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Abstract. We examine generalizations of R. Maié’s results on the topological
dimension of spaces supporting an expansive homeomorphism to the case of
real-expansive flows. We show that a space supporting a real-expansive flow must
be finite dimensional, and a minimal real-expansive flow not exhibiting a type of
spiral behaviour must be one-dimensional. This latter class includes all known
examples and a slight generalization of Axiom A flows. These results are obtained
by introducing a new concept of stable and unstable sets for real flows, and examining
real-expansive flows in terms of these sets.

1. Introduction

In [5] R. Mané showed that minimal sets of expansive homeomorphisms are zero
dimensional thus proving that every minimal expansive homeomorphism is a sub-
shift. In [2] R. Bowen obtained the analogous result for minimal sets of Axiom A
flows. In this paper we introduce a new concept of stable and unstable sets for real
flows which enables us (using Maiié’s approach) to obtain Bowen’s result without
using the machinery of Markov partitions, and to generalize it to certain other real
expansive flows. Mainé also proved that every space supporting an expansive
homeomorphism must have finite topological dimension and we obtain the corres-
ponding result for real-expansive flows.

Throughout the paper (X, R) represents a real flow without fixed points on a
compact metric space X. d will denote a metric on X and the action of teR on
x € X is written xt. We shall assume that (X, R) is not trivial in the sense that it
consists merely of a finite number of orbits.

2. Stable and unstable sets for real flows

The obvious extension of the s-stable sets used by Mané for homeomorphisms in
[5] and by Bowen for Axiom A flows in [2] to general real flows would be (at x)
{y; d(xt, yt)<e for all t=0}. However, the example given below shows that there
are flows such that, for any x, this set consists only of points of the form xt for ¢
sufficiently small (such points must always belong to the set) and there are no
asymptotic orbits. The definition of real expansiveness indicates that we could not
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expect this to be a useful idea of e-stable set in any case. These considerations
motivate the introduction of a concept of stable and unstable sets which allows
time delays.

(2.1) Definition. A real flow (X, R) is called real expansive [3] if it satisfies the
following condition.

For every £ > 0 there is a § > 0 such that, if s is any continuous function (s:R > R)
satisfying s(0) =0, then for each x€ X and y € X with y& x(—¢, ¢) there is teR
with d{(xt, ys(t)) > 6.

(2.2) Example. We construct a minimal expansive real flow which has no positively
or negatively asymptotic orbits and which is not a finite number of orbits. Note
that this is very far removed from the case of Axiom A flows (see proposition 1.3
of [1]). The example is a suspension of a Sturmian minimal set and so is expansive
by theorem 6 of [3].

Let @ <3 be irrational and r the map 7(x) = x +a (mod 1) from [0, 1) onto [0, 1).
Create a Sturmian set by ‘splitting’ along the orbit of 0 under 7. This gives a minimal
expansive flow (M, ¢), say. Now let {x,} ={na} and choose an increasing sequence
of positive integers {n; } and a decreasing sequence of negative integers {n; } such
that x,r is strictly decreasing to 0 and x, is strictly increasing to 1. Next find a
sequence {§;} decreasing to O such that, defining I =[x,,x, +§;] and I; =
[, =8s xn L, I} NIk =B(j#k),I; "Ik =B(j#k)andI] nI; = S foralljand
k.Define afunction fon I; UI; by fi(xy)=1+(1/]), fi(xn = 8;) = 1 and by linearity
between the endpoints of each of the two intervals. Now define a function on [0, 1)
by f(x)=f{x), x e I} UI; and f(x) =1 otherwise. Note that since the discontinuities
of f occur at the points {x} }, f can be extended to a continuous function on M.

Now form the suspension flow (M}, R) of (M, ¢) under f. Note that, if two points
are real asymptotic in this flow, then (eventually) their base points are asymptotic
under ¢ in M. However, the only such points are of the form $*0” and 0" and
so the only candidates for real asymptotic points are of the form (¢~ 07, u) and
(¢™ 0", v) and, without loss of generality, we may assume u <1 and v <1. Now if
n; <N =n},,, then for each j > 1 we can find #; = 0 such that

i+j—1
(@M0°, 0}t = (6707, 0) but ($™07, wy= (47107, u + > 1 %)
=i+
and so clearly these points are not positively asymptotic. Reversing the roles of 0~
and 0" in this argument shows that they are not negatively asymptotic either.

All our analysis for a flow will be carried out relative to a fixed collection of
cross-sections with special properties. This enables us to use the local product
nature of the flow.

(2.3) Definition. S< X is called a local cross-section of time (>0 for the flow
(X,R) if S is closed and S nx[—¢, ¢{1={x}fo. all x€S.

If S is a cross-section of time ¢, the action maps S X[—{, {] homeomorphically
onto S[—¢, {]. By the interior * of § we mean the set S nint (S[—¢, ¢]). Note that
S*(—e, €) is open in X for any 0<e <¢.
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A theorem of Whitney ([6], p. 270) asserts that, for each x € X, there is a local
cross-section S, of time v, with x € §¥. The following lemma is obtained by carefully
modifying the proof of lemma 7 of [3].

(2.4) LEMMA. There is a { >0 such that for each a >0 we can find a finite family
F={81, 8, ..., S} of pairwise disjoint local sections of time { and diameter at most
aanda family T ={T\, Ts,..., T} with T, < S¥(i=1,2,..., k) such that

X=T"10,a]=T"[-a,0]=8"[0,a]=S"[~a, 0]

k k
where T = Ul T;and ST =J S.
i= i=1
We can now define stable and unstable sets allowing time delays in terms of a fixed
collection of sections. Choose ¢ as in lemma 2.4 and a such that 3a <¢ and select
appropriate collections of sections & and J as in that lemma. For convenience, if
S € & then we shall denote by T the appropriate element of & such that T < §*,
Now let 8 be the minimum time between sections of & i.e.
B=sup{6>0; foranyxecS" wehavex(0,8)nS" =3}

Note that 0 <8 = a. Let p >0 satisfy Sp < and 2p <8.

