

q/(πh0) at t = 0, represented by

h(r, 0) =
{

h0 0 ≤ r ≤ r0

0 r > r0.
(2.20)

The above establishes the low-dimensional model for the axisymmetric propagation of
a viscous gravity current over an arbitrary impermeable and rigid curvilinear surface.
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2.3. Volume of fluid method
We utilize computational fluid dynamics (CFD) to validate low-dimensional models.
Considering a sharp interface of a viscous gravity current separating two fluids during its
propagation, the volume of fluid (VOF) method can be employed, which has been a widely
used numerical method for two-phase flows. The capillary effects, which are neglected
in low-dimensional models, are constructed by the continuous surface force model. The
incompressible version of the VOF method is as follows (Hirt & Nichols 1981):

∇ · u = 0, (2.21)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + μ∇2u + ρg + σ∇ ·

( ∇α

|∇α|
)

∇α, (2.22)

∂α

∂t
+ ∇ · (uα) + ∇ ·

[
α(1 − α)

(
C|u| ∇α

|∇α|
)]

= 0, (2.23)

where u and p are the uniform velocity and pressure fields, α is the phase fraction and C
is an artificial compressed factor to ensure a numerically sharp interface. Furthermore,
turbulence effects may have a significant impact on the two-phase flow behaviour as
the flow reaches higher Reynolds numbers, which, however, are neglected in this study
of viscous gravity currents at low Reynolds numbers. Therefore, we do not consider
turbulence modelling.

3. Non-dimensionalization

To construct a curvilinear surface, we consider a linear–exponential shape featuring a
single peak, represented by f (x) = ax e−bx and f (r) = ax e−br, for both two-dimensional
and axisymmetric propagation, and then broaden to a simple sinusoidal surface with
multiple peaks, represented by f (x) = a[1 − cos(λx)] and f (r) = a[1 − cos(λr)], for
which viscous fluids eventually stop, no matter how much volume is released. For
generality, we carry out non-dimensionalization to enable a fundamental understanding
of the flow system.

3.1. Two-dimensional propagation
We use the following scalings for two-dimensional linear–exponential surfaces:

Sx = 1/b, Sh = a/b, St = b/(βa3) (3.1a–c)

and the following scalings for sinusoidal surfaces

Sx = 1/λ, Sh = A, St = 1/(βλ2A3), (3.2a–c)

where

x = XSx, h = HSh, t = TSt. (3.3a–c)
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Finite-volume viscous fluid over curvilinear surfaces

Subsequently, we derive a unified non-dimensional model

∂H
∂T

− ∂

∂X

[
H3

(
∂H
∂X

+ dF
dX

)]
= 0, (3.4)

∫ L

0
H dX = M, (3.5)

(
∂H
∂X

+ dF
dX

)∣∣∣∣
X=0

= 0, (3.6)

H(L, T) = 0, (3.7)

H(X, 0) =
{

H0 0 ≤ X ≤ X0

0 X > X0,
(3.8)

X0 = M/H0. (3.9)

Accordingly, the non-dimensional forms of the two-dimensional linear–exponential and
sinusoidal surfaces are expressed as F(X) = X e−X and F(X) = 1 − cos(X).

From the non-dimensional model, the flow system is governed by two dimensionless
parameters, M and H0. Therein, M represents the non-dimensional volume of the released
viscous fluid and H0 determines the non-dimensional initial height of the released volume.
Moreover, the M for both two-dimensional linear–exponential and sinusoidal surfaces is
defined as

M =
{

qb2/a F(X) = X e−X

λq/A F(X) = 1 − cos(X).
(3.10)

Because the volume of the two-dimensional linear–exponential surface, Ae, and the
volume of one wavelength on the two-dimensional sinusoidal surface, As, are calculated
as

Ae = a
∫ +∞

0
x e−bx dx = a/b2, (3.11)

As = A
∫ 2π/λ

0
[1 − cos(λx)] dx = 2πA/λ, (3.12)

M can be reconstructed as

M =
{

q/Ae F(X) = X e−X

2πq/As F(X) = 1 − cos(X),
(3.13)

indicating that M represents the two-dimensional volume ratio between the released
viscous fluid and the two-dimensional linear–exponential or sinusoidal surface.

