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COMPARING COMPUTABILITY IN TWO TOPOLOGIES

DJAMEL EDDINE AMIR AND MATHIEU HOYRUP

Abstract. Computable analysis provides ways of representing points in a topological space, and
therefore of defining a notion of computable points of the space. In this article, we investigate when two
topologies on the same space induce different sets of computable points. We first study a purely topological
version of the problem, which is to understand when two topologies are not �-homeomorphic. We obtain a
characterization leading to an effective version, and we prove that two topologies satisfying this condition
induce different sets of computable points. Along the way, we propose an effective version of the Baire
category theorem which captures the construction technique, and enables one to build points satisfying
properties that are co-meager with respect to a topology, and are computable with respect to another
topology. Finally, we generalize the result to three topologies and give an application to prove that certain
sets do not have computable type, which means that they have a homeomorphic copy that is semicomputable
but not computable.

§1. Introduction. Computable analysis provides a way to perform computations
on mathematical objects, by representing them using infinite sequences of bits
or natural numbers. A class of objects can be represented in several ways, and
the choice of the representation has a direct impact on the computation power
of the Turing machine. In particular, each representation induces its own class
of computable objects. In this article, we are interested in understanding when
two representations on a set induce different subsets of computable points. This
problem being too general to be analyzed, we restrict our attention to standard
representations of countably based topological spaces. It is a widespread class
of representations capturing most natural cases, and it enables us to develop a
topological understanding of the problem.

With this restriction, the problem can be stated as follows: given two countably
based topologies on the same set, when do they induce different sets of computable
points?

Our main goals are to clarify the relationship between topology and computability,
and to obtain general results that can be applied in concrete cases to separate
computability notions. Indeed, such separation results can be challenging in practice,
which means that a theoretical development of this problem is needed. Moreover,
understanding when a separation result is possible is at least more informative as
the separation result itself. We give an application which would be tedious to obtain
directly, which is to build a copy of a given compact set which is semicomputable
but not computable.
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2 DJAMEL EDDINE AMIR AND MATHIEU HOYRUP

In order to study the problem of separating the notions of computable points
associated with two topologies, we first relativize it, yielding a purely topological
problem: whether two topologies are �-homeomorphic, i.e., whether the space can
be decomposed into a countable union of subsets such that the two topologies agree
on each subset. The relationship between the computability-theoretic content of
points and the �-homeomorphism class of the space was thoroughly investigated by
Kihara, Pauly, and Ng [17, 18].

In this article, we use Baire category to study the problem of comparing two
topologies and their computable contents, so we need one of the two topologies to
be Polish, or that the space can also be endowed with a third topology which is
Polish.

Given a set with a Polish topology � and a weaker topology �′, we give a
characterization of the case when � and �′ are not �-homeomorphic. We then use this
characterization to propose an effective version, implying that the two topologies
induce different sets of computable points. We also extend the results to the case
when � is not Polish, but a third Polish topology is available.

The constructions underlying the separation results are based on the priority
method with finite injury. We recast the construction into a more general result of
independent interest. It is an effective version of the Baire category theorem, in which
simple topological conditions are identified that make the construction possible.

1.1. Content. Let (X, �) be a Polish space and �′ a countably based topology on X
that is weaker than �, i.e., such that every �′-open set is also �-open. For the effective
results, we will also assume that these topologies are effective in some sense.

In Section 2, we start with an effective version of the Baire category theorem that
builds �′-computable points in a set that is co-meager w.r.t. � (Theorem 2.1). This
result captures the building technique that is needed for the rest of the paper, and
is based on the priority method. This theorem is of independent interest and can
hopefully be applied in other contexts.

In Section 3, we introduce a definition expressing that �′ is “significantly weaker”
than � in the sense that when �′ and � coincide on a set, that set must be small
in the sense of Baire category. We then say that �′ is generically weaker than �
(Definition 3.3). This notion immediately implies that �′ is not �-homeomorphic
to �. We then prove that when �′ is generically weaker than � in an effective way,
there exist �′-computable points that are not �-computable (Theorem 3.1). This
construction is obtained by applying the effective Baire category theorem from
Section 2. In Section 3.3, we investigate the difficulty of id : (X, �′) → (X, �) in
terms of Weihrauch reducibility. In Section 3.4, we generalize the results to a case
when the two topologies to be compared are not Polish, but a third topology is
available, which is Polish.

We end in Section 4 with an application, which is a complete proof of a result
announced in [1] about sets with computable type (Theorem 4.2).

1.2. Background. We assume familiarity with basic notions from computability
theory: computably enumerable (c.e.) subset of N, computable function from N to N

or from the Baire space N = N
N to itself. We now recall a few classical notions from

computable analysis, that can be found in [27] or [24].
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COMPARING COMPUTABILITY IN TWO TOPOLOGIES 3

An effective countably based space is a topological space (X, �) coming with a
numbered basis (Bi)i∈N and a c.e. set E ⊆ N

3 such that Bi ∩ Bj =
⋃

(i,j,k)∈E Bk . A
set U ⊆ X is an effective open set if U =

⋃
�∈W Bi for some c.e. setW ⊆ N.

The Baire space N = N
N endowed with the product of the discrete topology is

naturally an effective countable-based T0-space. Basic open sets are given by the
cylinders: if � ∈ N

∗ is any finite sequence of natural numbers, then the cylinder [�]
is the set of infinite extensions of �.

A representation of a set X is a surjective partial map �X :⊆ N → X . A �X -name
of x ∈ X is any p ∈ dom(�X ) such that �X (p) = x. A point x ∈ X is computable if
it has a computable name.

A function f : X → Y between represented spaces is computable if there exists a
computable partial function F :⊆ N → N such that f ◦ �X = �Y ◦ F . F is called a
realizer of f.

An effective countably based T0-space X can be equipped with its standard
representation �X encoding a point by any enumeration of its basic neighborhoods,
and defined as follows: a �X -name of x is any p ∈ N such that for all i ∈ N,
x ∈ Bi ⇐⇒ ∃n ∈ N, p(n) = i + 1. We will say that a point x ∈ X is �-computable
if x is computable w.r.t. the standard representation associated with the topology �.
A functionf : X → Y between effective countable-basedT0-spaces is computable if
and only if the preimages of basic open sets f–1(BYi ) are effectively open, uniformly
in i.

