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NON-REAL PERIODIC POINTS OF ENTIRE FUNCTIONS

WALTER BERGWEILER

ABSTRACT. Itisshown thatif f isan entire transcendental function, | astraight line
inthe complex plane, and n > 2, then f hasinfinitely many repelling periodic points of
period n that do not lieon .

1. Introduction and main result. Letf be an entire function and denote by f" its
n-th iterate. We say that z is a periodic point of f if f"(z)) = z, for somen € N. The
smallest n with this property is called the period of zy. A periodic point z, of period nis
caled attracting, indifferent, or repelling depending on whether |(f")'(zo)| is less than,
equal to, or greater than 1. The following results were proved in [2] and [3].

THEOREM A. Let f be an entire transcendental function and n > 2. Then f has
infinitely many repelling periodic points of period n.

THEOREM B. Let f be an entire transcendental function, | a straight line in the
complex plane, and n > 2. Then f" hasinfinitely many fixpoints that do not lieon .

These results confirmed conjectures by |. N. Baker [5, Problems 2.20 and 2.23]. For
a discussion of the background of these results we refer to [2] and [3]. The purpose of
this paper is to prove a theorem which combines these two resullts.

THEOREM. Letf bean entiretranscendental function, | a straight line in the complex
plane, and n > 2. Then f has infinitely many repelling periodic points of period n that
donot lieonl.

Among the tools used in [2] are the Wiman-Valiron theory about the behavior of
entire functions near points of maximum modulus, Ahlfors' theory of covering surfaces,
and results relating critical points to attracting and indifferent periodic points. These
techniquesarealso usedin[3], the essential new ingredient being estimates of the Fourier
coefficients of log |h(reé?)| for entire h. In the present paper we use some ideas from [2]
and [3], but replace the Fourier series method by more elementary considerations. We
shall also use some Nevanlinnatheory. We note that the method of [3] works only in the
case where the order of f" is greater than 2, the remaining case (and in fact the case that
f" has finite order) being covered by a result of Baker [1]. Our present approach does
not require any restrictions on the growth of f or f".
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2. Preliminaries. In the first part of the proof of Theorem A in [2, Section 3] it
is shown that if f has only finitely many repelling periodic points of period n, then for
given ¢ > 0 there exists a sequence (r,,) tending to oo and having the property that for
al v thereisaJordan curve o containedin {z: r, < |z| < (r,)¥**} which surroundsthe
origin and issuch that [f"(2)| = M(r,, f") for z € T'o. Moreover, if Gy istheinterior of g
and G, = f¥(Gg) fork =1..... n, then f is a proper map from G,_; onto Gy. We denote
its degree by py.

Itisshownin[2, Section 6] that if N,ep denotesthe number of repelling periodic points
of periodnin Goandif P =pip2---pcfork=1,..., n, then

(1) l\_lrep > Pn— Z Pk — 3n(pn - 1)-

k<n,k|n

From this Theorem A immediately follows. (Note that the px depend also on v and,
in fact, we have py — oo asv — oo for each k.) We mention that we use the same
terminology asin [2], except that what was called primitive period in [2] is how called
period.

In [3, Section 3] it is described in detail how one can find such a sequence (r,) and
corresponding g, Go. ... if n = 2 and if f2 has only finitely many non-real fixpoints.
It is mentioned that this also works if n > 3, and the minor modifications necessary to
handle this case are left to the reader. Here we note that the methods of [2] and [3] do
in fact also work under the weaker assumption that f has only finitely many non-real
repelling periodic points of period n. Assuming this we again obtain a sequence(r, ) with
the properties described above. We omit the details.

3. Results from Nevanlinna theory. We shall apply Nevanlinna's theory on the
distribution of values and thus briefly introduce the definitions and results that we shall
use. For a detailed account of the theory we refer to [4] or [6].

For ameromorphic function h, we denote by n(r, h) the number of polesof hin |z <'r,
counted according to multiplicity. For a € C the number of a-pointsof hin |z <r is
thusgivenby n(r. 1/(h—a)). Next wedefineN(r. h) = [ n(t. h) /t dt, omitting the slight
modification necessary if h(0) = co. We note that

() N(r. h) = /1r ”(tt‘ M g+ N(L B) < n(r. h) /; ? +N(L h) = n(r. h)log r + N(L. h)
and

?) N(r®, h) > ./r' @ dt > n(r. h)/rr ? = (o — D)n(r.h) logr
ifr.a> 1

The Nevanlinna characteristic T(r, h) is defined by

_ 1 jor 0
T(r.h)—N(r,h)+§/0 log* |h(re)| df.
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Herelog™ x = logx if x > 1 and log* x = 0 otherwise. It is easy to see that if h; and h,
are meromorphic, then

(4) T(r,hy +hg) <T(r.hy) + T(r. hz) + O(1)

as r — oo. Nevanlinna's first fundamental theorem says that if a € C, then
T(r.1/(h—a)) = T(r.h) + O(1) asr — oo. Animmediate consequenceis that

(5) N(r, %‘) < T(r.h) +O(1)

asr — oo. A simplified version of Nevanlinna's second fundamental theorem says that

1 1
,h) < , , = y
T(r.h) < (1+o(1))(N(r h) +N<r, h) +N(r — 1))
asr — oo outside some exceptional set of finite measure. If « > 1 and r is large, then
thereexists s € [r, r*] which is not in the exceptional set and thus

T(r.h) < T(s.h)
< (1+0(D) (N(S- h) + N<S %) * N<S‘ ﬁ))

< (1+0(1)) (N(r“. h) + N(r”. %) + N(r“, ﬁ)) .