3.2. Axisymmetric propagation
Using the same scalings as in two-dimensional propagation for both curvilinear surfaces,
we obtain

Sr = 1/b, Sh = a/b, St = b/(βa3), (3.14a–c)

Sr = 1/λ, Sh = A, St = 1/(βλ2A3), (3.15a–c)
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where

r = RSr, h = HSh, t = TSt, (3.16a–c)

and thus the non-dimensional model for axisymmetric propagation is

∂H
∂T

− 1
R

∂

∂R

[
RH3

(
∂H
∂R

+ dF
dR

)]
= 0, (3.17)

2π

∫ L

0
RH dR = M, (3.18)

(
∂H
∂R

+ dF
dR

)∣∣∣∣
R=0

= 0, (3.19)

H(L, T) = 0, (3.20)

H(R, 0) =
{

H0 0 ≤ R ≤ R0

0 R > R0,
(3.21)

R0 =
√

M/(πH0). (3.22)

Accordingly, the non-dimensional axisymmetric linear–exponential and sinusoidal
surfaces are expressed as F(R) = R e−R and F(R) = 1 − cos(R).

Then, similar to the two-dimensional propagation, the dimensionless parameter M
governs the flow system and the dimensionless parameter H0 determines the initial
condition. For axisymmetric linear–exponential and sinusoidal surfaces, the definition of
M is written as

M =
{

qb3/a F(R) = R e−R

λ2q/A F(R) = 1 − cos(R).
(3.23)

Because the three-dimensional volume of the axisymmetric linear–exponential surface,
Ve, is calculated as

Ve = 2πa
∫ +∞

0
r2 e−br dr = 4πa/b3, (3.24)

and the annular volume of the first wavelength on the axisymmetric sinusoidal surface, Vs,
which corresponds to [0, 2π/λ], is calculated as

Vs = 2πA
∫ 2π/λ

0
r[1 − cos(λr)] dr = 4π3A/λ2, (3.25)

M can be reconstructed as

M =
{

4πq/Ve F(R) = R e−R

4π3q/Vs F(R) = 1 − cos(R),
(3.26)

namely the three-dimensional volume ratio between the released viscous fluid and the
axisymmetric linear–exponential or sinusoidal surface.
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Figure 2. Temporal evolution of a viscous fluid over a two-dimensional linear–exponential surface under
different release volumes and initial lengths. Panels show (a) M = 0.03, X0 = 0.3; (b) M = 0.03, X0 = 0.9;
(c) M = 0.09, X0 = 0.3; (d) M = 0.09, X0 = 0.9.

4. Viscous gravity currents over curvilinear surfaces

This study aims to explore the evolution of viscous gravity currents over curvilinear
surfaces before they eventually reach a steady state. We numerically solve the
low-dimensional models and compare their performance with results over horizontal
straight surfaces.

4.1. Linear–exponential surface
For linear–exponential surfaces, the non-dimensional peak is located at X = 1 and R = 1
for both types of propagation. The non-dimensional vacant volume on the left side of
the peak, denoted as Aleft for two-dimensional propagation and Vleft for axisymmetric
propagation, is calculated as

Aleft = e−1 −
∫ 1

0
X e−X dX ≈ 0.104 (4.1)

Vleft = (π/e) − 2π

∫ 1

0
R2 e−R dR ≈ 0.147. (4.2)

Based on the above, we classify the initial conditions of the released viscous fluid into
three cases. We take two-dimensional propagation as an example: case 1 (M < 0.1, X0 <

1, the released volume is less than the left vacant volume and does not reach the peak);
case 2 (M > 0.1, X0 < 1, the released volume is larger than the left vacant volume but still
does not exceed the peak); and case 3 (X0 ≥ 1, the released volume surpasses the peak).
In the following sections, we discuss the three cases individually.

