
Ergod. Th. & Dynam. Sys., page 1 of 30 © The Author(s), 2024. Published by Cambridge University
Press.
doi:10.1017/etds.2024.74

1

Geometric properties of disintegration of
measures

RENATA POSSOBON and CHRISTIAN S. RODRIGUES

Institute of Mathematics, Department of Applied Mathematics,
Universidade Estadual de Campinas, 13.083-859 Campinas, SP, Brazil

(e-mail: re.possobon@gmail.com, rodrigues@ime.unicamp.br)

(Received 23 March 2022 and accepted in revised form 4 September 2024)

Abstract. In this paper, we study a connection between disintegration of measures and
geometric properties of probability spaces. We prove a disintegration theorem, addressing
disintegration from the perspective of an optimal transport problem. We look at the disin-
tegration of transport plans, which are used to define and study disintegration maps. Using
these objects, we study the regularity and absolute continuity of disintegration of measures.
In particular, we exhibit conditions for which the disintegration map is weakly continuous
and one can obtain a path of measures given by this map. We show a rigidity condition for
the disintegration of measures to be given into absolutely continuous measures.
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1. Introduction
The disintegration of a measure over a partition of the space on which it is defined is a way
to rewrite this measure as a combination of probability measures, which are concentrated
on the elements of the partition. As an example, consider the probability space (X, F , μ)
and its partition into a finite number of measurable subsets P1, . . . , Pn with positive
measure. A disintegration of μ with respect to (w.r.t.) this partition is a family of prob-
abilities {μ1, . . . μn} on X such that for i = 1, . . . , n, we have μi(Pi) = 1 and, for every
measurable set E ⊂ X, the conditional measures are given by μi(E) = μ(E ∩ Pi)/μ(Pi).
It is possible to write the original measure as a combination of the conditional ones

μ(E) =
n∑
i=1

μ(Pi)μi(E) =
n∑
i=1

μ(Pi)
μ(E ∩ Pi)
μ(Pi)

.
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More generally, consider a probability space (X, F , μ) and a partition P of X into
measurable subsets. Let � be the natural projection that associates each point x ∈ X to
the element P ∈ P which contains x. The measurable function � can be used to induce a
probability μ̂ on P . A subset B ⊂ P is measurable if and only if �−1(B) is a measurable
subset of X. Then, the family B̂(P) of measurable subsets is a σ -algebra on P . Let μ̂ denote
the measure given by

μ̂(B) = �∗μ(B) := μ ◦ �−1(B) = μ({x ∈ X : �(x) ∈ B})

for every B ∈ B̂(P). In this case, μ̂ is called the law of �, denoted by law(�). A
disintegration of μ w.r.t. P into conditional measures is a family {μP : P ∈ P} of
probability measures on X such that for every E ∈ F :
(1) μP (P ) = 1 for μ̂-almost every (a.e.) P ∈ P;
(2) P �→ μP (E) is measurable;
(3) μ(E) = ∫

μP (E) dμ̂(P ).
There are several reasons why one may wish to study such possible combinations of

measures. In ergodic theory, for example, the disintegration of a measure is directly related
to the ergodic decomposition of invariant measures, which are crucial objects encoding
the asymptotic behaviour of dynamical systems [OV14]. The concept of disintegration,
however, appears in much broader context in areas, such as probability [CP97, Par67] and
geometry [Stu06], among others [BM17, GL20, Var16, Vil03].

The idea of disintegrating a measure was devised by Von Neumann in 1932 [Von32].
Since then, different versions of disintegration theorems have been presented and used, for
example, in [AGS05, AP03, DM78, Tue75], to name a few. In particular, the well-known
Rokhlin disintegration theorem shows that there exists a disintegration of μ relative to P
if X is a complete separable metric space and P is a measurable partition. By measurable
partition, we mean that there exists some measurable setX0 ⊂ X such that μ(X) = μ(X0)

and P = ∨∞
n=1 Pn = {P1 ∩ P2 ∩ · · · : Pn ∈ Pn for all n ≥ 1} restricted to X0, for an

increasing sequence P1 ≺ P2 ≺ · · · ≺ Pn ≺ · · · of countable partitions [Rok52].
Recently, Simmons has proposed a more general and subtle formulation of Rokhlin’s

disintegration theorem, where he has considered any universally measurable space
(X, B, μ) and a measure space Y for which there exists an injective map Y → {0, 1}N.
That is, Y is any subspace of the standard Borel space. He has shown that there is a
(unique) system of conditional measures (μy)y∈Y , a disintegration of μ [Sim12]. Then,
his formulation is further developed to address σ -finite measure spaces with absolutely
continuous morphisms. One of the facts standing out in Simmons’ formulation is a
fibre-wise perspective, which we wish to further explore.

Even though geometric properties of the space where a measure is defined and statistical
properties obtained via disintegration theorems seem to be strictly connected, for instance,
in foliated manifolds, very little geometric information is taken into account while studying
disintegration of measures. In particular, intrinsic geometric properties of probability
spaces are very often neglected. The purpose of this paper is to advertise the viewpoint
of tackling disintegration of measures taking into consideration intrinsic structures of
probability spaces obtained from optimal transport theory. To this end, we will formulate
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disintegration of probability measures in terms of a transportation problem to explore a
fibre-wise formulation of a disintegration and its consequences.

1.1. Main results. As a first result in this paper, we prove a disintegration theorem,
Theorem A, and we introduce a fibre-wise perspective on disintegration. Using this
disintegration theorem, we study conditions in which one can obtain a path of conditional
measures in the space of probability measures. In particular, in Propositions 5.2, 5.4 and
5.8, we investigate the weak continuity of the disintegration map, which parametrizes the
conditional measures. The last result in this paper is Theorem B. Its first part shows how
to construct a path of conditional measures in the space of probabilities. Its second part
gives us a sort of rigidity result for disintegration of measures. Namely, we show that if one
of the measures in this path is absolutely continuous, then all measures in the associated
path must also be absolutely continuous. The third part is a particular case of absolute
continuity in which the disintegration map is an isometry.

The paper is organized as follows. Section 2 contains the main concepts from optimal
transport theory to be used throughout the paper. In §3, a disintegration theorem, stated
as Theorem A, is proved. In §4, Theorem A is used to define and study what we called
disintegration maps. These crucial objects are used in §5. There we proved a series
of propositions about a disintegration map: in Proposition 5.2, we show that this map
is nearly weakly continuous, under some assumptions on the reference measure ν. In
Propositions 5.4 and 5.8, we study hypotheses about the disintegration for which this map
is weakly continuous. Afterwards, we prove our main result in this section, Theorem B,
about paths of measures given via disintegration maps and a rigidity condition establishing
absolute continuity of measures in these paths.

2. Spaces of probability measures, Wasserstein spaces and optimal transport
In this section, we set up some notation to be used throughout the text. We also introduce
some basic terminology from optimal transport theory, which is meant for readers not
familiar with this area. Those who are skilled on the topic may wish to skip this section.
Our main references for this section are [AGS05, Amb00, Vil09].

The cornerstone for the theory of optimal transportation is considered to be a logistic
problem addressed by Gaspar Monge in 1781. The main idea is to transport masses from
a given location to another one at minimal cost. To state it in a modern formulation, let
P(X) be the set of all Borel probability measures on X. The problem amounts to the
following.

Monge transport problem. Let X, Y be Radon spaces. Given measures μ ∈ P(X),
ν ∈ P(Y ) and a fixed Borel cost function c : X × Y → [0, ∞], minimize

T �→
∫
X

c(x, T (x)) dμ

among all maps T such that T∗μ = ν.

The maps T fulfilling T∗μ = ν are called transport maps. The Monge transport problem
actually may be ill-posed and such a map does not need to exist. That is the case, for

https://doi.org/10.1017/etds.2024.74 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.74


4 R. Possobon and C. S. Rodrigues

example, when one of the measures is a Dirac mass and the other one is not. A way around
is given by a different formulation as proposed by Kantorovich.

Monge–Kantorovich transport problem. Let X, Y be Radon spaces. Given measures
μ ∈ P(X), ν ∈ P(Y ) and a fixed Borel cost function c : X × Y → [0, ∞], minimize

γ �→
∫
X×Y

c(x, y) dγ (x, y) (1)

among all measures γ ∈ P(X × Y ) with marginals μ and ν, i.e. γ satisfying
(projX)∗γ = μ and (projY )∗γ = ν, where projX and projY are the canonical projections
(x, y) �→ x and (x, y) �→ y, respectively.

The measures γ ∈ P(X × Y ) are called transport plans. We denote the set
of all transport plans with marginals μ and ν by �(μ, ν). The value C(μ, ν) =
infγ∈�(μ,ν)

∫
X×Y c(x, y) dγ (x, y) is called optimal cost. Note that (projX)∗γ = μ is

equivalent to γ [A× Y ] = μ[A] for every A ∈ B(X), and (projY )∗γ = ν is equivalent to
γ [X × B] = ν[B] for every B ∈ B(Y ). Moreover, it is possible to describe this problem
in terms of the coupling of measures, in the following sense.

Definition 2.1. Let (X, μ) and (Y , ν) be probability spaces. A coupling of (μ, ν) is a pair
(X , Y) of measurable functions in a probability space (�, P) such that law(X ) = μ and
law(Y) = ν.

Considering � = X × Y , coupling μ and ν means to construct γ ∈ P(X × Y ) with
marginals μ and ν. Then, the Monge–Kantorovich transport problem can be understood as
the minimization of the total cost, over all possible couplings of (μ, ν).

Whenever these problems are stated in metric spaces, we may choose the cost function
to be the distance function itself, which in turn allows us to introduce a distance function
between measures.

