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Abstract

Objective: Smartphones have the potential for capturing subtle changes in cognition that characterize preclinical Alzheimer’s disease (AD) in
older adults. The Ambulatory Research in Cognition (ARC) smartphone application is based on principles from ecological momentary assess-
ment (EMA) and administers brief tests of associative memory, processing speed, and working memory up to 4 times per day over 7 con-
secutive days. ARC was designed to be administered unsupervised using participants’ personal devices in their everyday environments.
Methods: We evaluated the reliability and validity of ARC in a sample of 268 cognitively normal older adults (ages 65–97 years) and 22
individuals with very mild dementia (ages 61–88 years). Participants completed at least one 7-day cycle of ARC testing and conventional
cognitive assessments; most also completed cerebrospinal fluid, amyloid and tau positron emission tomography, and structural
magnetic resonance imaging studies.Results: First, ARC tasks were reliable as between-person reliability across the 7-day cycle and test-retest
reliabilities at 6-month and 1-year follow-ups all exceeded 0.85. Second, ARC demonstrated construct validity as evidenced by correlations
with conventional cognitive measures (r= 0.53 between composite scores). Third, ARC measures correlated with AD biomarker burden at
baseline to a similar degree as conventional cognitive measures. Finally, the intensive 7-day cycle indicated that ARC was feasible (86.50%
approached chose to enroll), well tolerated (80.42% adherence, 4.83% dropout), and was rated favorably by older adult participants.
Conclusions:Overall, the results suggest that ARC is reliable and valid and represents a feasible tool for assessing cognitive changes associated
with the earliest stages of AD.
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Introduction

There have been remarkable developments in fluid and neuro-
imaging biomarkers that track the progression of Alzheimer’s
disease (AD). AD biomarkers can identify pathological changes
in amyloid and tau that occur well before symptom onset
(Barthélemy et al., 2020; Bateman et al., 2017; Price et al.,
2009; Sperling et al., 2011). Despite these developments,
advances in the measurement of cognitive decline – the essence
of the disease phenotype – have lagged behind. Secondary pre-
vention trials targeting abnormal biomarker levels in preclinical
(presymptomatic) AD are determined to be successful if they
stop or slow cognitive decline (Edgar et al., 2019; Food and
Drug Administration, 2018). Because the declines in cognition

that occur in preclinical AD are subtle, capturing declines, slow-
ing of declines, or improvements require reliable cognitive tests
that are sensitive to AD pathological processes. However, stan-
dard cognitive assessment tools used in AD studies include clas-
sic neuropsychological tests that were originally designed to
detect overt cognitive impairments or measure facets of intelli-
gence (Sheehan, 2012; Weintraub et al., 2009; Woodford &
George, 2007) and often place heavy burden on participants.
This poses a critical hurdle for randomized controlled trials
(RCTs) examining therapeutics in preclinical and early-stage
symptomatic AD populations. Measures with sub-optimal reli-
ability require larger sample sizes to detect cognitive benefits,
particularly when the expected effects are subtle (Dodge
et al., 2015).

Corresponding author: Jason Hassenstab, email: hassenstabj@wustl.edu
Cite this article:Nicosia J., Aschenbrenner A.J., Balota D.A., SliwinskiM.J., TahanM., Adams S., Stout S.S.,Wilks H., Gordon B.A., Benzinger T.L.S, FaganA.M., Xiong C., BatemanR.J.,

Morris J.C., & Hassenstab J. (2023) Unsupervised high-frequency smartphone-based cognitive assessments are reliable, valid, and feasible in older adults at risk for Alzheimer’s disease.
Journal of the International Neuropsychological Society, 29: 459–471, https://doi.org/10.1017/S135561772200042X

Copyright © INS. Published by Cambridge University Press, 2022.

Journal of the International Neuropsychological Society (2023), 29, 459–471

doi:10.1017/S135561772200042X

https://doi.org/10.1017/S135561772200042X Published online by Cambridge University Press

https://orcid.org/0000-0002-4317-7282
https://orcid.org/0000-0002-7802-3371
mailto:hassenstabj@wustl.edu
https://doi.org/10.1017/S135561772200042X
https://doi.org/10.1017/S135561772200042X
https://doi.org/10.1017/S135561772200042X


Advances in smartphone technology have allowed researchers
to embed brief cognitive measures into ecological momentary
assessments (EMA). EMAmethods investigate psychological states
and behaviors as they occur in natural environments (Shiffman
et al., 2008; Sliwinski et al., 2018; Smyth & Stone, 2003). EMA is
defined by several features: (1) data are collected as participants
go about their daily lives; (2) assessments are randomly sampled
across various occasions to characterize an individual’s average
performance on a given variable of interest; and (3) participants
perform multiple short assessments to capture behavioral changes
over time and across different situations (Sliwinski et al., 2018).

Although traditional laboratory/clinical settings afford pre-
cise control over the testing environment, this is not represen-
tative of everyday cognitive functioning (Sliwinski et al., 2018).
The use of smartphone EMAs in cognitive research can assuage
ecological validity concerns as participants perform assessments
as they go about their daily lives. Additionally, repeated assess-
ments can improve upon the reliability of conventional mea-
sures because they are not collected in just one testing session
that may be influenced by variability in participants’ day-to-
day stress and mood, amongst other factors (Sliwinski et al., 2018).
In individuals with neurodegenerative disorders, cognitive
performance can vary with time of day (Wilks et al., 2021), and
day-to-day variability can be exaggerated (Matar et al., 2020),
further exacerbating the impact of conventional measures’ low
reliability. With EMA, aggregation across repeated measurements
ameliorates effects of within-person variability and improves
reliability by estimating average functioning (Shiffman et al.,
2008; Sliwinski, 2008; Sliwinski et al., 2018). Although ambulatory
cognitive testing is not necessarily a replacement of gold standard
in-person cognitive testing, smartphone EMAs provide snapshots
of cognition that may reveal unique patterns that cannot be
captured with conventional testing.