We begin by examining case 1, where two non-dimensional volumes, M = 0.03 and
M = 0.09, are released. As illustrated in figure 2, the released volume of M = 0.03
gradually deforms from its initial square and accumulates in the left vacancy. Therein, at
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Figure 3. Comparison of the current front and height at the origin between a horizontal straight surface and
a two-dimensional linear–exponential surface under different release volumes and initial lengths. Panels show
(a,c) M = 0.03; (b,d) M = 0.09; solid line, linear–exponential surface; dashed line, horizontal straight surface.

X0 = 0.3, the viscous fluid reaches its maximum depth, forming a horizontal free surface.
In contrast, at X0 = 0.9, some of the viscous fluid adheres to the linear–exponential
surface, leading to the shallowest liquid depth. When the released volume increases to
M = 0.09, more viscous fluid fills the left vacancy, and the differences in the current
profiles due to initial lengths are largely diminished. In addition, the current of X0 = 0.9
bypasses the peak at T = 1000. This indicates that the initial length is important to
determine whether the viscous fluid can cross the peak or not, even if the released volume
is less than the left vacancy.

We now analyse the behaviour of the current front, XF. As shown in figure 3, for XF
over the linear–exponential surface at M = 0.03, the values corresponding to all three
initial lengths quickly stabilize and remain below 1. This suggests that the evolution of
the viscous fluid reaches a steady state without surpassing the peak. At M = 0.09, the XF
of X0 = 0.9 surpasses the peak position at X = 1. This result aligns with the observation
in figure 2, showing the current front moving beyond the peak. Moreover, compared with
the XF over a horizontal straight surface, the values over the linear–exponential surface
are notably smaller, reflecting the hindering effect of the peak on the linear–exponential
surface.
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Figure 4. Temporal evolution of a viscous fluid over a two-dimensional linear–exponential surface under
different release volumes and initial lengths. Panels show (a) M = 0.12, X0 = 0.3; (b) M = 0.12, X0 = 0.9;
(c) M = 0.18, X0 = 0.3; (d) M = 0.18, X0 = 0.9.

We turn our attention to the current height at the origin, HX=0. At M = 0.03, the values
for all three initial lengths increase, indicating a gradual accumulation of viscous fluid in
the left vacancy. When the released volume increases to M = 0.09, the value for X0 = 0.3
shows a sharp rise followed by a gradual decline. This behaviour reflects the process where
the viscous fluid rapidly reaches its maximum height at the origin after release, then slowly
decreases in depth as the fluid spreads to the right. This phenomenon is not observed for
initial lengths X0 = 0.6 and X0 = 0.9 because X0 = 0.3 corresponds to the highest initial
height and possesses the greatest potential energy, which accelerates the collapse of the
viscous fluid. In contrast, over horizontal straight surfaces, the values of HX=0 decreases
monotonically, as the fluid consistently propagates to the right.

We continue to focus on case 2, where the released volume exceeds the left vacancy,
but its initial length has not yet reached the peak. We increase the released volume to
M = 0.12 and M = 0.18, as depicted in figure 4. In contrast, at M = 0.12, similar to what
was observed at M = 0.09, the current forms horizontal free surfaces on the left, becoming
even more pronounced due to the larger released volume. As the released volume increases
to M = 0.18, the current front bypasses the peak, indicating that the volume is now
considerably larger than the left vacancy, allowing the fluid to bypass the peak entirely.

Figure 5 presents the behaviour of XF and HX=0 in case 2. For XF, at M = 0.12, only the
current with an initial length of X0 = 0.9 manages to bypass the peak, and at M = 0.18,
all three initial lengths successfully bypass the peak, indicating that the increased release
volume has a significant impact on overcoming the hindering effect of the peak. For HX=0,
similar to case 1, the trend showing a rapid initial increase, followed by a gradual decrease,
becomes more pronounced as M increases, due to the higher potential energy involved.