We next define a first return map ¢ on T". If xe T" then ¢(x) = xt, where ¢ is
the smallest positive time such that xte T". Note that B <t=a. Also for each
S;e ¥, let D, =S8[—p, p] and define a projection map P,:D,->S; by P,(x)=xt,
where xte S; and |t|<p. Since 2p <{, P, is well defined, continuous and onto S..
(If we do not need to specify the set in ¥, we shall write D), as D, and P., as P,.)
Also choose 0<¢ <38 such that, if x, ye S, d(x, y)<e¢ and ¢ is such that lt| =3«
and xt€ T, then yte D,

Using this notation, we can set up a ‘shadowing’ orbit of y relative to the ¢ orbit
of any point x € T". For, if y is sufficiently close to x, the orbit of y will cross S at
a time near the time when the orbit of x crosses T. We can now repeat this idea
using ¢(x) and the point where the y orbit crosses S as our base points and continue
in this way as long as these pairs of points remain close enough. Formally, if xe T
and y € S with d(x, y) < ¢, we can define a set of points {yo, ¥1, ..., y.} on the orbit
of y by yo=1y, and y; = P,(y;—1t), where ¢ is the smallest positive time such that
¢'(x) = ¢' '(x)t, and we can continue this construction as long as d(¢'x, y;) < e. We
thus obtain a time delayed y shadow orbit along a piece of the orbit of x. Clearly
we can proceed in the same way for negative powers of ¢. If there is possible
confusion as to which point is being shadowed, we write y;.

(2.5) Definition. Let x € T and 1 <e. The n-stable set of x is
Wi (x)={yeS;d(é'x,y)<n foralli=0}
and the n-unstable set of x is
We(x)={yeS;d(¢'x,y))<n foralli=<O0}.

This definition is certainly appropriate for the case when (X, R) is a suspen-
sion over an integer flow (X, ¢). For clearly given ' >0 there is an >0 such
that, if y satisfies d(¢'y, ¢'x)<=n for all i=0, then yse W3 (xt) where xte T
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and ys = P,(yt). Thus points with stable orbits in the base produce points with stable
orbits (in the sense of 2.5) in the suspension. It is equally straightforward to check the

converse.
By the definition of &, it is sufficient to consider subsets of the orbit and shadow

orbit, {¢"x} and {y..}, say, with {/;} increasing and such that &"*1x = (¢ "x)t for some
|t] < 3a. We formalize this idea as follows.

(2.6) LEMMA. (i) Suppose d(¢'x, y))<e and ¢'x =(d'x)t for some |t|<3a, then
P,(yt)=y; _ ' )

(ii) Suppose d(¢'x, y:)<e and y;=yit for some |t}<2a, then (¢'x)te D, and
P,((¢'x)t)=¢'x.

(iii) Given n<e there is a 8 <e such that if xe T" and {I;} is any increasing
sequence of non-negative integers with lo=0 such that for each i, ¢"+'x = (¢"x)t;
where 0<t,<a, then ify € S* with d(¢'x, y,) < for every k, y € W5, (x). A similar
statement holds for W, (x).

Proof. (i) follows by the definition of ¢ and a straightforward induction argument
similar to that in the proof of (ii).

(ii)) Without loss of generality, assume j>i. The claim holds for j=i+1, so
assume it holds for j=i+n for some n=1. Suppose y;.», = yit and y;4p+1= YisnS,
where 0<f+s5 <2a. Then

T (x)=¢'(x)(t+7), where [n|<p and clearly
"N x)=¢ " (x)s+7n"),  where|n'|<p.
Now
¢ Xy = ()t +s+n+7)
and the result follows by (i) since 2p <a and 3p <(.

(iii) Suppose k >0 is an integer between /; and /;,; and ¢"(x)=¢"(x)t, where
0 <t=a. By (i) we have y, = P,(y,?). Now by flow continuity and the continuity of
P,, we can find § >0 such that, if x e T and y € § and d(x, y) <4, then d(xt, P,(y?)) <
n, where xte T and 0<t=a. |
(2.7) THEOREM. (X, R) is real expansive if and only if given collections of sections
Fand T and p >0, there is an 1 >0 such that forany xe T*, W3, (x) n W (x) ={x}.
Proof. First suppose (X,R) is real expansive. Choose 0<ege<{¢ and £,>0 an
expansive constant corresponding to 9. Let £ > 1 >0 such that, if xe T, ye S and
d(x, y)<m,then d(xt, ys) <&, where, if ¢x = xt; and y] = ys;, then0=<t=<f,0<s=<
sy and |s —¢|<|s, —1,|. Suppose y # x, y € W3 (x) » Wi (x) and {t,} and {s,} are the
increasing bisequences such that xz, = ¢"x and ys, =y,. Define a piecewise linear
function f from R onto R such that f(z,)=s,. Now for any teR, t=t,+0 and
f()=s,+0',where 0o =<t,41—t, 0=0'=<s,.1—5,, and

|0' - U'I' = |(tn+1 —tn) = (Sp41— sn)'
for some n, so that
d(xt, yf()) =d((¢"x)a, ya0') < &1
by the choice of #. But this contradicts expansiveness, since y & x(—e&o, o) as £ <{.

https://doi.org/10.1017/50143385700009214 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700009214

Real-expansive flows and topological dimension 183

Conversely, suppose that we are given collections of sections ¥ and 7
and p >0 as in definition 2.5 and that for some 1 >0 and every xe 7" we have
Wi (x)nWi(x)={x}. Let f be a continuous function from R to R satisfying
f(0)=0. Let xeT, yeS and {¢.} and {s,} be such that xt, =¢"x and ys, =y,.
We shall show that if |f(#)—s;| is sufficiently small for all ; then section separa-
tion forces d(xt, yf(t)) to be large for some ¢, while if this is not the case then
the distance between f(f;) and s; forces d(xt, yf(¢)) to become large for some ¢

Choose 0 <8 < —a —p and positive numbers £; <7, £2 < £1, £3 and &4 such that,
if ue T and v € S, then

(i) d(u, v)<e; implies d(u, vt)> €, for all f with § =|f]=¢;

(ii) d(u, v)<e, implies d{Pu, v1)<e1;

(iil) d(u, v)=e, implies d(u, vt) > &3 for |t| <& (which is possible as § <¢);

(iv) if a, b€ X and d(a, b) <e4 then d(at, bt) < e, for |t| = a.

