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On the Roughness of Quasinilpotency
Property of One-parameter Semigroups

Ciprian Preda

Abstract. Let S ∶= {S(t)}t≥0 be a C0-semigroup of quasinilpotent operators (i.e., σ(S(t)) = {0}
for each t > 0). In dynamical systems theory the above quasinilpotency property is equivalent to a
very strong concept of stability for the solutions of autonomous systems. _is concept is frequently
called superstability andweakens the classical ûnite time extinction property (roughly speaking, dis-
appearing solutions). We show that under some assumptions, the quasinilpotency, or equivalently,
the superstability property of a C0-semigroup is preserved under the perturbations of its inûnitesi-
mal generator.

1 Introduction

Let S ∶= {S(t)}t≥0 be a strongly continuous semigroup generated by the linear densely
deûned and closed operator A on a Banach spaceX. Assume that we can ûnd a linear
operator T such that A+T generates a strongly continuous semigroup S̃ ∶= {S̃(t)}t≥0.
_e following question has been posed by many authors, starting with R. S. Phillips
back in 1951 (see, e.g., [10, 11]):

Under which conditions is the asymptotic behavior of the trajectories of S pre-
served by the trajectories of the perturbed semigroup S̃?
_is problem is regarded as quite diõcult, since Phillips shows that even by

bounded perturbations we can wash out important properties as eventual norm con-
tinuity or the Spectral Mapping _eorem. As far as we know, the above question was
consideredmost recently by S. Brendle, R. Nagel, and J. Poland in an interesting paper
from 2000 (see [4]), where they determined the spectrum σ(S̃(t)) from the spectrum
σ(A+ T) and the spectrum σ(S(t)) of the unperturbed semigroup operators.

_e aim of this paper is to show that under some assumptions, the quasinilpotency,
or equivalently, the superstability property of a C0-semigroup is preserved under the
perturbations of its inûnitesimal generator. _e problem is stronglymotivated, taking
into account that Brendle, Nagel, and Poland [4] point out an example of a nilpotent
(and hence superstable) C0-semigroup that does not even stay exponentially stable
under bounded perturbation of its generator. Our approach employs spectral tech-
niques (ûrst used by J. Voigt [13, 14], and later by Brendle, Nagel, and Poland [3, 4, 8])
and is based on concepts like critical spectrum, essential spectrum, and Weyl’s theo-
rem.
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2 Superstable Semigroups

_e concept of superstability originally appears in the most quoted monograph of
E. Hille and R. S. Philips [6] who were concerned primarily with its mathematical
aspects and related properties, particularly the relationship between the spectrum of
the inûnitesimal generator and the stability of the semigroup. Later work reûned and
extended this notion, applying more complicated machinery [9, 12]. More recently,
A. V. Balakrishnan [1] has become interested in the superstability phenomena arising
in the control theory of physical systems (i.e., boundary-value problems for partial
diòerential equations).
A family S ∶= {S(t)}t≥0 of bounded linear operators on a Banach spaceX is called a

strongly continuous semigroup (orC0-semigroup) when S(0) = I (the identity operator
on X), S(t + s) = S(t)S(s) for all t, s ≥ 0, and limt↓0 S(t) = I in the strong operator
topology (i.e., S(t)x → x as t ↓ 0 for all x ∈ X). As is well known, this implies that the
map t ↦ S(t) is strongly continuous.
For a strongly continuous semigroup S, deûne D(A) as the set of all x ∈ X such

that limt↓0 t−1(T(t)x − x) exists. _e inûnitesimal generator of the semigroup S is the
operator A∶D(A) → X, given by

Ax = lim
t↓0

S(t)x − x
t

.