In case 2, over horizontal straight surfaces, the XF for three initial lengths converge
closely, suggesting that the influence of the initial square shape has been largely
eliminated. This result is particularly evident at M = 0.18, because the flow system
approaches a self-similar state more quickly as the release volume increases (Ball &
Huppert 2019).
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Figure 5. Comparison of the current front and height at the origin between a horizontal straight surface and
a two-dimensional linear–exponential surface under different release volumes and initial lengths. Panels show
(a,c) M = 0.12; (b,d) M = 0.18; solid line, linear–exponential surface; dashed line, horizontal straight surface.
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Figure 6. Temporal evolution of a viscous fluid over a two-dimensional linear–exponential surface under
different release volumes and initial lengths. Panels show (a) M = 0.2, X0 = 1.2; (b) M = 0.4, X0 = 1.2.

We finally study case 3, where the initial length exceeds the peak. We increase the
release volumes to M = 0.2 and M = 0.4. As shown in figure 6, at the beginning, the
initial amount of viscous fluid does not completely fill the left vacancy. As time progresses,
the viscous fluid gradually evolves to fill the left vacancy, forming horizontal surfaces, and
simultaneously propagates to the right and flows downslope.
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Figure 7. Comparison of the current front and height at the origin between a horizontal straight surface and
a two-dimensional linear–exponential surface under different release volumes and initial lengths. Panels show
(a,c) M = 0.2; (b,d) M = 0.4; solid line, linear–exponential surface; dashed line, horizontal straight surface.

Figure 7 illustrates the behaviour of XF and HX=0 in case 3. At M = 0.2, there is a
noticeable difference in XF across the three initial lengths over the linear–exponential
surface. This difference is particularly significant at X0 = 1.1, where the contrast between
the linear–exponential and horizontal straight surfaces becomes more pronounced. The
shorter initial lengths cause more fluid to accumulate in the left vacancy, thereby reducing
the volume available to propagate to the right. As the released volume increases to
M = 0.4, the effect of the initial length diminishes considerably for both surfaces.

Initially, XF over the linear–exponential surface is shorter than on the horizontal
straight surface, but as time progresses, this trend reverses. Eventually, XF on the
linear–exponential surface surpasses that of the horizontal straight surface. This occurs
because, at the beginning, the fluid must transition from its initial square shape to a
monotonic profile, with the left side higher than the right. This deformation process slows
the initial propagation compared with the horizontal straight surface. However, once the
profile stabilizes, the fluid accelerates downhill under the influence of gravity, eventually
overtaking the propagation over the horizontal surface.

As for HX=0, the values at M = 0.2 increase monotonically due to the low initial height.
At M = 0.4, the trend is similar to previous cases, where the HX=0 rapidly increases and
then gradually decreases. Overall, the collapse of the upper right corner of the initial
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Figure 8. Temporal evolution of a viscous fluid over an axisymmetric linear–exponential surface under
different release volumes for M = 0.08 (a), 0.12 (b), 0.8 (c).

square configuration causes both XF and HX=0 to rise. As the fluid accumulates in the
left vacancy and begins to propagate to the right, XF increases monotonically while HX=0
decreases as the system evolves.

The axisymmetric propagation over the linear–exponential surface follows the same
mechanism as two-dimensional propagation, due to the shared principles governing both
cases. Figure 8 shows the evolution of the axisymmetric propagation as the released
volume increases. When the released volume is smaller than the central cavity, the viscous
fluid converges towards the centre, forming a horizontal plane without overflowing the
peak. As the volume increases, the fluid surpasses the annular peak and begins to flow
downward, gradually spreading across the entire linear–exponential surface. With further
volume increases, part of the fluid remains trapped in the central cavity, while the rest
continues to flow downward, eventually reaching the nearly horizontal section of the
surface.

In axisymmetric propagation, viscous fluids typically remain laminar at low Reynolds
numbers. However, as the fluid flows over a curvilinear surface, instabilities may develop,
leading to phenomena such as flow separations and finger-like patterns. These instabilities
result from the combined effects of gravity, viscous forces, inertial forces and surface
tension. An increase in flow velocity or surface curvature, or a decrease in fluid
viscosity, can cause the liquid film to thin, transitioning the flow from steady to unsteady.
Furthermore, rough or abruptly changing surface curvatures can introduce additional
perturbations, further amplifying flow instability.