A computable metric space is a metric space (X, d ) coming with a dense
sequence (si)i∈N such that the function (i, j) 
→ d (si , sj) is computable. It is an
effective countably based space, by taking the basis of metric balls B(si , r) for
positive rational r.

A computable Polish space is a computable metric space whose metric is complete.
For every computable Polish space, there exists a computable surjective function
f : N → X which is effectively open, i.e., such that the images of cylinders f([�])
are effectively open, uniformly in � (see, for instance, [25]).

On a set X endowed with two effective countably based topologies �1, �2, we say
that �1 is effectively weaker than �2 if the basic �1-open sets are effective �2-open sets,
uniformly.

§2. A computable Baire category theorem. In this section, we prove an effective
version of the Baire category theorem. In a computable Polish space, it allows to
build points in a co-meager set, that are computable w.r.t. another topology. It will
be applied in the next sections to build points with specific properties.

The Baire category theorem is known to help proving existence results. First, it
has many classical applications in mathematics, some of which can be found in the
survey [15] by Jones. Computable versions of the Baire category theorem have been
developed. The simplest one allows to build computable points, and was studied by
Brattka [3], Brattka, Hendtlass, and Kreutzer [4], Kalantari [16], and Yasugi, Mori,
and Tusjii [28]. Jockush [14] introduced 1-genericity as an effective version of Baire
category that enables one to build 0′-computable points. A notion of genericity that
enables one to build points that are computable w.r.t. a given topology was proposed
by Hoyrup in [12]. A complexity-theoretic version of Baire category was introduced
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4 DJAMEL EDDINE AMIR AND MATHIEU HOYRUP

by Breutzmann, Juedes, and Lutz [8] in order to build polynomial-time computable
points.

We work in a computable Polish space (X, �), coming with an effectively weaker
countably based topology �′. We identify a condition for a sequence of subsets An
of X which implies the existence of a �′-computable point in

⋂
n An.

Let (X, �) be a computable Polish space and �′ be an additional countably based
topology on X which is effectively weaker than �, i.e., which has a basis (Vi)i∈N

consisting of uniformly effective �-open sets.

Definition 2.1. A set A ⊆ X is effectively dense w.r.t. (�, �′) if there is a
computable procedure that given a non-empty basic �-open set B, outputs a sequence
of non-empty effective �-open sets Us ⊆ B satisfying:

• Us is eventually constant, with limit U∞ ⊆ B ∩ A.
• Us is contained in cl�′(Us+1).

The procedure actually outputs indices of effective open sets, and the sequence of
indices is eventually constant.

Example 2.1. Here is the simplest example of an effectively dense set. If A ⊆ X
is an effective �-open set that is dense w.r.t. �, then A is effectively dense w.r.t. (�, �′),
whatever �′ is.

Indeed, given B, one can directly compute U = B ∩ A with no mind-change.
In other words, we define Us = U∞ = B ∩ A for all s.

We now state the main result of this section.

Theorem 2.1 (An effective Baire category theorem). Let (X, �) be a computable
Polish space and �′ a countably based topology that is effectively weaker than �.
If An ⊆ X are uniformly effectively dense w.r.t. (�, �′), then

⋂
n An contains a

�′-computable point.

The proof is an application of the priority method with finite injury. We first prove
the result on the Baire space, because it is simpler to work with: points of the Baire
space are more concrete, and the Baire space has a basis of clopen sets.

Proof on the Baire space. Let (X, �) be the Baire space with the usual product
topology, and �′ be a countably based topology, effectively weaker than �.

A basic �-open set B has the form [�] for some finite sequence � ∈ N
<N. We then

denote byUns (�) andUn∞(�) the open sets witnessing the effective density ofAn and
associated with B.

We can assume w.l.o.g. that the strings defining the open sets Uns (�) are proper
extensions of �, which can be achieved by appending a 0 at the end of each string
if needed. We recall that the basic �′-open sets Vi are uniformly effective �-open
sets. Let Vi [s] be the finite union of cylinders obtained at stage s in the computable
enumeration of Vi .

We build a �′-computable point as a limit x = lims limn �n[s] of a computable
double-sequence of finite strings �n[s]. We will build this double-sequence with the
following properties:

(i) The string �n+1[s] extends some string definingUns (�n[s]). Therefore, �n+1[s]
properly extends �n[s] and these strings converge to some x[s] = limn �n[s].
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(ii) For each n, if s is sufficiently large then �n[s] is constant w.r.t. s and
[�n[s]] ⊆ An, so x[s] converge to some x ∈

⋂
n An.

(iii) For i ≤ r ≤ s , if x[r] ∈ Vi [r], then x[s] ∈ Vi and x ∈ Vi .
Claim 1. Condition (iii) implies that x is �′-computable.

Proof of the claim. It implies that for each i, one has

x ∈ Vi ⇐⇒ ∃s ≥ i such that x[s] ∈ Vi [s]. (1)

The backward direction is immediate, using r = s . The forward direction is also
easy: if x ∈ Vi then x ∈ Vi [r] for some r ≥ i , so x[s] ∈ Vi [r] for some s ≥ r as
x[s] converges to x and Vi [r] is open. As Vi [r] ⊆ Vi [s], one has x[s] ∈ Vi [s] and
moreover s ≥ r ≥ i .

As the right-hand side of (1) is c.e., the set {i : x ∈ Vi} is c.e. so x is
�′-computable. 

Therefore, conditions (i)–(iii) imply the result. It might be helpful to have in mind
that in addition to condition (i), for each s, �n+1[s] will be exactly one of the strings
defining Uns (�n[s]) for almost all n.

We now build the double-sequence �n[s], by induction on s. We first consider
the case s = 0: let �0[0] be the empty string, and inductively let �n+1[0] be the first
(or any) string defining Un0 (�n[0]).

Let s ∈ N and assume that �n[r] has been defined for all r ≤ s and all n and satisfy
conditions (i) and (iii). Start with n = 0, and as long as Uns+1(�n[s]) = Uns (�n[s]),
define �n[s + 1] = �n[s] and increment n. If equality holds for all n, then we are
done, otherwise let n be minimal such that Uns+1(�n[s]) �= Uns (�n[s]).

We now define �n[s + 1]. To lighten the notations, let C = Uns (�n[s]) and
D = Uns+1(�n[s]). By assumption, C is contained in the �′-closure of D. Let V
be the finite intersection of the Vi ’s such that there exists r satisfying i ≤ r ≤ s and
x[r] ∈ Vi [r]. It is a �′-open set.