The argument shows that we could replace r® by r + ¢ for every £ > 0 here, but we do
not need this. Note that N(r, h) = O for entire h so that the last inequality takesthe form

o renz@eom(ied) e )

in this case.

4. Proof of thetheorem. Asin [3] we may assume without loss of generality that
| is the real axis. We assume that the theorem is false and denote the number of non-
real repelling periodic points of period n by K. Then there exist a sequence (r,) and
corresponding Mg, Gy, px, P« with the properties described in Section 2, and (1) holds.
By N,ep,R we denote the number of real repelling periodic points of period n contained
in Gp. By assumption we have Iﬁrep,R > Nrep — K.

Asin [3] we prove first that f is real on the real axis. To this end we note that if z
is arepelling periodic point of period n, then so isf(z). Thusf isreal at the repelling
periodic points of period n, with at most K exceptions. Thus g(2) = f(2) — f(2) has at
least N,ep,R — K zerosin Gy. Assuming that g does not vanish identically and using the
fact that Go C {z: |2 < (r,)**"}, aswell asthe Nevanlinna theory estimates (3), (5),
(4), (6), and (2), weabtainforr =r,
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Nrep — 2K < Nyep — K
n(r“g, é)
F}N(rl"zﬂ é)

< —ogr (T6*%.0)+O()

IN

IN

Wzgr (T(r™>.f) +0(1))

E2|(-)|—ger (N(r1+3s_ %) + N(rl+36. %) + O(l))

< (2+5)£1+36) (n(rmg_?l) +n(r1+35q%)) +o(1)

< (2+e)(1+3¢)

IN

IN

. 2pz +0(1)
asv — oo. Thelast inequality follows since {z: |z| < (r,)***} C G; for large v (cf.
[2]) and f takes every value in G, (and thus for large v in particular the values 0 and
1) exactly p, timesin Gy, counted according to multiplicity. Clearly the above estimate
contradicts (1) for large v because p, — oo for each k as v — oo. Thus g vanishes
identically and hencef isreal onthe real axis. Thisimpliesthat we may assumethat G
is symmetric with respect to thereal axis. In particular, Go "R = (a,, b,) wherea, < b,.
We denote the number of real fixpoints of " in (a,,b,) by Q and the number of
rea repelling fixpoints of f" in (a,, b,) by Qrep. Here and in the following we disregard
multiplicities. Note that Q < P, and Qrep > Nigpr > Nrgp — K. The real fixpoints of
f" bound Q — 1 subintervals of (a,,b,). At most 2(Q — Q) Of these intervals have a
non-repelling endpoint and thus Q — 1 — 2(Q — Qrep) = 2Qrep — Q — 1 of theseintervals
are bounded by two repelling fixpoints of f". For an interval bounded by two repelling
fixpoints of " the derivative (f")’ must be greater than 1 at one endpoint and less than
—1 at the other endpoint. In particular, such aninterval must containazero of (f")’. Thus
the number Sof zerosof (f") in (a,, b,) satisfies

(7) S> 2Qrep—Q—1> 2(Nigp—K) —Pr—1>Pp—2 3 Py—6n(pn—1)—2K -1

k<n,k|n

by (2).

Next we show that f” has infinitely many real zeros. To do this we assumethat f’ has
only finitely many, say N, real zeros. Thenf takesevery real value at most N+ 1 timeson
thereal axis. Since (f")’ = (f"~1)/(f)f’ and since (f"~1)’ hasat most pops3 - - - pn — 1 zeros
in G; we conclude that S < (pzps3- - - pn — 1)(N + 1) + N. Combining this with (7) we
obtain a contradiction since py — oo asv — oo. Thusf’ hasinfinitely many real zeros.
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We now fix an interval [a, b] and denote by L the number of zeros of f’ in[a, b] and
by M the number of zeros of (f") in [a, b]. For large v we havea, < a < b < b, and
f’ hasat most py — 1 — L zerosin (a,,a) U (b, b,). Thusf assumesevery valuein G; at
most p, — L + 1 timesin (a,,a) U (b, b,). As before we conclude that (f")’ has at most
(P2P3 -~ pn— 1)(p1 — L+ 1) +p1 — 1 — L zerosin (a,. @) U (b, b,). Thus

(8) S<(p2ps- - pn—(pr—L+1)+p—1—-L+M=Py—(L—1)p2ps-- - pn— 2+M.
From (7) and (8) we obtain

Pn—2 > Pc—6n(pn—1)—2K—1<Py—(L—1)pps---pn—2+M
k<n.k|n

and hence

L—Dpopz---pn<2 > Pe+6n(pn—1)+2K+M— 1.

k<nkjn

Since pr+1 > Pk and px — oo asv — oo we obtain a contradiction if we choose (a, b)
such that L is sufficiently large. In fact, if n > 3itisenoughtotakeL =2 andif n=2
the choice L = 16 suffices. This contradiction completesthe proof of the theorem.
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