Definition 2.2. (Wasserstein distance) Let (X, d) be a separable complete metric space.
Consider probability measures μ and ν on X and p ∈ [1, ∞). The Wasserstein distance of
order p between μ and ν is given by

Wp(μ, ν) :=
(

inf
γ∈�(μ,ν)

∫
d(x1, x2)

p dγ (x1, x2)

)1/p

.

In general, Wp is not a distance in the strict sense, because it can take the value +∞.
To rule this situation out, it is natural to constrain Wp to a subset in which it takes finite
values.

Definition 2.3. (Wasserstein space) The Wasserstein space of order p is defined by

Pp(X) :=
{
μ ∈ P(X) :

∫
d(x, x̃)pμ(dx) < +∞

}

for x̃ ∈ X arbitrary.
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Therefore,Wp sets a (finite) distance on Pp(X). It turns out that if (X, d) is a complete
separable metric space and d is bounded, then the p-Wasserstein distance metrizes the
weak topology over P(X) [Vil09, Corollary 6.13]. Furthermore, if X is a complete metric
space, then so is P(X) with the p-Wasserstein distance [Vil09, Theorem 6.18].

Although the Wasserstein distance is defined for every p ≥ 1, in this paper, we will
chose either p = 1 or p = 2, as stated later on. The reason is that forW1, we can explicitly
compute distance bounds, while forW2, the space P2(X) inherits geometric properties of
the space X. The choice is always indicated throughout the text.

We finish this section recalling two well-known results for later use. The first one is
regarding measurable and continuous functions, the Lusin theorem in a specific form. The
other one gives us a ‘recipe’ to glue different couplings.

THEOREM 2.4. [Fed69, Theorem 2.3.5] Let M be a locally compact metric space and N a
separable metric space. Consider μ a Borel measure on M, A ⊂ M a measurable set with
finite measure and f : M → N a measurable map. Then, for each δ > 0, there is a closed
set K ⊂ A, with μ(A\K) < δ, such that the restriction of f to K is continuous.

LEMMA 2.5. (Gluing lemma) [Vil09, Ch. 1] Let (Xi , μi), i = 1, 2, 3, be complete
separable metric probability spaces. If (X1, X2) is a coupling of (μ1, μ2) and (Y2, Y3) is
a coupling of (μ2, μ3), then one can construct a triple of random variables (Z1, Z2, Z3)

such that (Z1, Z2) has the same law as (X1, X2), and (Z2, Z3) has the same law as
(Y2, Y3). If μ12 stands for the law of (X1, X2) on X1 ×X2 and μ23 stands for the law
of (X2, X3) on X2 ×X3, then to construct the joint law μ123 of (Z1, Z2, Z3), one just has
to glue μ12 and μ23 along their common marginal μ2.

3. Disintegration of measures
To grasp some of the properties of the probability spaces while studying disintegration of
measures, we would like to associate the latter with the optimal transport theory. Before
doing so, we prove the following disintegration theorem. Our proof is based on the idea of
choosing a dense subset of a vector space using separability. Then, we extend a tailor-made
linear functional to the whole space, which is implicitly used in the proof of [DM78,
III-70], although our conditions are different.

THEOREM A. Let X and Y be locally compact and separable metric spaces. Let π :X→ Y

be a Borel map and take μ ∈ M+(X), where M+(X) is the set of all positive and
finite Radon measures on X. Define ν = π∗μ in M+(Y ). Then, there exist measures
μy ∈ M+(X) such that:
(1) y �→ μy is a Borel map and μy ∈ P(X) for ν-a.e. y ∈ Y ;
(2) μ = ν ⊗ μy , that is, μ(A) = ∫

Y
μy(A) dν(y) for every A ∈ B(X);

(3) μy is concentrated on π−1(y) for ν-a.e. y ∈ Y .

Proof. We shall first consider the disintegration of measures on compact metric spaces.
Then, we tackle the general case as it is stated.

Step 1: To get started, consider X to be a compact metric space with its Borel σ -algebra
B(X) and let μ be a Radon measure on X. If (Y , E) is a measurable space, we define
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a measurable map q : B(X) → E so that we set ν = q∗μ. Let C(X) be the set of all
continuous real functions ω : X → R. Then, for each ω ∈ C(X), we associate a measure
λ given by

λ(A) =
∫

q−1(A)

ω(x) dμ(x)

for every A ∈ E . The measure λ is absolutely continuous w.r.t. ν. Indeed, for every
A ∈ E , we have that ν(A) = μ(q−1(A)) = 0 implies λ(A) = 0. Therefore, since ν and
λ are positive measures and λ  ν, by the Radon–Nikodym theorem, there exists
h : Y → [0, ∞], the density of λ w.r.t. ν, such that λ(A) = ∫

A
h dν for A ∈ E . Thus,∫

A

h(y) dν(y) =
∫

q−1(A)

ω(x) dμ(x). (2)

Recall that C(X) is a separable space with the supremum norm. Let H = {ω1 ≡ 1,
ω2, ω3, . . .} be a dense subset of C(X). Suppose, without loss of generality, that H is a
vector space over Q. Then, for each n ∈ N, we consider the Radon–Nikodym density hn
associated with ωn given by equation (2) so that for each A ∈ E ,∫

A

hn(y) dν(y) =
∫

q−1(A)

ωn(x) dμ(x). (3)

Note that hn ≥ 0 almost always (a.a.), if ωn ≥ 0, since ν = q∗μ.
Step 2: We will use the associated densities to construct a linear functional which will

be extended using the Hahn–Banach theorem. To do so, we denote by A the set of all
y ∈ Y , such that, if ωi = αωj + βωk , then we have for their associated densities that the
relation hi(y) = αhj (y)+ βhk(y) holds true, where α, β ∈ Q and the associated density
to ω1 is set to h1(y) = 1. The set A is measurable and ν(A) = 1. Indeed,∫
q−1(Y )

ωi(x) dμ =
∫
q−1(Y )

(αωj + βωk)(x) dμ

= α

(∫
q−1(Y )

ωj (x) dμ

)
+ β

(∫
q−1(Y )

ωk(x) dμ

)
, which by equation (3),

= α

( ∫
Y

hj (y) dν

)
+ β

( ∫
Y

hk(y) dν

)

=
∫
Y

αhj (y)+ βhk(y) dν,

so
∫
hi(y) dν = ∫

αhj (y)+ βhk(y) dν. Consequently, hi(y) = αhj (y)+ βhk(y)ν-a.a.
Therefore, whenever ωn is a linear combination of elements of H, then the associated
densities defined by equation (3) can also be written point-wise as linear combinations of
Radon–Nikodym densities.

Step 3: For each y ∈ A, we define the functional ϕ̃y : H → R, given by
ϕ̃y(ωn) := hn(y). Note that ϕ̃y : H → R is Q-linear with ‖ϕ̃y‖ ≤ 1 and, since ϕ̃y(1) = 1,
we have actually that ‖ϕ̃y‖ = 1. Therefore, by the Hahn–Banach theorem, ϕ̃y can be
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extended to a continuous positive linear functional ϕy : C(X) → R, with ‖ϕy‖ = 1.
Furthermore, the Riesz–Markov–Kakutani representation theorem assures that there exists
a unique Radon measure μy on X such that ϕy(ω) = ∫

ω dμy for every ω ∈ C(X) and
ϕy(1) = 1. Note that

∫
ω dμy ≤ 1, since ‖ϕy‖ = 1. Thus, we conclude that μy is a proba-

bility measure. Note also thatμy is supported on q−1{y ∈ A}. For y /∈ A, considerμy = 0.
Step 4: Observe that y �→ ∫

X
ωn dμy is E-measurable for every ωn ∈ H and

∫
Y

∫
q−1(y)

ωn(x) dμy dν =
∫
Y

ϕy(ωn) dν =
∫
Y

hn(y) dν =
∫
X

ωn(x) dμ.

By the definition of H, we have that for each ω ∈ C(X), there exists a sequence (ωi)i ,
with ωi → ω uniformly. So, by uniform convergence, we have that y �→ ∫

X
ω dμy is

E-measurable for every ω ∈ C(X). Furthermore,∫
Y

∫
q−1(y)

ω(x) dμy dν =
∫
X

ω(x) dμ.

The same holds true for any bounded and B(X)-measurable function ω. Indeed,
denote by C the class of functions such that y �→ ∫

X
ω dμy is E-measurable and∫

Y

∫
q−1(y) ω(x) dμy dν = ∫

X
ω(x) dμ. Note that C(X) ⊂ C , from what was shown

before. If A ⊂ X is an open set, then 1A ∈ C . So, let D be the set of all characteristic
functions in C . If 1An ∈ D for n ∈ N, we have that 1∪An ∈ D. If 1A ∈ D, we have that
1Ac ∈ D. Thus, the class of measurable sets whose characteristic functions are in D is
B(X). Therefore, the result follows by monotone convergence. This completes the proof
of Theorem A for compact spaces.

Step 5: Let X be a locally compact and separable metric space. Then, the set of
continuous real-valued functions with compact support on X, denoted by Cc(X), is a
vector space. Such a vector space can be seen as the union of the spaces Cc(Ki) of
continuous functions with support on compact sets Ki . Since μ is a Radon measure on
X, the map ϕ : Cc(X) → R, such that, ω �→ ∫

X
ω(x) dμ, is a continuous positive linear

map. Note also that μ is supported on a set K̃, which is a countable union of compact
subsets Ki ⊂ X. So, we can imbed X into a compact metric space K and identify μ with
a measure on K with support on K̃, and construct the measures μy as above. Consider
μy = 0 for y such that π−1(y) /∈ K̃. Thus, there exist probability measures μy on X such
that each μy is supported on π−1(y) and, for every ω ∈ Cc(X),∫

Y

∫
π−1(y)

ω(x) dμy dν =
∫
X

ω(x) dμ. (4)

Since Y is a locally compact and separable metric space and π : X → Y is a Borel
map, then y �→ μy is a Borel map for ν-a.e. y ∈ Y . Furthermore, note that equation (4) is
equivalent to say thatμ(A) = ∫

Y
μy(A) dν(y) for everyA ∈ B(X) andμy is concentrated

on π−1(y) for ν-a.e. y ∈ Y . This concludes the proof.