Claim 2. V intersects C.

Proof of the claim. Both V and C contain x[s]. Indeed, if i ≤ r ≤ s and
x[r] ∈ Vi [r], then x[s] ∈ Vi by induction hypothesis (iii), so x[s] ∈ V . Moreover,
x[s] extends �n+1[s] which extends a string defining Uns (�n[s]) = C by (i),
so x[s] ∈ C . 

As C is contained in the �′-closure of D, V must intersect D. As a result, one can
effectively find a string � such that [�] ⊆ D ∩ V . We then define �n[s + 1] = �, and
inductively for m ≥ n,

�m+1[s + 1] is the first string defining Ums+1(�m[s + 1]).

Conditions (i) and (iii) are satisfied by construction. Condition (ii) holds by
induction on n: if �n[s] is constantly equal to a string � for sufficiently large s, then
Uns (�n[s]) is constantly equal to Un∞(�) ⊆ An for large s, so �n+1[s + 1] = �n+1[s]
for large s. As a result, �n+1[s] is eventually constant when s grows, and eventually
contained in An. 

We now show how the result on the Baire space can be transferred to an arbitrary
computable Polish space X.
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6 DJAMEL EDDINE AMIR AND MATHIEU HOYRUP

Proof on any computable Polish space. Let (X, �) be a computable Polish
space and �′ andAn satisfy the assumptions of the theorem. There exits a computable
effectively open surjective mapf : N → X . Using f, we can work in the Baire space,
by considering the sets f–1(An) and the topology �′f := f–1(�′). It suffices to show
that these sets are effectively dense w.r.t. (�N , �′f), and that a point x ∈ N is �′f-
computable if and only if f(x) is �′-computable.

For the first fact, we need to compute U ′
s associated with f–1(An). Given a finite

string �, compute a basic �-open set B ⊆ f([�]), then compute Us and let U ′
s =

[�] ∩ f–1(Us). One easily shows that they satisfy the conditions to make f–1(An)
effectively dense.

Finally, the basic �′f-neighborhoods of x ∈ N are precisely the preimages of the
basic �′-neighborhoods off(x), so x is �′f-computable ifff(x) is �′-computable. 

In the sequel, we will see applications of this technique. As the classical Baire
category theorem, Theorem 2.1 is very modular: if one can build a �′-computable
point satisfying properties An and a �′-computable point satisfying properties Bn,
both using Theorem 2.1, then one can build a �′-computable point satisfying An
and Bn at the same time. We state a direct consequence which is particularly useful
in practice. Say that P ⊆ X is a Π0

2(�)-set if P is the intersection of a sequence of
uniformly effective �-open sets. Under the same assumptions as Theorem 2.1, we
obtain:

Corollary 2.1. Let An ⊆ X be uniformly effective dense w.r.t. (�, �′) and P ⊆ X
be a Π0

2(�)-set that is dense w.r.t. �. The setP ∩
⋂
n An contains a �′-computable point.

§3. Generically weaker topology. We now come to the main topic of this article.
Let X be a set endowed with two countably based topologies �, �′ where �′ is weaker
than �. We want to understand when these two topologies induce different sets of
computable points.

If C is a subset of X, then a topology on X induces a topology on C, obtained by
intersecting the open sets with C. We say that � and �′agree on C if they induce the
same topology on C.

Definition 3.1. Let �′ be weaker than �. We say that �′ is generically weaker than
� if every C ⊆ X on which � and �′ agree is meager in (X, �).

This definition has a first immediate consequence.

Proposition 3.1. If �′ is generically weaker than � then there exists x ∈ X such
that no Turing machine translates its �′-names into �-names.

Proof. Indeed, for every Turing machine Mn, if Cn is the set of points x such
thatMn translates �′-names of x into �-names of x, then � and �′ agree on Cn, so Cn
is meager. As there are countably many Turing machines, the sets Cn cannot cover
X by the Baire category theorem. 

The notion of a generically weaker topology is a sufficient condition to ensure the
existence of such points. However, we will see with Theorem 3.3 that it is almost
necessary, if we allow the Turing machines to have access to any oracle.
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In Section 3.2 we will be interested in building such a point x effectively, i.e., in
making it �′-computable but not �-computable. Before, we need to briefly investigate
our notion of generically weaker topology.

3.1. Characterization. Checking that �′ is generically weaker than � may be
difficult, using the raw definition. We give a characterization that is easier to check
in practice, and which will lead to an effective version.

The following notions witness that some �-open sets are far from being �′-open.

Definition 3.2 (Witness). Let B be a non-empty �-open set. A B-witness is a
non-empty �-open set U ⊆ B that does not contain any non-empty V ∩ B where V
is �′-open.

Remark 3.1. It is helpful to have a formulation in terms of converging sequences:
a non-empty open set U ⊆ B is a B-witness if and only if every x ∈ U is a limit, in
the topology �′, of a sequence (xn)n∈N in B \U .

We now state and prove the main result of this section, which is a characterization
of generically weaker topologies.

Proposition 3.2 (A characterization of generically weaker topologies). Let (X, �)
be a Polish space and �′ be a weaker countably based topology on X. The following
statements are equivalent:

• �′ is generically weaker than �.
• Every non-empty �-open set B has a B-witness.

This result usually makes it easy to check that �′ is generically weaker than �. In
practice, one should start showing the existence of an X -witness, and then adapting
the proof to any subspace B ∈ � in order to obtain a B-witness. Moreover, this
characterization will naturally lead to an effective version (Definition 3.3).

Proof of Proposition 3.2. Assume that some non-empty B ∈ � has no B-
witness. We first show that for every non-empty �-open set U ⊆ B , there exists
V ∈ �′ such that B ∩ cl�(V ) = B ∩ cl�(U ). We express U as the union of all the
�-basic open sets Ui ⊆ U . Each Ui is not a B-witness, so there exists Vi ∈ �′ such
that ∅ �= B ∩ Vi ⊆ Ui . Let V =

⋃
i Vi . One has B ∩ V ⊆ U , and B ∩U ⊆ cl�(V )

as V intersects each B ∩Ui . As a result, B ∩ cl�(V ) = B ∩ cl�(U ).
Let (Un)n∈N be an enumeration of the basic �-open sets contained in B

and let (Vn)n∈N be �′-open sets such that B ∩ cl�(Vn) = B ∩ cl�(Un). Let C =⋂
n(Un�Vn)c . By definition of C, �′ and � agree on C, because Un ∩ C = Vn ∩ C

for all n. We show that C is �-co-meager in B. It is sufficient to show that each
Un�Vn is nowhere �-dense in B, and indeed

B ∩ cl�(Un�Vn) ⊆ B ∩ (∂�Vn ∪ ∂�Un).