{a) Suppose that for all i for which we have ; and s; defined we have | f(¢;) —s;| < 8.
Choose j such that d(¢x, y;)>n. Now d(xt, ys;)>n>¢e1> €2 50 d(xt;, yf(t)) > &3
by (iii).

(b) Suppose j is the first integer (say positive) such that |f(¢;)—s;| = 8. We may
assume that d(¢'x, y;) < e, for 0=i <j (as otherwise we can guarantee separation
by &3 using the argument of (a) again) so that d (¢'x, y;) < &1 by (ii).

(b1) Suppose t =5, —f(4;) = 6. If f(t;,)=s;_1— 6, then

d=st=si—-si1+té<a+p+8<{
and now

d(xt, yf(t;))=d(xt;, y(s;— 1)) > &1
by (i). But if f(#;)<s;—1— & then as f(f;_;)>s;_1—8 we can find ¢ with _; <t <y
and f(t')=s;-1—8. Let £=t'—1,_;>0. Then

d(xt,-_l, YSj_l) <g<egq
)
d(xti—1, y(s;-1—8—£)>¢,
(since 8§ =8 + £ <) by (i). Thus
d(xt', yf(£) =d(x(ti-1+ £), y(s;-1—8)) >4

by (iv).

(b2) Suppose t = f(t;)—s;=8. Now f(t;)=s;+6 and f(tj_1)<s;-1+8 <s;+8 thus
there is a ¢’ with ;1 <t¢'=7; and f(£)=s;+8. Let £ =4, —t'=0. Now d(xt;, ys;) <&
implies d(xt;, ys;(6 + £)) > &1 by (i) thus

d(xt', yf(£)) =d(x(t;— £), y(s;+ 8)) > &4

by (iv).

In summary, if ¢’ =min (e3, £3, £4) then, for some ¢, d(xt, yf(¢))>¢'.

Now suppose x and y are arbitrary points of X. Choose §;>0 and ¢5>0 such
that d(x, y) < es implies

(i) d(xt, ys)<e' (where ¢ is the smallest positive number such that xte T" and
ys =P,(yt)), and |t — 5| <7eb1;
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(i) d(xw, yv)<e' for all w and v with |w|=<8,+a, |v|<a+8; and |v —w|< 8.

Nextlet e6>0besuchthatif d(x, y)<eethend(xt’, y(¢' +1)) > ecforall 168, <|[t| <
¢ and |f'| < a. Finally, choose €7>0 such that £5>¢5 and the set of all points in
B.,(x) which project onto xt is contained in x(—es, €5).

Now suppose d(x, y)<e7 and y& x(—es, €5).

(a) Suppose [f(t)—s|<#8:. Choose &'<j8; such that |[f(t+1)—s|<i6,
for all |¢'| < §'. Define a continuous real-valued function g such that g(t') = f(¢ + ') —s
for all ¢’ with || =6’ and otherwise by linearity so that g(0) =0. Thus

lg(t) —1'|<48,+6'<38, forlr|<s'.
Thus
dix(t+t), y(s+g(h)<e' for|f|<s’

by (i) and (ii). Now by the first part of the proof we can find f, such that
d((xt)te, (ys)g(to)) > €' and by the above construction |fo| must be greater than 8’ i.e.

d(x(t+1t0), yf(t+1t)>¢'.

(Note that xt # ys by the choice of £7.)

() If |f(t)—s| =38, then |f(t)—t]=1¢8: and so, if we choose #'=<t such that
|[£(£) —¢'| = 1681, then d(xt', yf(¢')) = d(xt', y(¢' £ 8,/16)) > e¢ unless d(x, y) > ss.

It finally follows that min (¢’ €6, £7) is an expansive constant corresponding
to €s. O
(2.8) Definition. Suppose that (X, R) is real expansive and that collections ¥ and
T are constructed as in (2.1) to (2.5). Let £ < ¢ be such that theorem 2.7 holds for
& Then any i with £ > »n >0 such that 7 is less than the § corresponding to £ given
by lemma 2.6 (iii) is called an expansive constant (corresponding to ¥, 7 and &£).

(2.9) LEMMA. Suppose {x"} and {y"} are sequences of points in T and S respectively,
x">x,y" >y and each y;, is well defined relative to x" for each k. Suppose that for
some integer k we have ¢*“x" - ¢ '*x for some integer ly. Then y - Vi
Proof. First note that, if {¢*x"} converges, it must converge to a point on the ¢
orbit of x. For if ¢“x" = x"1,, {t,} is bounded and we can find a subsequence f,, > ¢
(say). Thus x ", - xt so o x">xteT

Now choose any convergent subsequence of {y;} and a subsequence of this
subsequence (if necessary) such that {¢’x"} converges for each integer 0<j=<k
(denoting these subsequences by {x"} and {y"} again and assuming k =0 for con-
venience). We complete the proof by showing that yi-yi. Suppose ¢'x" -
¢'x(0=j < k) and suppose that for some integer m(0=m <k)y; >y forall0=<i=<
m.Letd™  (x") =™ (x")t, and y .1 = y s, Where s, = t, + 1, and |n,,| < p. Now as
both {¢™*'(x")} and {¢™(x")} converge, ¢, > 1, say (since 2a <{), and thus s, > s
and 1, = 7 (since 2p <¢). Thus yn+1 2> yi,5 =yi..,, say. Now

d(¢'x, y1,.)=d(d"'x,¢" X"V +d(¢™ X", yma1) + d(Y 1, Vi)
so that letting n > o gives
d(é"1x, y,..) <e.
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Alsot=a so
Yimer = Polyi,t)
by lemma 2.6 (i) and
Vimar = V1, (E+1) = Po(yi,0).
Thus y, ., =yi,.., as required. Since the induction hypothesis holds trivially for
m =0, it holds for all integers up to k. O