Many interesting examples arise when we consider Theorem A for the case of product
spaces with the Borel map π as the canonical projection on the first component, as follows.
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FIGURE 1. Representation of F s = {{x} ×D2}x∈S1 .

COROLLARY 3.1. Let X and Y be locally compact and separable metric spaces. Let
projX : X × Y → X be the canonical projection on the first component, take
γ ∈ M+(X × Y ) and set μ = projX∗γ ∈ M+(X). Then, there exist measures
γx ∈ M+(X × Y ) such that:
(1) x �→ γx is a Borel map and γx ∈ P(X × Y ) for μ-a.e. x ∈ X;
(2) γ = μ⊗ γx , i.e. γ (A) = ∫

X
γx(A) dμ(x) for every A ∈ B(X × Y );

(3) γx is concentrated on proj−1
X (x) for μ-a.e. x ∈ X.

In fact, since γx is concentrated on proj−1
X (x) = {x} × Y , we can consider each γx as

a measure on Y, writing γ (B) = ∫
X
γx({y : (x, y) ∈ B}) dμ for every B ∈ B(X × Y ),

adding a different point of view to disintegration. The following example illustrates this
case of disintegration of measures.

Example 3.2. Consider a solid torus S1 ×D2. Let F s = {{x} ×D2}x∈S1 be a folia-
tion of S1 ×D2, as represented in Figure 1. Given a measure γ ∈ P(S1 ×D2), let
projS1 : S1 ×D2 → S1 be the canonical projection on the first component and set
μ = projS1∗γ . Theorem A, with π := projS1 , gives us a disintegration {γx : x ∈ S1} of
γ along the leaves. Since the measures γx are concentrated on proj−1

S1 (x) = {x} ×D2 for
μ-a.e. x ∈ S1, we can consider each γx as a measure on D2. That is, we can define a
probability on D2 for each x ∈ S1.

The point of view from Corollary 3.1 is, somehow, a generalization of cases of disinte-
gration of a probability measure along leaves in a foliated compact Riemannian manifold,
as in Example 3.2. In this sense, we remark that different versions of disintegration
theorems can be related by taking suitable hypotheses, as we do in the following example.

Example 3.3. LetM1 andM2 be compact Riemannian manifolds and set the product space
� = M1 ×M2. Let F s = {{x} ×M2}x∈M1 be a foliation of �. Given γ ∈ P(M1 ×M2),
let projM1

: � → M1 be the canonical projection on M1 and set μ = projM1∗γ . By
Theorem A, there exists a family {γx : x ∈ M1} ⊂ P(M1 ×M2) such that:
(1) x �→ γx is a Borel map and γx ∈ P(M1 ×M2) for μ-a.e. x ∈ M1;
(2) γ (A) = ∫

M1
γx(A) dμ(x) for every A ∈ B(M1 ×M2);

(3) γx is concentrated on proj−1
M1
(x) for μ-a.e. x ∈ M1.
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Furthermore, we can consider each γx as a probability onM2, as stated above. Note that
this result agrees with Rokhlin’s disintegration theorem. In fact, let � : � → F s be a map
that associates each point (x, y) ∈ � to the ζ element of F s that contains (x, y). Consider
γ̂ = �∗γ . Note that F s is a measurable partition of� and� is a complete separable metric
space. So, Rokhlin’s disintegration theorem describes a disintegration of γ relative to F s

by a family {γζ : ζ ∈ F s}, such that, for E ⊂ � measurable set:
(1) γζ (ζ ) = 1 for γ̂ -a.e. ζ ∈ F s ;
(2) ζ �→ γζ (E) is measurable;
(3) γ (E) = ∫

γζ (E) dγ̂ (ζ ).
Rewrite F s by {ζx}x∈M1 , where ζx = {x} ×M2 for each x ∈ M1, and consider

γ ′
x = projM1∗γ . For each x ∈ M1, let γζx be the restriction of γζ to ζ = {x} ×M2. Note

that �−1(ζ ) = {x} ×M2 = ζx = projM1
−1(x), so

∫
γζ (E)dγ̂ (ζ ) =

∫
γζ (E)γ (�

−1 (dζ ))

=
∫
M1

γζx (E ∩ ζx)γ (projM1
−1 (dx))

=
∫
M1

γζx (E ∩ ζx) dγ ′
x

and then

γ (E) =
∫
M1

γζx (E ∩ ζx) dγ ′
x .

Moreover, note that γζx is supported in proj−1
M1
(x) = ζx . Hence, we have a disintegration

{γζx : ζx ∈ F s} along the leaves of� associated to γ ′
x . In addition, it is possible to identify

proj−1
M1
(x) with M2, and write this disintegration by {γx : x ∈ M1} ⊂ P(M2), as desired.

Such an example is one of the possible roles of disintegration of measures. In dynamics,
for instance, this kind of disintegration appears in several contexts. To name a few, in
[BM17], the regularity of this kind of disintegration is investigated considering invariant
measures for hyperbolic skew products. Specifically, for this purpose, a function that
associates each x in X with a probability measure γx obtained via a disintegration of γ
is analysed. In the next section, we will see that this type of application can be thought in a
more general framework and it has important properties. We can also cite [Gal17, GL20],
where the disintegration of Example 3.2 is used to study the behaviour of the transfer
operator in a solenoidal map.

We can actually obtain uniqueness and absolute continuity of the disintegration in
the context of Theorem A. If λ ∈ M+(Y ) is another measure, such that there exists a
Borel map y �→ ηy for which μ = λ⊗ ηy , with ηy concentrated on π−1(y) for μ-a.e.
y ∈ Y , then λ|C  ν, where C = {y ∈ Y : ηy(X) > 0} and ηy  μy for ν-a.e. y ∈ Y .
See the details in [AP03]. In the following proposition, we focus on the case of product
spaces. Taking γ ∈ M+(X × Y ) with μ = projX∗γ , we obtain uniqueness of γx and μ in
γ = μ⊗ γx .
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PROPOSITION 3.4. Let X × Y , X be locally compact and separable metric spaces.
Let projX : X × Y → X be the projection on the first component and consider
γ ∈ M+(X × Y ), ν ∈ M+(X) and μ = projX∗γ . Let x �→ ηx be a Borel M+-valued
map defined on X such that:
(1) γ = ν ⊗ ηx;
(2) ηx is concentrated on proj−1

X (x) for ν-a.e. x ∈ X.
Then, the ηx are uniquely defined ν-a.a. by conditions (1) and (2). Moreover, for
C = {x ∈ X : ηx(X × Y ) > 0}, ν|C is absolutely continuous w.r.t. μ. In particular,
(ν|C/μ)ηx = γx for μ-a.e. x ∈ X, where γx are the conditional probabilities as in
Corollary 3.1.

Proof. Let ηx and η′
x be measures satisfying conditions (1) and (2). Let (An)n be

a sequence of open sets such that the finite intersection is also an open set which
generates B(X × Y ), the Borel σ -algebra of X × Y . Consider B ∈ B(X × Y ) and
A = An ∩ proj−1

X (B) for any n ∈ N. By condition (1), we have that

γ (A) =
∫
X

ηx(A) dν =
∫
B

ηx(An) dν

and

γ (A) =
∫
X

η′
x(A) dν =

∫
B

η′
x(An) dν.

Therefore, ∫
B

ηx(An) dν =
∫
B

η′
x(An) dν.

Given that B is arbitrary, then ηx(An) = η′
x(An) for ν-a.e. x ∈ X and for any n ∈ N.

So, there exists a set N ⊂ X, with ν(N) = 0 such that ηx(An) = η′
x(An) for any n ∈ N,

x ∈ (X −N). Hence, for ν-a.e. x ∈ X, ηx = η′
x .

Let us denote C = {x ∈ X : ηx(X × Y ) > 0}. Let G ⊂ C be such that μ(G) = 0. So,
proj−1

X (G) is such that γ (proj−1
X (G)) = 0. Therefore, condition (2) implies

0 =
∫
X

ηx(proj−1
X (G)) dν =

∫
G
ηx(X × Y ) dν.

Since ηx(X × Y ) > 0 in C ⊃ G, we have that ν(G) = 0. That is, ν|C  μ. Moreover,
writing ν|C = fμ implies that γ = fμ⊗ ηx . However, by Corollary 3.1, γ = μ⊗ γx

and then (ν|C/μ)ηx = γx .

4. Disintegration maps
From the optimal transport perspective, Theorem A in fact deals with the disintegration
of transport plans. In this sense, it is possible to define a function from Y to P(X) with
certain properties which actually establishes the link between disintegration of measures
and the geometric properties of the measure spaces. We will call such an object the
disintegration map.
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Definition 4.1. (Disintegration map) Let X and Y be locally compact and separable metric
spaces. Consider a measure μ ∈ M+(X), a Borel map π : X → Y and a disintegration of
μ given by Theorem A, so that μ = ν ⊗ μy . We define the disintegration map:

f : Y → (P(X), Wp)

y �→ μy ,

such that μ = ν ⊗ f (y), where Wp is the p-Wasserstein distance.

Remark 4.2. To clarify which measures are associated with the disintegration map, we
will say that ‘f is a disintegration map of μ w.r.t. ν’.

Although we may define such a map to a general Wp, our main interest will be when
either p = 1 or p = 2. On the one hand, for p = 1, there is an explicit formula for
the Wasserstein distance which we can apply to study the disintegration of measures in
product spaces. On the other hand, when p = 2, the theory of optimal transport allows
for a geometric characterization of P2(X) in terms of the geometric properties of X.
More precisely, the study of geodesics defined in P2(X) and the convexity properties of
certain functionals along these geodesics play a crucial role in the metric theory of gradient
flows, which allows us to infer geometric properties of X itself. We shall address the case
when p = 2 in the next section. Before that, we use the disintegration maps to further
characterize the disintegration of measures in product spaces. In this section, consider the
following definition of a disintegration map.