The sets ∂�Vn and ∂�Un are �-boundaries of �-open sets, so they are nowhere �-dense.
Therefore, �′ is not generically weaker than �.

Conversely, assume that each non-empty B ∈ � has a B-witness. Let C ⊆ X be
such that �′ and � agree on C, and let us show that C is nowhere dense. Given a non-
empty �-open set B, we need to find a non-empty �-open setW ⊆ B disjoint from
C. Let U be a B-witness and B ′ be a non-empty �-open set such that cl�(B ′) ⊆ U .
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If B ′ is disjoint from C then take W = B ′. If B ′ intersects C, then let V ∈ �′ be
such that B ′ ∩ C = V ∩ C . V intersects U so V intersects B \U hence B \ cl�(B ′).
ThereforeW = V ∩ B \ cl�(B ′) is non-empty and disjoint from C. 

Remark 3.2. The proof of this result also implies that in Definition 3.1, one can
replace the condition that C is “meager” by the apparently stronger condition that
C is “nowhere dense” in (X, �), giving the same notion.

The next example illustrates how Proposition 3.2 makes it easy to show that a
topology is generically weaker than another one.

Example 3.1 (Cantor vs. Scott). Let (X, �) be the Cantor space with the Cantor
topology generated by the cylinders, and �′ be the Scott topology generated by the
sets {x ∈ X : xn = 1}, where n ∈ N and xn is the bit of x at position n. It is easy to
see that �′ is generically weaker than �.

First, the cylinder [0] contains no non-empty Scott open set so it is an X -witness.
More generally, for any cylinder [u], the cylinder [u0] contains no Scott open set
intersected with [u], so [u0] is a [u]-witness.

3.2. Effective version. We now effectivize the notion of a generically weaker
topology, using Proposition 3.2, in order to prove the existence of �′-computable
points that are not �-computable.

Definition 3.3. Say that �′ is effectively generically weaker than � if there is a
computable function sending each basic �-open set B to a B-witness UB .

Note that UB can be assumed to be a basic �-open set (because a non-empty
subset of a B-witness is also a B-witness), and the computation takes an index of B
as input and outputs an index of UB . Example 3.1 is effective.

We now state the main result of this article, giving relatively simple conditions
implying that � and �′ do not induce the same computable points.

Theorem 3.1. Let (X, �) be a computable Polish space and �′ an effectively weaker
countably based topology. If �′ is effectively generically weaker than � then there exists
a �′-computable point that is not �-computable. Moreover, such a point can be found
in any dense Π0

2(�)-set.

The proof is an application of the priority method with finite injury, but our
effective Baire category theorem (Theorem 2.1) drastically simplifies the proof: we
essentially have to give the strategy to defeat one Turing machine attempting to
�-compute x, and the effective Baire category theorem takes charge of the
intertwining between the strategies.

Proof. We apply our effective Baire category theorem (Theorem 2.1). Let An be
the set of points x whose set of indices of basic �-neighborhoods is notWn, the nth
c.e. subset of N. We show that An is effectively dense w.r.t. (�, �′) (Definition 2.1),
uniformly in n.

First, we can assume that for each basic �-open set B, the B-witness UB satisfies:
UB is contained in the �′-closure of B \ cl�(UB). Indeed, it can be achieved by
replacing UB , which is a metric ball B(s, r) by the ball B(s, r/2).
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Let us now show that An is effectively dense w.r.t. (�, �′). Given a basic �-open
ball B, we output UB as long as the index of UB does not appear inWn, and then
switch to B \ cl�(UB) if it appears. More precisely, let

Us =

{
UB, ifWn[s] does not contain the index of UB,
B \ cl�(UB), otherwise.

We check the three conditions in Definition 2.1. First, Us ⊆ B by definition.
Condition 1: there is at most one mind-change, if the index of UB appears inWn at
stage s. Condition 2: the limit set isU∞ = B \ cl�(UB) if the index ofUB belongs to
Wn, and UB if it does not. In any case,Wn is not the set of basic �-neighborhoods
of any point in U∞, so U∞ is contained in An. Condition 3: UB is contained in the
�′-closure of B \ cl�(UB), so Us is always contained in the �′-closure of Us+1.

We can apply Theorem 2.1, which produces a �′-computable point that belongs
to

⋂
n An, i.e., that is not �-computable.

Moreover, one can build such a point in
⋂
n On, where On are dense uniformly

effective open sets, because On are uniformly effectively dense in the sense of
Definition 2.1. 

The next example shows that when the topologies are induced by norms on a
vector space, if a topology is strictly weaker then it is generically weaker, and there
is no intermediate case. This phenomenon is at the core of Pour-El and Richards’
first main theorem [23].

Example 3.2 (Norms). Let X be a computable vector space and ‖.‖1 and ‖.‖2
be computable norms (see [23] for definitions). If ‖.‖2 is strictly weaker than ‖.‖1,
then the topology induced by ‖.‖2 is effectively generically weaker than the topology
induced by ‖.‖1.

Indeed, let (xn)n∈N be a sequence satisfying ‖xn‖1 = 1 and ‖xn‖2 → 0. The ball
B1(x, r/3) is a B1(x, r)-witness because any y ∈ B1(x, r/3) is the limit in the ‖.‖2
norm of y + (2r/3)xn ∈ B1(x, r) \ B1(x, r/3).

Therefore, Theorem 3.1 implies the existence of a point x that is computable in the
norm ‖.‖2 but not in the norm ‖.‖1. It is a particular case of Pour-El and Richards’
first main theorem [23].

Example 3.3 (Ergodic decomposition). This example is taken from [11, 12].
Theorem 3.4.1 in [12] states the existence of two non-computable shift-invariant
ergodic measures �1, �2 whose average �1+�2

2 is computable. Theorem 3.1 can be
applied to prove this result.