4.2. Sinusoidal surface
We have examined the current evolution over linear–exponential surfaces, discussing
typical cases based on the relationship between the initial condition of the released
viscous fluid and the peak location. In this section, we shift our focus from the local
issue of whether the released fluid can bypass the peak to a broader emphasis on global
propagation. We extend our study to the propagation over sinusoidal surfaces.

Figure 9 illustrates the evolution of viscous gravity currents over a two-dimensional
sinusoidal surface with two released volumes. At M = 2π, as time progresses, the released
fluid begins to simultaneously fill both sides of the adjacent troughs. For an initial length
of X0 = 1.5π, most of the fluid accumulates in the left trough, resulting in a noticeable
difference in the horizontal free surface levels between the left and right troughs. This
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Figure 9. Temporal evolution of a viscous fluid over a two-dimensional sinusoidal surface under different
release volumes and initial lengths. Panels show (a) M = 2π, X0 = 1.5π; (b) M = 2π, X0 = 2.5π; (c) M = 6π,
X0 = 1.5π; (d) M = 6π, X0 = 2.5π.

indicates that for smaller released volumes, there may be an imbalance in fluid distribution
between adjacent troughs. When the initial length increases to X0 = 2.5π, the horizontal
free surfaces in both troughs gradually become more uniform. As the released volume
increases to M = 6π, the viscous fluid fully fills the first two troughs, and the remaining
fluid flows into the third trough. At this stage, the influence of the initial shape is no longer
significant, as evidenced by the similar current profiles across all troughs.

Figure 10 provides a quantitative comparison of XF and HX=0 between sinusoidal and
horizontal straight surfaces. At M = 2π, a clear difference in the evolution of XF emerges
between the two surfaces. Over the horizontal straight surface, XF increases rapidly and
consistently, displaying a monotonic growth. In contrast, over the sinusoidal surface, XF
quickly reaches a steady state for all three initial lengths, as the second peak of the
sinusoidal surface acts as a barrier that hinders further propagation of the fluid.

As the released volume increases to M = 6π, XF rises significantly on both surfaces.
Notably, during the early stages of propagation, the fluid over the sinusoidal surface may
briefly advance further than on the horizontal surface, especially when the initial length
begins on a downslope. However, as the fluid progresses upslope, its propagation inevitably
decelerates. Without a pressure source at the bottom of the trough, the fluid must first fill
the preceding trough entirely before it can pass the peak and flow into the next trough. This
results in a non-monotonic XF trend over the sinusoidal surface, where the front alternates
between slower upslope movement and faster downslope movement, eventually becoming
confined by the troughs. For HX=0 at M = 2π, the trend resembles that of case 1 over
the linear–exponential surface, where the limited fluid volume primarily fills the left-hand
space. At M = 6π, however, the fluid rapidly accumulates on the left, causing the liquid
depth to increase before gradually decreasing as the fluid propagates to the right, following
a pattern similar to that observed in cases 2 and 3.

Figure 11 illustrates the axisymmetric propagation of viscous gravity currents over a
sinusoidal surface. As the released volume expands outward from the centre over time,
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Figure 10. Comparison of the current front and height at the origin between a horizontal straight surface
and a two-dimensional sinusoidal surface under different release volumes and initial lengths. Panels show
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Figure 11. Temporal evolution of a viscous fluid over an axisymmetric sinusoidal surface under different
release volumes for M = 155 (a), 465 (b).

the propagation is initially rapid, particularly between T = 0 and T = 5. For a smaller
released volume (M = 155), the expansion rate decreases significantly after the initial
phase, whereas for a larger released volume (M = 465), the fluid continues to propagate
outward. The behaviour of axisymmetric propagation closely parallels that observed in
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Situation Surface parameter Released volume

Exp1 a = 1, b = 10 m−1 x0(r0) = 0.06 m, h0 = 0.01 m
Exp2 a = 1, b = 10 m−1 x0(r0) = 0.095 m, h0 = 0.01 m
Exp3 a = 1, b = 10 m−1 x0(r0) = 0.15 m, h0 = 0.01 m
Sin A = 0.0025 m, λ = 40π m−1 x0(r0) = 0.05 m, h0 = 0.02 m

Table 1. Parameter of curvilinear surfaces in CFD simulations.

