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Generalized Goldberg Formula

Antonio De Nicola and Ivan Yudin

Abstract. In this paper we prove a useful formula for the graded commutator of the Hodge codif-
ferential with the left wedge multiplication by a fixed p-form acting on the de Rham algebra of a
Riemannian manifold. Our formula generalizes a formula stated by Samuel I. Goldberg for the case
of 1-forms. As first examples of application we obtain new identities on locally conformally Kéhler
manifolds and quasi-Sasakian manifolds. Moreover, we prove that under suitable conditions a cer-
tain subalgebra of differential forms in a compact manifold is quasi-isomorphic as a CDGA to the
full de Rham algebra.

1 Introduction

Since the beginnings of differential geometry the importance of formulae that relate
various differential objects on a manifold has been apparent. Let us mention among
others the Bianchi identities, Weitzenbock formulae, and Frolicher-Nijenhuis calcu-
lus. It should be noted that all the above results can be obtained by elementary, al-
though long and tedious, computations. Their importance lies in the psychological
and practical plane, as they permit us to work with the quantities in question without
undergoing error-prone calculations, thus forming a swiss-army-knife kit for a differ-
ential geometer. In this article we prove a formula that we hope will deserve a place
in the kit.

Let (M, g) be a Riemannian manifold. As usual, Q*(M) denotes the de Rham
algebra of differential forms on M and 8: Q*(M) — Q*7'(M) denotes the Hodge
codifferential. Given a k-form w, we denote by ¢,, the operator on Q* (M) defined by
€00 = w0, for every 6 € Q! (M). In Theorem 3.2, we prove the following expression
for the graded commutator of § with ¢, in terms of Frolicher—Nijenhuis operators (to
be defined later)

(1.1) [8,6(‘,] =€s0w — Lw# - (—l)kiwo.

Here, 0* € Q¥"1(M, TM) denotes the vector valued form obtained from w € Q¥ (M)
by metric contraction on the last coordinate, and w® € Q% (M, TM) is a vector valued
k-form defined in Section 3.
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Let & be a vector field and # its metric dual 1-form. In Corollary 3.3 we show that
in this case Formula (1.1) takes the form

(1.2) {s, en} +Lg=€sp+ i(ﬁzg)#’

where the curly bracket denotes the anticommutator. Equation (1.2) was stated by
Goldberg in [9] and [10, p. 109]. In both cases, Goldberg refrained from explicitly
proving this result. Nevertheless, he proved a partial case of (1.2) on [10, pp. 110-111]
under the condition that & generates a flow of conformal transformations. The absence
of a published proof may be one of the reasons that equation (1.2) is not widely known.

Let us give a simple example of use of (1.1). Let (M, g, J) be a Kahler manifold and
let Q(X,Y) = g(X,]Y) be its fundamental 2-form. Then Q* = ] is parallel and Q
is closed and coclosed. One gets easily that the associated vector valued 2-form Q°
vanishes (see equation (3.9)). Thus, (1.1) becomes

(1.3) [6,ea] + L5 =0.
Upon complexification of Q* (M), we can write d = 9 + 0 with

0: QPI(M) — QFY(M),  0:QPI(M) — QPTH(M).
Since i;ff = (p — q)ip for all f € QP1(M), we get that

LyB =i, d]B = [ij, 0+ 0]B = -i(0 - 2)B.
Thus,

[6,e0] - d =0,

where d° = i(0 - 9). This is of course a well-known formula in Kihler geometry, but
usually it takes several pages of local computations to prove it.
In Theorem 3.4 we show the importance of the condition

(1.4) [0,€0] + Lur =0

for a p-form w. Namely, we prove that if (1.4) holds for all w € S, where S is a subset of
the de Rham algebra Q* (M) of a Riemannian manifold (M, g), then the subalgebra

Qp (M)={B|Lyf=0YweS}]

of Q* (M) is quasi-isomorphic to Q* (M) as a commutative differential graded alge-
bra (CDGA), with the quasi-isomorphism given by the embedding. Then the coho-
mology ring of Q7. | (M) is isomorphic to the de Rham cohomology ring of M. Note
that in the case where M is Kihler manifold, the above-mentioned quasi-isomorphism
is the first step in the proof of formality of Kihler manifolds given in [4].