Let X be the space of pairs of shift-invariant measures. Let � be the product of the
weak* topology. Consider the average operator f : X → M(2N) sending (�1, �2)
to �1+�2

2 , and let �′ be the initial topology of f. Theorem 3.4.2 in [12] implies that �′

is effectively generically weaker than �, although it is not expressed in the same way.
The idea is that if (�1, �2) is a pair such that �1 �= �2, then for � ∈ [0, 1], the pairs

((1 – �)�1 + ��2, (1 – �)�2 + ��1)

have the same �′-neighborhoods as (�1, �2) and their proximity to (�1, �2) in the
topology � can be freely controlled by the choice of �.
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In (X, �), the set of pairs of ergodic measures is a dense Π0
2-set. Therefore,

Theorem 3.1 implies the existence of a pair (�1, �2) of ergodic measures which is
�′-computable but not �-computable; in other words, �1 and �2 are not computable
but their average is.

3.3. Weihrauch reducibility. If x is a point provided by Theorem 3.1, then �-names
of x contain strictly more information than �′-names of x. The proof of Theorem 3.1
can be adapted to show that computing �-names from �′-names is at least as hard
as computing a limit, or equivalently the Turing jump.

Formally, it is expressed using Weihrauch reducibility. Let us recall the appropriate
definitions, more details can be found in [5].

Definition 3.4. Let f : X → Y and g : Z →W be functions between repre-
sented spaces.

Say that f is Weihrauch reducible to g, written f ≤W g, if there exist computable
functionsH,K :⊆ N → N such that for any realizerG :⊆ N → N of g, the function
p 
→ H (G(K(p)), p) is a realizer of f.

Say that f is strongly Weihrauch reducible to g, written f ≤sW g, if there exist
computable functions H,K :⊆ N → N such that for any realizer G :⊆ N → N
of g, the function p 
→ H (G(K(p))) is a realizer of f.

Definition 3.5. The function lim sends a converging sequence of elements of the
Baire space to its limit.

Theorem 3.2 (Weihrauch reduction of lim is necessary). If �′ is effectively
generically weaker than �, then lim is Weihrauch reducible to id : (X, �′) → (X, �).

Proof idea. The function lim is strongly Weihrauch equivalent to the function
im : N → 2N sending p ∈ N to the set im(p) = {p(n) : n ∈ N}, so we show how to
reduce im to id.

Let p ∈ N , be given as oracle. We apply the construction of the proof of
Theorem 2.1. The sets An are implicitly defined by their density functions
approximations as follows: given B, let

Us =

{
UB, if n /∈ {p(0), ... , p(s)},
B \ cl�(UB), if n ∈ {p(0), ... , p(s)}.

The construction builds a point xp that is �′-computable (relative to p). If one is
given xp in the topology �, together with p, then it is possible to inductively find for
each n whether n ∈ im(p). The idea is that if we are given xp in the topology �, then
we can decide whether xp ∈ UB or xp ∈ B \ cl�(UB), from which we can deduce
whether n ∈ im(p). 

We do not know whether a strong Weihrauch reduction can be obtained and
leave it as an open question. However, it is always possible to obtain a strong
Weihrauch reduction, relative to some oracle. Moreover, the notion of a generically
weaker topology is necessary and sufficient for the topologies �, �′ to fail to be
�-homeomorphic, up to restriction to a subspace.
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Theorem 3.3. Let (X, �) be Polish, �′ ⊆ � be countably based T0 and let � = id :
(X, �′) → (X, �). The following conditions are equivalent:

1. � is not �-continuous.
2. There exists Y ⊆ X such that �Y is Polish and �′Y is generically weaker than �Y .
3. lim is Weihrauch reducible to � relative to an oracle.
4. lim is strongly Weihrauch reducible to � relative to an oracle.

In that case (Y, �Y ) is even homeomorphic to the Baire space N . The proof uses
a strong result from Descriptive Set Theory, Pawlikowski–Sabok’s theorem [21, 22].
This theorem says that every sufficiently definable (bianalytic) map between metric
spaces is either �-continuous, or contains one particular function P, which is not
�-continuous. Let us precisely state this result.

A subset A of a topological space X is analytic if it is the image of a continuous
function f : N → X . A set A ⊆ X is bianalytic if both A and X \ A are analytic.
A topological space is analytic if it embeds as an analytic subset of a Polish space.
A function f : X → Y between analytic spaces is bianalytic if the preimage of every
bianalytic set is bianalytic.

The Baire space N = N
N is endowed with two different topologies, both obtained

as the product topology of some topology on N. The first one is the usual topology
obtained �N from the discrete topology on N. The second one, �′N , is obtained by
identifying N with {0} ∪ {2–n : n ∈ N} ⊆ R, via 0 
→ 0 and n 
→ 2–n+1 for n ≥ 1.
It makes (N , �′N ) homeomorphic to the Cantor space.

Definition 3.6. Pawlikowski’s function is defined as

P = id : (N , �′N ) → (N , �N ).

Theorem 3.4 (Pawlikowski–Sabok [21, 22]). Let X,Y be analytic spaces and
f : X → Y be bianalytic. Either f is�-continuous or f contains P in the following sense:
there exist two topological embeddings ϕ : (N , �′N ) → X and 
 : (N , �N ) → Y such
that f ◦ ϕ = 
 ◦ P.

This result was first proved by Solecki for Baire class 1 functions in [26], and
then improved in this form by Pawlikowski and Sabok. We also mention an
effective version of the result by Debs [10]. It was observed by Carroy (personal
communication) and Lutz [19] that Solecki’s and Pwlikowski-Sabok’s results have
a direct consequence in terms of Weihrauch reducibility: if P embeds in f as in the
statement, then P is strongly Weihrauch reducible to f relative to an oracle. A proof
that P is strongly Weihrauch equivalent to lim can be found in [19].

We use the result in our setting, showing at the same time that some version of
the result holds when X is not metrizable but still countably based.

We first observe that �′N , compared to �N , is another example of a generically
weaker topology.

Proposition 3.3. On N , the topology �′N is generically weaker than �N .