Smartphone-based assessments may offer a more practical and
logistically plausible solution for large-scale studies and clinical tri-
als of AD. Allowing individuals to participate in research studies
unsupervised, in familiar environments, and using their own devi-
ces can increase engagement, reduce experimenter effects (e.g.
demand characteristics, “white coat” testing effects), bolster sample
size and diversity, and make participation more accessible and
inclusive for individuals whomay otherwise be unable to come into
the laboratory or clinic. Indeed, interest in smartphone studies is
growing, and several studies have demonstrated the feasibility and
validity of smartphone-based assessments for use in older adults
and individuals with preclinical AD (Güsten et al., 2021;
Hassenstab et al., 2020; Lancaster et al., 2020; Mackin et al.,
2018; Nicosia et al., 2021; Öhman et al., 2021; Papp et al., 2021;
Wilks et al., 2021), as well as the potential for high-frequency
in-home monitoring to substantially increase the statistical power
of therapeutic trials (Dodge et al., 2015).

The purpose of the present study was to evaluate the reliability,
validity, and feasibility of unsupervised, high-frequency cognitive
testing using participants’ personal smartphones. Tasks assessed
associate memory, processing speed, and working memory in older
adults and individuals with preclinical and early symptomatic AD.
If the Ambulatory Research in Cognition smartphone application
(ARC) is a reliable, valid, and feasible measure, ARC should:
(1) demonstrate high between-subjects and retest reliability; (2) have
construct validity (indexed by correlations with correlations with
conventional cognitive measures); (3) demonstrate sensitivity to
age and AD-related biomarkers; and (4) be well tolerated by older
adults regardless of technology familiarity.

Methods

Participants

We recruited participants enrolled in ongoing studies of aging and
dementia at the Charles F. and Joanne Knight Alzheimer Disease
Research Center (Knight ADRC) atWashington University School
of Medicine in St. Louis. ARCwas designed to be sensitive to subtle
changes in cognition in participants at risk for, or in the earliest
stages, of AD, thus enrollment in the ARC study was limited to
those with a Clinical Dementia Rating® (CDR®; Morris, 1993) of
0 (cognitively normal) or 0.5 (very mild dementia). In-person
enrollment began in February of 2020 and was halted in March
2020 due to the SARS-CoV-2 (COVID-19) pandemic.
Therefore, beginning April 2020, the majority of participants were
enrolled remotely. All participants provided informed consent,
and all procedures were approved by the Human Research
Protections Office at Washington University in St. Louis and the
research was conducted in accordance with the Helsinki
Declaration.

Clinical assessment

Clinical status was determined with the CDR which uses a 5-point
scale to characterize six domains of cognitive and functional per-
formance (memory, orientation, judgment and problem solving,
community affairs, home and hobbies, and personal care) that
are applicable to AD and other dementias (Morris, 1993). CDR
scores are determined through semi-structured interviews with
the participant and an informant (i.e., family member or friend).
A CDR score of 0 indicates cognitive normality, 0.5 = very mild
dementia, 1 = mild dementia, 2 = moderate dementia, and
3= severe dementia.

Conventional cognitive assessments

Conventional cognitive measures included measures of verbal flu-
ency (Animals, Vegetables, and Verbal Fluency), episodic memory
(Wechsler Memory Scale Paired Associates Recall, Free and Cued
Selective Reminding Test (FCSRT) Free Recall, Craft Story 21
immediate and delayed recall), language (the Multilingual
Naming Test; MINT), processing speed (Number Span Forward,
Number Symbol Test1), and working memory (Number Span
Backwards; see Hassenstab et al., 2016 and Weintraub et al.,
2018 for additional information). A global composite similar to
the Preclinincal Alzheimer’s Cognitive Composite (PACC;
Donohue et al., 2014; Papp et al., 2017) was created by averaging
the standardized scores from FCSRT free recall, Animal naming
total score, Craft Story 21 delayed recall, and the total correct score
from the Number Symbol test such that higher scores indicated
better performance (Weintraub et al., 2009).

Ambulatory research in cognition (ARC) application

The ARC smartphone application is based on principles from
EMA and administers brief tests of associative memory, processing
speed, and working memory up to 4 times per day over 7 consecu-
tive days. Sampling frequency and duration were chosen based on
reliability, validity, and effect size estimates reported in Sliwinski
et al. (2018). ARC is programmed to run on major operating sys-
tem (OS) versions (currently iOS 12.0þ and Android OS 8.0þ) on
iOS and Android devices. Participants were encouraged to use

1A computerized task developed and validated at the Knight ADRC that assesses similar
constructs as the Wechsler Digit Symbol Substitution task.
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their personal smartphones as long as minimum technical require-
ments were met. Individuals interested in participating who did
not own a smartphone or whose smartphone did not meet our cri-
teria were supplied a device (either iOS or Android) for the dura-
tion of the study. Device exclusion criteria included software issues,
limited phone storage, physical damage, battery problems, or poor
responsivity. A trained study coordinator (M.T.) provided partic-
ipants with detailed instructions regarding the ARC application,
and additional guidance on smartphone basics (including device
setup and operation) was given to participants who were less famil-
iar with smartphones. Throughout the study, the study coordinator
provided extensive support for participants via phone, videocon-
ferencing, email, and text messaging. Participants are reimbursed
at a rate of $0.50 per completed assessment session. To incentivize
participation consistency, participants receive bonus payments for
completing all 4 sessions any given day ($1.00 per occurrence, max
of $7.00), completing at least 2 assessments per day for 7 days
($6.00), and completing at least 21 assessments over 7 days
($5.00). The maximum compensation possible for one 7-day
assessment visit was $32.00.