Employing our formula, in Theorem 3.5 we give a complete characterization of
all forms w that satisfy the condition (1.4). Namely, we prove that a p-form w on a
Riemannian manifold (M, g) satisfies (1.4) if and only if one of the following cases
holds:

(a) p=1and v is a Killing vector field;
(b) p>2and w is parallel.
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In Section 4 we consider the case of locally conformal Kéahler manifolds. By ap-
plying formula (1.1), we get the following result, which in a sense generalizes equa-
tion (1.3). Let (M, ], g) be a locally conformal Kihler manifold with fundamental
2-form Q, Lee 1-form 0, and anti-Lee 1-form #. Then for any p-form 8 we have

[0,ealp=(p—m)nnp—Lip+Qnigp.

Finally, in Section 5 we show how our formula works in the context of quasi-
Sasakian manifolds. In Theorem 5.1 we prove the following result. Let (M, ¢, &, 1, g)
be a quasi-Sasakian manifold and let A := —¢ o V&. Then
(1.5) [0,e0] = —tr(A)e, — Lg + 2€yia.

The special case of formula (1.5) for Sasakian manifolds was first proved by Fujitani [8]
by complicated computation in local coordinates. This formula was crucial for the
proof of the main result in our recent article [3] on the hard Lefschetz theorem for
Sasakian manifolds. We hope that (1.5) will allow us to obtain a suitable generalization
of the hard Lefschetz theorem for quasi-Sasakian manifold.

2 Preliminaries

In this section we remind the reader of some notions and results of Frolicher-Nijen-
huis calculus [6,7], which will be used later.

A commutative differential graded algebra (A, d) (CDGA for short) is a graded al-
gebra A = @y Ak over R such that for all x € A and y € A; we have

xy = (-D)*yx,
together with a differential d of degree one such that d(xy) = d(x)y + (-1)*xd(y)
and d? = 0. Let M be a smooth manifold of dimension 7. Then the direct sum

Q*(M) := énk(M)

is a CDGA with the multiplication given by the wedge product A and the differential
given by the exterior derivative d: Q¥(M) — QF*1(M).
Let (A,d) be a CDGA. We say that a linear operator D: A — A is a derivation of
degree p if D(Ag) c A, for all k, and
D(xy) = D(x)y + (-1)**xD(y)
forallx € Ay and y € A;.
We write QX (M, TM) for the space of skew-symmetric T M-valued k-forms on M.

Denote by X, the permutation group on {1,...,m}. For k and s such that k + s = m,
let Shy  be the subset of (k, s)-shuffles in 2,,. Thus for o € Shy s, we have

(1) <o(2) <---<a(k), olk+1)<---<a(k+s).
Let ¢ € OF (M, TM). We define the operator iy of degree p —1on Q* (M) by
(i¢a))(Y1, ey Yp+k—1) =
Y (D)7@(¢(Yoqy- > Ya(p))s Ya(perys - > Ya(pekon) )

geShy k1
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where w € QF(M). The Lie derivative £ is an operator of degree p on Q*(M)
defined as the graded commutator [ig, d].
We now recall the fundamental theorem of Frolicher—Nijenhuis calculus.

Theorem 2.1 ([6]) Let D:Q*(M) — Q* (M) be a derivation of degree p. Then there
are unique ¢ € QP (M, TM) and y € QP*' (M, TM) such that D = L + iy,.

As a consequence of the above theorem, we get the following:

(a) Ifa TM-valued p-form ¢ is different from 0, then iy # 0.
(b) IfD:Q* (M) - Q*(M) isaderivation such that [ D, d] = 0, then there is a unique
¢ € QF (M, TM) such that D = L.