It can be proved that D(A) is a dense subspace of X, A is a closed operator and that
the pair (A,D(A)) and the semigroup {S(t)}t≥0 uniquely determine one another
[5, _eorem II.1.4].
A strongly continuous semigroup S ∶= {S(t)}t≥0 is said to be exponentially stable

(or just stable) when the stability index, deûned by

ν(S) ∶= sup{ω ∶ there exists M > 0 such that ∥T(t)∥ ≤ Me−ωt for all t ≥ 0},

is positive; that is, there exists an exponentially decreasing function that bounds every
trajectory. _e growth characteristic of S is

ω0(S) ∶= lim
t↓0

log ∥S(t)∥
t

,

which, as is well known, equals −ν(S). _e essential growth bound of S is deûned by

ωess(S) ∶= inf{ω ∈ R ∶ there exists Mω such that ∥S(t)∥ess ≤ Mωeωt},

where ∥T∥ess ∶= inf{∥T − K∥ ∶ K is compact on X}, for any bounded operator T .
Clearly, ωess(S) ≤ ω0(S).

_e semigroup S is said to be superstable if for every ν > 0, there exists Mν such
that ∥S(t)∥ ≤ Mνe−νt for every t ≥ 0. _us, superstability is equivalent to the con-
dition that the growth characteristic ω0(S) is −∞. In particular, superstability can
be deûned as the equivalent condition that S(t) be quasinilpotent for every t > 0
(recall that an operator T is quasinilpotent when σ(T) = {0}). “Superstability is a
truly inûnite-dimensional phenomenon – at least for linear systems – i.e., it can oc-
cur only in systems where the state space is not ûnite-dimensional.” (Balakrishnan,
[1, Section 3])
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A simpler type of superstability is the following: S is said to have ûnite time extinc-
tion if there exists t0 ≥ 0 such that S(t)x = 0 for all t ≥ t0 and x ∈ X with ∥x∥ ≤ 1. _e
smallest possible choice t0 is called the extinction time of S and does not depend on x.
Further, S is nilpotent when there exists t0 such that S(t0) = 0. Similarly, the smallest
possible choice t0 such that S(t) = 0 for all t > t0 is called the index of nilpotency for S.

It is remarkable that one can ûnd quite simple physical systems that have ûnite time
extinction, hence that are superstable. Also, examples of superstable physical systems
that do not exhibit extinction in ûnite time can be pointed out.

3 A Short Review of Spectral Theory

We assume in this section that the reader is familiar with the following results of spec-
tral theory, and with one of its most important tools, the spectral decomposition. For
instance, take A to be a bounded self-adjoint operator on a Hilbert spaceH. _en the
spectral set σ(A) is composed of two disjoint parts, namely, σ(A) = σd(A)⊔ σess(A).
_e essential spectrum ofA, σess(A) is the closed subset of σ(A) that is invariant under
compact perturbations (ûrst introduced by H. Weyl in 1910 for a certain diòerential
operator) as the part of the spectrum independent of boundary conditions. Later,
it was proved that the complement part of the spectrum, the so-called discrete spec-
trum, consists of all isolated eigenvalues of Awith ûnite algebraic multiplicity. Using
Fredholm’s theory, several deûnitions for the essential spectrumwere given, leading to
slightly diòerent closed subsets of σ(A). Here, we use the deûnitions given in [5,7,13].
Formally, the notion of essential spectrum can be given for a densely deûned and

closed operator A on a Banach space X. _us, A is said to be a Fredholm operator
if its kernel, kerA, is ûnite-dimensional and the range, ranA, is closed and of ûnite
codimension (i.e., dim(X/ ranA) < ∞). _e Fredholm index of A is the diòerence
between the dimension of the kernel and the codimension of the range. A complex
number λ is in the essential spectrum of A if λI − A is not Fredholm.
By s(A) we denote the spectral bound of A, that is, s(A) ∶= sup{Re λ ∶ λ ∈ σ(A)}

(with s(A) ∶= −∞when σ(A) = ∅). We set ρ(A) to be the complement of σ(A) inC,
while R( ⋅ ;A) denotes the resolvent function of A. If we assume that A is a bounded
linear operator, it is known that the spectral radius r(A) ∶= sup{∣λ∣ ∶ λ ∈ σ(A)} is
ûnite, satisfying r(A) ≤ ∥A∥.
A sequence (ψn)n∈N ⊂ D(A) is said to be a Weyl sequence for A and λ ∈ C if

∥ψn∥ = 1, n ∈ N, ψn → 0 weakly as n → ∞ and (λI − A)ψn → 0 for n → ∞. We say
that λ ∈ C is in theWeyl spectrum of A if there is a Weyl sequence for A and λ. If A is
self-adjoint, we have theWeyl’s criterion, which states that W(A) = σess(A) (see, for
instance, [7, Chapter 7]). In general, we only have the inclusion W(A) ⊂ σess(A).