Definition 4.3. (Disintegration map—product spaces) Let X and Y be locally compact
and separable metric spaces. Consider γ ∈ P(X × Y ) and a disintegration of γ given by
Corollary 3.1, so that γ = μ⊗ γx . In this case, the disintegration map reads as

f : X → (P(Y ), W1)

x �→ γx

such that γ = μ⊗ f (x).

In the lines of [AP03, GM13], we start by showing the following.

PROPOSITION 4.4. A map f : X → (P(Y ), W1) is a disintegration map if and only if it
is Borel.

Proof. Denote by Lip1(Y ) the set of Lipschitz functions whose Lipschitz constants are
less than or equal to 1. By the Arzelà–Ascoli theorem, the space Lip1(Y ) is compact
with respect to the uniform convergence [AGS05, Proposition 3.3.1]. Let D ⊂ Lip1(Y )

be a countable dense subset and take ϕ ∈ Lip1(Y ). If the measures ν1, ν2 ∈ P(Y ) have
bounded support, we can use the duality formula to obtain

W1(ν1, ν2) = sup
ϕ∈Lip1(Y )

{∫
Y

ϕ d(ν1 − ν2)

}
= sup
ϕ∈D

∫
Y

ϕ d(ν1 − ν2);
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see [AGS05, §7.1] for details. For all ϕ ∈ Lip1(Y ),

ψϕ : X → R

x �→
∫
Y

ϕ d(ν − f (x))

is Borel. For f to be a Borel map, it suffices that

f−1(B(ν, r)) =
⋂
ϕ∈D

ψ−1
ϕ ((−r , r)) := A,

where B(ν, r) is an open ball of radius r centred at ν in (P(Y ), W1). In fact, if x ∈ A,
then |ψϕ(x)| < r for all ϕ ∈ D and W1(ν, f (x)) < r (by the definition of ψϕ), so that
f (x) ∈ B(ν, r). In the same way, if f (x) ∈ B(ν, r), then W1(ν, f (x)) < r and, by the
duality formula,

|ψϕ(x)| :=
∣∣∣ ∫

Y

ϕ d(ν − f (x))

∣∣∣ < r

for every ϕ ∈ D, so that x ∈ A. Thus, one way is proven. Conversely, letA ⊂ Y be an open
subset. Note that

f (x)(A) =
∫
Y

1A(y) df (x).

Let Iϕ be a function given by

Iϕ : (P(Y ), W1) → R

λ �→
∫
Y

ϕ(y) dλ, (5)

where ϕ is a lower semicontinuous function over Y. SinceW1 metrizes the weak* topology
of P(Y ) [AGS05, Ch. 7], the function Iϕ is lower semicontinuous. For every x ∈ X, one
obtains

∫
Y
ϕ(y) df (x) = Iϕ(f (x)). By assumption, f is Borel and then f (·)(A) : X → R

is a composition of a lower semicontinuous function and a Borel map, so it is a Borel map.
Therefore, f is a disintegration map, which concludes the proof.

The disintegration map in fact can be written in terms of the Monge problem. Given
a transport map T : X → Y and the measures μ ∈ P(X) and ν = T∗μ ∈ P(Y ), the
disintegration map is given by x �→ δT (x), where δT (x) is a Dirac measure at T (x). It is
possible to show that there exists a relationship among measures in (P(Y ), W1), via push
forward of μ by disintegration maps, and the second marginal of transport plans induced
by distinct transport maps.

LEMMA 4.5. Let T : X → Y and S : X → Y be transport maps. Consider a measure
μ ∈ P(X), and the applications f and g given by

f : X → (P(Y ), W1)

x �→ δT (x),

g : X → (P(Y ), W1)

x �→ δS(x).

Then, T∗μ = S∗μ if and only if f∗μ = g∗μ.
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Proof. Define ϕ(y) = ψ(δy), where ψ ∈ C((P(Y ), W1)) is arbitrarily chosen. Then,∫
Y

ψd(f∗μ) =
∫
X

ψ(f (x)) dμ

=
∫
X

ψ(δT (x)) dμ

=
∫
X

ϕ(T (x)) dμ

=
∫
X

ϕ(S(x)) dμ

=
∫
Y

ψ d(g∗μ).

Given the arbitrary choice ofψ , it follows that f∗μ = g∗μ. Conversely, consider ϕ ∈ C(Y )
and the application Iϕ defined by equation (5). Note that∫

P(Y )

Iϕ(λ) d(f∗μ) =
∫
P(Y )

Iϕ(λ) d(g∗μ)

if and only if ∫
X

Iϕ(f (x)) dμ =
∫
X

Iϕ(g(x)) dμ,

which in turn occurs if and only if∫
X

( ∫
Y

ϕ(y) df (x)

)
dμ =

∫
X

( ∫
Y

ϕ(y) dg(x)

)
dμ.

Since ∫
Y

ϕ(y) df (x) = ϕ(T (x))

and ∫
Y

ϕ(y) dg(x) = ϕ(S(x)),

the last equation can be written as∫
X

ϕ(T (x)) dμ =
∫
X

ϕ(S(x)) dμ.

Due to the arbitrary choice of ϕ, it follows that T∗μ = S∗μ.

COROLLARY 4.6. Let T : X → Y and S : X → Y be transport maps. Consider a
measure μ ∈ P(X), the disintegration maps f and g defined as in Lemma 4.5, and
the measures γ = μ⊗ f (x) and η = μ⊗ g(x). Then, f∗μ = g∗μ if and only if
projY ∗γ = projY ∗η.

Given γ , η ∈ �(μ, ν), as defined in §2, with γ = μ⊗ f (x) and η = μ⊗ g(x), we say
that γ is equivalent by disintegration to η (and we denote γ ≈ η) if f∗μ = g∗μ. With this
equivalence in mind, it is possible to define an equivalent class among the transport plans
as follows.
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Definition 4.7. Given γ ∈ �(μ, ν) with γ = μ⊗ f (x), the transport class of γ is defined
as the equivalence class [γ ] = {η = μ⊗ g(x) : g∗μ = f∗μ}.

Thus, we have that all transport plans induced by transport maps belong to the same
transport class. Moreover, in the next proposition, we prove that it is possible to use
equivalence by disintegration to assure the existence of a transport map.

PROPOSITION 4.8. Consider a transport map T : X → Y such that T∗μ = ν and
γ = μ⊗ δT (x) for a non-atomic measure μ ∈ P(X). If η ∈ [γ ], then there exists a
transport map S : X → Y such that η = μ⊗ δS(x).

Proof. By the approximation theorem [Amb00, Theorem 9.3] and by the definition of
equivalent by disintegration, there exist a sequence of Borel functions Sn : X → Y such
that η = lim

n→∞ μ⊗ δSn(x) and (Sn)∗μ = ν for every n ∈ N. So μ⊗ δSn(x) ∈ [γ ] for every

n ∈ N. Consider ϕ(y) = |y|2 and observe that∫
X

|Sn(x)|2 dμ =
∫
X

ϕ(Sn(x)) dμ =
∫
Y

ϕ(y) dν =
∫
Y

|y|2 dν < ∞.

Let ψ ∈ C((P(Y ), W1)) be a function given by ψ(δy) = |y|2 and let � ⊂ P(Y ) be
the set of Dirac measures. Observe that ψ is Lipschitz over � w.r.t. W1. So, take ψ any
Lipschitz extension over P(Y ). Since (δSn)∗μ = (δT )∗μ, we have that∫

X

|Sn(x)|2 dμ =
∫
X

ψ(δSn(x)) dμ =
∫
X

ψ(δT (x)) dμ =
∫
X

|T (x)|2 dμ

for every n ∈ N. Therefore, moving on to a subsequence, we can assume that Sn is weakly
convergent to S. By [Amb00, Lemma 9.1], μ⊗ δSn(x) converges weakly to μ⊗ δS(x). This
concludes the proof.

In this context, the Monge problem can be interpreted as: minimize
∫
X×Y c(x, y) dγ in

a fixed transport class of �(μ, ν), that is, obtain

min
{∫

X×Y
c(x, y) dγ : γ ∈ [μ⊗ δT ]

}

for a given transport map T. Regarding the Monge–Kantorovich problem, note that the
second part of the proof of Lemma 4.5 applies to general transport plans, so that the second
marginal can be fixed by the disintegration maps, as follows.

LEMMA 4.9. Consider μ ∈ P(X), the disintegration maps f : X → P(Y ) and
g : X → P(Y ), and the transport plans γ = μ⊗ f (x) and η = μ⊗ g(x). Then,
f∗μ = g∗μ implies projY ∗γ = projY ∗η.

The reciprocal of Lemma 4.9, however, is not true. Consider, for instance, the following
transport problem. Three factories, x1, x2 and x3, with the same production, supply 100%
of their products to two stores, y1 and y2. Suppose store y2 has a demand five times greater
than store y1. Let μ be the measure related to the production of the factories and ν be
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FIGURE 2. Transport plan 1.

FIGURE 3. Transport plan 2.

FIGURE 4. Transport plan 3.

the measure related to the amount of delivered products to the stores. These measures are
given by

μ = 1
3δx1 + 1

3δx2 + 1
3δx3 ,

ν = 1
6δy1 + 5

6δy2 .

Consider the transport plan illustrated in Figure 2, which divides the products which are
produced in the factory x1 between the two stores. The corresponding disintegration map
f is given by f (x1) = 1

2δy1 + 1
2δy2 , f (x2) = δy2 and f (x3) = δy2 .

