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Abstract. In this paper it is proved that the index of a Fredholm operator betweadic Banach

spaces is preserved under compact perturbations. A case of special interest is provided when the
ground field is nonspherically complete. In this case the classical techniques are no longer valid and
the relation between the kernels of a Fredholm operator and that of a small compact perturbation turn
out to be in general much richer than in the complex context.
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1. Introduction

The problem of perturbations gf-adic linear operators has been long studied
through several steps. A first approach was carried out by J. P. Serre in [11], where
he dealt with compact perturbations of the identity on Banach spaces having an
orthogonal base. A step further was taken by L. Gruson ([5]) for a more general
class of Banach spaces, always working on perturbations of the identity. A com-
plete study of perturbations of the identity was finally achieved by W. H. Schikhof
in [10].

In [6], P. Robba dealt with perturbations of injective operators, introducing the
index as a useful tool to study the theoryehdic differential operators (see also
[7]). This connection betweep-adic differential operators and index theory still
represents an important current matter of research, as recent papers like [1], [2] and
[3], among others, are covering new trends. Also, in the latter paper, a remarkable
fact is that the restrictions on the perturbed operators have arisen for a large class
of spaces, but just working over locally compact fields.

In this paper, we aim at a general theory of the perturbations of continuous
linear operators between non-Archimedean Banach spaces by compact operators,
regardless of the base field, and extend previous results. In this way, even if in
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the case whelK is spherically complete the proofs of the classical theorems can
somehow be adapted, the non-Archimedean theory turns out to be in general much
richer than the corresponding one given for real or complex, spaces. In particular
when the base field is not spherically complete, we are able to assure that not only
results about the preservation of the index hold, but also the geometrical structure
of the kernels is in some way preserved, arriving at a surprising result when the
vectors of the kernel are not topologically complemented: in this case, the kernels
of the original operator and the perturbed one coincide. This is clearly far apart
from the case when dealing with real or complex Banach spaces, where all finite-
dimensional subspaces are topologically complemented, and no similar approach
can be taken. These results suggest that the tools used to study these perturbations
when working over the real or complex numbers are no longer valid in our theory,
forcing us to seek a completely different way to attack the problem.

2. Preliminaries

Throughout this papeif is a commutative field endowed with a nontrivial non-
Archimedean valuatiop- |, and complete with respect to the metric induced by its
valuation.

Let X be a vector space ov&. For any subseb of X, the linear hull ofD is
denoted by D). Also, a linear subspac¥ of X is said to be algebraically comple-
mented inX when there exists a linear projection frothonto M, or equivalently,
when there exists a linear subspa¢ef X such thatX = M & N, where by this
last equality we mean thé&f = M + N andM N N = {0}. Such anv is called
algebraic complement @l .

If X andY are vector spaces oV, .L(X, Y) is the set of all linear operators
from X to Y. Also, givenT € £L(X,Y), Ker(T) and RT) are the kernel and the
range ofT respectively. The identity map oXi is denoted byy.

Now, let X be a non-Archimedean Banach space dkerA setA C X is
called compactoid if for every > 0 there exists a finite s&8 C X such that
A C co(B)+{x € X:||x|| < ¢}, where c@B) denotes the absolutely convex hull of
B. Also, a closed linear subspag£of X is said to be topologically complemented
in X if there exists a continuous linear projection frafmonto M which, by the
Open Mapping Theorem ([8] Theorem 3.11), is equivalent to the existence of a
closed linear subspack of X such thatX = M & N. Such anN is called
topological complement odZ. On the other hand, for a real numbee (0, 1],

a finite family {x1, x», ..., x,} of elements inX is said to be-orthogonal if for all
A, A2, ..., A, €Kt max1<,<n||)»,~x,~ I < || Ele)\,»x,» ||

Finally, for non-Archimedean Banach spades’ overK, we denote by.(X, Y)
the (non-Archimedean) Banach space of all continuous linear operatorsxfitom
Y, endowed with the norm

IT| = inf{c > 0: | Tx|| < cllx| for all x € X}.
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We write X’ and L(X) instead ofL(X, K) and L(X, X) respectively. IfT ¢
L(X,Y)andM is a linear subspace &f, T|M is the restriction offl to M. Also,
T € L(X,Y)is called a compact operatorff({x € X: ||x|| < 1}) is a compactoid
subset ofY. Recall that a continuous linear operator is compact if and only if it
is completely continuous, that is, the limit of a sequence of operators of finite,
dimensional range (see [7] p. 87, [8] p. 142). The set of all compact operators from
X to Y is denoted byC (X, Y). Again,C(X) := C(X, X).