For a k-form w € Qf(M) and TM-valued p-form ¢, we define the TM-valued
(p + k)-form wa¢ by

(0Ad) (Yoo s V) = 2 (D)7 @(Yo(1)s - o5 Yo(u) ) B(Yo(ke1)s - - > Yo(kep))-

oeShy,,
Following [7], we will define the contraction (sometimes called trace) operator
C: QP (M, TM) — QP7Y(M)

as follows. Every ¢ € QF (M, TM) can be written locally as a finite sum ¥ ;.; w;AX;,
where X; are vector fields and w; € QP (M). Then

C(¢) = Z:IiXiwi‘

One can check that C(¢) does not depend on the choice of the local presentation
for ¢. We will use the following property [7, eq. (2.12)]:

2.1) C(w A ¢) = (-1)FwnC(¢) + (-1) kP
for any w € QF(M) and ¢ € QF (M, TM). Given w € Q% (M), we define
€0: QF (M, TM) — QFF(M, TM)

¢ — wAd.

For an operator A: Q* (M) - Q*(M) and w € Q* (M), we abbreviate the composi-
tion €, o Aby w A A. It is easy to check that w A iy = iypg-
We will need the following fact.

Proposition 2.2 Let M be a smooth manifold, w € Q% (M), and ¢ € QP (M, TM).
Then

© ALy =Lung = (D Fi(aoyng-
Proof The computation
£’w/\¢ = [iw/\¢sd:| = [w A l¢’d] = (_1)k+p(dw) A l¢ TwAn L‘P

proves the claim. ]
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3 Generalized Goldberg Formula

In this section we prove the main result of the article. Let M be a smooth manifold
equipped with a Riemannian metric g and let V denote the corresponding Levi-Civita
connection. Using V, we can define the map

av:Qf (M, TM) - Q' (M, TM)

similarly to the standard exterior derivative, as follows

p+l -
d7¢(N- o Ypu) = T(DTr($(Yi s Yoo Vo))
s=
+ Z(_l)s+t¢([YS)Yt]’Y])---7/Y\S)--~)/Y\ta--')Yp+l)-
s<t

Since for the Levi-Civita connection we have [Y,Z] = VyZ - VY, one can easily
check that

G (@) (Yoo V) = 3 (D (T1,0) (Yiro o2 T Yyt).

+1
1
Moreover, note that dV is related to the Riemann curvature by the formula

(dv)2¢(Y1,...,YP+2)= Z (_I)UR(YU(I)’Ya(Z))(¢(Ya(3)’-~-aYa(p+2)))'

eShy,,
For w € Q¥(M) and ¢ € QP (M, TM), we have
d¥(wng) = (dw)rg + (-1) wr(dV ¢).
Note that for any vector field X € Q°(M, TM), we get
dVX(Y)=vyX.

Hence, dV X = VX. Thus, we can think about V-parallel vector fields as a generaliza-
tion of harmonic functions. For any k-form w and any vector field X, we get

Lxw=Vxw+ iyxw.

In other words Vx = Lx — izvx. This equation suggests the following generalization
of the covariant derivative. Namely, for ¢ € Qf (M, TM), we define

(3-2) V¢ = L¢ - (—I)PidV¢.
We get
w A V¢ =w /\L¢ — WA idV¢ = Lw/\¢ - (—1)P+ki(dw),\¢ - (—l)piwAdV¢
= Lw/\qﬁ - (_1)p+kide¢+(—1)kw/\dV¢> = LW\(# - (_1)P+kidv(w/\¢)
that is,
[N V¢ = va¢.

This equation is a generalization of the property fVx = V sx for the usual covariant
derivative, where f € C*(M) and X € Q°(M, TM).
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The Hodge codifferential is abstractly defined as the Hodge dual of the operator d
on Q. It is well known that given a local orthonormal frame Xj, ..., X,, on U c M,
the following local expression for the codifferential holds

n
d=-Yix,0Vx,-
t=1

Since both ix, and V, are derivations of Q*(U), we see that § is a differential oper-
ator of order 2 on Q*(U), and thus also on Q*(M).

Let w € QP(M). Then [§,€,] is a differential operator of order 1 and of degree
p—1on Q*(M). Thus, it can be expressed in a unique way as a sum €, + V¢ + iy, for
suitable (p —1)-form «, TM-valued (p — 1)-form ¢, and TM-valued (p +1)-form y.
Our aim is to identify «, ¢, and v for a given w.