ARC assessment notifications were administered pseudoran-
domly throughout the participant’s self-reported awake hours,
with at least 2 hr between each testing session. For example, if a
participant reported waking up at 7 am and going to bed at
10 pm, they would receive four test session notifications between
7 am and 10 pm, separated by at least 2 hr (see Figure 1, top).
The ARC cognitive tasks, Grids, Prices, and Symbols (see
Figure 1, bottom), were administered in a random order during
each session.

Grids is a spatial workingmemory task in which high resolution
images of three common objects (key, smartphone, and pen) are
displayed on a 5 x 5 grid, and participants are asked to remember
the locations of the items. After encoding the locations of each
item, participants perform a distractor task (identify Fs in grid
of Es) before moving to the retrieval phase. At retrieval, partici-
pants are asked to tap the locations where the items were shown2.
Participants perform two trials during each test session (lasting
approximately 30–40 s) and, across sessions, stimuli are placed
at random locations to protect against retest effects. Scores reflect
a Euclidean distance estimate, agnostic to item, such that a higher
score indicates retrieval placement farther away from the encoded
locations (i.e., higher score indicates worse performance; Sliwinski
et al., 2018).

Prices is an associate memory task with a learning and recog-
nition phase. In the learning phase, participants are shown 10
item–price pairs for 3 s per pair and asked to remember the items
and their corresponding prices. Items were common shopping
items (food and household supplies), and the prices were randomly
assigned 3-digit prices containing no repeated digits and no more
than two sequential digits. In the recognition phase, participants
were presented with two prices and asked to choose which was
shown with the item during the learning phase. The price choices
were separated by at least $3.00 to avoid ceiling and floor effects

(Hassenstab et al., 2020). To protect against retest and interference
effects, 40 items, chosen without replacement, are never repeated
within the same day, and item–price pairs are never re-presented
over the 28 sessions. Trials last approximately 60 s and scores
reflect the proportion of recognition trial errors such that higher
scores indicate worse performance.

Symbols is a processing speed measure based on a task used by
Sliwinski et al. (2018). Participants are shown three randomly
assigned pairs of abstract shapes and asked to determine as quickly
as possible which of two pairs match one of the three target pairs.
To protect against retest effects, item pairs are randomly assigned
for each session. Participants complete 12 trials during each ses-
sion, lasting approximately 20–60 s (duration varied based on par-
ticipants’ response times (RTs)). Scores reflect RTs on correct trials
such that higher scores indicate worse performance. An “ARC
composite score” was created in two steps. Z-scores for each task
were calculated by subtracting raw scores from the cohort’s mean
score and dividing by the cohort’s standard deviation. The Z-scores
were then averaged together to form the ARC composite score.
Similar to the individual measures, a higher ARC composite score
indicated worse performance.

Feasibility and tolerability measures

Technology familiarity was assessed with a novel measure
described in Nicosia et al. (2021). Briefly, the assessment combined
objective measurements of technology knowledge (technology-
related icon recognition) and self-reported ratings of (1) the fre-
quency with which they perform certain smartphone tasks and
(2) how difficult it would be for them to perform various technol-
ogy-related tasks. For the purposes of this study, we report partic-
ipants’ technology icon recognition, average frequency of
smartphone task performance, and average difficulty performing
technology-related tasks (for more details see Nicosia et al., 2021).

ARC user experience was assessed with a 10-question survey
using a 5-point Likert scale to rate aspects of user experience
regarding installation, test instructions, frequency of testing, and
overall tolerability. Objective measures of feasibility and tolerabil-
ity included ARC adherence and drop-out rates. Adherence was
defined as the number of completed test sessions divided by the
total number of assessment sessions (i.e., a participant who com-
pleted 21 of 28 sessions would have a 75% adherence rate).

Cerebrospinal fluid collection and processing

Most participants underwent lumbar puncture (LP) to collect cer-
ebrospinal fluid (CSF) following overnight fasting. Participants at
the Knight ADRC undergo LP approximately every 3 years; how-
ever, CSF collection was postponed in March 2020 due to the pan-
demic, eliminating the possibility of acquiring more recent
samples. Therefore, we limited the use of CSF data to those col-
lected within 5 years of ARC testing (see Table 1; collected on aver-
age 2.64þ/- 1.11 years from the first ARC assessment). Twenty to
thirty mL of CSF was collected in a 50 mL polypropylene tube via
gravity drip using an atraumatic Sprotte 22-gauge spinal needle.
CSF was kept on ice and centrifuged at low speed within 2 hr of
collection. CSF was then transferred to another 50 mL tube.
CSF was aliquoted at 500 μL into polypropylene tubes and stored
at −80°C as previously described (Fagan et al., 2006). Prior to
analysis, samples were brought to room temperature per manufac-
turer instructions. Samples were vortexed and transferred to poly-
styrene cuvettes for analysis. Concentrations of Aβ40, Aβ42, total
tau (tTau), and tau phosphorylated at threonine 181 (pTau) were