0.8

0.6

0.4

H
 +

 F

0.2

0.8

0.6

0.4

H
 +

 F

0.2

0.8

0.6

0.4

H
 +

 F

0.2

16

12

8

H
 +

 F

4

0 64

X (π)

X

X

X

2

0 321

0 321

0 321

Current profile

Linear-exponential surface

Current profile

Sinusoidal surface

(b)

(a)

(c)

(d )

Figure 12. Qualitative comparison between the numerical solutions of low-dimensional models and CFD
results for two-dimensional propagation over linear–exponential and sinusoidal surfaces (t = 1 s).

two-dimensional propagation, displaying similar stages of rapid initial spread followed by
gradual deceleration.

5. Computational fluid dynamics validation

We validate the low-dimensional models by comparing their predictions of the current
profile and front with CFD simulations conducted using the open-source software
OpenFOAM�. For two-dimensional propagation, we design a numerical domain where
the top and right boundaries are set to atmospheric pressure, the left boundary is symmetric
and the bottom boundary is no-slip. The mesh near the bottom boundary is refined
to capture viscous dissipation in the boundary layer. For axisymmetric propagation,
the three-dimensional domain is simplified into a two-dimensional profile to reduce
computational costs. Glycerol (μ = 1.5 Pa s; ρ = 1.26 × 103 kg m−3; σ = 0.063 N m−1)
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Figure 13. Qualitative comparison between the numerical solutions of low-dimensional models and CFD
results for axisymmetric propagation over linear–exponential and sinusoidal surfaces (t = 1 s).

is used as the viscous fluid, initially placed in a square and cylinder with the remaining
space filled with air. Upon release, the glycerol propagates gradually as a viscous gravity
current over a curvilinear surface.

We test four different initial conditions: three for a linear–exponential surface (cases
1, 2 and 3) and one for a sinusoidal surface. Table 1 lists the surface parameters and the
released volumes of glycerol. The Reynolds number is a key criterion for a viscous gravity
current. The initial Reynolds number is defined as Re = Uh0/ν, where the characteristic
velocity is U = βh3

0/x0 (Ungarish 2020). Based on this definition, the initial Reynolds
numbers for the test cases are 1.13, 0.72, 0.45 and 21.78, respectively, placing them within
the viscous–buoyancy regime.

Figures 12 and 13 show a qualitative comparison between the numerical solutions
and CFD results for current profiles at t = 1 s in two-dimensional and axisymmetric
propagation over curvilinear surfaces. In each case, the numerical solutions and CFD
results visually align well. Typical flow patterns predicted by the numerical solutions, such
as a horizontal free surface in case 1, slight overshooting of the peak in case 2, downslope
flow in case 3 and traversal of two peaks on the sinusoidal surface, are all confirmed by
CFD results.

Figure 14 presents the quantitative validation of the current front. In terms of
XF, the numerical solutions and CFD results show excellent agreement in each case,
although the numerical solutions slightly overestimate current propagation, a trend also
observed in studies of horizontal straight surfaces (see Appendix A). This discrepancy
is attributed to the full accounting of viscous dissipation and capillary effects in the
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Figure 14. Quantitative CFD validation of current fronts for both propagation over linear–exponential and
sinusoidal surfaces. Solid curve, numerical solution; symbols, CFD result.

CFD results. In conclusion, the above qualitative and quantitative comparisons validate
the low-dimensional models for predicting the evolution of viscous gravity currents over
curvilinear surfaces.

6. Summary

In this study, we have focused on the evolution of a finite volume of viscous fluid at low
Reynolds number over rigid curvilinear surfaces. To characterize the curvilinear surfaces,
we consider linear–exponential and sinusoidal shapes, with single and multiple peaks,
respectively. Based on lubrication theory, we establish approximate low-dimensional
models and validate them with CFD simulation using the VOF method.