For w € QP (M), we define w* € QP"1(M, TM) and wV € QF (M, TM) by

M=

(3.3) w* = ¥ (ix,w)AX; wV = Y (Vx,w)AX;.
t=1

-
I

1

It is easy to see that w* and wV do not depend on the choice of the orthonormal
frame Xy, ..., X,. Therefore, w* and w" are well defined. By applying the contraction
operator C to (3.3), we get

(3.4) C(o*) = i i%,w=0,
t=1

(3.5) C(wV) = Zn: ix,Vx,w=-dw.
t=1

Proposition 3.1 Forany w € QF (M), we have d¥ (0*) + (dw)* = wV.

Proof LetXj,...,X,beanorthonormal frame onan open set U in M. By definition
of wV and the Leibniz rule for dV, we get

(3.6) aV(w®) = thjld(ixtw)/\Xt + (-1)P! til ix, WAV X;.

Further,

(3.7) (dw)* = til ix,(dw)rX;.

Note that for every 1 < t < n, we have
d(ixtw) + iXt(dw) = thw = thw + ivxtw.

Therefore, summing (3.6) with (3.7), we get
n n n
dV(w*) + (dw)* = X Vx,0rX; + Y igx,wAX; + (-1)P7 Y ix,wAVX;
t=1 t=1 t=1
n 1 n
=V + Y igx,0nX, + (1) Y ix, AV X,
t=1 t=1

Let us denote the expression

M=

n
ivx,0nX; + (-1)P7 Y ix, oAV X,
t t=1

1

https://doi.org/10.4153/CMB-2016-007-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-007-4

514 A. De Nicola and I. Yudin

by T. Since T = dV (w*) + (dw)* — 0V, we see that T does not depend on the choice
of the orthonormal basis X;, ..., X,, and that T is a tensor on M. Let x € M. Then
there is an local orthonormal frame Xj, ..., X,, on an open neighbourhood of x such
that (VX;), = 0 for every 1 < ¢t < n. Computing T with respect to this basis, we see
that T, = 0. Since x is an arbitrary point of M, we see that T = 0. |

Let us define for every w € Qf (M) the TM-valued form
w® =dv(0*) + V.
Note that by Proposition 3.1 we can write it in two other ways:
(3.8) w® =2dV (0*) + (dw)?,
(3.9) w® =2w" - (dw)*.
Now (3.4) and (3.5) give the following expression for dw in terms of w°:
(3.10) dw = —% C(w®).

We can now prove the announced formula, (1.1), for the commutator of the codiffer-
ential with the left wedge multiplication by a k-form.

Theorem 3.2 Let w € QF (M). Then

(3.11) [6,€0] = €50 — Vr — (-1)Pig,v,
ot using the Lie derivative instead of the covariant derivative,
(3.12) [6,€60] = €50 — Lot — (=1)Pigeo.

Proof Let X be a vector field and w € QP (M). Then
[ixoVx,€u] =[ixs€0] o Vx +ixo[Vx,€o]
=€iyw VXt ixEyyw
= €i,0Vx + [ixs €vygo] + (1) ey wix
= Vigwnx +€ixvyw + (-1)Peyuix
= €iyvxw + Vigonx + (-1)?ig onx-

Now (3.11) follows by substituting X instead of X and summing up over ¢.
Since w* € QP (M, TM), from (3.2) we get

Vot = Loyt — (—l)p_lidV(w#) =L+ (—I)PidV(w#).

Therefore,
[6,6(0] :€5w—£/w# —(—1)p(idV(w#) +in)- |

As a corollary we can get [9, Formula (4)] in Goldberg’s article.

Corollary 3.3  Let & be a vector field on a Riemannian manifold M and let y be its
metric dual 1-form. Then n° = (L¢g)*; that is,

(3.13) {0.€q} + L =€y +i(c gy
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where { -, - } denotes the anti-commutator of operators and (L¢g)* is the metric con-
traction of the (0,2)-tensor L¢g.