Proof. Given a finite string u ∈ N
∗, a [u]-witness is given by [u0]. Indeed, every

p ∈ [u0] is the limit, in the topology �′N , of the sequence pn obtained by replacing
0 by n in p at position |u|. One has pn ∈ [u] \ [u0], which shows that [u0] is a
[u]-witness (see Remark 3.1). 
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We start by reducing countably based spaces to metrizable spaces. It is possible
because the standard representation of countably based spaces has very good
properties, already exploited in [6, 7, 9], that allow to reduce Descriptive Set Theory
on countably based spaces to Descriptive Set Theory on subspaces of the Baire
space. We give another manifestation of this phenomenon, which is proved using
similar techniques.

Say that a function f : X → Y between represented spaces is �-computable if
there exist countably many sets Xn ⊆ X such that X =

⋃
n∈N
Xn and such that the

restriction of f to each Xn is computable.

Lemma 3.1 (�-computable vs. �-computable realizer). Let X,Y be (effective)
countably based T0-spaces with their standard representations. A functionf : X → Y
is �-continuous (�-computable) iff it has a �-continuous (�-computable) realizer.

Proof. We prove the effective version, the non-effective version being obtained
by relativization to any oracle.

One implication is straightforward. Assume that f is �-computable, i.e., X =⋃
n∈N
Xn and each f|Xn is computable. We can assume that the sets Xn are

pairwise disjoint, replacing Xn with Xn \ (X0 ∪ ··· ∪ Xn–1) if needed. Each f|Xn
has a computable realizer Fn : �–1

X (Xn) → N . The combination of all Fn’s is a �-
computable realizer of f.

We now prove the other implication. Assume that f has a �-computable realizer
F : dom(�X ) → N , with dom(�X ) =

⋃
n∈N
An and each F |An is computable. For

each n ∈ N and � ∈ N
∗, let

Xn,� = {x ∈ �X ([�]) : An is dense in �–1
X (x) ∩ [�]},

where a set A is dense in a set B if B is contained in the closure of A ∩ B .
Let us show that the restriction f|Xn,� is computable. Let Bi ⊆ Y be a basic open

set. We want to show that the preimage of Bi under this restriction is an effective
open subset of Xn,� , uniformly in i. As �Y ◦ F is computable on An, there exists an
effective open set Ui ⊆ N , that can be computed uniformly in i, such that

Ui ∩ An = (�Y ◦ F )–1(Bi) ∩ An = (f ◦ �X )–1(Bi) ∩ An. (2)

Claim 3. One has

f–1(Bi) ∩ Xn,� = �X ([�] ∩Ui) ∩ Xn,� .

Proof of the claim. If x ∈ Xn,� , then x has a �X -name p ∈ [�] ∩ An. If
x ∈ f–1(Bi) then p ∈ (f ◦ �X )–1(Bi) so by (2), p ∈ Ui , which implies that
x ∈ �X ([�] ∩Ui).

Conversely, if x ∈ Xn,� has a name p ∈ [�] ∩Ui , then it has a name q ∈
[�] ∩Ui ∩ An because An is dense in [�] ∩ �–1

X (x) and Ui is open. Again by (2),
q ∈ (f ◦ �X )–1(Bi) so x ∈ f–1(Bi). 

The set �X ([�] ∩Ui) is an effective open set, uniformly in i, sof|Xn,� is computable.
It remains to show thatX =

⋃
n,� Xn,� . For x ∈ X , �–1

X (x) is Polish and is covered
by

⋃
n∈N
An, so some An must be somewhere dense in �–1

X (x). In other words, there
must exist some n ∈ N and some � ∈ N

∗ such that An is dense in �–1
X (x) ∩ [�],

therefore x ∈ Xn,� . 
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We will also need the following simple result.

Lemma 3.2. Let X be countably based and T0, and � its standard representation.
For A ⊆ X , A is analytic ⇐⇒ �–1(A) is analytic.

Proof. If �–1(A) is analytic, then �–1(A) is the image of a continuous function
f : N → N , so A is the image of the continuous function � ◦ f, hence A is analytic.

For the converse implication, we use the following fact: X embeds in P(N), which
has a total admissible representation �P , and � is the restriction of �P to �–1

P (X ).
Therefore, we can simply assume that X is P(N). LetA ⊆ P(N) be analytic. A is the
image of a continuous function f : N → P(N). Let F : N → N be a continuous
realizer of f, i.e., satisfy f = �P ◦ F . Let R = {(p, q) ∈ N ×N : �P(p) = �P ◦ F }
is easily ˜Π0

2 and its first projection is �–1
P (A), which is therefore analytic. 

Proof of Theorem 3.3. Of course, each one of conditions 2 – 4 implies 1.
We show that 1 implies 2 – 4. Let � be a total open representation of (X, �),

which exists as � is Polish. Let �′ be the standard representation of (X, �′), which is
the restriction of the representation �P of P(N), after embedding (X, �′) in P(N).
Assume that � = id : (X, �′) → (X, �) is not �-continuous. We apply Theorem 3.4 to
f := � ◦ �′ : dom(�′) → (X, �). We need to check that f satisfies the conditions of
this theorem.

Claim 4. dom(�′) is analytic and f is bianalytic.

Proof of the claim. As a subset of P(N), X is the image of the continuous
function iX : (X, �) → P(N), so it is analytic as (X, �) is Polish. Therefore, dom(�′) =
�–1
P (X ) is analytic by Lemma 3.2.

LetA ⊆ (X, �) be analytic. It is the image of a continuous function h : N → (X, �).
The function h is also continuous from N to (X, �′), so A is analytic in (X, �′). Its
preimage by �′ is therefore analytic by Lemma 3.2. Applying the same argument to
the complement of A, f–1(A) is bianalytic. 

Now, f is not�-continuous. Indeed,f = � ◦ �′ has the same realizers as �. Applying
Lemma 3.1 in one direction to � and in the other direction to f, we have: � is not
�-continuous, so it has no �-continuous realizer; neither does f, so f is not �-
continuous.

Therefore f : (N , �N ) → (X, �) satisfies the assumptions of Theorem 3.4, which
provides topological embeddings


 : (N , �N ) → (X, �),

ϕ : (N , �′N ) → (N , �N ),

satisfying f ◦ ϕ = 
 ◦ P, i.e., � ◦ �′ ◦ ϕ = 
 ◦ P. As observed by Carroy (personal
communication), and Lutz [19], it implies that P ≡sW lim is strongly Weihrauch
reducible to � relative to an oracle computing ϕ and 
. We have proved condition 4,
which also implies condition 3.