2Two versions of the Grids task are included in the present analyses which differed
slightly in their retrieval phase instructions. In the original version, participants were asked
to tap the locations of the items from encoding. In the new version, participants are shown
the items from encoding one at a time and asked to tap the location of that item from
encoding. We used a scoring procedure that was agnostic to item such that scores reflect
the shortest Euclidian distance between participants’ taps at retrieval and the encoded loca-
tions regardless of which item they were placing. Nevertheless, to test whether participants’
scores differed across versions, several t-tests were run to determine if this change in task
administration did not dramatically affect participants’ performance. Participants’ scores
for the old and new versions did not significantly differ at visit 1, p = .07, or visit 2, p = .14.
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measured by chemiluminescent enzyme immunoassay using a
fully automated platform (LUMIPULSE G1200, Fujirebio,
Malvern, PA) according to manufacturer’s specifications. A single
lot of reagents were used for all samples.

Neuroimaging

Neuroimaging data were required to be collected within 5 years of
ARC (see Table 1; Amyloid positron emission tomography (PET)
mean 2.59 þ/- 1.04 years, Tau PET mean 2.50 þ/- 0.96, and mag-
netic resonance imaging (MRI) mean 2.55þ/- 1.05 years from the
firstARCassessment). Briefly,MRI datawere acquired on 3T Siemens

scanners and processed using Freesurfer (Fischl et al., 2004) to derive
regional volumes and thicknesses. Volumes were adjusted for total
intracranial volume (ICV) (see Raz et al., 2008) and a summary thick-
ness composite was calculated (Singh et al., 2006).

Amyloid PET imaging was performed with either florbetapir
(18F-AV-45) or Pittsburgh Compound B (PiB). Data were processed
with an in-house pipeline using regions of interest derived from
FreeSurfer (ttps://github.com/ysu001/PUP; Su et al., 2013). A sum-
mary standardized uptake value ratios (SUVR) measure was con-
verted to the Centiloid scale (Su et al., 2018, 2019) in order to
combine PiB and florbetapir data. Tau PET imaging with flortaucipir

Grids

Symbols Prices

Figure 1. ARC design and cognitive tasks. Note.
Top demonstrates if a participant reported wak-
ing up at 7 am and going to bed at 10 pm, they
would receive four test session notifications
between 7 am and 10 pm, separated by at least
2 hr. The ARC cognitive tasks, Grids, Prices, and
Symbols are displayed on the bottom.
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(18F-AV-1451) was summarized using the average SUVRs of the
bilateral entorhinal cortex, amygdala, inferior temporal lobe, and lat-
eral occipital cortex (Mishra et al., 2017). SUVRs used a cerebellar cor-
tex reference and were partial volume corrected.

Statistical analyses

Statistical analyses were completed using R (v4.1.0). To character-
ize the reliability of ARC, descriptive statistics were examined for
all ARC and conventional measures. Correlations were used to
examine whether ARC captured age-related cognitive declines
comparable to conventional cognitive measures. ARC test-retest
reliability was assessed based on participants who completed fol-
low-up testing ∼6 months (“visit 2”; on average 6.07 þ/- 1.23
months between assessments) and ∼1 year later (“visit 3”; on aver-
age 11.84 þ/- 0.84 months between assessments). Pearson corre-
lation coefficients with an r of 0.80 to 0.90 were considered “good”
reliability (Price et al., 2015). Intraclass correlations (ICCs), which
show how strongly units within the same group resemble each
other, were computed to examine test-retest reliability and
between-person reliability such that ICCs between 0.75 and 0.90
indicate “good” reliability (Bruton et al., 2000). ARC and conven-
tional cognitive measure correlations were used to examine con-
struct validity. Finally, feasibility and tolerability were assessed
by examining: (1) adherence and drop-out rates; (2) correlations
between technology familiarity measures and ARC performance;
and (3) descriptive statistics from an ARC user experience survey.

Results

Participant characteristics

Of the 316 participants who completed at least one ARC session, 26
were removed due to either low-quality data or unacceptable rates

of missing data (>75% missingness) resulting in a sample size of
290 participants (268 CDR 0 s and 22 CDR 0.5 s) ranging from
61 to 97 years of age. As shown in Table 1, all three ARC tasks
showed good discrimination between CDR 0 and CDR 0.5 partic-
ipants3. Additionally, ARC performance, as indexed by the ARC
composite score, did not differ as a function of gender,
t(181.46)= 0.63, p= 0.53, or race, t(28.096)= 1.92, p= 0.06, and
was modestly associated with education, r=−0.18, p= 0.01.

Descriptive statistics

Table 2 shows the descriptive statistics for the ARC and conventional
cognitive measures as well as adherence and drop-out rates. The
t-tests comparing ARC task performance of CDR 0 and 0.5 individ-
uals (significant ts 2.12–3.52) were comparable to comparisons with
conventional cognitive measures (significant ts 2.17–4.96). CDR 0 s
and 0.5 s in this sample did not differ on Number Span Forward,
Number SpanBackward, or theMINT.Adherence and drop-out rates
did not differ as a function of CDR status (ts< 0.38).