For more basic facts on non-Archimedean Banach spaces, we refer to [8].

3. Some Basic Facts on Linear Operators with Index

In this sectionX, Y andZ are linear vector spaces oJir

DEFINITION 3.1. We say thal" € £(X,Y) has an index when both(T) :=
dim Ken(T) and §(T) := dimY/R(T) are finite. In this case, the index of the
linear operatofT is defined ag (T') := n(T) — 8(T).

A well-known property of the index of a linear operator which is very useful
when studying the index gf-adic differential operators (see e.g. [7]) and that will
also be very useful in the sequel, is the following.

PROPOSITION 3.2 ([7] Proposition 7.1.6)f two of the three linear operators,
T € L(X,Y),S € L(Y,Z)andST € £L(X, Z) have indexes, then the third one
also has an index, and(ST) = x(T) + x(S).

The concept of pseudoinverse given in [12] p. 251 for continuous linear operat-
ors between real or complex Banach spaces admits the following algebraic version
in our case.

DEFINITION 3.3. If T € £L(X,Y), we say thatS € L(Y, X) is an algebraic
pseudoinverse of if TST =T.

Also, on the other hand, considering only the algebraic aspect of the proof of
[12] Theorem IV.12.9, we obtain the following result.
PROPOSITION 3.4.Every linear operator fromX to Y has an algebraic pseu-
doinverse.

By using Proposition 3.4 and attending only to linear projections and algebraic
direct sums, we can follow the same proof as the corresponding one given in [12]
p. 257 for continuous linear operators, to conclude that

THEOREM 3.5. If T € £L(X,Y) has an index andd € £L(X,Y) has finite
dimensional range, thefi + F has an index angt (T + F) = x(T).
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From now on X, Y and Z will be infinite-dimensional non-Archimedean Banach
spaces ovek.

4. Fredholm Operators and Pseudoinverses

A continuous linear operatd from X to Y is called aFredholm operatoif it has
an index. The set of all Fredholm operators frafhto Y is denoted by (X, Y).
WhenX = Y we will write ®(X) instead of® (X, X).

PROPOSITION4.11f T € ®(X, Y), thenR(T) is closed and for eache (0, 1)
there exists a continuous linear projectidghfrom Y onto R(T') such that]| P| <
L.

Proof. The fact that RT) is closed can be found in [7] Proposition 7.2.2. Now,
lett € (0,1) and choose’ € (0, 1) such thatt < < 1. By [8] Theorem 3.15
we can take a’-orthogonal family{Q(y1), Q(y2), ..., Q(y,)} C Y/R(T), that
forms a base ot /R(T), whereQ:Y — Y/R(T) is the canonical quotient map.
For everyi e {1,2, ...,n}, takex; € Q(y;) such that|x;|| < ¢t~ Q).
Then, J:Y/R(T) — Y, J(Q(y;)) — x;, is a continuous linear operator with
QJ = Iy, and|J|| < t~L Finally, P := Iy — J Q satisfies the required
conditions.

DEFINITION 4.2. GivenT € L(X,Y), a continuous algebraic pseudoinverse of
T is called a pseudoinverse of

Notice that although every linear operator betw&emector spaces has an al-
gebraic pseudoinverse (Proposition 3.4), the same is not true in general when we
consider continuous linear operators between Banach spaces (see the comments
before Proposition 4.7). The situation in this last case is described in the next
proposition whose proof follows as in [12] Theorem 1V.12.9.

PROPOSITION 4.3For T € L(X, Y), the following statements are equivalent

(a) There exist linear projection® € L(X) andQ € L(Y) such that
R(P) = Ker(T), R(Q) =R(T);

(b) There exist closed subspacésc X and Z C Y such that
X =Kern(T) W, Y =Z®R(T);

(c) T has a pseudoinverse.