(2.10) COROLLARY. Let (X, R) be real expansive, let n be an expansive constant
and y e W, (x). Then d(¢"x,y.)>0 as n—>co. Similarly, if yeW,(x), then
d(@ ™ "x,y-n)>0asn->o0,
Proof. If not, we can find points x, ye X with y € W7, (x), § >0, and an increasing
sequence of integers {n;} such that d (¢ "x, y,) = & foreach i and ¢ "x > a and y,,, > b.
Then aeT, beS and a#b. Now let k be an arbitrary integer. Choosing a
subsequence if necessary, cb”"”‘x —>¢I’<a (say) and thus, by lemma 2.9, y,.. - bi,.
Note that if 7 is large enough so that n; + k >0, then y, . is well-defined. But now
d(¢"a, bi,) = n for all k, which contradicts the choice of n (theorem 2.7). O

(2.11) CorOLLARY (Uniform expansiveness). Let 1 be an expansive constant. Then
for all 0 <8 < there is an integer N(8)>0 such that, if xe T, ye S and d(x, y) =8,
then d(¢ 'x, y:;) > n for some integer i with |i| <N (8).
Proof. Let n be an expansive constant and suppose the statement does not hold.
Then there is a 6 >0 such that for every integer N >0 we can find points x" € T
and yN e S withd(x", y )28 but d(¢'x", y~)=<n for all |i| = N. Choose an integer
k and assume x" > x, y~ -y and ¢ xN > plx, say. Then by lemma 2.9 y} » Vi
But now

d(¢"x, yi)=d(d"x, ¢*x™) +d(¢"x™, yi) +d (i, yi)
and so letting N - 00 we obtain

d¢"x, yi)=n

This contradicts the fact that x # y.

(2.12) LEMMA. If >0 is sufficiently small, there is a >0 such that if pc W3 (x)
and qe Ws(x) then p'e€ W3, (q') where q' = qc and p' = P,(pc) and c is the smallest
non-negative number such that qc€ T".
Proof. If 8 <3¢ then for any a,be S, d(a, b)<28 and 0<t=3a, if ate T then
bte D,. Choose 8 small enough so that d(at, P,(bt)) <7n. Now choose an integer
k =0 and assume ¢*“q’ lies on the orbit of q at or after qi and before g7.;. Then
as d(q7, pi) <28 we have
d(“q’, P,(pis)) <m,

where ¢“q’ = q}'s. We shall show by induction that P,(pJs)=p.Z.

First consider k = 0. If g’ lies between q; and g;.1 then q' = g7 (c —s + 1), where
¢'x =xs, and p’ = p; (c + n2—5 +m3), where |ml, [n2l, [n3| <p. Now

Py(pi(c—s+m))=pilc—s+m+n)=p'(~n2—n3+m+na).
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where |14 < p. Since 5p </, this point is p’ and the claim holds. So suppose it holds
for some k =0. Let ¢“q’ lie between g7 and ql.1, let ¢“*'q’ lie between q7 and
q;+1 for some j =i and suppose ¢“q' = qJ's and ¢**'q’' = q]1. Let t; >0 be such that
(¢'x)t; = ¢’x. Note that if u is such that g7 =qju then Osu<a+a+p—B=2a
and 0=¢;=2a +p by lemma 2.6 (ii). Now
¢ g’ =q; (ty+t+n;)
and
P,(pit)=pi(ti+m2+1t+m3),
where |n1l, [n2], |n3| <p. Also
pifis =pi& (ty+t+m1—s+ms) = P (pis)(ty+ 1 —s+m1+ma)

=pi(t;+t+m+mnatns),
where |n4|, |ns|<p. As 5p <{¢ and P,(pjt) and pi%, belong to the same set in &,
P,(pf)=pi&, as required. 0

3. One dimensional minimal sets of real-expansive flows

In this section we discuss conditions under which the minimal sets of a real-expansive
flow are one dimensional. The conditions cover the known examples of such flows.
Throughout we shall assume that we have constructed & and J and chosen p as
in § 2 and that 7 is an expansive constant if the flow is real-expansive.

Our first lemma is closely analogous to lemma 3 of [5§] and guarantees the
existence of orbits asymptotic in our sense. Let S5(x) ={a € X ; d(x, a) =6}, Bs(x) =
{a e X, d(x, a)= 46}, 23(x) and Z;(x) be the connected components of a point xe T
in W3, (x) nBs(x) and W7, (x) " Bs(x) respectively, and let £5(x) be the connected
component of x in Bs(x)N S.

(3.1) LEMMA. Suppose (X, R) is a real flow and X is not one dimensional. There
exists r with n>r>0 such that, for any & with 0<8<r, there is Te T and acT
such that either 23(a) N Ss(a) # & or T5(a)n Ss(a) # .

Proof. Choose a real number g so that the map a » ai is continuous on B,(z)nS
if ze T. Clearly we can find T € J with dim (T)>0 and thus xe T and ¢>r>0
such that X,(x) N S, (x) # . Suppose that for some 0 < § <r we have X5(y) N Ss(y) =
& for all y € T. We construct a sequence of compact connected sets {A,} with each
A, <S8, a sequence {x,} of points of T with x, € A,, and a sequence of positive
integers {m,} such that:

(1) @™ xns1=1x4;

(2) (Aned)mr < Ans

(3) AnnSs(x,)# D

(4) (A< Bs(@'x,) ifO=j<m,_;.

Take Ag=25(x) and xo = x. Suppose Ao, ..., A and xq, ..., x,and mo, ..., m,_4
have been constructed. Let I" be the connected component of x,, in Bs(x,)NA,.
ThenTT'= S and I'n S5(x,) # &. AlsoT & W} (x,) and, if ye ' — W (x,), there is an
integer m, >0 such that _

d(d ™ X y_m,)>8.
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Define
m, =min {m,; y €T such that m, exists}

and so

su;r) d(¢ 'xn z_) <6 forall 0=j<m,.
Now let A, be the connected component of x,.1=¢ " (x,) in Bs(x,+1) N (),
(I")Z,. is a compact connected set because the map a » a,, (relative to a fixed
zeT) is continuous for —m, =m =<0 by the choice of q. Now for some yeTl,
d(Xp+1, Y-m,)> 8 so that A, 10 S5(x.1) # J. Thus (1), (2) and (3) are satisfied and
(4) follows by the choice of m,,.