Proof We have to check that dV#* + #V = (L;g)*. Since ¥ = & we have for any
vector field Y,

(3.14) (dVr*)(Y) = (dVE)(Y) =Vyé= X g(Xi, vy )Xo,
where X, ..., X, is alocal orthonormal frame on M. Further,
(3.15) v (Y) = gl(vx,n)(Y)Xt = Elg(vxt §Y)X,.

It is well known that

(Leg)(Y,Z2) = g(VyE Z) + (& V2E)
for any vector fields &, Y, and Z. Therefore, adding (3.14) and (3.15), we get

@78+ 17)(Y) = £ (Leg) (Xe V)X = (£49)°(Y), .

Let S be a set of differential forms on M. We will denote by S* the set of vector
valued forms w”, where w € S. Further, we write st# (M) for the intersection of the
kernels of the operators £+ forall w € S.

Recall that a morphism of CDGAs is a morphism of algebras that preserves the
degree and commutes with the differentials. Let f: (A,d) — (B, d) be a morphism
of CDGAs. For every k > 0, the map f induces a morphism between the k-th coho-
mologies

H*(f):H*(A) — H*(B).
If all the morphisms H*( f) are isomorphisms, then f is called a quasi-isomorphism
of CDGA:s.

We have the following theorem that generalizes several known facts.

Theorem 3.4 Let (M, g) be a compact Riemannian manifold. Suppose S ¢ Q* (M)
is such that [,€, ] + L+ = 0 for all w € S. Then the inclusion

J 0%, (M) > Q7(M)
is a quasi-isomorphism of CDGA:s.

Proof Letw €. Since [§,¢€,]+ L, = 0and 8% = 0, we get that
[6,L4¢] = —[8, [4, ew]] =0.

Since the Hodge Laplacian A is the graded commutator of d and &, we have also that
[A, Lye]=0.

Let 8 be a harmonic p-form. We are going to show that 8 € Qiﬁ (M). This will
imply by Hodge theory that j induces a surjection in cohomology. Since [A, £,+] =0
for all w € S, we get immediately that A(L,:f) = 0, i.e,, L,+f is harmonic. But,
since f is closed, we have that £« = di,+ 8 is an exact form. Thus, by Hodge theory,
L+ =0.
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It is left to show that j induces an injection in cohomology. Let f3 € Qi , (M) such
that [8] = 0in H?(M). Then 8 = dG8p, where G is the Green operator for A. We are
going to show that G35 € Qis# (M). For this, it is enough to prove that £ ,+G = GL +
for every w € S. In fact, then

L,+GOf=GoL,+f=0, VwesS.
We have
(3.16) I-GA=Tl,, 1-AG =TI,,

where IT, is the orthogonal projection on the set of harmonic forms. Now we multiply
the equation £ ,+A = AL+ by G on the left and right-hand sides. We get

GL,+AG = GAL +G.
Applying (3.16), we obtain

GL ¢ — GL#IIp = L+ G = TIAL ¢ G.
As we saw above, £+ annihilates harmonic forms, hence £,+I15 = 0. To finish the
proof it is enough to check that Ty £+ = 0. Let « € QF(M). By Hodge theory, we can
write o as g+ ap + o, Where a4 is in the image of 8, a4 is in the image of d, and a4 is
harmonic. Note that £ +ap = 0. Further, £ ,+ay = £di,» a4, where the sign depends
on the degree of w. In particular, £+, is exact, and therefore ITy £ .+ a4 = 0. Finally,
since [0, €,] + Lo = 0, we get

Loyras=—[0,ep]as =-0(w A ag).
Hence, £+ a5 is a coexact form, and thus ITp £ a5 = 0. [ |

The previous theorem shows the importance of the property [8, w] + £+ = 0 fora
differential form w. In the following theorem we characterize all the forms with this

property.

Theorem 3.5 Let (M, g) be a Riemannian manifold and w a p-form on M, with
p =1 Then [8,¢e,] + Lo+ = 0if and only if one of the following conditions holds:

(i) p=1and " is a Killing vector field;

(i) p>2and w is parallel.