Lemma 3.1 ([7,_eorem 10.10, p. 105]) Let Abe a closed operator on theHilbert space
H with ρ(A) /= ∅. _en W(A) ⊂ σess(A) and the boundary of σess(A) is contained
in W(A). If, in addition, each connected component of the complement of W(A) in C
contains a point of ρ(A), thenW(A) = σess(A). _e converse of this last statement also
holds.
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Let A and T be two linear operators such thatD(A) ⊂D(T). We will say that T is
(relatively) A-bounded if there exist α, β ≥ 0 such that ∥Tx∥ ≤ α∥Ax∥ + β∥x∥, for all
x ∈ D(A). Clearly, if T is bounded, then it is also A-bounded. Further, the following
is a stronger notion than relative boundedness: T is (relatively) A-compact if for any
sequence (xn)n ⊂ D(A) with both (xn)n and (Axn)n) bounded, (Txn)n contains
a convergent subsequence. If ρ(A) /= ∅ (as is the case of an inûnitesimal generator),
then T is A-compact if and only if TR(λ;A) is compact for some (and hence for all)
λ ∈ ρ(A) (see [7, Section 14.1]).

_e next result is known as Weyl’s _eorem, and states that the essential spectrum
of a closed operator in a Hilbert space is invariant under relatively compact operators.

Lemma 3.2 ([7,_eorem 18.8, p. 193]) Let Abe a closed operator on the Hilbert space
H and T be an A-compact operator. _en σess(A) = σess(A+ T).

3.1 The Critical Spectrum of a Strongly Continuous Semigroup

For a strongly continuous semigroup {S(t)}t≥0 on a Banach space X, we consider
the Banach space ℓ∞X of all bounded sequences in X, and we deûne the semigroup
S∞ = {S∞(t)}t≥0 on ℓ∞X by

(S∞(t))(xn)n∈N = (S(t)xn) n∈N .

For this semigroup, consider its space of strong continuity

X∞ ∶= {(xn)n∈N ∶ lim
h↓0

( sup
n∈N

∥S∞(h)xn − xn∥) = 0} ,

which is closed and {S∞(t)}t≥0-invariant. _erefore, on the quotient space X̂ =
ℓ∞X /X∞, the semigroup S∞ induces a quotient semigroup Ŝ = {Ŝ(t)}t≥0.

_e critical spectrum of S(t) is then deûned as σcrit(S(t)) ∶= σ(Ŝ(t)), while its crit-
ical spectral radius is deûned as rcrit(S(t)) ∶= r(Ŝ(t)). Moreover, the critical growth
bound is deûned as ωcrit(S) ∶= ω0(Ŝ). For the proofs of the following results we refer
to the paper of Nagel and Poland [8].

Lemma 3.3 ([4, _eorem 2.1]) For a strongly continuous semigroup {S(t)}t≥0 the
following statements hold:
(i) σcrit(S(t)) ⊂ σ(S(t));
(ii) rcrit(S(t)) = e tωcrit(S);
(iii) σ(S(t)) ∖ {0} = e tσ(A) ∪ σcrit(S(t)) ∖ {0};
(iv) ω0(S) = max{s(A),ωcrit(S)}.

For a strongly continuous semigroup S = {S(t)}t≥0 its growth bound of non-norm
continuity (which was ûrstly introduced by Blake [2, Deûnition 2.2]) is given by

δ(S) ∶= inf{ν ∈ R ∶ there is Mν > 0 such that

lim sup
h→0

∥S(t + h) − S(t)∥ ≤ Mνeνt , t ≥ 0} .
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Nagel andPoland [8] gave a formula to compute the critical growth boundof a strongly
continuous semigroup.

Lemma 3.4 ([8, Prop. 4.6]) For a strongly continuous semigroup S ∶= {S(t)}t≥0, we
have that

(3.1) δ(S) = ωcrit(S).