Note that since μ is of the type
∑
i

αiδxi , we have that f∗μ = ∑
i

αiδf (xi ). Suppose,

however, that there is a change in logistics and in the new transport plan, Figure 3,
the factory x1 delivers its production only to the store y2 and the factory x2 divides its
production between the two stores. In this new situation, the disintegration map is given
by g(x1) = δy2 , g(x2) = 1

2δy1 + 1
2δy2 and g(x3) = δy2 . Nevertheless, on the one hand,

f∗μ = g∗μ, i.e., the transport class does not change. On the other hand, if in this new
transport plan the factories x1 and x2 deliver to both stores, Figure 4, in such a way that x1

sends 30% of its production to y1 and 70% to y2, and x2 sends 20% of its production
to y1 and 80% to y2, the disintegration map is given by h(x1) = 3/10δy1 + 7/10δy2 ,
h(x2) = 2/10δy1 + 8/10δy2 and h(x3) = δy2 . In this case, f∗μ �= h∗μ. So, the transport
plans 1 and 3 do not belong to the same transport class.

Furthermore, if there is a small change in transport plan 3, so that x1 sends 10% of its
production to y1 and 90% to y2, and x2 sends 40% of its production to y1 and 60% to y2,
the new disintegration map is given by k(x1) = 1/10δy1 + 9/10δy2 , k(x2) = 4/10δy1 +
6/10δy2 and k(x3) = δy2 . Therefore, h∗μ �= k∗μ. Thus, with the previous definition for
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transport class, the transport class changes when either the number of factories that deliver
products to more than one store is changed or even if the fraction of delivered production
is changed.

Therefore, to be compatible with the Monge–Kantorovich problem, we need another
definition of transport class. Take μ⊗ f ∈ �(μ, ν) and � = f∗μ, and recall that
(projY )∗(μ⊗ f ) = ν, then for every ϕ ∈ C(Y ),∫

Y

ϕ(y) dν =
∫
X

( ∫
Y

ϕ(y) df (x)

)
dμ

=
∫
X

Iϕ(f (x)) dμ

=
∫
P(Y )

Iϕ(λ) d�(λ)

=
∫
P(Y )

( ∫
Y

ϕ(y) dλ

)
d�,

where Iϕ is given by equation (5) and λ ∈ P(Y ). Hence, every probability � in
(P(Y ), W1) satisfying ∫

P(Y )

λ d� = ν (6)

defines a transport class [γ ] = {μ⊗f : f∗μ=�}. As an example, a transport class [μ×ν]
corresponds to the measure � = δν . From this point of view, the Monge–Kantorovich
problem in the class � can be thought as

MK�(c, μ, ν) = inf
γ

{∫
X×Y

c(x, y) dγ : γ = μ⊗ f , f∗μ = �

}
.

This notion of transport class also allows us to see the Monge–Kantorovich problem as an
abstract Monge problem between the spaces X and P(Y ), considering the cost

c̃(x, λ) =
∫
Y

c(x, y), dλ.

In fact, for every disintegration map f : X → P(Y ), such that f∗μ = �,∫
X

c̃(x, f (x)) dμ =
∫
X

( ∫
Y

c(x, y) df (x)
)
dμ

=
∫
X×Y

c(x, y) d(μ⊗ f )

and the problem MK�(c, μ, ν) is equivalent to the Monge problem with parameters
(c̃, μ, �). Thus, the disintegration of transport plans introduces another perspective for
the optimization problems proposed by Monge and Kantorovich.

5. Absolute continuity from disintegration maps
To connect what we just developed to the geometric properties of the measure spaces and
the space of measures, we shall study how paths of measures are given by disintegration
maps. Our interest hereafter is to use the 2-Wasserstein distance.
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To construct such paths in 2-Wasserstein space, it is essential to analyse the weak
continuity of the disintegration map. In the Wasserstein space, one can study a charac-
terization of convergence. We say that {μk} converges weakly to μ when∫

ϕ μk −→
∫
ϕ dμ

for any bounded continuous function ϕ. Moreover, Wasserstein distances metrize weak
convergence, that is, if {μk} is a sequence in Pp(X) and μ ∈ Pp(X), then μk converges
weakly to μ is equivalent to Wp(μk , μ) −→ 0. When referring to continuity of the
disintegration map, we use weak continuity meaning continuity with respect to weak
convergence on Pp(X).

A map f on an metric space (Y , ν) is called nearly continuous if, for each ε > 0, there
exist K ⊂ Y closed with ν(Y\K) < ε such that f restricted to K is continuous. Let f be a
disintegration map of μ w.r.t. ν. If ν is absolutely continuous with respect to the volume
measure of Y, we can apply Lusin’s Theorem 2.4 to show that f is nearly weakly continuous.
We also need the following lemma, which is actually a known fact within the optimal
transport community. For completeness, we add it here in our context.

LEMMA 5.1. Let (X, d) be a separable metric space. The 2-Wasserstein space
(P(X), W2) is a separable metric space.

Proof. Let D ⊂ X be a countable and dense subset. Consider the space M defined by
M := {ν ∈ P(X) : ν = ∑

j aj δxj , with aj ∈ Q and xj ∈ D}. We want to show that M
is dense in (P(X), W2).

Given μ ∈ (P(X), W2), then for any ε > 0 and x0 ∈ D, there exists a compact set
K ⊂ X such that ∫

X\K
d(x0, x)2 dμ ≤ ε2.

Since K is compact, we may cover it with a family {B(xk , ε/2) : 1 ≤ k ≤ N , xk ∈ D} and
define

B ′
k := B(xk , ε)\

⋃
j<k

B(xj , ε)

so that {B ′
k} are disjoint and still cover K. Define ϕ on X by{

ϕ(B ′
k ∩K) = {xk},

ϕ(X −K) = {x0}.
So d(x, xk) ≤ ε for every x ∈ K . Therefore,∫

X

d(x, ϕ(x))2 dμ ≤ ε2
∫
K

dμ+
∫
X\K

d(x, x0)
2 dμ ≤ 2ε2

and then W2(μ, ϕ∗μ) ≤ 2ε2. Note that ϕ∗μ can be written as
∑

0≤j≤N αj δxj , that
is, μ might be approximated by a finite combination of Dirac masses. Moreover, the
coefficients αj might be replaced by rational coefficients (up to a small error in Wasserstein
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distance): since Wasserstein distances are controlled by weighted total variation [Vil09,
Theorem 6.15],

W2

( ∑
0≤j≤N

αj δxj ,
∑

0≤j≤N
βj δxj

)
≤ 21/2

[
max
k,l

d(xk , xl)
] ∑

0≤j≤N
|αj − βj |1/2,

which can become small, taking suitable coefficients βj ∈ Q. Thus, it follows that M is
dense in P(X). Consequently, (P(X), W2) is separable.

PROPOSITION 5.2. Let X, Y be locally compact, complete and separable metric
spaces. Consider π : X → Y a Borel map, μ ∈ M+(X), volY volume measure on Y
and ν := π∗μ. If ν  volY , then the disintegration map of μ w.r.t. ν is nearly weakly
continuous.

Proof. Consider the 2-Wasserstein distance W2 on P(X), with d a complete bounded
metric for X. Here, W2 metrizes the weak convergence of P(X) [Vil09, Theorem 6.9].
Furthermore, (P(X), W2) is a separable space. Moreover, from Theorem A, the map
y �→ μy ∈ P(X) is measurable and ν is a Borel measure on Y, since ν  volY . Then,
by Lusin’s theorem for Y and ε > 0, there exists K ⊂ Y with ν(Y\K) < ε such that the
disintegration map restricted to K is weakly continuous.

Although Proposition 5.2 is relevant by itself, we would like to have conditions for
which the disintegration map is weakly continuous at every point, so that, given any two
points y, y′ in Y, we can construct a path of conditional measures connecting μy and μy′ .
Note that the 2-Wasserstein space is actually connected, and therefore we can always find
a path connecting two measures. Nevertheless, we require this path to be specifically given
by the disintegration map. This is not trivial indeed and we can easily construct examples
in which this map is not weakly continuous.

Example 5.3. Consider X = Y = [0, 1]. Let μ be the Lebesgue measure on X and take
the map π : X → Y given by

π(x) =
{

2x if x < 1
2 ,

1 if x ≥ 1
2 .

Note that π is Borel measurable, since it is continuous. Define

ν := π∗μ = 1
2λ+ 1

2δ1,

where λ is the Lebesgue measure on Y and δ1 is the Dirac measure at y = 1. A
disintegration {μy}y∈Y of μ with respect to π is given by

μy =
{
δπ−1(y) if y < 1,

2λ|[1/2,1] if y = 1.

In this case, the disintegration map is not weakly continuous at y = 1. In fact, consider a
sequence (yn)n in Y such that yn −→ y = 1. Note that
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W 2
2 (μyn , μy) = inf

γ∈�(μyn ,μy)

∫
X×X

d(x1, x2)
2 dγ

=
∫
X×X

d(x1, x2)
2 d(δπ−1(yn)

× μy)

=
∫
X

d(π−1(yn), x2)
2 dμy .

Then, at the limit yn −→ 1, we have

W 2
2 (μyn , μy) −→

∫
X

d

(
1
2

, x2

)2

dμy �= 0.

Therefore, f is not weakly continuous at y = 1. Furthermore, note that ν({1}) = 1
2 and

ν is not absolutely continuous with respect to λ. However, considering Y = [0, 1) and
guaranteeing the absolute continuity of ν, we can obtain a good approximation K in which
f is weakly continuous.

We can actually ask for some additional hypotheses so that the disintegration map is
weakly continuous. One possibility is to take π as a bijective and continuous map.