Proof Let us first consider the case p = 1. Suppose £ = w* is Killing. Then
Leg = 0. By Corollary 3.3, we have w® = (Lgg)* = 0. Applying (3.10), we get
dw = -3 C(w®) = 0. By (3.13), we obtain that {6,€,} + £¢ = 0.
Now, suppose that {4, €, } + L = 0. Then from (3.13), we have
(3.17) €Esw T+ i(‘gg)” =0.
Applying (3.17) to the constant function with the value 1, we get dw = 0. Thus iz ¢ =
0. By Theorem 2.1, we have L¢g = 0, and thus & is a Killing vector field.
Now suppose p > 2 and Vw = 0. Then, by looking at defining formulae one readily
sees that w = 0, dw = 0, and w" = 0. Thus, by (3.12) we get that [, €, ] + Ly = 0.
Finally, suppose that [8,€,] + £,+ = 0. Then by (3.12), we have

(3.18) €50 — (=1)Pige = 0.
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Applying (3.18) to the constant function 1, we get that §w = 0. Therefore, i, = 0 and,
by Theorem 2.1, we have w® = 0. Using (3.9) and (3.3), we obtain

n n n
0=w®=Y2Vx,wAX, - Y ix,wAX; = ¥ (2Vx,0 - ix,dw)AX,
t=1 t=1 t=1

where Xj, ..., X, is a local orthonormal frame on M. Since X;, ..., X, are linearly
independent at every point, we obtain that 2V, w = ix,dw for all t. But this implies
that

(3.19) 2w =izdw

for every vector field Z.
Let Yg, ..., Y, be vector fields. Then by using (3.19) we get

2dw) (Yo, Y,) = é(—l)‘(zvnw)(Yo,...,ﬁ,...,Yp)

(—l)s(iysd(l))(Yo, ey YS, ey YP)

M~

s=0

= £ (dw) (Yo, Yp) = (p+ Do (Yo, .., Yy).

A~}

Since p # 1, we obtain dw = 0. Now (3.19) implies Vw = 0. ]

4 Locally Conformal Kahler Manifolds

In this section, we show how Theorem 3.2 works in the context of locally conformal
Kiéhler manifolds.

Let (M?*"*2, ¢) be a Riemannian manifold and let ] be a complex structure on M.
Then (M, ], g) is called Hermitian if g(JX,]JY) = g(X,Y) for all vector fields X,
Y on M. For an Hermitian manifold (M, J, g), we define its fundamental 2-form Q
by Q(X,Y) = g(X,JY). Thus, Q" = J. An Hermitian manifold (M, ], g) is called
locally conformal Kdhler (1.c.K.) if there exists a 1-form 0 (called the Lee form) such
that dQ = 0 A Q. We are going to apply Theorem 3.2 to w = Q. For this we have to
compute Q° and 6Q. We define # = i;0. It is proved in [5, Corollary 1.1] that

(V)Y = 2(n(Y)X-0(Y)JX - g(X.Y)n" - Q(X,Y)6").
Thus,
dVJ(X,Y) = (Vx])Y - (Vy])X

=1(n(MX-6(Y)JX - n(X)Y + 6(X)]Y - 2Q(X, Y)6")

= %(—(nAId)(X, Y)+ (67))(X,Y)) - (Qr0%) (X, Y).
Hence, we get

dV] =1(0A] - nAld) — QAH*.

Using the definition of #, it is easy to check that

(4.1) (dQ)* = (0 A Q)" = Qr0% - 07Q" = QA" - OA].
Thus, by (3.8)
(4.2) Q° =2dV]+ (dQ)" = —nyald - Qn6*.
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Moreover, due to (3.4), by contracting (4.1) we get
C(QAB%) = C(OA])
Hence by (3.10), we obtain from (4.2)
6Q =-1C(Q°%) = 1(C(ynld) + C(QAO")) = 1(C(nAld) + C(0A])).
Using (2.1), we have
C(yald) =-C(Id)y + iun =-2n+2)y+n=-2n+1)n,
C(OA]) =—-C(J)0 +i;0 = 1.
Therefore,
0Q = %( n-(2n+1)n) = -ny.