Now choose a subsequence of {x,} such that x, » a and, using this subsequence,
also assume that A =lim,= A, exists.

So A consists of points p such that for some subsequence {p,,,} with p,,, € A,.,, p,., = p.
Clearly A is a compact connected set, A< Bs(a) and A nSs(a) # . We shall show
that A< W; (a). Let k>0 and choose n sufficiently large so that we can write
k=mn_1+my+  +mu_;+1 where 0=I/<m,_;,_;. Now ¢"“(x,)="(x,—;) and,
if pe A,, then pi~ = gi~* where ge A, ..

Now suppose p € A. Choose a subsequence {x,,} such that p,,>p (p,, € A,) and
¢k(xn,.)-> ¢"a for some integer /,. By lemma 2.9

(Do) pi, and  d((pa)i, " (xa)) = d(gi™, ¢'(xs,_)) =38,

where g and / are suitably chosen as above and we have used (4) for A,,_. Thus
d(¢'a, pL)=86. We now only have to ensure that r (and so §) is small enough so
that this implies d(¢'a, p%) =< n for all i =0 using lemma 2.6 (iii). O

(3.2) Remark. If (X, R) is real expansive, then it has a pair of negatively or positively
weakly asymptotic points (i.e. points a # b € X such that d(¢"a, b,)> 0 as n > —©
or n - +00). For if X is one dimensional this follows by the remark after definition
2.5 and theorem 6 of [3). Otherwise, the result follows by the above lemma and
corollary 2.10. In fact, one can choose a and b to be on distinct orbits.

(3.3) LEMMA. Let (X, R) be real expansive and let n be an expansive constant. Then
given 0 <n’ < n there exists a 8o> 0 such that

Wi (x)nBs(x)= W3 (x)n Bs(x)

forall xe T and 0< 8 < &,.

Proof. If not, we can find sequences {x,}= T and {y,} = S" such that d(x,, y.) >0,
yn€ W3 (x,) and an increasing sequence of positive integers {m,} such that
d(d™ "%, (yn)m)>n". Let ¢™x, > x and (y.)m.~> y, then d(x, y) =7’ and, for each
integer k >0, we can assume ¢ “¢ "x,, > ¢ *x by successively choosing an appropri-
ate subsequence for the k +1 case from the subsequence for the k case; similarly
for k£ <0. Thus

dMnx,

(ytl)fr'tl,.+k=(()’n)fr;l,. k ,,_)y’xk
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by lemma 2.9. Thus
d(¢"x, yi)=n
for all k which contradicts the fact that n is an expansive constant. O

(3.4) LEMMA. Let (X,R) be a real-expansive flow. Then there is an expansive
constant 7 such that, for all 8' sufficiently small, there is a 6 >0 and an integer N(6)
such that, if xe T and A< W, (x) is a compact connected set containing x and
intersecting Ss(x), then there exists an integer m with 0<m <N (8), points v, we S~
and compact connected sets A, and A, contained in S* such that:

(@) vV'eAnT", v=0'(—t)e AL, (for some 0=t<a) and P,(A,(—t))c AL,
Bs(v)c W3, (¢ "x), and a similar statement holds for w and A..;

b)) AunSs(v)# D and A, NSs(w)# J;

(¢) d(Bs(v), Bs(w))>8;

(d) A, W3 (v)Y"Bs(v') and A, = W5, (W) Bs(w').
Proof. Choose 1’ an expansive constant corresponding to the # of lemma 2.12 and
n <n' corresponding to the & of that lemma. Let

m=inf{d(x,y);xeT",yeS",d(x,y)=n and d(¢ 'x,yZ1)>n}
and
n2=inf{d(xt, P,(yt));x,yeS™,xte T* and O0=t=<a, and n=d(x,y)=n}.
Choose 8§ and &' such that 6’<%n1, ) <;17_172, §<6'<n I abeS and 0=t<a
such that ate T™ then, if d(as, P,(bt))< 8, we have d(a, b)=<§', and finally & < &y,
where §, is given by lemma 3.3 (interchanging the roles of # and n’). Now let N(§)
be the number given by corollary 2.11 corresponding to § and 7. Since Ss;(x) "A #
&, by that corollary we can find m with 0 =m<N (8) such that
sup{d(@ " *Vx, z_ms1); 2€A}>n and sup{d(¢ x,z_;);z€A}=n
for 0=<j=m. Thus
Al c W, ().
Also since the diameter of A”,, is at least 77;, we can find points v, w e AZ,, such
that (c) holds. If we now construct v’ and project AZ,, onto the section containing
v’, we obtain a compact connected set with diameter at least 7n,. Let A, be the
connected component of this set in Bs(v’) intersected with the set. Do the same
construction for W. We then have (a) and (b). Now by lemma 2.12 we have
A, < W3 (v') and by lemma 3.3
A, W3 (v')nBs(v'),

as & < 8¢. This gives (d). Od
(3.5) Definition. A flow (X, R) is said to have a spiral orbit at x if xte W3, (x) for
some ¢>0 and if d(¢"x, (xt),,)=> 0.

(3.6) THEOREM. Let (X, R) be a real-expansive minimal flow which has no spiral
orbits. Then X is one dimensional (and so a suspension of a subshift [3), [4]).