Between-person reliability

As mentioned above, aggregation of EMA scores across sessions
boosts reliability compared to conventional “one-shot” approaches
(Shiffman et al., 2008). Unconditional multilevel mixed models
using restricted maximum likelihood were employed for each
ARC task to compute between-person reliability scores (Raykov
& Marcoulides, 2006; Sliwinski et al., 2018). The reliabilities of
scores aggregated across ARC sessions were quite high: 0.81 for
Prices, 0.90 for Grids, and 0.98 for Symbols (see Table 3). These
reliabilities are based on 21 (75%) sessions of ARC assessments,

Table 1. Demographic data

CDR 0, N= 268a CDR 0.5, N= 22a p-valueb

Age 76.6 (5.7) 77.0 (6.1) 0.76
Gender (% Female)c 148 (55%) 6 (27%) 0.021
Racec 0.10
Black 45 (17%) 0 (0%)
Other 2 (0.8%) 0 (0%)
White 219 (82%) 22 (100%)
Education 16 (2) 17 (2) 0.74
APOE status (% positive) 82 (31%) 14 (67%) 0.002
Grids 0.71 (0.27) 0.93 (0.28) 0.002
Prices 0.25 (0.06) 0.29 (0.05) 0.002
Symbols 3.24 (0.95) 3.85 (1.32) 0.045
Adherence 81% (18%) 79% (20%) 0.71
Drop-out 13 (4.9%) 1 (4.5%) 0.99

CDR 0, N= 134 CDR 0.5, N= 12 p-value
CSF Aβ42 970 (400) 533 (222) <0.001
CSF Tau 347 (183) 474 (197) 0.052
CSF pTau:Aβ42 0.06 (0.06) 0.13 (0.07) 0.006

CDR 0, N= 202 CDR 0.5, N= 10 p-value
Amyloid PET (Centiloid) 18 (27) 49 (43) 0.053

CDR 0, N= 165 CDR 0.5, N= 8 p-value
AD ROI Tau PET (standardized) 1.20 (0.15) 1.43 (0.42) 0.17

CDR 0, N= 165 CDR 0.5, N= 10 p-value
AD ROI cortical thickness (mm) 2.57 (0.10) 2.46 (0.14) 0.043
Hippocampal volume (mmc) 7,790 (912) 6,983 (1,022) 0.035

aMean (SD); n (%).
bWelch two sample t-test; Pearson’s Chi-squared test.
cGender and race were self-reported.

3See Supplemental Table 1 for information on intraindividual variability for the three
ARC tasks.
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which reflects the average number of sessions participants
completed.

Next, we conducted follow-up analyses to determine howmany
sessions would be required to obtain reliabilities of aggregated
scores that ranged from 0.80 to 0.90. Following Sliwinski et al.
(2018), we fit a series of unconditional multilevel mixed models
and calculated reliabilities. These results indicated that 19 sessions
(or ∼ 5 days) of Prices, 9 sessions (or ∼ 2 days) of Grids, and 2
sessions (or ∼1 day) of Symbols are required to attain reliabilities
greater than 0.80 (see Table 3 and Figure 2).

Test-retest reliability

As of manuscript preparation, a subset of participants also completed
testing ∼6 months (N= 185) and ∼1 year (N= 83) after their initial
visit. Figure 3 displays test-retest reliability for the 6-month and 1-year
follow-ups for the individual tasks and ARC composite score. ARC
demonstrated high test-retest reliability for individual ARC tasks as
well as the ARC composite score at both follow-ups (all
ICCs> 0.85). Considering retest effects (Table 4), there were small
but significant improvements from visit 1 to visit 2 on Prices,
Symbols, and the ARC Composite, but not on Grids. There were
no practice effects evident between visits 2 and 3, suggesting that prac-
tice effects diminish after completion of the first testing cycle. A
detailed analysis of practice effects will be considered in future studies.

Construct validity

As shown in Figure 4 (right), the ARC composite score was
correlated with the global composite score created from the

conventional measures (r=−0.53; this was also the case in the
CDR 0 sample, r=−0.47), indicating good construct validity.
Additionally, Figure 4 (left) displays correlations between ARC
and conventional cognitive measures (raw scores), and the top
row shows the correlations with age. ARC tasks showed similar
correlations with age as the conventional cognitive measures
and exhibited convergent validity such that measures were corre-
lated within the same domains. Note that correlations between the
conventional and ARC measures are negative because higher
scores on the ARC tasks indicate worse performance, whereas
higher scores on the conventional cognitive measures indicate
better performance (except for the Trailmaking Test Parts A & B),
thus the negative correlations displayed in Figure 4 (left) are in the
hypothesized direction. Specifically, the Prices task was correlated
with conventional memory measures (WMS Associates Recall:
r=−0.24, FCSRT free recall: r=−0.32, Craft Story immediate
recall: r=−0.22, Craft Story delayed recall: r=−0.27), the Grids
task was correlated with all of the conventional cognitive measures
(r’s=−0.15 to−0.36), and the Symbols task was correlated with all
the conventional cognitive measures but particularly the fluency
tasks and the Number Symbol test (Category Fluency Animals:
−0.36, Category Fluency Vegetables: −0.40, Verbal Fluency:
−0.36, Number Symbol test: −0.57).