In particular, by Proposition 4.1, for Fredholm operators we have

183264 .tex; 23/08/1999; 10:05; p.4

https://doi.org/10.1023/A:1001561127279 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001561127279

PRESERVATION OF THE INDEX OFp-ADIC LINEAR OPERATORS 295

COROLLARY 4.4. T € ®(X,Y) has a pseudoinverse if and onlyKer(T) is
topologically complemented iX.

Remark. Observe that sinc& andY are infinite dimensional spaces, when
T € ®(X,Y) has a pseudoinversee L(Y, X), necessarilys # 0.

Again, with the same proof as in [12] Theorem 1V.13.5, we obtain the following
lemma.

LEMMA 4.5. Suppose thal' € ®(X, Y) admits a pseudoinversg € L(Y, X)
(that is,Ker(T) is topologically complemented ). If B € L(X, Y) is such that
Ix+SBe®(X)andx(Ix +SB) =0,thenT + B € ®(X,Y)andx(T + B) =
x(T).

If in addition Iy + S B is bijective, we also hav&T + B) < §(T) andn(T +
B) < n(T).

THEOREM 4.6. LetT € ®(X,Y) be such that there exists a closed subspace
M of X with X = Ker(T) & M. ThenT|M has a pseudoinverse. Also, for each
pseudoinversé of T|M and for eachB € L(X, Y) with || B]| < ||S||~* we have

(@) T + B e ®(X,Y),
(b) (T + B) = x(T),
(¢) 8(T + B) < 8(T),

(d) n(T + B) < n(T).

In particular, if T is surjective, we have

(e) T + B is surjective,
(®) n(T + B) = n(T).

Proof.ClearlyT | M is injective and RT|M) = R(T). HenceT|M € ®(M,Y)
and, by Corollary 4.4, we obtain thdt|M has a pseudoinversg € L(Y, M).
Also, S := iS € L(Y, X) (wherei: M — X is the canonical inclusion fron¥/
into X) is a pseudoinverse & with ||S|| = ||S|. Now, givenB € L(X,Y) with
IBl < IIS]I~% = |IS]~%, we have thal SB| < 1 and sdly + S B is bijective. Then,
the conclusions follow from Lemma 4.5.

Remark. In the particular case whef is an injective Fredholm operator and
S is a continuous left inverse df, Theorem 4.6 appears in [7] Proposition 7.2.3,
being this last result a useful tool to study the index of p-adic differential operators.

Recall that ifK is not spherically complete, there are Banach spaceser
K for which X’ = {0} ([8] Corollary 4.3) and hence, by Corollary 4.4, every non
injective Fredholm operatdf from X into an arbitrary Banach space has not a
pseudoinverse because no nontrivial finite-dimensional subspakeisofopolo-
gically complemented irX. The situation is in sharp contrast with the classical

183264 .tex; 23/08/1999; 10:05; p.5

https://doi.org/10.1023/A:1001561127279 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001561127279

296 J. ARAUJO ET AL.

case: indeed, wheX andY are Banach spaces over the real or complex field,
everyT € ®(X,Y) has a pseudoinverse ([12] Theorem IV.13.2).

The next result, which will be useful later, characterizes the finite-dimensional
subspaces of non-Archimedean Banach spaces that are topologically complemen-
ted.

PROPOSITION 4.7 Let{xq, x5, ..., x,} be afinite family of linearly independent
vectors inX. For D := {xq, x2, ..., x,,) the following statements are equivalent

(a) D is topologically complemented ixi.

(b) Foranyx € D\ {0} there existsf € X’ with f(x) # 0.

(c) There existf, fa, ..., fu» € X' such thatf;(x;) = §; ; (Kronecker’s delta) for
alli,je{l,2,...,n}.

Proof. (a) = (b) follows from the fact thatD’ separates the points @i ([8]
Theorem 3.15). Fofb) = (c¢) see the proof of [4] Theorem 2.2. Finally, fa) =
(a),take f1, fo, ..., fnasin(c). Then, notice thaP: X — D,x — Y '_; fi(x)x;,
is a continuous linear projection froi onto D.

Remark. It follows from Proposition 4.7 that if\’ separates the points o&f
(e.g. whenkK is spherically complete), every finite-dimensional subspac¥ of
topologically complemented. In this case, by Corollary 4.4, ederyg ®(X,Y)
has a pseudoinverse. As a consequence, Theorem 4.6 proves in particulaKthat if
is spherically complete the index of a Fredholm operator under a small perturba-
tion does not change. Unfortunately, as we saw above, \ihennot spherically
complete Ke¢T) is not necessarily topologically complemented, which forces us
to seek for new techniques to deal with the problem of small perturbations of
Fredholm operators. This will be the purpose of the following section.