Proof. Let n be an expansive constant small enough to satisfy the requirements of
lemmas 2.12 (i.e. n <§)and 3.4. Choose & <r of lemma 3.1 and corresponding to the
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n of lemma 3.4 and choose N (8) as in that lemma. Now choose a positive integer N
with N> (1+N(8))(a +p)/B. Let (primed points as in lemma 3.4)

r=inf{d(@® 'x',¢7'y);d(x,y)=8,x,yeS",0=<i,j<N
and thereexists ze T* with xe Wi(z) and ye W3(2)}

First suppose r; = 0. In that case we can find sequences {x,} and {y.}in §* and
{z,}in T" such that d(x,, y») =&, x, € W5 (z,), y» € W5 (2,) and d(¢x1 & 'yn)-0
for fixed integers i,j with 0=i,j=<N. Let x,.—»x, Yn>Ys Zn—> 2. By lemma 2.9
x, ye W, (z)(n1<8 of lemma 2. 12) and so x'e W5, ), where x y' and 7, are
given as m lemma 2.12. Further, let x, > x", yr.>y", ¢ 'xn>d~ x" and ¢ 'y, >
& 7"y". Clearly x"= =" y". Now if |, =1, then x"=y" but, as 2a <{, this 1mphes
x= y, contradlctmg d(x, y)= 8. Now x"=y"T, say, and assume T>0. Also y"=y 't
and =0 and x"=x's. Thus x'=y'(T+t—s) and so, as y' cannot lie between x'
and x", T +t—s >0, which means that the flow has a spiral orbit at y.

Now suppose r; >0. We construct a sequence of compact connected sets {A"}
and points {x,} = T" with x, € A" such that:

(@) A" " Ss(xn) # T3

(b) A" = W3 (x,);

(¢c) for some m, with 0<m, <N(8)

(P, A" (=)))e., ™) A, forsome |f|<a;

d) A" YonU=C for 0=j=m, (n>0),
where U is an open set in some T* with diameter less than 3r: and such that
Uniia)= and d(U, S — T)—~r>0

Set xo=a (given by lemma 3.1), A’=3i(a) and suppose A% Al ., A" and
Xo, X1, - - - » Xn are constructed. Now applying lemma 3.4to A" we obtaln My, U, W,
A, and A,. Note that choosing x,+; and A" as v’ and A, or w' and A,, satisfies
(a), (b) and (c). Suppose U N _L{) (Ay)?;# & and also U n Uo (Aw)”;# &. Then we

j= j=
can ﬁndp € A,andg €A, with pi',- e U and qf; e U forsomeiandjwithO=i j=m,.
Let p” and q"” be the first points of the negative orbits of p and g in A, . Let p’
and ¢’ be the projection of p” and q" onto T". Thus d( p", q”)>8 by lemma 34
(c)and p",q"e Wi (¢~ "xn) Since U = T*, p2 ,-— ¢ 'p' (say) and q%; = ¢ °q’ (say)
andsod (df'p’, ¢ g < 3. By the choxce of N, 0=/, s = N which is a contradiction.

So choose A"*! to be A, if U U (A,)”;= @& and to be A, otherwise. We thus
i=0

have (d) also.
We now use the notation

to mean that we shift the projection of A" into A" M, steps relative to
¢ ™"-1x,_1, then the projection of this set into Ai,_,.zn_z is shifted m,,_, steps relative
to ¢ "™"-2x,_» and so on up to the projection in Agmo is shifted mg steps relative
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to ¢ oxo. Let

-Zo %
A= (A"

n=1 "il m,
Clearly, for any integer N, we have

' X; Niz X;
N-1 < (AN—I) 2

N-
m; Xom
-0 -

M7

(A™)

i i=0

so that the intersection in the definition of A is nested and thus A # . Let p € A.
We complete the proof by showing that there is K >0 such that for all k =K,
p(—k) & U, which contradicts minimality. Inductively construct a sequence of points
{p '} on the orbit of p by p® = p and for j satisfying

n—1 n
Z m; <j < m;
i=0 i=0
(interpret the first sum as 0 if n =0)
=i = _n)zl ™ - n—1 - i m = —nil m -
pi=(p %™) e, and prl (P™%™)

where ¢ is the smallest non-negative number such that this point is in A
~ now clear that

n+1

Itis

prle(A) ] o

so that for each j > mo, p ' ¢ U. Now suppose that the orbit of p intersects U between
p~"and p~~'. Make & small enough so that, if d(a, b)<e and ate T for [{|<a +p,

n—1 n s
then d(at, P,(bt))<7. Now if 3 m;=<j< Y m, then, by the definition of p ™, the
i=0 i=0

orbit of x, also intersects U between

et net
67 Lm(x,) and ¢ E™(x,),
which is false. O
(3.7) Remark. It is by no means obvious that the existence of a spiral orbit leads
to a periodic point (as in the discrete case). However, this is the case for suspensions
(so we recover Mané’s result [5]) and also for flows which exhibit a strong form
of uniform expansiveness which include Axiom A flows (so we recover Bowen’s
result [2]). It would be interesting to have examples of spiral orbits in a minimal
real flow; if the example were also expansive, it would be an example of a minimal
expansive flow which does not have a one dimensional phase space (corollary 3.9).

(3.8) LEMMA. Let (X, R) be a minimal flow with a spiral orbit at x. Suppose
xT € W3, (x) for some T >0, and for each n, (¢"x)t, = (xT),. Then f, > 0.

Proof. Note that f,,=/{ for all n so that if 7, 0 we can find a subsequence 7,,, > 7>0.
Now d(¢"x, (xT),)~ 0so if we let ¢ "ix » z we obtain d(z, zf) =0 and z is a periodic
point. O
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(3.9) CoroLLARY (Mané). Let (X, R) be a minimal real-expansive flow which is
a suspension. Then (X, R) has no spiral orbits. Thus (X, R) is a suspension of a
subshift.

Proof. In a suspension, there are always the same number of returns to the base
between ¢"x and (xT),, if p is chosen sufficiently small. Thus {7,} of lemma 3.8 is

bounded. _ g
(3.10) Definition. A real flow (X, R) is said to have property (*) if it has the
following property:

For each po>0 there is an n >0 and a sequence of positive real numbers {a,}

such that ¥ a, <00 and if x, ye§ with d(x, y) <7 and for some |t| < a +2po,

n=1
d(xt, yt(—po, po)) > a,, then d(¢'x’, yi)>n for some |i|=n and x' = xs, where
s >0 is the smallest time such that xse T and y' = P,(ys). (*)

(Clearly (*) depends not only on & but also on the metric used and is not a flow
invariant.)