Criterion validity

Criterion validity of ARC was examined by comparing ARC and
global composite score correlations with AD biomarkers. As
shown in Figure 4 (right), the ARC composite score was correlated
in the predicted directions with all AD biomarkers. All correlations
remained significant after controlling for age, rs> 0.20, ps< 0.02,
except for the relationships with the neurodegeneration and tau-
opathy measures, ps> 0.18. We also examined correlations
between the ARC composite score and AD biomarkers with only
CDR 0 participants. Correlations in the cognitively normal sub-
sample (CDR 0 individuals) were weaker than in the full sample
(see Supplemental Materials Figure 1), as expected, but were con-
sistent with the magnitude of values seen in other studies which
have explored such relationships (for example, see Papp et al.,
2021 among others). Additionally, the correlations were compa-
rable to, though slightly weaker than, correlations between the

Table 2. Descriptive statistics at ARC baseline

N Mean SD Range Skew Kurtosis CDR 0 versus 0.5 (t)

Age 290 76.61 5.768 36.07 0.446 0.224 0.31
Prices 290 0.249 0.062 0.4 −0.995 2.055 3.51**

Grids 289 0.731 0.272 1.438 0.153 −0.284 3.52**

Symbols 290 3.287 0.989 6.313 1.746 4.723 2.12*

Adherence 290 80.42 18.19 71.43 −0.995 0.119 0.38
Drop-out 290 4.83 0.215 1 4.193 15.64 0.06
Category fluency animals 282 20.14 5.432 28 0.189 -0.519 3.90***

Category fluency vegetables 282 13.87 4.122 26 0.374 0.543 4.96***

WMS associates recall 282 14.91 3.571 16 −0.418 −0.581 3.10**

FCSRT free recall 242 31.31 6.451 46 −0.847 1.612 4.86***

Verbal fluency (letters) 283 28.25 8.201 43 0.145 −0.073 3.36**

Craft story recall immediate 282 17.36 3.559 20 −0.524 0.144 2.17*

Craft Story Recall Delayed 282 16.74 4.141 25 −1.229 2.951 2.65*

Number span forward 283 8.445 2.308 12 −0.023 −0.399 1.18
Number span backward 282 7.355 2.192 12 0.408 0.481 1.88
Multilingual naming test 243 30.25 1.9 14 −2.015 7.426 0.96
Number symbol test 245 38.49 7.15 39 −0.182 0.147 2.19**

Note. *Indicates p-value< 0.05.
**Indicates p-value< 0.01.
***Indicates p-value< 0.001.

Table 3. ARC reliabilities for individual tasks

Sessions Symbols Grids Prices

1 0.71 0.31 0.17
3 0.88 0.57 0.38
5 0.92 0.69 0.51
7 0.94 0.76 0.59
14 0.97 0.86 0.74
21 0.98 0.90 0.81
28 0.99 0.93 0.85

Note. ARC participants received 4 sessions/day for 7 day.
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global composite score and AD biomarkers. Specifically, Fisher’s
Z test indicated that, compared to the global composite score,
all correlations with the ARC composite score were not signifi-
cantly different except for the correlations with CSF pTau:Aβ42
(Z =−1.96, p = 0.049), Hippocampal Volume (Z =−1.99,
p= 0.045), and PET Tau (Z=−2.20, p= 0.03), which were only
marginally to slightly weaker. There were no significant differences
in correlations between AD biomarkers and the two composite
scores in the CDR 0 subsample.

Feasibility and tolerability

Of the 290 participants included in the present analyses, a subset
(N= 220) completed the technology familiarity survey. Figure 5 dis-
plays the correlations among age, adherence, the technology familiar-
ity measures, and ARC performance. Greater technology-related icon
recognition was associated with better performance on Grids
(r=−0.16) and Symbols (r=−0.14), but not on Prices (r=−0.02).
Self-reported frequency performing smartphone tasks was unrelated
to ARC performance, but perceived difficulty performing technology
tasks was related to worse performance on all ARC measures
(r’s 0.17–0.24). Adherence was correlated with performance on all
three ARC measures (though only weakly for Prices) and the ARC
composite score, such that participants who completed more sessions
tended to perform better on ARC.

A subset of participants (N = 228) also completed a user expe-
rience survey after their first ARC visit4. As shown in Figure 6,

participants reported an overall positive experience with the
ARC application, and most reported that they preferred ARC over
conventional assessments. Participants reported little difficulty
installing the ARC app, were generally unconcerned about privacy,
and that completing 2 weeks of ARC testing per year would not be
difficult.

Finally, as shown in Tables 1 and 2, adherence rates were quite
high at 81% and 79% for CDR 0 and 0.5 participants, respectively.
Drop-out rates were low for both groups as well – 4.9% for CDR 0 s
and 4.5% for CDR 0.5 s. The high adherence and low drop-out
rates suggest that ARC was well tolerated by older adults, even
those with very mild dementia.

Discussion

The present study demonstrates that EMA cognitive assessments
conducted on individuals’ personal smartphones can be reliable,
sensitive to age and AD biomarkers, and are well-tolerated by older
adults regardless of technology experience. There were several
main findings: first, between-person reliability of the ARC tasks
across the 7-day protocol all exceeded 0.85. Second, individual
ARC tasks and the ARC composite score showed exceptionally
good test-retest reliabilities at 6-month and 1-year follow-ups
(ICCs> 0.85). Third, both the individual ARC tasks and the
ARC composite score were correlated with conventional measures

Figure 2. Between-person reliabilities for ARC
tasks. Note. Between-person reliabilities for each
ARC cognitive task. Following Sliwinski et al.
(2018), a series of unconditional multilevel mixed
models were fit to determine howmany sessions
would be required to obtain good reliability. Blue
line indicates 0.85 reliability threshold.