PROPOSITION 5.4. Let X and Y be locally compact and separable metric spaces. Consider
μ ∈ M+(X), π : X → Y a Borel map, ν := π∗μ, {μy}y∈Y a disintegration of μ given by
Theorem A, and f the disintegration map of μ w.r.t. ν. If π is bijective and continuous, then
f is weakly continuous.

Proof. On the one hand,

μ(B) =
∫
Y

μy(B) dν

=
∫
Y

μy(B ∩ π−1(y)) dν.

On the other hand,

μ(B) =
∫
X

1B dμ

=
∫
X

1B d(ν ◦ π)

=
∫
Y

1B(π
−1(y)) dν

=
∫
Y

1B(π
−1(y))δπ−1(y)(π

−1(y)) dν

=
∫
Y

δπ−1(y)(B ∩ π−1(y)) dν.

Then, ∫
Y

μy(B ∩ π−1(y)) dν =
∫
Y

δπ−1(y)(B ∩ π−1(y)) dν.
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Moreover, since μy is a probability and B ∩ π−1(y) is either a singleton or an empty set,
we have that

δπ−1(y)(B ∩ π−1(y)) ≥ μy(B ∩ π−1(y)).

Then, μy(B ∩ π−1(y)) = δπ−1(y)(B ∩ π−1(y)) and it follows that μy = δπ−1(y).
Suppose yn −→ y. Since π is continuous, π−1 is continuous and then∫

g dμyn −→
∫
g dμy

for every bounded uniformly continuous function g. Therefore, f is weakly continuous.

Asking for the bijectivity of π is quite strong. We want to explore ways to ease this
restriction and to obtain continuity at least for almost every point. In some examples for
which π is a quotient map, we have the weak continuity of f.

Example 5.5. �q -product space from metric measures spaces.
Let (Y , dY , mY ), (Z, dZ , mZ) denote the metric spaces (Y , dY ) and (Z, dZ) which are

endowed with probability measures mY and mZ , respectively. We shall call these metric
measure spaces. For q ∈ [1, ∞], define the �q -product spaceX := Y ×�q Z as the product
space Y × Z equipped with the measure μ = mY ×mZ and the distance d�q given by

d�q ((y, z), (y′z′)) =
{

[dY (y, y′)q + dZ(z, z′)q ]1/q if 1 ≤ q < ∞,

max{dY (y, y′), dZ(z, z′)} if q = ∞.

Consider the projection π : X → Y and {μy}y∈Y the disintegration of μ with respect to
ν := π∗μ. Note that

d�q (π
−1(y), π−1(y′)) = dY (y, y′)

for every q ∈ [1, ∞] and, for every conditional measure μy , μy′ ,

W 2
2 (μy , μy′) = inf

γ∈�(μy ,μy′ )

∫
d�q ((y1, z1), (y2, z2))

2 dγ

= inf
γ∈�(δy ,δy′ )

∫
dY (y1, y2)

2 dγ

= dY (y, y′)2.

Then, W2(μy , μy′) = dY (y, y′) and, therefore, the disintegration map is weakly
continuous.

In fact, this is one example of a disintegration of measures associated with a foliation,
called metric measure foliation, covered in [GKMS18]. For a precise definition, we need
to introduce some concepts. Let (X, d) be a metric space. A foliation F of X is a partition
of X into closed subsets. The elements of this partition are called leaves. Here, F is called
a metric foliation if for every F , F ′ ∈ F and every x ∈ F ,

d(F , F ′) = d(x, F ′),
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where d(F , F ′) = inf{d(x, x′) : x ∈ F , x′ ∈ F ′} and d(x, F ′) = d({x}, F ′). In the case
where each leaf is bounded, we say that F is bounded. Given a metric foliation F of X,
define the equivalence relation:

x ∼ x′ ⇐⇒ there exists F ∈ F such that x, x′ ∈ F . (7)

Consider X∗ := X/ ∼ the set of equivalence classes under equation (7) and the projection
p : X → X∗ onto X∗. We call X∗ the quotient space and p the quotient map. Define a
distance function d∗ on X∗ as

d∗(y, y′) := d(p−1(y), p−1(y′)) (8)

for y, y′ ∈ X∗. Note that p is a submetry: p(B(x, r)) = B(p(x), r), where B(x, r) is a ball
centred at x with radius r. In fact,

B(p(x), r) = {y ∈ X∗ : d∗(y, p(x)) < r}
= {y ∈ X∗ : d(p−1(y), p−1(p(x))) < r}
= p(B(x, r)).

Therefore, p is 1-Lipschitz. In this notation, we define the following.

Definition 5.6. Let F be a metric foliation of (X, d , μ). Additionally, F is a metric
measure foliation if p∗μ is locally finite Borel measure on X∗, and there exists a Borel
subset � ⊂ X∗ with p∗μ(X∗\�) = 0 such that

W2(μy , μy′) = d∗(y, y′) (9)

for any y, y′ ∈ �, where {μy}y∈Y is a disintegration of μ with respect to p∗μ.

Note that, in this case, the disintegration map is an isometry. This is the most important
characteristic of a metric measure foliation for us. A very important example of a metric
measure foliation is related to the action of isometry group.

Example 5.7. Let (X, d , μ) be a metric measure space and G a compact topological group.
Let

G×X � (g, x) �→ gx ∈ X
be an isometric action of G on X. Suppose this action is metric measure isomorphic, that
is, for every g ∈ G, the map X � x �→ gx ∈ X is an isometry preserving the measure μ.
Consider [x] the G-orbit of a point x ∈ X and the quotient space X/G endowed with the
distance

dX/G([x], [x′]) = inf
g,g′∈G

d(gx, g′x′).

Consider p : X → X/G the projection map, that is, p is given by x �→ [x]. The family
F := {p−1(y) : y ∈ X/G} is a metric measure foliation on X.

Other interesting examples arise from Riemannian submersions of weighted Rieman-
nian manifolds [GKMS18].
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FIGURE 5. Idea of a metric measure foliation as a space fibration.

From Definition 5.6, we have a direct association of the 2-Wasserstein distance between
conditional measures (given by Theorem A) and the distance between points to which these
measures were indexed. It is clear that in this case, we have the weak continuity of the dis-
integration map, since it is a isometry. Note that we can relate the 2-Wasserstein distance
between conditional measures to the distance between two points of the quotient space
looking at a direction perpendicular to the leaves, through the leaves. Roughly speaking,
we can think of a kind of space fibration, where one of the directions has been ‘collapsed’,
and it becomes a parameter for the disintegration family, so that each conditional measure
is supported on the underlying fibre (see Figure 5). That is, the measures μy are of the type
δy × λ, where λ is a measure on the fibre, similar to Example 3.2.

With what we have seen so far, we have been able to classify some situation in which
the disintegration map is weakly continuous.

PROPOSITION 5.8. Let X be locally compact and separable metric space. Consider
μ ∈ M+(X), a metric foliation F of X, the quotient space X∗ and the quotient map
p : X → X∗. If there exists a metric measure foliation of X, with � = X∗, then the
disintegration map of μ w.r.t. ν = p∗μ is weakly continuous.

Proof. Given a metric measure foliation of X, we have for every y, y ′ ∈X∗, W2(μy , μy′)=
d∗(y, y′), where μy = f (y) and μy′ = f (y′), and the disintegration map is denoted by f.
Consider a sequence (yn)n in X∗ such that yn −→ y. Note that W2(μyn , μy) −→ 0, since
d∗(yn, y) −→ 0. Therefore, we have the weak continuity of f.

Remark 5.9. If in Proposition 5.8 we do not ask for � = X∗, the weak continuity of
the disintegration map is given for p∗μ-a.e. y ∈ X∗ due the definition of metric measure
foliation. Although it seems to be a strong condition, in general cases of interest, we have
it satisfied, as in Examples 5.5 and 5.7, for instance.

Remark 5.10. One can associate hypotheses about the map π and the type of disintegration
obtained. In light of what we have seen, we may obtain the following.
(1) Under the hypotheses of Proposition 5.4, that is, when the map π is bijective and

continuous, the conditional measures given by Theorem A are Dirac deltas.
(2) Under the hypotheses of Proposition 5.8, that is, in the metric measure foliation case,

the conditional measures given by Theorem A are of the type δy × λ, where λ is a
measure on the fibre.
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The entire study carried out on the disintegration map makes clear a fundamental
condition for it to be weakly continuous: the supports of the conditional measures {μy}
must be disjoint. However, if we want some kind of absolute continuity of {μy} with respect
to a reference measure, the supports must have μ-positive measure. In the cases of Propo-
sitions 5.4 and 5.8, we do not obtain supports with a μ-positive measure. Another way is to
think about the absolute continuity of measures with respect to a reference measure on the
fibres. This discussion is summarized in Theorem B. In the statement, we call f a minimiz-
ing invariant, if it maps a minimizing curve on Y to a minimizing curve on (P(X), W2).
Such a condition is fulfilled when π is a Riemannian submersion, for example.

THEOREM B. Let X and Y be locally compact, complete, separable metric spaces.
Consider π : X → Y a Borel map, μ in M+(X) and ν := π∗μ. If the disintegration map
of μ w.r.t. ν is weakly continuous and Y is path connected, then given two points y, y ′ ∈ Y :

(i) there exists a path on (P(X), W2), given by the disintegration map, connecting μy
and μy′ , the respective conditional measures given by Theorem A;

(ii) if X is a smooth compact Riemannian manifold equipped with a volume measure
vol, μ  vol, π is such that π−1(y) has μ-positive measure for ν-almost every y,
the disintegration map is minimizing invariant, and either μy or μy′ is absolutely
continuous w.r.t. vol, then all the measures μyt on the path given by item (i) are
absolutely continuous w.r.t. vol;

(iii) if π is such that {π−1(y)}y∈Y is a metric measure foliation of X, X a smooth compact
Riemannian manifold, there exists a path given by the disintegration map connecting
μy and μy′ , and if either μy or μy′ is absolutely continuous with respect to the
volume measure on the respective support fibre, then all the measures μyt on this
path are absolutely continuous with respect to the volume measure on the fibre.