4 The Perturbed Semigroup

In order to ensure thatA+T (with the domainD(A+T) =D(A)) generates a strongly
continuous semigroup, we make the following assumption. Clearly, it is satisûed for
any bounded operator T .

Assumption A _eoperator T isA-bounded operator onX, and there exists a func-
tion q∶ [0,∞) → [0,∞) with limt↓0 q(t) = 0 such that ∫

h
0 ∥TS(ξ)x∥dξ ≤ q(h)∥x∥

for each x ∈D(A) and h ≥ 0.

_e Myiadera–Voigt perturbation theorem (see [5, _eorem III.3.14]) assures us
that A+ T generates a strongly continuous semigroup S̃ ∶= {S̃(t)}t≥0, which is given
by the Dyson–Phillips series

S̃(t) =
∞
∑
k=0

Sk(t),

where the operators Sk(t) are deûned inductively as

S0(t)x ∶= S(t)x and Sk(t)x ∶= ∫
t

0
Sk−1(t − ξ)TS(ξ)xdξ,

for each x ∈D(A) and t ≥ 0.

Assumption B _ere exists some k ∈ N such that t ↦ Sk(t) is norm continuous on
[0,∞).

In the special case of a bounded linear operator T , a characterization of norm con-
tinuity of the term t ↦ Sk(t) is given in [3]. Other equivalent formulations of As-
sumption B are given in [4, Proposition 4.7].

Lemma 4.1 ([3, _eorem 3.1]) For a bounded operator T on the Hilbert space H,
consider the following assertions for every λ > ω0(S) and k ∈ N:
(ak) t ↦ Sk(t) is norm continuous on [0,∞);
(bk) lim∣µ∣→∞ ∥Pk(λ + iµ)∥ = 0 (where Pk(z) ∶= R(z;A)(TR(z;A))k).
_en (ak) implies (bk), and (bk) implies (ak+2).

It turns out that Pk( ⋅ ) is the Laplace transform of Sk( ⋅ ) [3, Proposition 2.2]; that
is, for all x ∈ X and Re z > ω0(S),

Pk(z)x = ∫
∞

0
e−ztSk(t)xdt .
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Remark 4.2 Notice that the term S0(t) coincideswith the semigroup operator S(t),
while the operator P0(λ) coincides with the resolvent R(λ;A). It is also known that
(b0) implies (a0) [5, _eorem II.4.20].

Assumption C _ere exists some k ∈ N such that Sk(t) is compact for each t ≥ 0.

Lemma 4.3 For a perturbation operator T that fulûlls AssumptionsA and B, we have
that ωcrit(S̃) = ωcrit(S), and therefore ω0(S̃) = max{s(A + T),ωcrit(S)}. Similarly,
if T satisûes Assumptions A and C, then ωess(S̃) = ωess(S) and ω0(S̃) = max{s(A +
T),ωess(S)}

For a complete proof of the above factswe refer the reader to [3] andLemma3.3(iv).

5 Results

_eorem 5.1 Let S ∶= {S(t)}t≥0 be a C0-semigroup on the Hilbert space H, let A
be its inûnitesimal generator, and let T be a linear operator. If σ(S(t)) = {0} for each
t > 0 (or equivalently, S is superstable) and assume that:
(i) T satisûes Assumption A,
(ii) T satisûes Assumption B or Assumption C,
(iii) T is A-compact.
_en the perturbed C0-semigroup S̃ generated by A+T is superstable if and only if A+T
has an empty discrete spectrum.

Proof From the superstability hypothesis, we have that for each ν ∈ R there exists
Mν > 0 such that ∥S(t)∥ ≤ Mνeνt for all t ≥ 0. It follows that for any h > 0, we have

(5.1) ∥S(t + h) − S(t)∥ = ∥(S(h) − I)S(t)∥ ≤ ( 1 + sup
h≥0

∥S(h)∥)Mνeνt .