We reveal a significant dimensionless parameter M that governs the flow system. The
physical interpretation of M is straightforward, representing the volume ratio between the
released viscous fluid and the curvilinear surface, so reflecting the interaction between
them. When M is small, it is difficult for the released viscous fluid to bypass the
peaks on linear–exponential or sinusoidal surfaces, resulting in a constrained horizontal
free surface. As M increases, the fluid can bypass the peaks and flow downslope on
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linear–exponential surfaces or encounter subsequent peaks on sinusoidal surfaces. It is
expected that, when M is sufficiently large while H0 � F(X)max, the effect from the
curvilinear surface will become negligible, making fluid propagation quite similar to the
performance over horizontal straight surfaces.

Further extending the curvilinear surfaces to more generalized power–exponential
surfaces (see Appendix B) or arbitrary continuous surfaces by an expansion or
transformation of the Fourier series (see Appendix C), the dimensionless number M still
holds and the shape parameters of curvilinear surfaces will jointly govern the flow system.
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Appendix A. Viscous gravity currents over horizontal straight surfaces

A.1. Two-dimensional propagation
The effectiveness of the numerical solution and CFD simulation are first validated by
the classical similarity solutions for viscous gravity currents over horizontal straight
surfaces. For two-dimensional propagation, the numerical solution can be obtained from
the following low-dimensional model (Smith 1969; Huppert 1982):

∂h
∂t

− β
∂

∂x

(
h3 ∂h

∂x

)
= 0. (A1)

For CFD simulation, we numerically simulate the propagation of glycerol in a
two-dimensional domain with an initial volume of 5 cm × 1 cm, corresponding to an initial
Reynolds number of 1.36.

Figure 15 shows a visual comparison of the current profile. In (a), it can be observed
that the numerical solution agrees very well with the similarity solution, although slightly
overestimates the current propagation. This overestimation is consistent with previous
findings, which suggest that in the early-time stage, the numerical solution takes time
to converge to the similarity solution, gradually removing the effect of the initial shape
of the released viscous fluid (Ball & Huppert 2019). In contrast, (b) reveals that the CFD
result predicts shorter propagation. Unlike the low-dimensional model, which predicts a
singularity at the current tip with the form h ∼ (xf − x)1/3 (Huppert 1982; Ungarish 2020),
the current tip in the CFD result appears crooked due to the capillary effects, allowing the
moving contact angle between the tip and the bottom surface to be reproduced.

Figure 16 displays the comparison of the current front, confirmed by mesh-independent
tests with three different mesh numbers, denoted by N. The difference between the CFD
results and the similarity solution can be attributed to viscous dissipation during vertical
deformation and within the boundary layer. Additionally, capillary effects may limit the
current propagation and reduce the measured position of the front. These influencing
factors are not accounted for in the low-dimensional model but fully captured by the
Navier–Stokes equations-based VOF method.
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Figure 15. Comparison of current profile for two-dimensional propagation over a horizontal straight surface
(t = 1 s). (a) Similarity and numerical solutions; (b) CFD results.
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Figure 16. Validation of current front for two-dimensional propagation over a horizontal straight surface.

A.2. Axisymmetric propagation
We next examine the axisymmetric propagation over horizontal straight surfaces, for which
the low-dimensional model is given by (Huppert 1982)

∂h
∂t

− β
1
r

∂

∂r

(
rh3 ∂h

∂r

)
= 0. (A2)

For CFD simulations, they are conducted within this two-dimensional profile of the
three-dimensional cylindrical domain (h0 = 0.05 m; r0 = 0.01 m). Figures 17 and 18
compare the current profile and front between the similarity solution, numerical solutions
and CFD results, showing that all three exhibit similar behaviour to that observed in
two-dimensional propagation. Therefore, this demonstrates the effectiveness of both the
numerical solution and CFD simulation in studying viscous gravity currents, suggesting
their suitabilities for numerical investigations of curvilinear surfaces.

