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DYNAMIC RESPONSE STRATEGIES: ACCOUNTING FOR RESPONSE PROCESS
HETEROGENEITY IN IRTREE DECISION NODES

Viola Merhof and Thorsten Meiser

UNIVERSITY OF MANNHEIM

It is essential to control self-reported trait measurements for response style effects to ensure a
valid interpretation of estimates. Traditional psychometric models facilitating such control consider item
responses as the result of two kinds of response processes—based on the substantive trait, or based on
response styles—and they assume that both of these processes have a constant influence across the items of
a questionnaire. However, this homogeneity over items is not always given, for instance, if the respondents’
motivation declines throughout the questionnaire so that heuristic responding driven by response styles
may gradually take over from cognitively effortful trait-based responding. The present study proposes two
dynamic IRTree models, which account for systematic continuous changes and additional random fluctua-
tions of response strategies, by defining item position-dependent trait and response style effects. Simulation
analyses demonstrate that the proposed models accurately capture dynamic trajectories of response pro-
cesses, as well as reliably detect the absence of dynamics, that is, identify constant response strategies. The
continuous version of the dynamic model formalizes the underlying response strategies in a parsimonious
way and is highly suitable as a cognitive model for investigating response strategy changes over items. The
extended model with random fluctuations of strategies can adapt more closely to the item-specific effects
of different response processes and thus is a well-fitting model with high flexibility. By using an empirical
data set, the benefits of the proposed dynamic approaches over traditional IRTree models are illustrated
under realistic conditions.

Key words: response styles, item response theory, multidimensional IRTree, item position effects.

Likert-type rating scales are widely used to assess personality, attitudes, or beliefs via self-
reports. However, the validity of such trait measurements is threatened by response styles (RS)—
tendencies to systematically respond to items on some basis other than what the items were
designed to measure (Paulhus, 1991). RS comprise, for instance, preferences for the extreme cat-
egories (extreme RS; ERS) or the middle category of the scale (midpoint RS; MRS), irrespective
of item content (for an overview, see Van Vaerenbergh & Thomas, 2013). Since RS can sys-
tematically bias estimates of substantive traits, resulting in inflated or underestimated individual
scores, group means, and correlations of constructs, RS must be controlled for to ensure a valid
interpretation of results (Alwin, 2007; Baumgartner & Steenkamp, 2001).

Various item response theory (IRT) approaches have been proposed that facilitate such con-
trol of RS effects under conditions in which the underlying response processes are homogeneous
across persons and over items, thus assuming a stable response strategy over the course of a ques-
tionnaire (e.g., Böckenholt 2017; Bolt & Newton, 2011; Henninger & Meiser, 2020; Plieninger
& Meiser, 2014; Wetzel & Carstensen, 2017). Extensions of such models can further account for
some kind of heterogeneity of response processes over discrete conditions, either with a focus
on latent classes of respondents (e.g., Kim & Bolt, 2021; Tijmstra et al., 2018; von Davier &

Supplementary Information The online version contains supplementary material available at https://doi.org/10.
1007/s11336-023-09901-0.
The data generated in the simulation studies are available in the Open Science Framework repository, https://osf.io/kc8ve/.
The data sets used for reanalysis in the empirical application are made available by the original author in the Open Science
Framework repository, https://osf.io/tbmh5/.

Correspondence should be made to Viola Merhof, Department of Psychology, University of Mannheim, L 13 15,
68161Mannheim, Germany. Email: merhof@uni-mannheim.de

1354
© 2023 The Author(s)

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 21:34:45, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-023-09901-0&domain=pdf
http://orcid.org/0000-0002-1328-0000
http://orcid.org/0000-0001-6004-9787
https://doi.org/10.1007/s11336-023-09901-0
https://doi.org/10.1007/s11336-023-09901-0
https://osf.io/kc8ve/
https://osf.io/tbmh5/
https://www.cambridge.org/core


VIOLA MERHOF, THORSTEN MEISER 1355

Yamamoto, 2007) or with a focus on within-person changes across measurement occasions (e.g.,
Ames & Leventhal, 2021; Colombi et al., 2021; Weijters et al., 2010). Other approaches include
unsystematic item-by-item fluctuations of response strategies within persons (e.g., Plieninger &
Heck, 2018; Tijmstra & Bolsinova, in press; Ulitzsch et al., 2022). Neglected so far are systematic
changes of response strategies within a measurement occasion and the associated heterogeneity
regarding the manifestations of substantive traits and RS on the level of single items. We aim to
close this research gap by modeling dynamic, item position-dependent influences of trait-based
and RS-based response processes.