By (3.1) and (5.1) we get that ωcrit(S) = δ(S) = −∞. _erefore, using Lemma 4.3, we
have that ω0(S̃) = −∞ if and only if s(A+ T) = −∞. _us, we have

σ(A+ T) = σd(A+ T) ⊔ σess(A+ T) = ∅.(5.2)

We claim that (5.2) holds, subject to the condition that A+T has an empty discrete
spectrum. _e claim follows easily, taking into account that {S(t)}t≥0 is superstable,
and thereforeW(A) = σ(A) = ∅. By assumption (ii) and Lemma 3.2, it follows that
W(A + T) = ∅. Hence, applying Lemma 3.1, we have σess(A+ T) =W(A+ T) = ∅.

Proposition 5.2 Let S ∶= {S(t)} be a C0-semigroup on the Hilbert space H with
generator A. If σ(S(t)) = {0} for each t > 0 (or equivalently, S is superstable) and the
generator A is perturbed by a linear and bounded operator T that satisûes

(5.3) lim
∣µ∣→∞

∥R(λ + iµ;A)TR(λ + iµ;A)∥ = 0

for some λ > ω0(S), then T obeys Assumptions A and B.
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Proof By the hypothesis, S will be uniformly stable; that is, ∥S(t)∥ ≤ C, t ≥ 0 for
some constant C > 0. Hence, it is easy to see that Assumption A holds for q(t) =
C∥T∥t.
Furthermore, it follows from Lemma 4.1 that a Dyson–Phillips term, namely t ↦

S3(t), is norm continuous on [0,∞) provided that (5.3) holds.

Corollary 5.3 Let S ∶= {S(t)}t≥0 be a C0-semigroup on the Hilbert space H with
generator A. If the bounded operator T fulûlls the following conditions:
(i) lim∣µ∣→∞ ∥R(λ + iµ;A)TR(λ + iµ;A)∥ = 0, for some λ > ω0(S);
(ii) T is A-compact,
then the semigroup generated by A+ T is superstable if and only if A+ T has an empty
discrete spectrum.

Proof _is follows easily from _eorem 5.1 and Proposition 5.2.

6 Applications

We point out below a class of bounded perturbation operators of − d
dx that preserve

the superstability of the translation (to the right) semigroup on the space of all square-
integrable functions deûned on [0, 2], L2

[0,2].
Let S ∶= {S(t)}t≥0 be the translation semigroup, deûned by

(S(t) f )(u) =
⎧⎪⎪⎨⎪⎪⎩

f (u − t) u ≥ t,
0 u < t,

on H ∶= L2
[0,2]. It can be easily checked that its inûnitesimal generator is − d

dx with
the domain { f ∈ H1([0, 2]) ∶ f (0) = 0}. We can see that S(t) = 0 for any t > 2, hence
S is superstable.

We will show that R(λ;− d
dx ) is compact for λ = 0 and therefore for λ ∈ ρ(− d

dx ) =
C. Taking λ ∈ ρ(− d

dx ), we notice that

(R( λ,− d
dx

) f )(u) = ∫
u

0
e−λ(u−ξ) f (ξ)dξ, f ∈ L2

[0,2]

Now let (gn)n∈N∗ be a bounded sequence and consider

Gn(u) ∶= ((− d
dx

)
−1

gn)(u) = ∫
u

0
gn(ξ)dξ.

Clearly, we have that Gn is continuous, hence it belongs to L2
[0,2], for every n ∈ N∗.

Using the Arzelà-Ascoli _eorem, we have that (− d
dx )

−1 is compact. _us, every
bounded operator T is (− d

dx )-compact.
Applying Corollary 5.3, we obtain that for each bounded operator T satisfy-

ing (5.3), the operator − d
dx + T generates a superstable semigroup if and only if

σd(− d
dx + T) = ∅.
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Remark 6.1 _eapplication illustrated above is not at all trivial, since if we perturbe
the generator of the translation to the right semigroup on L2

[0,2] with the simple le�-
shi� deûned as

(L f )(u) =
⎧⎪⎪⎨⎪⎪⎩

f (u + 1) u ∈ [0, 1],
0 u > 1,

the perturbed semigroup generated by − d
dx + L does not remain even exponentially

stable, since its growth bound is zero (for details see [4, Example 5.1]).
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