5. The Nonspherically Complete Case

If X andY are non-Archimedean Banach spaces @nd @ (X, Y), we denote

by X the Banach spack/Ker(T') endowed with the quotient norm, and Qythe
canonical quotient ma@ X — X/Ker(T). CIearIyQ is contmuous anch|| <

1. Also, notice that) e P (X, X) and x(Q) = n(T). Also, if T denotes the
injective linear operator fronX to Y associated t@', thenT € ® (X, Y), R(T) =

R(T) and, by Corollary 4.47 has a pseudoinverse. This pseudoinverse plays an
important role in the next result which will be crucial to our purpose.

THEOREM 5.1. LetT € ®(X,Y) and letS be a pseudoinverse df. For any
B e L(X,Y) withKer(T) c Ker(B) and || B|| < ||S]~* we have

(@ T+ BedX,Y),
(b) x(T + B) = x(T),
(c) 8(T + B) = &(T) (in particular, if T is surjective, then so i§ + B),
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(d) Ker(T + B) = Ker(T).

Proof. Let B: X — Y be given byB(Q(x)) = Bx, x € X. Clearly B is a
well defined continuous linear operator such thaf| = || B| < ||S|~*. Applying
Theorem 4.6 we conclude that

@ T+BedX,Y), ©) x(T +B) = x(),
(©) 8(T+B)=8T)=8T), (d) n(T+B)=nT)=0.

By Proposition 3.27 + B = (T + B)0 € ®(X, Y), and
X(T+B) = x(T'+B)+ x(Q)
= x(D) + x(Q)

= x(T).

Then (a) and (b) follow.

To prove (d), observe that by’Jd7 + B is injective and so K& + B) =
Ker(Q) = Ker(T).

Finally, (c) is a direct consequence of (b) and (d).

In the rest of the section, we will assume tlgais not spherically complete

PROPOSITION 5.2If D is a one-dimensional subspaceXfvhich is not topolo-
gically complemented i, then for each Banach spadeand eachk € C(X,Y)
we have thaD c Ker(K).

Proof. Assuming the contrary, suppose tt&atx) # 0 for somex € D. SinceK
is a compact operator, it follows from [8] Theorems 3.16 and 4.40 th&)Rsepar-
ates the points of &) and consequently there existse R(K)' with f (K (x)) #
0. Now, fK € X' and satisfiesf K(x) # O which, by Proposition 4.7, is in
contradiction with the fact thab = (x) is not topologically complemented in
X.

Remarks(1) Notice that, by Proposition 5.2, giveh € L(X,Y), anyx €
Ker(T) such that{x) is not topologically complemented iXi is also contained in
Ker(T + K) for every compact operatdt, a result which does not have a real or
complex counterpart.

(2) On the other hand, Proposition 5.2 does not hold in general for finite
dimensional subspacé3 with dim D > 1, as the following example shows.

Take X = K x(£*° /cg) and D = (x1, xp), wherex; = (1,0) andx, = (1,
7(1,1,...,1...)), beingr: £>* — £*° /cq the canonical quotient map.

Since (£ /co)’ = {0} ([8] Corollary 4.3) we have thab is not topologically
complemented irX.

Now, if Proposition 5.2 above was true, for tHisand thisX, takingY = K, we
obtain that(x;), (xp) C Ker(f) for any f € X’, which contradicts Proposition 4.7,

183264 .tex; 23/08/1999; 10:05; p.7

https://doi.org/10.1023/A:1001561127279 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001561127279

298 J. ARAUJO ET AL.

becausel = {(1, 7w (a,)) € X: A = 0} is a closed algebraic complement of both
of (x1) and(x;) in X (and hence topological, by the Open Mapping Theorem).
Now, Theorem 5.1 and Proposition 5.2 allow us to state the following result.