4Because participants completed the user experience survey voluntarily and a subset of
62 participants (21.38%) chose not to complete the survey, it is possible that the survey

results may be influenced by selection bias. To test this possibility, we examined ARC task
performance and adherence as a function of whether participants completed the user expe-
rience survey. These analyses indicated that there were no significant differences in either
ARC task performance, ps> 0.24, or adherence, p= 0.82.

Journal of the International Neuropsychological Society 465

https://doi.org/10.1017/S135561772200042X Published online by Cambridge University Press

https://doi.org/10.1017/S135561772200042X


of the same domain (r’s=−0.22 to −0.57). The composite scores
from ARC and conventional measures were also highly correlated
(r=−0.53). Fourth, the ARC composite score showed similar val-
idity to the global composite in predicting AD biomarkers. Finally,
both cognitively normal older adults and individuals with very
mild AD successfully participated in the ARC study remotely,
without supervision, and had extremely low drop-out rates.
Overall, the results of the present study suggest that high-frequency
smartphone-based assessments are promising tools for assessing
cognition in clinical studies of aging and neurodegenerative
diseases.

Although classic neuropsychological tests, such as episodic
memory and executive functioning tests, are regarded as the most
sensitive to AD pathology, they were not designed for frequent
assessment and can have poor reliability (Calamia et al., 2013).
Using measures with suboptimal reliability can impact statistical
power and necessitate larger sample sizes or increased measure-
ment frequency. Our results suggest that a high-frequency EMA
approach to cognitive assessments may help overcome these chal-
lenges. When averaged across sessions, all three ARC tests had
excellent between-subject reliability (r’s> 0.85), consistent with
Sliwinski et al. (2018). The results also demonstrated that good
between-person reliabilities can be achieved with < 7 days of
assessments (averaging across 5 days produced reliabilities
> 0.80 for all ARC tasks). The Symbols test achieved excellent reli-
ability in just 3–5 sessions, which is remarkable considering that

each session requires ∼30–40 s to complete. Although conven-
tional cognitive measures would also receive a boost in reliability
if averaged across repeated assessments, it is impractical and bur-
densome to assess participants at a frequency sufficient to over-
come suboptimal reliability. Using an EMA smartphone
protocol, researchers can efficiently obtain repeated measurements
to boost reliability.

Test-retest reliability studies in AD samples have indicated
“adequate” to “excellent” reliability (e.g., Benedict et al., 1998;
Woods et al., 2006) over intervals ranging from several days to sev-
eral weeks apart. However, cohort studies are typically conducted
annually and yield lower reliability estimates. Specifically, test-
retest correlations for delayed memory tests, a cornerstone of
AD clinical trials (Bateman et al., 2017; Donohue et al., 2014;
Langbaum et al., 2014; Ritchie et al., 2017), can be particularly
unsatisfactory, with reliabilities ranging from 0.50 to 0.75
(Calamia et al., 2013; Dikmen et al., 1999; Lo et al., 2012). The
increased reliability demonstrated by high-frequency assessments
like ARC could substantially reduce sample sizes needed in AD
prevention RCTs (Dodge et al., 2015).

ARC demonstrated exceptionally high test-retest reliability for
the individual ARC tasks and the ARC composite score at 6-month
and 1-year follow-ups (all ICCs> 0.85). The Symbols test demon-
strated exceptionally high test-retest reliability exceeding its paper
and pencil equivalents (i.e., Wechsler Digit Symbol Substitution
test and the Symbol-Digit Modalities test which typically have

Figure 3. ARC Test-retest reliabilities at 6 month (top) and 1 year (bottom) follow-up.
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good test-retest reliabilities; Calamia et al., 2013; Pereira et al.,
2015). Test-retest reliability for the Prices test was also good but
trailed behind the Symbols and Grids tests. Relatedly, a version
of the Prices test demonstrated good validity and reliability in a
recent EMA study of older adults (Thompson et al., 2022),
but was also rated the most difficult and the least enjoyable of
three cognitive tasks, reflecting the challenges of designing
repeatable episodic memory measures that are reliable, feasible,
and tolerable.

Our results also support the construct and predictive validity
of ARC. ARC tasks exhibited convergent validity as evidenced
by correlations with conventional cognitive measures (r’s −0.22
to −0.57). Similarly, the ARC composite score was correlated
with the global composite score (r =−0.53). Albeit smaller than
anticipated, the correlations observed here were comparable,
if not stronger, than correlations observed in other digital assess-
ment studies including the Cambridge Neuropsychological

Test Automated Battery (CANTAB; rs 0.14 to 0.39; Dorociak
et al., 2021; Gills et al., 2019; Smith et al., 2013). Additionally,
the individual ARC tasks and the ARC composite score showed
comparable correlations with age as the conventional measures
and global composite score. Given well-known associations
between age and cognitive performance, these relationships
provide evidence that ARC is a valid measure of cognitive aging.

