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NON-REAL PERIODIC POINTS OF ENTIRE FUNCTIONS

WALTER BERGWEILER

ABSTRACT. It is shown that if f is an entire transcendental function, l a straight line
in the complex plane, and n ½ 2, then f has infinitely many repelling periodic points of
period n that do not lie on l.

1. Introduction and main result. Let f be an entire function and denote by f n its
n-th iterate. We say that z0 is a periodic point of f if f n(z0) = z0 for some n 2 N. The
smallest n with this property is called the period of z0. A periodic point z0 of period n is
called attracting, indifferent, or repelling depending on whether j(f n)0(z0)j is less than,
equal to, or greater than 1. The following results were proved in [2] and [3].

THEOREM A. Let f be an entire transcendental function and n ½ 2. Then f has
infinitely many repelling periodic points of period n.

THEOREM B. Let f be an entire transcendental function, l a straight line in the
complex plane, and n ½ 2. Then f n has infinitely many fixpoints that do not lie on l.

These results confirmed conjectures by I. N. Baker [5, Problems 2.20 and 2.23]. For
a discussion of the background of these results we refer to [2] and [3]. The purpose of
this paper is to prove a theorem which combines these two results.

THEOREM. Let f be an entire transcendental function, l a straight line in the complex
plane, and n ½ 2. Then f has infinitely many repelling periodic points of period n that
do not lie on l.

Among the tools used in [2] are the Wiman-Valiron theory about the behavior of
entire functions near points of maximum modulus, Ahlfors’ theory of covering surfaces,
and results relating critical points to attracting and indifferent periodic points. These
techniques are also used in [3], the essential new ingredient being estimates of the Fourier
coefficients of log jh(reií)j for entire h. In the present paper we use some ideas from [2]
and [3], but replace the Fourier series method by more elementary considerations. We
shall also use some Nevanlinna theory. We note that the method of [3] works only in the
case where the order of f n is greater than 2, the remaining case (and in fact the case that
f n has finite order) being covered by a result of Baker [1]. Our present approach does
not require any restrictions on the growth of f or f n.

Supported by a Heisenberg Fellowship of the Deutsche Forschungsgemeinschaft
Received by the editors February 29, 1996; revised July 12, 1996.
AMS subject classification: 30D05, 58F23.
c
Canadian Mathematical Society 1997.

271

https://doi.org/10.4153/CMB-1997-033-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-033-x


272 WALTER BERGWEILER

2. Preliminaries. In the first part of the proof of Theorem A in [2, Section 3] it
is shown that if f has only finitely many repelling periodic points of period n, then for
given ¢ Ù 0 there exists a sequence (ró) tending to 1 and having the property that for
all ó there is a Jordan curve Γ0 contained in fz : ró � jzj � (ró)1+¢g which surrounds the
origin and is such that jf n(z)j = M(róÒ f n) for z 2 Γ0. Moreover, if G0 is the interior of Γ0

and Gk = f k(G0) for k = 1Ò    Ò n, then f is a proper map from Gk�1 onto Gk. We denote
its degree by pk.

It is shown in [2, Section 6] that if N̄rep denotes the number of repelling periodic points
of period n in G0 and if Pk = p1p2 Ð Ð Ð pk for k = 1Ò    Ò n, then

N̄rep ½ Pn �
X

kÚnÒkjn

Pk � 3n(pn � 1)(1)

From this Theorem A immediately follows. (Note that the pk depend also on ó and,
in fact, we have pk ! 1 as ó ! 1 for each k.) We mention that we use the same
terminology as in [2], except that what was called primitive period in [2] is now called
period.

In [3, Section 3] it is described in detail how one can find such a sequence (ró) and
corresponding Γ0ÒG0Ò    if n = 2 and if f2 has only finitely many non-real fixpoints.
It is mentioned that this also works if n ½ 3, and the minor modifications necessary to
handle this case are left to the reader. Here we note that the methods of [2] and [3] do
in fact also work under the weaker assumption that f has only finitely many non-real
repelling periodic points of period n. Assuming this we again obtain a sequence (ró) with
the properties described above. We omit the details.