THEOREM5.3. Assumd’ € ®(X, Y) satisfieKer(T) = {x1, xo, ..., x,,), where
{x1, x2, ..., x,} is a finite family of linearly independent vectors hsuch that,
foranyi € {1, 2,...,n}, (x;) is not topologically complemented K. Let S be a
pseudoinverse df. Then, for anyk € C(X, Y) with | K| < ||S]|~* we have

@T+KedX,7Y),

(b) x(T + K) = x(T),

(c) 8(T + K) = 8(T) (in particular, if T is surjective, then so i + K),
(d) Ken(T + K) = Ker(T).

Remark. Now we are going to give an example of continuous linear operators
T, K satisfying the hypotheses of Theorem 5.3, for whialT R- K) # R(T)
(although, by property (c) of this theorem, we always havedtiit; K) = §(T)).

Being K not spherically complete, there exists a Banach spaemd ana €
X \ {0} such that(X/{(a))" separates the points &f/(a), but X’ does not separate
the points ofX (see [9] p. 214).

TakeY = K x (X/{a)) andT: X — Y, x — (0, Q(x)), whereQ: X — X/(a)
is the canonical quotient map. Theh,is a (non surjective) Fredholm operator
from X to Y for which KenT) = (a) = NsexKer(f) and so, by Proposition 4.7,
Ker(T) is not topologically complemented ix.

Let S be a pseudoinverse af and choosg € X'\ {0} with |Igll < [IS]I~*.
Then,K: X — Y, x — (g(x),0), is a compact operator frotki to Y for which
K|l = ligll < IIS|I"t. Hence,I andK satisfy the hypotheses of Theorem 5.3.

However, for everyx € X with g(x) # 0, we have thatg(x), Q(x)) is an
element of RT + K) which does not belong to®).

Observe that this example also shows the existence of continuous linear op-
eratorsT and K under the hypotheses of Theorem 5.1, for whialT R- K) #
R(T).

The example given in Remark 2 after Proposition 5.2 also shows the existence
of non-Archimedean Banach spacksand finite-dimensional subspacés =
(x1, X2, ..., x,) such that{x;) is topologically complemented iX for all i €
{1,2,...,n}, but D is not (obviously, by [8] Theorem 3.15, topological comple-
mentation ofD implies the same for eadh;), i € {1, 2, ..., n}). This fact makes
the proof of the following result be not so straightforward as one could expect at a
first glance.

LEMMA 5.4. Let D be a finite-dimensional subspace ¥fwith dimbD = n.
Then, there exisD, and D; subspaces oD with D = D; & Dy, D, topo-
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logically complemented iX, and (x) not topologically complemented X for
anyx € Dg \ {0}.

Proof. We can assume that> 0 and thatD is not topologically complemented
in X.

By Proposition 4.7Dqg := {x € D: f(x) = Oforanyf € X'} is a not trivial
subspace ob and Dg \ {0} coincides with the set of al € D \ {0} such thatx)

is not topologically complemented Xi. Call {x, 11, x,12,...,x,},(0<r <n),a
base ofDq.

If » = 0 the conclusion obviously follows.

Now, suppose that > 1 and extendx, 1, x,42, ..., x,} t0 a bas€{xy, ...,
Xpy Xpyl, ..., X} OF D,

To finish, it will be enough to see th&; := (x1, x5, ..., x,) is topologically
complemented irX. But this is a consequence of Proposition 4.7 and the fact that
Do N Dy = {0}.

GivenT € ®(X,Y) with dim Ker(T) = n, by Lemma 5.4, there exist sub-
spacesDy and D, of Ker(T") such that

(a) Ker(T) = D1 & Do,
(B) D1 has atopological complement in X,
(y) For eachy € Do\ {0}, (x) is not topologically complemented ix.

THEOREMS5.5.LetT € ®(X, Y) withdim Ker(T) = n and letDq,D; C Ker(T)
andM C X beasin(), (8) and(y) above. Then}be restrictiof;*, of TtoM isa
Fredholm operator. Also, if is a pseudoinverse @f*, then forevenk € C(X,Y)
satisfying| K| < [|S|~* we have

(@ T+KedX,Y),
(b) x(T + K) = x(T),
(c) (T + K) < 8(T),
(d) n(T + K) < n(T).

In particular, if T is surjective, we have

(e) T + K is surjective,
0 n(T+K) =n(T).

Proof. When Dy = {0} or D; = {0}, then the conclusions follow from Theor-
ems 4.6 and 5.3 respectively. So, we suppose that Bgtmd D, are not equal to

{0}.