ARC also demonstrated good predictive validity when assessing
sensitivity to AD biomarkers. Worse ARC performance was asso-
ciated with reduced cortical thickness and hippocampal volume
(r’s=−0.18 and −0.19, respectively) and increased levels of amy-
loid and tau (as indexed by both PET and CSF measures; r’s= 0.11
to 0.29). These relationships were comparable, though smaller in
magnitude, to AD biomarker correlations with conventional mea-
sures suggesting that ARC captures biomarker burden similarly to
conventional measures. Correlations in the cognitively normal
subsample (CDR 0 individuals) were on par with other studies

Table 4. ARC test-retest

Measure

Visit 1 versus Visit 2 Visit 2 versus Visit 3

1, N= 185a 2, N= 185a p-valueb 2, N= 83a 3, N= 83a p-valueb

Prices 0.25 (0.06) 0.23 (0.06) 0.002 0.23 (0.06) 0.23 (0.06) 0.80
Grids 0.69 (0.27) 0.65 (0.27) 0.11 0.62 (0.30) 0.61 (0.26) 0.73
Symbols 3.09 (0.71) 2.88 (0.70) 0.004 2.82 (0.62) 2.67 (0.54) 0.080
ARC composite 0.19 (0.69) −0.08 (0.72) <0.001 −0.15 (0.73) −0.23 (0.67) 0.46

aMean (SD).
bWelch two sample t-test.
Note. Values represent participants mean score for that visit, values in parentheses represent standard deviations. Significant p-values indicate the presence of a practice effect.

Figure 4. ARC, conventional, and AD biomarker correlations. Note. Correlations amongst ARC and conventional measures (raw scores) shown on the left (N= 282). Correlations of
the ARC composite score (higher = worse) and global composite score (higher = better), and AD-related biomarkers are shown on the right (Ns= 146 for CSF measures, 212 for
amyloid PET, 173 for tau PET, 175 for AD ROI cortical thickness, and 290 for hippocampal volume). Significant correlations (p< 0.05) are displayed with colored circles, non-
significant correlations are blank. Because in-clinic and ARC measures have opposing directionality, the negative correlations amongst the conventional and ARC measures
are in the hypothesized direction.
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which have examined such relationships (Braak & Braak, 1991;
Papp et al., 2021; Snitz et al., 2020; Van Strien et al., 2009).

Evaluation of feasibility and tolerability of a smartphone appli-
cation for use in older adults is critical, and especially so for appli-
cations like ARC that require unsupervised daily interactions.
Overall, adherence was excellent at 80.42%, exceeding that seen
in many remote studies (Pratap et al., 2020) and similar to rates
observed in other cognitive EMA studies (Sliwinski et al., 2018).
A common concern regarding technology use in older adults is that
of technology familiarity. Our results demonstrate that greater
technology knowledge was associated with better processing speed
and visual working memory task performance, but not memory
performance. Interestingly, self-reported frequency of smartphone
interactions was not related to ARC performance, but those who
reported more difficulty interacting with technology tended to

perform worse on all ARC measures. However, when the familiar-
ity assessment results were compared to conventional cognitive
measures (see Supplemental Materials Figure 2), similar patterns
emerged even on nontechnology-related measures like story recall,
number span, confrontation naming, and verbal fluency, sug-
gesting that difficulty with technology may also reflect, to some
extent, overall cognitive ability5. Finally, considering the high
adherence rates, and the overall favorable ratings from the user
experience survey, it appears that with adequate instruction and
support, older adults are capable and motivated participants in
smartphone studies of cognition.

Figure 5. Age, technology familiarity, and ARC performance correlations. Note. Of the 290 participants included in the present analyses, 220 completed the technology familarity
survey (see Nicosia et al., 2021) which assessed the frequencywith which participants perform smartphone-related tasks, how difficult participants find various technology-related
tasks, and how well participants could recognize technology-related icons. Significant correlations (p < 0.05) are displayed with colored circles whereas non-significant relation-
ships are blank.

Figure 6. ARC user experience survey results.
Note. Of the 290 participants included in the
present analyses, 228 completed the ARC user
experience survey which assessed participants
attitudes towards their experience with the
ARC application after their first week using it.

5We explored the extent to which “overall cognitive ability,” as indexed by the conven-
tional composite score, may be associated with ARC adherence. As shown in Supplemental
Materials Figure 3, individuals who performed better on the conventional measures also
showed better ARC adherence.
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Limitations and future considerations

The findings of this study should be considered in light of several
limitations which may be addressed in future studies. First,
although the benefits of EMA smartphone studies are clear, it
can be unclear whether participants are fully engaging with the
assigned tasks. To address this, participants are asked at the end
of each session whether they were interrupted during the session.
In the analyses presented here, sessions where participants
reported being interrupted were removed. Similarly, many ambu-
latory assessments are limited when researchers do not collect
additional contextual information. Participants were asked a bat-
tery of environmental questions at the end of each session, and
future studies will investigate the impact of these factors on partic-
ipants’ performance. Second, as noted in theMethods section, if an
individual did not have a device whichmet study criteria, they were
supplied a device. Since it is possible this could have introduced
bias, several follow-up analyses were run to test for differences
in age, technology familiarity, and ARC performance/adherence.
As shown in Supplementary Materials Table 2, even though indi-
viduals who were supplied with a device were slightly older and less
familiar with technology, there were no differences in CDR, ARC
task performance, adherence, or AD biomarkers. Third, it is
important to note that the Prices task lagged behind the
Symbols and Grids tasks in terms of participants’ performance
and the between-subjects reliability (possibly due to the difficulty
and task demands). Nevertheless, the Prices task showed good reli-
ability and was correlated with age and conventionalmemorymea-
sures. Finally, Knight ADRC participants consist of highly
educated and primarily White older adults motivated to engage
in extensive imaging and fluid biomarker studies. Future work is
needed to determine the feasibility of ARC in more diverse
populations.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S135561772200042X
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