Let us prove condition 2. Both � and P are the identity functions, with different
topologies on their input and output spaces. Therefore, the condition � ◦ �′ ◦ ϕ =

 ◦ P can be rewritten as �′ ◦ ϕ = 
. As a result, we have:

1. 
 : (N , �N ) → (X, �) is a topological embedding.
2. 
 = �′ ◦ ϕ : (N , �′N ) → (X, �′) is continuous.
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Let Y = im(
), �Y be the topology on Y induced by �, �′Y the topology on Y
induced by �′ and �′′N be the preimage of the topology �′Y by 
 (�′′N = 
–1(�′Y ) is
usually called the initial topology of 
). Both functions


 : (N , �N ) → (Y, �Y ),


 : (N , �′′N ) → (Y, �′Y )

are homeomorphisms. The first one comes from 1 above. The second one comes from
the fact that 
 is a bijection, is continuous and open, so it is a homeomorphism.

We now need to prove that �′′N is generically weaker than �N , which will conclude
the proof. By 2, �′′N is weaker than �′N which is generically weaker than �N
(Proposition 3.3), so �′′N is also generically weaker than �N . As a result, �′Y is
generically weaker than �Y . Note that �Y is Polish because (Y, �Y ) is homeomorphic
to (N , �N ). 

3.4. Three topologies. When comparing two topologies on a single space, the
results obtained so far cannot be applied if the stronger topology is not Polish.
In this section, we show a way of extending the results when one can find a third
topology which is Polish.

Let (X, �) be a computable Polish space and �1, �2 be effective countably based
topologies such that �1 is effectively weaker than �2 and �2 is effectively weaker than �.
We want to build a �1-computable point that is not �2-computable. The notion of
generically weaker topology can be extended as follows.

Definition 3.7. We say that �1 is �-generically weaker than �2 if every set C ⊆ X
on which �1 and �2 agree is �-meager.

Again, “meager” can be equivalently replaced by “nowhere dense,” with the same
argument as in Remark 3.2. This notion is a generalization of Definition 3.1, which
can be obtained by taking �1 = �′ and �2 = �.

We introduce an effective version of being generically �-weaker, which will lead
to Theorem 3.5.

Definition 3.8. Say that �1 is effectively �-generically weaker than �2 if given
B ∈ �, one can compute non-empty B ′, B ′′ ∈ �, and U ∈ �2 such that:

• B ′ ⊆ B ∩U ,
• B ′′ ⊆ B \U ,
• B ′ ⊆ cl�1(B ′′), i.e., every �1-open set intersecting B ′ intersects B ′′.

Here, B,B ′, and U are basic open sets represented by indices, but B ′′ may be a
general effective open set. By a similar argument as in Proposition 3.2, it can be
shown that it is an effective version of Definition 3.7, i.e., that �1 is �-generically
weaker that �2 if and only if it is effectively so, relative to some oracle. We now state
the main result of this section. Again, it is easily proved thanks to our effective Baire
category theorem 2.1.

Theorem 3.5 (�1-computable but not �2-computable). If �1 is effectively �-
generically weaker than �2, then there exists x ∈ X that is �1-computable but not
�2-computable. Moreover, such a point can be found in any �-dense Π0

2(�)-set.
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Proof. As in the proof of Theorem 3.1, let An be the set of points x whose set
of �′′-neighborhoods is notWn. The sets An are uniformly effectively dense. Indeed,
given B, outputUs = B ′ as long asWn[s] does not contain the index of U, and then
Us = B ′′ ifWn[s] contains that index. 

§4. An application. In this section, we give an application of Theorem 3.5 to give
a clear and complete proof of a result that was stated in [1], just with a proof idea.
A complete proof appears in the unpublished preprint [2] but is very technical and
difficult to read. Our effective Baire category theorem enables us to give a simpler
proof, as it captures most of the technicality of the construction.

Let us first introduce the relevant notions.

4.1. Background on computable type. A compact pair is a pair (X,A) where X is
a compact Polish space and A ⊆ X is a compact subset. The Hilbert cube is the
computable Polish space Q = [0, 1]N endowed with the metric

dQ(x, y) =
∑
i∈N

2–i |xi – yi |.

If X is a compact space and f, g : X → Q are continuous functions, we define their
distance dX (f, g) = maxx∈X dQ(f(x), g(x)).

Definition 4.1. A compact set X ⊆ Q is semicomputable if the set Q \ X is an
effective open set. A compact set X ⊆ Q is computable if it is semicomputable and
contains a dense computable sequence.

A compact pair (X,A) has computable type if for every pair (Y,B) in Q that is
homeomorphic to (X,A), if Y and B are semicomputable then Y is computable.

A compact space X has computable type if the pair (X, ∅) has computable type.

Miller [20] proved that each sphere Sn and each pair (Bn+1,Sn) have computable
type. Iljazović and Sušić [13] proved that for each compact manifold M and each
compact manifold with boundary (M,∂M ) have computable type.

In [1] we studied this property for simplicial pairs, i.e., compact pairs (X,A)
consisting of a finite simplicial complex X and a subcomplex A. We gave a purely
topological characterization of the simplicial pairs having computable type.

Definition 4.2. Let � > 0. A compact pair (X,A) ⊆ Q has the �-surjection
property if every continuous function f : X → X satisfying f(A) ⊆ A and
dX (f, idX ) < � is surjective.

Theorem 4.1 [1]. A simplicial pair (X,A) has computable type if and only if it has
the �-surjection property for some � > 0.

One implication of this theorem is that if (X,A) fails to have the �-surjection
property for every � > 0 in an effective way (Definition 4.3), then (X,A) does not
have computable type, i.e., has a copy (Y,B) in Q consisting of semicomputable sets,
such that Y is not computable.

In order to formulate the definition, we recall the definition of the Hausdorff
distance between non-empty compact sets A,B ⊆ Q:

dH (A,B) = max
(

max
a∈A

min
b∈B
dQ(a, b),max

b∈B
min
a∈A
dQ(a, b)

)
.
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Definition 4.3. Let (X,A) be a computable compact pair in Q. For � > 0, say
that � > 0 is an �-witness if there exists a continuous function f : X → X satisfying
f(A) ⊆ A and dX (f, idX ) < �, such that dH (X,f(X )) > �.

Say that (X,A) has computable witnesses if there exists a computable function
sending each rational � > 0 to a rational �-witness � > 0.