Note that if we had only required a, = 0, then (*) would be equivalent to uniform
expansiveness relative to &. It is easy to see that suspensions of subshifts or expansive
toral automorphisms satisfy (*) when the metric is suitably chosen. A deeper result
of Rufus Bowen shows that Axiom A flows also have this property.

(3.11) PROPOSITION. Every Axiom A flow has a metric with which it satisfies ().

Proof. By 1.6 of [1] every Axiom A flow (with correctly chosen metric d) has the
property that there are constants ¢ >0 and A >0 such that, for each § >0, there
is >0 so that, if x, y € X, s: R-> R is continuous with s(0) =0 and d{(xt, ys(¢))<n
for |t| <L, then

d(y, xv)=cexp(—AL)  forsome |v|=38.

Find ¢ and A and choose po = 8 <3a with corresponding constant 7. Let £, be such
that xt,=x' and #; such that xt; =¢'(x")(i =1 or i =—1). Now define s piecewise
linear such that ys(#;) = y; and s(0) = 0. Now choosing a suitably small n’ (indepen-
dent of s) we have d(¢'x', y}) < n' implies d (xt, ys(¢)) < n. If the first inequality holds
for all |i| < n, the second holds for all |t| < ngB and thus

d(xt, yw)=cexp (-A(nB—2a)) for [f{<a+2p, and |v]|<p.
So we define the sequence {a,} by
a,=cexpAQ2a))-exp (—ABn). 0
(3.12) THEOREM. Let (X, R) have property (*) and no periodic points. Then (X, R)
has no spiral orbits and thus it is a suspension of a subshift if it is minimal.

Proof. Suppose that y =xT € W3 (x). The idea of the proof is to show that, for
large enough N, there is a neighbourhood of ¢ (x) contained in D, such that the
positive semi-orbit of ¢ " (x) keeps returning to this neighbourhood within bounded
time. By looking at where these orbits cut the section containing ¢ N (x) and choosing
a convergent subsequence, we obtain a periodic point.
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Choose y >0 such that, if xe T and y € B, (x), then ye D, and d(P,(y), x)<e.
Now choose po<p in the definition of (*) in such a way that the corresponding
constant 8(=n of the definition) satisfies ac€ S and b€ X and d(a, b)<é then
d(at, bt) <3y, where |t| < a +p. Let 8’ be such that, if a, b€ S and d(a, b)<§’, then

d(at, bt) < & for || < 2a. Choose M large enoughso that ¥ a; <3y. Choose N >2M
i=M

large enough so that y,re D, and d((¢"x)t, P,(y,.t)) <8’ for all n =iN, (¢"x)teS*
and [t| < a. Moreover, choose N large enough so that if L is such that (¢ x)L = yy,
then L > aB/(B —p). (We may do this as we can assume that f,, - 00 where (¢"x)i, =
Vu.) Set w = ¢ Vx and wo = yn. We shall inductively define a sequence {w,} of points in
the section containing w such that w;,,=wy; for some B8 <t <L(1+p/B) and
d(wj;, wj.1) = 0. This clearly implies the existence of a periodic point.

Define z} = YN+1, 23 = YN+2s« -5 Zk = YN+ Where (¢"w),\/ =wy, 0<xy <a and
k is chosen to be maximal with respect to this property. Now we can find n, with
|10l < po such that d(w, womo) < an because d(¢'w, (wo)!) =8 for all i =0 and also
for —M <i<0 as N—M =3N. Similarly, for j=1,...,k, we can find 5; with
In}|=<poand d(¢'w, zjn} )< ar. Now

d(w, z(x +m0)) = d(w, wono) +d((¢“w)(x +mo), zi(x +no)) <am +27<7.
Thus zx(x +n0) € D, and define w; = P,,(z}((,\/ +7n0)).

Now suppose that wg, wi,...,w,-1 in S have been constructed, and
Zy ez 23, ..,zi, e,z z0 in $T (£ belongs to the same section for
j>0 and a fixed i with 1 =i < k) have been constructed in such a way that

dzmhz[ ") sanum=j=n-1,1=<i=k,|nl|=p),
d(¢'w, z2'n7)<y forl=<i<k andeachm>0

and if (¢'w)ti=¢'"'w and zlsi =2z}, then |s!—1#]|<p. We construct z}, i (Wn.; if
l=k). Define

z=2z{(s; 7 + i)
Clearly

d(z, z[ini ) <8

since d(z} ', z})<é'. By the condition on L, each time we complete a new z cycle
to k terms we increase the number of returns of w to T by at least one. Thus the
last inequality holds for all forward returns of z; ™' to T and for at least M +n —1
backward returns. Thus, by the definition of (),

d(zm, 20 nid ) =d (I +ld +m), 207 (T i) S amen
for some |5} = po. Now
d(¢l+1W, Z"I)Sd(¢l+1W, le+17711+1)+d(211+17711+1, 212+17112+1)+ T +d(2;'+—117)7+_11, zn)
Say+ama+ ¥ AGren1<3Y

so zne€D,. Set zv1 = P,(z7n), ni+1 such that |ni|<p and z7vimis = z7m, and s
such that zJ's7 = z7.. It remains only to check that |s7 — ;| <p. Since d(¢ 'w, z})<e,
z7(t+7') belongs to the same section as ¢'*'w for some n’ with [n'|<p. z7'sT = 241
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belongs to this section. Now

n—1 -1 n n
i+ ) st Al vl —n—n)=z7 =zt
Now
-1 -1
Isi™ +nic +n—nla—t—n'|=5p<¢
SO

zi(y+n'—sl)=z{ or |ty—si|=|n'|<p

as required. Thus the inductive construction is complete and the result follows. [

4. Real-expansive flows and finite topological dimension

In this section we use our section approach in conjunction with the properties of
the whole space X, to show that, if X supports a real-expansive flow, it must have
finite topological dimension. This gives an exact parallel to Maiié’s result for
homeomorphisms. We continue to use the notation of § 2.