Applying Theorem 3.2, we get the following formula that in a sense generalizes equa-
tion (1.3), which holds for Kihler manifolds.

Theorem 4.1 Let (M,],g) be a locally conformal Kdhler manifold. Let Q be the
fundamental 2-form, 0 the Lee 1-form, and n = i;0. Then, for any p-form f3, we have

[6:€alB=(p—n)nnP—-L;p+Qnigp.
5 Quasi-Sasakian Manifolds

In this section we will show how Theorem 3.2 can be used to get useful formulae for
commutators on quasi-Sasakian manifolds.

Recall that an almost contact metric structure on a manifold M*"*! is a quadruple
(¢, & 1, g), where ¢ is an endomorphism of TM, & is a vector field,  is a 1-form, and
g is a Riemannian metric such that

¢*=-ld+n®E n(é) =1,
g(¢X,Y) = —g(X, ¢Y), n(X) =g(X, %),

for any vector fields X and Y. As a consequence, one easily gets that ¢(&) = 0 and
7o ¢ = 0. We define an almost complex structure J on M x R by

H(X55) = (X - rEn(0 %),

where f is a smooth function on M x R. If ] is integrable, the almost contact metric
structure (¢, &, 7, g) on M is called normal. We define a 2-form @ by

O(X,Y)=g(X,¢Y), forany X, Y € X(M).

A normal almost contact metric structure (¢, £, 4, g) on M is called quasi-Sasakian
if @ is closed.

Let (M?*"*!, ¢, &, 1, g) be a quasi-Sasakian manifold. We define A := —¢ o VE. We
are going to apply Theorem 3.2 to w = ®. For this we have to compute ®*, ®¢, and
d®. From the definition of @, we have that ®* = ¢. Since @ is closed, from (3.8), we
get ®° =24V ¢. In [11] it was shown that

(Vx$)Y = n(Y)AX - g(AX, Y)E, g(AX,Y) = g(X, AY).
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Thus, by (3.1), we have

(@V)(X,Y) = (Vx)(Y) - (Vy¢)(X)
=n(Y)AX - g(AX, V)& - n(X)AY + g(X, AY)§ = —(nAA) (X, Y).

Therefore,

(5.1) ®° = -2nnA.

Further, by (3.10), we have

(5.2) 80 = -1 C(@°) = C(nAA).

By (2.1), we have

(5.3) C(nAA) = —qAC(A) +ian = —C(A)n + ign.

Since A = —¢ o V& and 5 o ¢ = 0, combining (5.2) and (5.3), we finally get

5D = — C(A)7.
Thus, by Theorem 3.2 and (5.1), we have
[6,€0] = —€c(ayy — L + izqna

Since A is an endomorphism of TM, we actually have C(A) = tr(A). Hence, we have
proved the following result.

Theorem 5.1 Let (M, ¢, &, 1, ) be a quasi-Sasakian manifold. Then
[0,e0] = —tr(A)e, — Lg + 2€yia.

The most important examples of quasi-Sasakian manifolds are co-Kéhler mani-
folds (see [2]) and Sasakian manifolds (see [1]). For every co-Kahler manifold, one
has V& = 0, and thus A = 0. Therefore, in co-Kahler case, we get [, €9 ] = =L, which
could also have been achieved by using the fact that ¢ is parallel on a co-Kihler man-
ifold and Theorem 3.5.

For Sasakian manifolds, one has V& = —¢, and thus A = ¢* = —I1d + yA¢&. Therefore
tr A = —2n in this case. Applying Theorem 5.1, we get

(5.4) [0,€4] = 2ne, — Lo + 26, (—i1a + €yi¢) = 2ne, — L — 26, i14.

Formula (5.4) was first proved by Fujitani in [8] by complicated computation in local
coordinates. This formula was crucial for some proofs in our recent article [3] on the
hard Lefschetz theorem for Sasakian manifolds. We hope that Theorem 5.1 will permit
us to find a suitable generalization of the Hard Lefschetz Theorem for quasi-Sasakian
manifolds.
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