Proof. (i) This is a direct consequence of the weak continuity of the disintegration map,
which will be denoted by f throughout the demonstration. Consider y, y ′ ∈ Y . Let ψ
be a continuous curve in Y connecting y and y ′, that is, ψ = {yt : t ∈ [0, 1], ψ(0) = y,
ψ(1) = y′}. Taking yt −→ ȳ ∈ Y , we have f (yt )

w−→ f (ȳ), that is, W2(μyt , μȳ) −→ 0.
Then, ζ = {μyt : t ∈ [0, 1]}, where μyt is the conditional measure associated with yt via f,
for every t ∈ [0, 1], is a weakly continuous curve in (P(X), W2) connecting μy and μy′ .
This proves the first part of our theorem.

The proof of part (ii) will be done in a few steps. The idea is to use a sort of
‘time-dependent’ version of optimal transport. See [Vil09, Ch. 7], for example. In short,
we will consider the curve ζ given by the disintegration map as an interpolation between
probability measures, called displacement interpolation. To this end, we consider a
transport problem, and we associate ζ with a random curve ξ in X.

Step 1: A minimizing curve in the space of measures. Consider the path
ζ = {μyt : t ∈ [0, 1]} as constructed in part (i). Taking ψ as a minimizing curve in Y,
ζ is a minimizing curve in P(X), since f is minimizing invariant. By abuse of notation,
we use the weak continuous path ζ : [0, 1] → (P(X), W2) while referring to this path in
(P(X), W2) given by the disintegration map f evaluated at the minimal curve ψ joining
[y, y′] in Y. More precisely, we consider the composition f ◦ ψ to describe ζ .
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Step 2: A random curve in X. We want to associate ζ with a random curve ξ : [0, 1] → X.
To set some notation, let et be the evaluation map, given by et (ξ) = ξ(t) := ξt , meaning
the evaluation of ξ at t. We will also use some usual concepts related to geodesics
in Riemannian manifolds throughout the demonstration. We suggest [Jost11] for a
comprehensive reading.

Consider the curve ζ : [0, 1] → P2(X) joining μ0 and μ1 (from Step 1), denoting
μ0 = μy and μ1 = μy′ . We also denote μt = μyt . Suppose that there is a transport
problem associated with this curve, whose respective spatial distributions are modelled
by these probability measures. Assume that the cost function for the transport between
the initial point x0 ∈ X (at time 0) and the final point x1 ∈ X (at time 1), denoted by
c0,1(x0, x1), is associated with a family of functionals parametrized by the initial and the
final times. Denote by A0,1 the functional on the set of curves [0, 1] → X, such that,

c0,1(x0, x1) = inf{A0,1(ξ) : ξ0 = x0, ξ1 = x1, ξ ∈ C([0, 1]; X)}.
In other words, c0,1(x0, x1) is the minimal cost needed to go from point x0 at initial time
0, to point x1 at final time 1. Moreover, let C0,1(μ0, μ1) be the optimal transport cost
between μ0 and μ1 for the cost c0,1(x0, x1). For t1, t2 ∈ [0, 1], define

At1,t2(ξ) = L(ξ)2

t2 − t1
,

where L(ξ) is the length of ξ , so that

ct1,t2(x0, x1) = d(x0, x1)
2

t2 − t1

and

Ct1,t2(μ0, μ1) = W2(μ0, μ1)
2

t2 − t1
. (10)

We want to show that there exists a random minimizer ξ : [0, 1] → X, such that,
law(ξt ) = μt for every t ∈ [0, 1]. In other words, we want to show that ζ is a curve in
the space of measures which interpolates all possible measures along the minimizing path
joining μ0 and μ1. Such a curve is called displacement interpolation.

Step 3: ζ is a displacement interpolation. In this step, ξ will be constructed by dyadic
approximation, according to couplings of measures in ζ associated with times t = 1/2k .
To achieve this, we will use the iterative construction in line with [Vil09, Theorem 7.21].

Let � be the set of minimizing curves in X. It will be necessary throughout the text
to consider subsets of � in which the geodesics are defined for certain time intervals and
endpoints (or endpoints regions). So, for s, t ∈ [0, 1], xs , xt ∈ X, let �s,txs→xt be the set of
minimizing curves in X starting at xs at time s and ending at xt at time t. Similarly, for any
two compact sets Ks , Kt ⊂ X, let �s,tKs→Kt

be the set of minimizing curves starting in Ks
at time s and ending in Kt at time t.

Considering the measures along ζ , for t1, t2, t3 ∈ [0, 1], let γt1→t2 be an optimal
transference plan between μt1 and μt2 for ct1,t2(xt1 , xt2), and let γt2→t3 be an optimal
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transference plan between μt2 and μt3 for ct2,t3(xt2 , xt3). By Lemma 2.5, it is possible to
take random variables (ξt1 , ξt2 , ξt3) such that law(ξt1 , ξt2) = γt1→t2 , law(ξt2 , ξt3) = γt2→t3

and law(ξti ) = μti for i = 1, 2, 3. Since ζ is minimizing in P2(X) (see Step 1) and
P2(X) is a geodesic space, it follows from equation (10) that

Ct1,t2(μt1 , μt2)+ Ct2,t3(μt2 , μt3) = Ct1,t3(μt1 , μt3).

This, in particular, implies:
(a) (ξt1 , ξt3) is an optimal coupling of (μt1 , μt3) for ct1,t3(ξt1 , ξt3);
(b) ct1,t3(ξt1 , ξt3) = ct1,t2(ξt1 , ξt2)+ ct2,t3(ξt2 , ξt3) almost surely.

Let (ξ0, ξ1) be an optimal coupling of (μ0, μ1). Consider optimal transference plans
γ0→1/2, γ1/2→1, as above, and construct random variables (ξ (1)0 , ξ (1)1/2, ξ (1)1 ) such that

(ξ
(1)
0 , ξ (1)1/2) is an optimal coupling of (μ0, μ1/2) for c0,1/2(ξ

(1)
0 , ξ (1)1/2); (ξ

(1)
1/2, ξ (1)1 ) is an

optimal coupling of (μ1/2, μ1) for c1/2,1(ξ
(1)
1/2, ξ (1)1 ), and law(ξ (1)i ) = μi for i = 0, 1

2 , 1.

Moreover, item (a) implies that (ξ (1)0 , ξ (1)1 ) is an optimal coupling of (μ0, μ1), and item
(b) implies

c0,1(ξ
(1)
0 , ξ (1)1 ) = c0,1/2(ξ (1)0 , ξ (1)1/2

) + c1/2,1(ξ (1)1/2, ξ (1)1
)

almost surely. Iterating this process, at the step k, we have random variables
(ξ
(k)
0 , ξ (k)1/2k , ξ

(k)

2/2k , . . . , ξ (k)1 ), so that for any two i, j ≤ 2k , (ξ (k)
i/2k , ξ

(k)

j/2k ) is an optimal

coupling of (μi/2k , μj/2k ). Furthermore, for i1, i2, i3 ≤ 2k ,

ci1/2
k ,i3/2k

(
ξ
(k)

i1/2k
, ξ (k)
i3/2k

) = ci1/2
k ,i2/2k

(
ξ
(k)

i1/2k
, ξ (k)
i2/2k

) + ci2/2
k ,i3/2k

(
ξ
(k)

i2/2k
, ξ (k)
i3/2k

)
almost always.

We want to extend the random variables ξ (k), defined for times i/2k , i ≤ 2k , to
continuous curves (ξ (k))0≤t≤1. For this, note that for all times s, t ∈ [0, 1], s < t , there
exists a Borel map Ss→t : X ×X → C([s, t]; X) such that for all x, z ∈ X, S(x, z)
belongs to �

s,t
x→z [Vil09, Proposition 7.16]. Indeed, let Es,t be the function given by

Es,t (ξ) := (ξs , ξt ) for ξ : [s, t] → X minimizing curve. Since X is a geodesic space,
any two points of X can be joined by at least one minimizing curve, so Es,t is onto
X ×X. Moreover, Es,t is a continuous map between complete separable metric spaces,
and E−1

s,t (x, z) is compact for every x, z. Therefore, Es,t admits a measurable right-inverse
Ss→t [Del75], that is, Es,t ◦ Ss→t = Id. Thus, Ss→t is a measurable recipe to join two
points x, z by a minimizing curve, which was to be proved.

For t ∈ (i/2k , (i + 1)/2k), define ξ
(k)
t by et (Si/2k→(i+1)/2k (ξi/2k , ξ(i+1)/2k )). Then,

the law of (ξ (k)t )0≤t≤1 is a probability on C(X). Let us denote it by �(k). Note that
(et )∗�(k) = μt for every t = i/2k , i ≤ 2k , and �(k) is concentrated on �.

In short, from ζ , we iteratively constructed probability measures �(k) on � up to a step
k. We want to pass to the limit as k −→ ∞. Given ε > 0, since μ0 and μ1 are Radon
measures, there exist compact sets K0 and K1 such that μ0(X\K0) ≤ ε, μ1(X\K1) ≤ ε.
Also, the set �0,1

K0→K1
is compact [Vil09, Definition 7.13 and Example 7.15] and
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�(k)(� \ �0,1
K0→K1

) = P((ξ0, ξ1) /∈ K0 ×K1)

≤ P(ξ0 /∈ K0)+ P(ξ1 /∈ K1)

= μ0(X\K0)+ μ1(X\K1)

≤ 2ε.