Appendix B. Two-dimensional generalized power–exponential surfaces

We further define the generalized two-dimensional power–exponential surface as

f (x) = axm exp(−bxn), (B1)
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Figure 17. Comparison of current profile for axisymmetric propagation over a horizontal straight surface
(t = 1 s). (a) Similarity and numerical solutions; (b) CFD results.
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Figure 18. Validation of current front for axisymmetric propagation over a horizontal straight surface.

where the parameters m (m > 1) and n (n > 1) determine the single-peak shape of a
power–exponential surface.

Using the following scalings,

Sx = (1/b)1/n, Sh = a(Sx)
m, St = (Sx)

2−3m/(βa3), (B2a–c)

we defined the generalized non-dimensional model

∂H
∂T

− ∂

∂X

[
H3

(
∂H
∂X

+ dF
dX

)]
= 0, (B3)

∫ L

0
H dX = M, (B4)

(
∂H
∂X

+ dF
dX

)∣∣∣∣
X=0

= 0, (B5)

H(L, T) = 0, (B6)
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H(X, 0) =
{

H0 0 ≤ X ≤ X0

0 X > X0,
(B7)

X0 = M/H0. (B8)

The above model keeps the same form as for previous linear–exponential surfaces. In this
generalized case, the non-dimensional form of the power–exponential surface is written as

F(X) = Xm e−Xn
, (B9)

and the definition of M is

M = q
ab−(m+1)/n . (B10)

Because the two-dimensional volume of the generalized power–exponential surface,
Age, is calculated as

Age =
∫ +∞

0
axm exp(−bxn) dx = a

nb(m+1)/n Γ ((m + 1)/n), (B11)

it follows that

M = Γ ((m + 1)/n)

n
q

Age
. (B12)

This result suggests that when a finite-volume viscous fluid is released over an arbitrary
power–exponential surface, the dimensionless parameter M consistently governs the flow
system. Both M and F(X) reflect the influence of shape parameters on current evolution.

Appendix C. Two-dimensional arbitrary continuous surfaces

We extend the sinusoidal surface to arbitrary continuous surfaces. For simplicity, we define
a curvilinear surface consisting of the following components:

f (x) =
N∑

i=1

Ai[1 − cos(λix)]. (C1)

Letting N = 3, the curvilinear surface can be expressed as

f (x) = A1[1 − cos(λ1x)] + A2[1 − cos(λ2x)] + A3[1 − cos(λ3x)]. (C2)

Therein, the first term, A1[1 − cos(λ1x)], is the primary term, and the two subsequent
secondary terms are the high-frequency terms, i.e. λ3 > λ2 > λ1.
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Using the following scalings,

Sx = 1/λ1, Sh = A1, St = 1/(βλ2
1A3

1), (C3a–c)

the same generalized non-dimensional model is derived

∂H
∂T

− ∂

∂X

[
H3

(
∂H
∂X

+ dF
dX

)]
= 0, (C4)

∫ L

0
H dX = M, (C5)

(
∂H
∂X

+ dF
dX

)∣∣∣∣
X=0

= 0, (C6)

H(L, T) = 0, (C7)

H(X, 0) =
{

H0 0 ≤ X ≤ X0

0 X > X0,
(C8)

X0 = M/H0, (C9)

and the non-dimensional form of this curvilinear surface is written as

F(X) = 1 − cos(X) + P2[1 − cos(Q2X)] + P3[1 − cos(Q3X)], (C10)

where

P2 = A2/A1, Q2 = λ2/λ1, (C11a,b)

P3 = A3/A1, Q3 = λ3/λ1, (C12a,b)

i.e. the amplitude and the frequency ratios between the secondary terms to the primary
term.

Here, M is defined as
M = 2πq/As1, (C13)

where As1 is the two-dimensional volume of the primary term

As1 = A1

∫ 2π/λ1

0
[1 − cos(λ1x)] dx = 2πA1/λ1. (C14)

The above result suggests that, for an arbitrary continuous surface composed of
multiple sinusoidal superpositions, the flow system is still governed by the dimensionless
released volume M. However, similar to generalized power–exponential surfaces, the shape
parameters of the curvilinear surface, F(X), such as Pi and Qi in this case, also influence
the flow system.
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