3. Results from Nevanlinna theory. We shall apply Nevanlinna’s theory on the
distribution of values and thus briefly introduce the definitions and results that we shall
use. For a detailed account of the theory we refer to [4] or [6].

For a meromorphic function h, we denote by n(rÒ h) the number of poles of h in jzj � r,
counted according to multiplicity. For a 2 C the number of a-points of h in jzj � r is
thus given by n

�
rÒ 1Û(h�a)

�
. Next we define N(rÒ h) =

R r
0 n(tÒ h)Ût dt, omitting the slight

modification necessary if h(0) = 1. We note that

N(rÒ h) =
Z r

1

n(tÒ h)
t

dt + N(1Ò h) � n(rÒ h)
Z r

1

dt
t

+ N(1Ò h) = n(rÒ h) log r + N(1Ò h)(2)

and

N(rãÒ h) ½
Z rã

r

n(tÒ h)
t

dt ½ n(rÒ h)
Z rã

r

dt
t

= (ã � 1)n(rÒ h) log r(3)

if rÒ ã ½ 1.
The Nevanlinna characteristic T(rÒ h) is defined by

T(rÒ h) = N(rÒ h) +
1

2ô

Z 2ô

0
log+ jh(reií)j dí
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Here log+ x = log x if x Ù 1 and log+ x = 0 otherwise. It is easy to see that if h1 and h2

are meromorphic, then

T(rÒ h1 + h2) � T(rÒ h1) + T(rÒ h2) + O(1)(4)

as r ! 1. Nevanlinna’s first fundamental theorem says that if a 2 C, then
T
�
rÒ 1Û(h � a)

�
= T(rÒ h) + O(1) as r !1. An immediate consequence is that

N
�

rÒ
1

h � a

�
� T(rÒ h) + O(1)(5)

as r !1. A simplified version of Nevanlinna’s second fundamental theorem says that

T(rÒ h) �
�
1 + o(1)

� 
N(rÒ h) + N

�
rÒ

1
h

�
+ N

�
rÒ

1
h � 1

�!

as r ! 1 outside some exceptional set of finite measure. If ã Ù 1 and r is large, then
there exists s 2 [rÒ rã] which is not in the exceptional set and thus

T(rÒ h) � T(sÒ h)

�
�
1 + o(1)

� 
N(sÒ h) + N

�
sÒ

1
h

�
+ N

�
sÒ

1
h � 1

�!

�
�
1 + o(1)

� 
N(rãÒ h) + N

�
rãÒ

1
h

�
+ N

�
rãÒ

1
h � 1

�!


The argument shows that we could replace rã by r + ¢ for every ¢ Ù 0 here, but we do
not need this. Note that N(rÒ h) = 0 for entire h so that the last inequality takes the form

T(rÒ h) �
�
1 + o(1)

� 
N
�

rãÒ
1
h

�
+ N

�
rãÒ

1
h � 1

�!
(6)

in this case.

4. Proof of the theorem. As in [3] we may assume without loss of generality that
l is the real axis. We assume that the theorem is false and denote the number of non-
real repelling periodic points of period n by K. Then there exist a sequence (ró) and
corresponding Γ0, Gk, pk, Pk with the properties described in Section 2, and (1) holds.
By N̄repÒR we denote the number of real repelling periodic points of period n contained
in G0. By assumption we have N̄repÒR ½ N̄rep � K.

As in [3] we prove first that f is real on the real axis. To this end we note that if z0

is a repelling periodic point of period n, then so is f (z0). Thus f is real at the repelling
periodic points of period n, with at most K exceptions. Thus g(z) = f (z) � f (z̄) has at
least N̄repÒR � K zeros in G0. Assuming that g does not vanish identically and using the
fact that G0 ² fz : jzj � (ró)1+¢g, as well as the Nevanlinna theory estimates (3), (5),
(4), (6), and (2), we obtain for r = ró
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N̄rep � 2K � N̄repÒR � K

� n
�

r1+¢Ò
1
g

�

�
1

¢ log r
N
�

r1+2¢Ò
1
g

�

�
1

¢ log r

�
T(r1+2¢Ò g) + O(1)

�

�
2

¢ log r

�
T(r1+2¢Ò f ) + O(1)

�

�
2 + ¢
¢ log r

 
N
�

r1+3¢Ò
1
f

�
+ N

�
r1+3¢Ò

1
f � 1

�
+ O(1)

!