Then, we can take a subsequence of (�(k))k that converges weakly to �. Since � is
closed in the topology of uniform convergence [Vil09, Theorem 7.16(v)], � is supported
in �. Moreover, given a constant a, for every t = 1/2a ∈ [0, 1], if k > a, we have
(et )∗�(k) = μt and, passing to the limit k −→ ∞, (et )∗� = μt . Finally, since μt depends
continuously on t, to show that (et )∗� = μt for every t ∈ [0, 1], it suffices to show that
(et )∗� is continuous as a function of t. In other words, we need to show that, given u a
bounded continuous function on X, U(t) = Eu(ξt ) is a continuous function of t if ξ is
random geodesic with law �. In fact, since t �→ ξt is continuous and the composition of
continuous functions is also continuous, t �→ u(ξt ) is continuous. Moreover, let {un} be
Lebesgue integrable functions such that un −→ u. Since u is bounded, |un| ≤ g for some
integrable function g; by Lebesgue’s dominated convergence theorem, Eun −→ Eu. From
these results, the continuity of U(t) follows, as we wanted.

Accordingly, we constructed ξ such that for each t ∈ [0, 1], μt is the law of ξt , where
(ξt )0≤t≤1 is a dynamical optimal coupling of (μ0, μ1). In other terms, we say that ζ is
displacement interpolation.

Step 4: An important observation about displacement interpolation. By [Vil09,
Theorem 8.5], if {μt } is a displacement interpolation between two compactly supported
probability measures on X, and t0 ∈ (0, 1) is given, then, for every t ∈ [0, 1], the transport
map Tt0→t between the points ξ(t0) and ξ(t) is well defined μt0 -almost everywhere and it
is Lipschitz continuous. In other words, Tt0→t is a solution of the Monge problem between
μt0 and μt . For the completeness of the text, we will comment briefly on the proof.

Note that (e0, e1, e0, e1)∗(�⊗�) = γ0→1 ⊗ γ0→1. So, if one property holds true
γ0→1 ⊗ γ0→1-a.a. for quadruples, this property, for the endpoints of pairs of curves,
holds true �⊗�-a.a. Since γ0→1 is optimal, it has a property named c-cyclical
monotonicity [Vil09, Theorem 5.10], so that c(x, y)+ c(x̃, ỹ) ≤ c(x, ỹ)+ c(x̃, y),
�⊗�(dx, dy, dx̃, dỹ)-a.a. Thus, c(ξ(0), ξ(1))+ c(ξ̃ (0), ξ̃ (1)) ≤ c(ξ(0), ξ̃ (1))+
c(ξ̃ (0), ξ(1)), �⊗�(dξ , dξ̃ )-a.a.

Moreover, by Mather’s shortening lemma [Vil09, Theorem 8.1 and Corollary 8.2],

sup
0≤t≤1

d(ξt , ξ̃t ) ≤ CKd(ξt0 , ξ̃t0), (11)

where CK is a constant. Suppose that � is supported on a compact set S. Equation (11)
defines a closed set for all pairs of curves ξ , ξ̃ ∈ S ⊗ S. Let et0(S) be the union of all ξ(t0),
when ξ varies over S, and Tt0→t by Tt0→t (ξ(t0)) = ξ(t). Note that if ξ , ξ̃ in S are such that
ξ(t0) = ξ̃ (t0), then equation (11) implies ξ = ξ̃ . Moreover, Tt0→t is Lipschitz-continuous.
So, (ξ(t0), Tt0→t (ξ(t0))) is a Monge coupling of (μt0 , μt).

Step 5: Absolute continuity of measures μt on ζ with respect to the volume measure
on X, when μ0 and μ1 are compactly supported. Without loss of generality, let us suppose
that μ1 is absolutely continuous with respect to the volume measure on X, vol. If μ0 and
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μ1 are compactly supported, then ζ has a compact support. Indeed, let A0, A1 ⊂ X be the
compact supports of μ0, μ1 and γ0→1 be the transference plan with marginals μ0 and μ1.
Consider the canonical projections (proj1), (proj2) on the first and second components,
respectively. Since (proj1)∗γ0→1 = μ0 and (proj2)∗γ0→1 = μ1,

(proj1)∗γ0→1(X ×X) = μ0(X) = μ0(A0) = γ0→1(A0 ×X),

(proj2)∗γ0→1(X ×X) = μ1(X) = μ1(A1) = γ0→1(X × A1).

Therefore, γ0→1 is concentrated in a compact set A0 × A1. Moreover, since
γ0→1 = (e0, e1)∗� and the evaluation map is continuous, � is concentrated in a compact
set. The compactness of the ζ support follows from (et )∗� = μt .

We can use Step 4, and there is a Lipschitz map T solving the Monge problem
between μt and μ1, t ∈ (0, 1). Let N be a set such that the volume measure is zero
and consider T (N). If T (N) is not Borel measurable, consider a negligible Borel set that
contains T (N) (which by abuse of notation, we will continue denoting T (N)). Note that
N ⊂ T −1(T (N)), so

μt(N) ≤ μt(T
−1(T (N))) = (T∗μt)(T (N)) = μ1(T (N))

and then μt(N) = 0, since vol(T (N)) ≤ ‖T ‖Lipvol(N) = 0 (this inequality occurs since
T is Lipschitz and ‖T ‖Lip stands for the Lipschitz constant) and μ1  vol by hypothesis.
So, μt(N) = 0 for every Borel set N such that vol(N) = 0, that is, μt  vol.

Step 6: Absolute continuity of measures μt of ζ with respect to the volume measure
on X: the general case. Without loss of generality, suppose μ1  vol. Let us assume
that there is some case in which neither μ0 nor μ1 is compactly supported. We
will prove our statement (ii) by contradiction. Suppose that μτ , for τ ∈ (0, 1), is not
absolutely continuous with respect to the volume measure on X. Then, there exists a
set Zτ ⊂ X, such that vol(Zτ ) = 0 and μτ (Zτ ) > 0. Consider Z := {ξ ∈ � : ξτ ∈ Zτ }
so that �(Z) = P(ξsτ ∈ Zτ ) = μτ (Zτ ) > 0. Since � is a regular measure, there exists
K ⊂ Z compact such that �(K) > 0. So, if we set

�′ := � 1K
�(K)

and consider γ ′
0→1 := (e0, e1)∗�′ and μ′

t = (et )∗�′, we have

μ′
t ≤ (et )∗�

�(K) = μt

�(K) .

In this way, (μ′
t ) is a displacement interpolation and, considering the previous equation

for t = 1, μ′
1  μ1  vol. Note that now, μ′

τ is concentrated on eτ (K) ⊂ eτ (Z) ⊂ Zτ

and then μ′
τ is singular. However, μ′

0 is supported in e0(K) and μ′
1 is supported in e1(K),

which are compact. This is the case of Step 5. Then, μ′
τ  vol, which is a contradiction.

(iii) In this item, we denote Y := �, where � is the subset of the quotient space X∗ on
which the metric measure foliation is defined (see Definition 5.6), and π := p, where p is
the quotient map. The weak continuity of f in this case was proved in Proposition 5.8. Let
ψ be a minimizing curve on Y connecting y and y′. Consider the path ζ = {μyt : t ∈ [0, 1]}

https://doi.org/10.1017/etds.2024.74 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.74


28 R. Possobon and C. S. Rodrigues

as constructed in item (i). Since ψ was taken as a minimizing curve and f is an isometry,
ζ is minimizing.

Observe that every optimal transference plan between μy and μy′ is supported on
{(x, x′) ∈ π−1(y)× π−1(y′) : d∗(y, y′) = d(x, x′)}. In fact, let γy→y′ be an optimal
transference plan for μy , μy′ . Since supp(μy) ⊂ π−1(y), supp(μy′) ⊂ π−1(y′) and π
is 1-Lipschitz, we have γy→y′ supported on {(x, x′) ∈ π−1(y)× π−1(y′) : d∗(y, y′) ≤
d(x, x′)}. Consider the set ϒ := {(x, x′) ∈ π−1(y)× π−1(y′) : d∗(y, y′) < d(x, x′)}.
If γy→y′(ϒ) > 0, then

γy→y′(ϒ) d∗(y, y′)2 ≤ γy→y′(ϒ) d(x, x′)2

<

∫
ϒ

d(x, x′)2 dγy→y′ .

So,

d∗(y, y′)2 <
∫
ϒ

d(x, x′)2 dγy→y′ + γy→y′(X ×X\ϒ) d∗(y, y′)2

=
∫
ϒ

d(x, x′)2 dγy→y′ +
∫
X×X\ϒ

d∗(y, y′)2 dγy→y′

≤
∫
ϒ

d(x, x′)2 dγy→y′ +
∫
X×X\ϒ

d(x, x′)2 dγy→y′

=
∫
X×X

d(x, x′)2 dγy→y′ .

Then, d∗(y, y′)2 < W2(μy , μy′)2, which is a contradiction.
Therefore, we have the transport between μy and μy′ orthogonal to the leaves. Further-

more, since ζ is minimizing, the existence of the optimal transport plan is guaranteed.
Suppose without loss of generality that μy is absolutely continuous with respect to

the volume measure of the leaf y. Then, the support of μy contains more than one point.
Considering the transport problem described above, for each x in the support of μy such
that (x, x′) is in the support of γy→y′ for some x′, each one of the intermediate leaves yt
must contain a corresponding point xyt . Thus, each leaf will have the distribution μy(t)
absolutely continuous with respect to the volume measure of the respective leaf.

Remark 5.11. Since ζ is a displacement interpolation, it is a constant speed geodesic, by
[AG13, Theorem 2.10]. That is, the path in (P(X), W2) given by the disintegration map f
evaluated at the minimal curve ψ in Y is a constant speed geodesic in P2(X).

Remark 5.12. One could, for instance, take the disintegration map in the domain of weak
continuity given by Proposition 5.2.

Remark 5.13. Theorem B(iii) holds, for instance, in the case of the disintegration of the
volume measure in the solid torus (Example 3.2), or in the context of Examples 3.3, 5.5
and 5.7.
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