Takexy, ..., xr, X,41, ..., %, € Ker(T) \ {0}, 0 < r < n, such that

D1= <X1,x2,...,xr> and D0: (xr+1,xr+2,---,xn>-
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Since, by(B), X = (x1,x2,...,x,)®M,thenforevery e {r + 1, r +2,...,n},
there exist.}, A5, ..., AL € Kandb; € M such that

xi:Z)\,;Xj—i-bi. (1)
j=1

Applying («) and (1) we easily deduce that
Ker(T) = <xl’---’xr’br+lv~‘vbn> (2)

and consequently, .1, b, o, ..., b, are linearly independent vectors ih
Now, we are going to prove the following properties, (i), (ii) and (iii), B

() R(T*) = R(T).
This fact follows easily from{«) and(g).

(”) Ker(T*) = (br+l’ br+2’ L) bn)
By (2) itis clear thatb, .1, b, 12, ...,b,) C Ker(T) N M = Ker(T*).
Conversely, applying (2) again, everyec Ker(T*) can be written as

m = Z)x,'x,' + Z /’ijj
i=1

j=r+1

for someir;, n; e K,i € {1,2,...,r},j € {r+ 1L r+2,...,n}. Thenm —
Z’;:rH wibj € (x1,x2,...,x,) and, on the other hand, it belongsiy which by
(B) implies that it is zero. Hencey = 3 _ . i;b; € (bry1, bry2, .., ba).

(i) Forevery j € {r +1,r 4+ 2,...,n}, (b;) is not topologically complemented
in M.

We suppose, on the contrary, that there exists {r + 1,r + 2, ..., n} such
that(b;,) is topologically complemented i¥. Then, there exists a closed subspace
Mjo of M such thatM = Mjo D <b,o) By (B), X = (x1,x0,...,%) @Mjo D
(bjp). Now by (1), (x1, x2, ..., x) ®(bj,) = (x1, ..., X, xj,). Hence,M;, is an
algebraic complement @f4, ..., x,, x;,) in X (and hence topological, by the Open
Mapping Theorem). This implies (see the comments before Lemma 5.4)thlat
is topologically complemented ik, which is in contradiction with(y).

Observe that (i) and (ii) imply théf* € ®(M,Y) andx(T*) =n —r — §(T).

On the other hand, if we consider the compact opetkitor= K|M € C(M,Y),
itis clear that| K*|| < ||K|| < ||IS||~. Then, Theorem 5.3 together with properties
(1), (i) and (iii), allow us to conclude that

(@) T*+ K* € ®(M, Y),
0*) x(T*+ K*) = x(T*) =n —r — 8(T),
(c*) 8(T* + K*) = 8(T*) = 8(T).

Next, we are going to prove (a) and (b).
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According to(f), there exists a continuous linear projectiBrirom X onto M
such that KetP) = (x1, x2, ..., x,). ClearlyP € ®(X, M) andy (P) =r.

Then, applying Proposition 3.2 in combination wi@) and (b*), we deduce
that(T* + K*)P € ®(X,Y) and

x((T*+ K*)P) = x(T). (3)
Also, observe that
T+K=({T*+K"P+K(x—P), (4)

where dim RK (Ix — P)) < oo. Now (a) and(b) are direct consequences of (3),
(4) and Theorem 3.5.

To finish we will prove (d) (observe that (c) follows directly from (b) and (d)).

Since||K|| < ||S||L, there exists € (0, 1) such that| K| < ¢||S||~*. Also, by
Proposition 4.1, there exists a continuous linear projec@iofrom Y onto RT)
with | Q| < . Then,T := QT e L(X,R(T)) is a Fredholm operator from
onto R'T) for which KenT) = Ker(T). Further, it is straightforward to verify that
S := S|R(T) is a pseudoinverse &, whereT = T|M.

On the other handg := QK is a compact operator frotki to R(7') for which

IKI < QK < IS~ < 1S~
Therefore, we can apply properties (a), (b) arid &ove, by taking” = R(T),
T =T andK = K, to conclude thaf" + K is a Fredholm operator from¥ to
R(T) such that
x(T+K)=x(T) 5)
and
ST +K")=68T)=0, (6)

whereK” =K|M.
By (6), we have thaf” + K is surjective which, together with (5), imply that

n(T + K) =n(T) = n(T). 7)

Finally, observe that since K&F + K) c Ker(Q(T + K)) = Ker(T + K), it
follows from (7) thatn (T + K) < n(T) which provesd).