�
(2 + ¢)(1 + 3¢)

¢

 
n
�

r1+3¢Ò
1
f

�
+ n

�
r1+3¢Ò

1
f � 1

�!
+ o(1)

�
(2 + ¢)(1 + 3¢)

¢
2p2 + o(1)

as ó ! 1. The last inequality follows since fz : jzj � (ró)1+3¢g ² G1 for large ó (cf.
[2]) and f takes every value in G2 (and thus for large ó in particular the values 0 and
1) exactly p2 times in G1, counted according to multiplicity. Clearly the above estimate
contradicts (1) for large ó because pk ! 1 for each k as ó ! 1. Thus g vanishes
identically and hence f is real on the real axis. This implies that we may assume that G0

is symmetric with respect to the real axis. In particular, G0 \R = (aóÒ bó) where aó Ú bó.
We denote the number of real fixpoints of f n in (aóÒ bó) by Q and the number of

real repelling fixpoints of f n in (aóÒ bó) by Qrep. Here and in the following we disregard
multiplicities. Note that Q � Pn and Qrep ½ N̄repÒR ½ N̄rep � K. The real fixpoints of
f n bound Q � 1 subintervals of (aóÒ bó). At most 2(Q � Qrep) of these intervals have a
non-repelling endpoint and thus Q� 1� 2(Q�Qrep) = 2Qrep �Q� 1 of these intervals
are bounded by two repelling fixpoints of f n. For an interval bounded by two repelling
fixpoints of f n the derivative (f n)0 must be greater than 1 at one endpoint and less than
�1 at the other endpoint. In particular, such an interval must contain a zero of (f n)0. Thus
the number S of zeros of (f n)0 in (aóÒ bó) satisfies

S ½ 2Qrep�Q�1 ½ 2(N̄rep�K)�Pn�1 ½ Pn�2
X

kÚnÒkjn

Pk�6n(pn�1)�2K�1(7)

by (1).
Next we show that f 0 has infinitely many real zeros. To do this we assume that f 0 has

only finitely many, say N, real zeros. Then f takes every real value at most N +1 times on
the real axis. Since (f n)0 = (f n�1)0(f )f 0 and since (f n�1)0 has at most p2p3 Ð Ð Ð pn � 1 zeros
in G1 we conclude that S � (p2p3 Ð Ð Ð pn � 1)(N + 1) + N. Combining this with (7) we
obtain a contradiction since pk !1 as ó ! 1. Thus f 0 has infinitely many real zeros.
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We now fix an interval [aÒ b] and denote by L the number of zeros of f 0 in [aÒ b] and
by M the number of zeros of (f n)0 in [aÒ b]. For large ó we have aó Ú a Ú b Ú bó and
f 0 has at most p1 � 1 � L zeros in (aóÒ a) [ (bÒ bó). Thus f assumes every value in G1 at
most p1 � L + 1 times in (aóÒ a) [ (bÒ bó). As before we conclude that (f n)0 has at most
(p2p3 Ð Ð Ð pn � 1)(p1 � L + 1) + p1 � 1 � L zeros in (aóÒ a) [ (bÒ bó). Thus

S � (p2p3 Ð Ð Ð pn�1)(p1�L + 1) + p1�1�L + M = Pn� (L�1)p2p3 Ð Ð Ð pn�2 + M(8)

From (7) and (8) we obtain

Pn � 2
X

kÚnÒkjn

Pk � 6n(pn � 1)� 2K � 1 � Pn � (L � 1)p2p3 Ð Ð Ð pn � 2 + M

and hence

(L � 1)p2p3 Ð Ð Ð pn � 2
X

kÚnÒkjn

Pk + 6n(pn � 1) + 2K + M � 1

Since pk+1 ½ pk and pk ! 1 as ó ! 1 we obtain a contradiction if we choose (aÒ b)
such that L is sufficiently large. In fact, if n ½ 3 it is enough to take L = 2 and if n = 2
the choice L = 16 suffices. This contradiction completes the proof of the theorem.
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