4.2. An application. We now state the result from [1], and give a proof by applying
Theorem 3.5 and therefore using our effective Baire category theorem, Theorem 2.1.

Theorem 4.2. Let (X,A) ⊆ Q be a pair of semicomputable sets. If it has
computable witnesses, then (X,A) does not have computable type, i.e., there exists
a semicomputable copy of (X,A) such that X is not computable.

Remark 4.1. The statement given here is slightly stronger than the statement
appearing in [1]. Indeed, in [1] the pair (X,A) is assumed to be computable.
Moreover, the notion of witness defined above is weaker than in [1] (where f should
be the identity on A). We have realized that this stronger result holds because the
proof presented here is simpler and identifies more clearly the needed assumptions.

We now present the proof of this result.
We assume that (X,A) is embedded as a semicomputable pair in Q which has

computable witnesses. First, if X is not computable then (X,A) does not have
computable type and the result is proved. Therefore, we can assume for the
rest of the proof that X is computable (however, A may not be computable).
Consider the space C(X,Q) of continuous functions from X to Q. It is endowed
with a complete computable metric d (f, g) = maxx∈Q dQ(f(x), g(x)), inducing a
topology �. The subspace I(X,Q) of injective continuous functions from X to Q
is a dense Π0

2-subset, in particular, it contains a dense computable sequence. We
consider two weaker topologies �1 and �2 on C(X,Q).

For each pair (U,V ) of finite unions of basic open subsets of Q, let

VU,V = {f ∈ C(X,Q) : f(X ) ⊆ U,f(A) ⊆ V },

and let �1 be the topology generated by the sets VU,V as a subbasis.
For each basic open subset B of Q, let

UB = {f ∈ C(X,Q) : f(X ) ∩ B �= ∅},

and let �2 be the topology generated by the sets UB and VU,V as a subbasis.
Our goal is to build an injective continuous functionf ∈ C(X,Q) such thatf(X )

andf(A) are semicomputable butf(X ) is not computable; in other words, we want
f to be �1-computable but not �2-computable.

We will apply Theorem 3.5, so we need to show that �1 is �-generically weaker
than �2.

Lemma 4.1. Let X ⊆ Q be computable and A ⊆ X be semicomputable. If the
pair (X,A) has computable witnesses, then the topology �1 is effectively generically
�-weaker than �2.

Proof. We can assume that the centers of the basic metric balls in (C(X,Q), d )
are injective functions. Given a metric ball B = Bd (g0, �) in C(X,Q) (where g0
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and � are computable and g0 is injective), we need to compute B ′, B ′′, U as in
Definition 3.8. We are going to compute some suitable positive �′ < � and define:

• B ′ = Bd (g0, �
′).

• B ′′ = {g ∈ C(X,Q) : d (g, g0) < � and dH (g(X ), g0(X )) > �′}.
• U = {g ∈ C(X,Q) : dH (g(X ), g0(X )) < �′}.

These sets are clearly effective open sets in the respective topologies. Note that
B ′ ⊆ B ∩U and B ′′ ⊆ B \U . We now explain how to choose �′ so that B ′ is
contained in cl�1(B ′′).

Compute � < �/2 such that dQ(x, y) < � implies dQ(g0(x), g0(y)) < �/2. It
implies that for all continuous functions g, h : Q → Q,

If d (h, g0) < � and d (g, idX ) < �, then d (h ◦ g, g0) < �. (3)

Indeed, d (h ◦ g, g0) ≤ d (h ◦ g, g0 ◦ g) + d (g0 ◦ g, g0) < � + �/2 ≤ �.
Compute � , a �-witness for (X,A). Compute �′ ≤ � such that for all x, y ∈ X ,

dQ(g0(x), g0(y)) ≤ 2�′ implies dQ(x, y) ≤ � . It implies that for all non-empty
compact sets Y,Z ⊆ X ,

If dH (Y,Z) > �, then dH (g0(Y ), g0(Z)) > 2�′. (4)

We now check that B ′ is contained in cl�1(B ′′). Let h ∈ B ′ = Bd (g0, �
′). As

� is an �-witness, there exists g : X → X such that g(A) ⊆ A, d (g, idX ) < �
and dH (X, g(X )) > � . We define g1 = h ◦ g and show that g1 ∈ B ′′. One has
d (g1, g0) < � by (3), and

dH (g1(X ), g0(X )) ≥ dH (g0(X ), g0 ◦ g(X )) – dH (g0 ◦ g(X ), h ◦ g(X ))

> 2�′ – d (g0, h) > �′ by (4),

so g1 ∈ B ′′. Moreover, g1(X ) = h(g(X )) is contained in h(X ) and g1(A) =
h(g(A)) ⊆ h(A), so h belongs to cl�1({g1}) ⊆ cl�1(B ′′). We have proved that
B ′ ⊆ cl�1(B ′′). 

Proof of Theorem 4.2. The subset of injective continuous functions from X to
Q is a �-dense Π0

2(�)-subset of C(X,Q). Therefore, applying Theorem 3.5, there
exists an injective continuous function f : X → Q that is �1-computable but not
�2-computable. In other words, the pair (f(X ), f(A)) is semicomputable, butf(X )
is not computable. 

It may seem that using Theorems 2.1 and 3.5 is a rather convoluted path to proving
Theorem 4.2. A more direct proof is indeed possible (see [2]), but at the cost of
readability, because there are many ingredients to take care of and to put together.
Our abstract results isolate the appropriate concepts that make the construction
possible, separating the specific properties of the application (Lemma 4.1) from the
general construction (Theorems 2.1 and 3.5), and can hopefully be applied in other
contexts.

Let us finish by illustrating the result of the construction obtained by applying
Theorem 4.2 to a concrete pair (X,A). The set X is shown in Figure 1 and consists
of a disk attached to a pinched hollow torus, and the set A is empty. The results
in [1] imply that X does not have the �-surjection property for any � > 0, and that
it has computable witnesses (Definition 4.3), so Theorem 4.2 implies that X does
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Figure 1. A space that does not have computable type.

Figure 2. A semicomputable copy which is not computable.

not have computable type. A semicomputable copy of X which is not computable
is illustrated in Figure 2. It could be obtained more directly by encoding the halting
set: if (ni)i∈N is a computable one-to-one enumeration of the halting set, then the
holes appearing in the disk have sizes 2–n0 , 2–n1 , ....
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