Remarks(1) Although the structure of the kernel is in some way preserved, as
we saw in Remark 1 after Proposition 5.2, there eXistnd K as in Theorem 5.5
for which KernT + K) # Ker(T), even wherf is surjective, as we can see in the
following example (compare with Theorem 5.3).
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First of all, note thatR: £*° /co — £>°/cq, m(a,) — 7w (ay11 — a,) (Where
m:L* — £%°/cq is the canonical quotient map) is a well defined linear and con-
tinuous operator such th&tis surjective and K&R) = (7 (1,1,...,1,...)).

Now, takeX = K x(¢*®/cg), Y = £*/co andT: X — Y defined asT((%,
7 (a,))) := R(m(a,)). Then,T is a surjective Fredholm operator with K&n =
((1,0), (0, 7(1,1,...,1,...)). .
__Choosex € K \{0} with |e| < || S|I71, being S a pseudoinverse @f* (where
T* is defined as in Theorem 5.5). Theki; X — Y, (A, 7 (a,) — —an(A,
A, ..., A,...)is acompact operator withk || < |S]~2.

Hence,T andK satisfy the hypotheses of Theorem 5.5.

On the other hand, we can easily see that(Ret K) = ((1, an(1,2,3,
con, ), 0,m(L,1,...,1,...)), and so Ke(T + K) # Ker(T), because
Lar (1,2,3,...,n,...) €Ker(T).

(2) Also we provide an example &f and K as in Theorem 5.5 for which
8(T + K) < 8(T) andn(T + K) < n(T) (compare again with Theorem 5.3). In
particular, this implies that, whef is not surjective, Statementg) and (/) of
Theorem 5.5 are not true in general.

TakeX =Y = K xK x(£*/cg) and definel': X — Y asT (A, u, w(a,))) :=
(0,0, R (7(ay))), with R and = as above. We have that K&) = ((1,0,0),
0,1,0,0,0,7 (1,1,...,1,..))),andRT) = {(A, u, w(a,)) € X: A =pu = 0}.
Hence,T € @ (X), n(T) = 3,ands(T) = 2.

As in Remark 1, choose € K\ {0} with |«| < || S| 7}, beingS a pseudoinverse
of T*. ThenK: X — Y defined ask((A, i, m(a,))) := (aA,0,0) is a compact
operator with|| K| < ||S]~L.

Hence, we again have th&tandK satisfy the hypotheses of Theorem 5.5.

But, on the other hand, we can easily see that

Ker(T + K) =((0,1,0), (0,0, 7(1,1,...,1,..)))
and

R(T +K) = {(A, u, 7(ay)) € X: u = 0}.
So we have that

1=8(T+K)<8T)=2

2=n(T +K) <n(T) =3
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6. The Main Result

Finally, we are in a position to prove a final theorem which is an extension of the
corresponding one given in [3] Theorem 8.1.1 for a locally compact ground field
K.

THEOREM 6.1. For T € ®(X,Y) andK € C(X,Y) we have thatl' + K €
®(X,Y)and x(T + K) = x(T).

Proof. WhenK is spherically complete K€F) is topologically complemented
in X (see the remark after Proposition 4.7) and in this case we Sakebe as
in Theorem 4.6; otherwises is taken as in Theorem 5.5. By [8] Theorem 4.39,
compactness ok implies the existence of af € L(X, Y) with dim R(F) < oo
and such thafK — F|| < ||S||~. ObviouslyK — F € C(X,Y).NowT +K —F €
®(X,Y) and x(T + K — F) = x(T): this follows directly from Theorem 4.6
whenkK is spherically complete and from Theorem 5.5 wiieis not. Next, since
dim R(F) < oo, we can apply Theorem 3.5 to conclude tiiat- K = (T + K —
F)+Fe®X,Y),andx(T + K) = x(T + K — F) = x(T).

Remark. As an application of Theorem 6.1 we obtain thaKife C(X), then
Ix+K € ®(X)andy (Ix+K) = 0, which was already proved pradic Fredholm
theory (see e.qg. [5], [10] and [11]).
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