(4.1) LEMMA. Let (X, R) be real expansive and let e,>>0 be less than some expansive
constant. Let 0<g1<g,. Then there is § >0 such that, if x€T, yeS, d(x,y)<8
and for some n >0 we have
er=max{d(¢'x, y;); 0<j=n}=<e,,
then d(¢"x, y.) = 6.
Proof. If not, we can find sequences {x"}= T and {y"} = § and sequences of integers
{m,} and {I,} with m,, > [, >0 such that
dx",y")>0,d(@™x", ym,) >0,
d(@"x", yi)=e; and d(¢"x",yi)<e, forO=m=m,.

Note that flow continuity ensures that /, » o and also that m,—I[, >0 as n - 0.
Choosing a subsequence if necessary we can assume ¢"x" > x, yi.=>y and for a
given integer k, " “x" > ¢**x. By lemma 2.9 Yitk = Vi

Thus, ensuring that [, and m, — I, are sufficiently large,

d(@%x, yi)=d(@%x, ¢ %)+ d(" X", yi k) +d(Virio V3,
and letting n - 0 we obtain
d(dx, yi ) <e,.

As this holds for any k and x # y we have a contradiction. O

(4.2) THEOREM. If (X, R) is a real-expansive flow then X has finite topological
dimension.

Proof. Let &, be less than some expansive constant and let g, = %sz. Choose 6 >0
asinlemma 4.1 and choose 8’ >0 such thatif x, ye Sand d(x, y) = 6 then d(x, yt) = &'
for all |f|=2a. Also let 0<n<ge be such that x,ye€S and d(x, y)<mn implies
d(xt, yt)< &' for any |t|=a.

Now let {U,i=1,...,[} be an open cover of X such that §(U;)<n, and U; <
T[—%a, +%a] for some T €T for each 1=<i =</ (We can assume this last condition

can be satisfied because we can slightly modify lemma 2.4 so that X = | TF (0, «).)
i=1
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Define

Ui =(Una n(U)(—na)nT,
where T is a fixed member of 7. Thus, for each n, {Uj;1=<i=<l1=j<l[}is an
open cover of T.

We now define a sequence {8,} such that:

(i) if xeT,yeS and d(x, y)<8,, then y; is defined and d(¢'x, y:) <&, for all
lil=(1+n)a/B;

(ii) if x,y€S and d(x, y)<8,, then if for some ze T, d(¢'z, x)<e; for all
li|<(1+n)a/B, then y; is defined for all |i|=(1+n)a/B and d(x],yi)<e;. If
x{ =xs; and y; = y5; then |s; — 5| <3a for all |i|=(1+n)a/B.

Now form the 8, components of each U, i.e. x ~y if there is a sequence
X = Xg, X1, ..., X, =y such that d(x;, x;»,) <8, for each 0=i=<p—1 and each x; ¢
U7 Taking U Z}k as the equivalence, we observe that we obtain a new open cover of
T. Now if x € T, then x belongs to at most / 2 sets of this new cover (for n fixed) since,
for fixed i and j, x can belong to at most one U’".

We complete the proof that X has topological dimension of at most -1 by
proving lim, e (Sup;;x 8(UF)) =0.

If not, we can find £>0 and values of n>N(¢) (N(£) is the integer N(5)
corresponding to §=¢ and n=¢; in corollary 2.11) such that, for some
ik, 6(U E}")>§. Choose such values for n, i, j and k and points x, ye U Z}k with
d(x,y)>¢ Let x =x%x",...,x"=y be a 8, chain from x to y in U}}k. Now
x(ha)e U;c T[—3a, +3a] so x(na +y)e T for some |y|<3}a and let J(x) be the
number of returns of x to 7" in time na +y. Now for each 1 =r < p such that x; is
defined (relative to x) for all |i|<J(x), let

A, =max {d(¢'x, x]); li| =T (x)}.
Note that

A+n)a/B=J(x)=n—-1=N(£).
Now A, is defined and A;=<¢g; by the choice of §,. Suppose A, <¢; for some
1=r=<p—1. Then x/*' is defined for each lil=J(x) and so A,,, is defined. Let r
be such that A, =<g,(r'<r) and A, >¢;. Such an r exists as otherwise A, is well
defined and A, = ¢4, which contradicts d(x, x”) > ¢ and the choice of N(£). Next
note that [A, — A,_;|<¢,. For otherwise A, >¢;+A,_, and say A, = d(¢'x, x{) and
A,_1=d(¢'x,x]"), then

d(¢'x, x))>e,1+d(¢'x, x[ 1)
so that
d(p'x, xi )=d(@'x, x))—d(xi, xI ) >e1+d(@'x, x] ) —dxf, x77)
=d(¢'x, x;7")

and this contradicts the choice of j for A,_;. Now A, <2g; =g, and so by lemma
4.1 we have

d(@”x, xjm) = 8.

Now by the choice .of On» x{ is well defined forj=1,2,...,rand i=0,...,J(x).
Let s; be such that x’s; = x},,. Note that |so— na|=<3a. Suppose that m is the first
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positive integer less than or equal to r such that |s,, — na|>3a. Again by the choice
Of 8y, |Sm—1— Sm| =3a and thus
|$m — na| < |Sm—1 — RA|+ Sy — Sm| = .
But now x"naelU’ so y=x"(na+x)eT<S for some x with |y|<3e, and
y(—na —x +s)e S. But
|—na —x +5.|=2a<(

so that

[$m — ne| = |x| = 3c.
This contradiction shows that

|s, — na| < 3a.
Thus if we let s =na —s, then |s|<a and xj¢)s € U; and x"(na +y) = x5 (s + 7).
Now
d(xs (s +7), 67 F(x)) = d(x"(na +v), x(na + 7)) = &'

since |s + y| = 2a and so

d(x'na, xna)=n,

but x'na and xna are both in U; which is a contradiction. O
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