1. Dynamic Trait and Response Style Effects

Whenever respondents are asked to provide subjective self-reports by responding to a Likert-
type item, they are faced with the challenge of choosing one of several available categories. A
prominent theory describing two competing response strategies to bring about such decisions
is the conceptualization of Optimizing and Satisficing by Krosnick (1991). According to this
framework, the currently applied response strategy depends on the respondents’ cognitive effort
expended on item responses. On the one hand, giving accurate trait-based responses requires
a substantial amount of effort, as four cognitive stages must be proceeded through. These are
(1) comprehension of the item, (2) memory search for relevant information, (3) integration of
pieces of information into a judgment, and (4) selecting a response category (Tourangeau et al.,
2000). Responses derived from such processing are considered optimal, as they are accurate and
strong indicators of the true trait levels. On the other hand, if respondents process some or all of
the stages heuristically, item responses require less cognitive effort; they are not optimal, but still
satisfactory from the respondents’ perspective (called satisficing responses). Unlike optimized,
solely trait-based responses, such a satisficing response strategy is susceptible to the influence of
RS (Aichholzer, 2013; Podsakoff et al., 2012). For instance, respondents may reach the global
decision to agree or disagree with an item based on their trait level, but then do not consider
the fine nuances between different options that indicate (dis)agreement. In such cases, individual
category preferences determine the selection, so that extreme categories are chosen more often
by respondents with high ERS levels, whereas midpoint responses are fostered by high levels
of MRS. Metaphorically speaking, the decision vacuum left by a superficial instead of thorough
trait-based selection is filled by RS-based processes. We, therefore, define response strategy, in
the narrower sense, as a certain composition of trait-based response processes on the one side and
heuristic processes related to one or several RS on the other side.

Whether predominantly trait-based or rather RS-based response strategies are used depends
on the cognitive effort that respondents are able and willing to expend on the task, which in turn
can be attributed to several properties of items and respondents (for an overview, see Podsakoff et
al., 2012): For instance, low respondents’ abilities (e.g., low cognitive/verbal ability or education)
and high task difficulty (e.g., a complex, abstract, or ambiguous item) can prevent the use of the
optimizing, trait-based response strategy (Baumgartner & Steenkamp, 2001; Knowles & Condon,
1999; Krosnick, 1999; Messick, 1991; Podsakoff et al., 2003). Further, various properties of the
measurement method (e.g., scale formats or contexts of data collection) were found to affect the
degree of response style-related responding (DeCastellarnau, 2018; Van Vaerenbergh & Thomas,
2013). But even if a questionnaire is constructed and applied in a way that respondents are able to
give optimized responses, insufficient motivation and fatigue can strengthen the RS influence and
reduce the quality of responses (Galesic, 2006; Galesic & Bosnjak, 2009; Herzog & Bachman,
1981; Kahn & Cannell, 1957).

Whereas properties of the questionnaire and the response format can be considered fairly
homogeneous and unsystematically varying across items, due to careful item construction and
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randomization, the respondents’ motivation for pursuing the high cognitive effort for optimizing
responses may systematically change over time. In line with this, Krosnick (1991) states that
“respondents are likely to satisfy whatever desires motivate them to participate just a short way
into an interview, and they are likely to become increasingly fatigued, disinterested, impatient,
and distracted as the interview progresses” (p. 214). Indeed, item responses are perceived as
increasingly burdensome throughout a questionnaire (Galesic, 2006). In addition, long surveys
and items presented in later parts of questionnaires reveal a lower data quality with more fre-
quent omissions, dropouts, and response patterns indicating careless responding (Bowling et al.,
2021a; Deutskens et al., 2004; Galesic & Bosnjak, 2009; Liu & Wronski, 2018; Marcus et al.,
2007). Response times likewise indicate declining test-taking effort and a shift towards heuristic
processing: They were found to be shorter for items presented toward the end of a questionnaire
(Galesic & Bosnjak, 2009; Yan & Tourangeau, 2008), and such fast responses are associated with
less motivation (Bowling et al., 2021b; Callegaro et al., 2009), satisficing responses in general
(Andersen&Mayerl, 2017; Zhang&Conrad, 2014), and evenmore notably, responses that match
the person-specific RS (Henninger & Plieninger, 2020). Thus, conditional on a substantial length
of a questionnaire, respondents are likely to decrease their investment of cognitive capacity, and
rather fall back to fast, heuristic processing. Such dynamic shifts in the response strategy result
in a decreasing influence of the substantive trait, while the influence of RS increases over item
position.

2. Modeling Heterogeneity of Response Processes

The hypothesized dynamic influences of trait-based and RS-based processes reflect a within-
person heterogeneity across the items of a questionnaire. There is a wide range of psychomet-
ric approaches accounting for heterogeneity in response processes with regard to RS, whereby
the distinction between trait-based and RS-based processes has mainly been considered on the
between-person level. For instance, mixture Rasch models (e.g., Austin et al., 2006; Gollwitzer
et al., 2005, Meiser & Machunsky, 2008), mixture IRTree models (e.g., Khorramdel et al., 2019,
Kim & Bolt, 2021), and a general mixture IRT model (Tijmstra et al., 2018) were proposed,
which all can be used to identify latent classes of respondents who provide item responses based
on different processes, such as responses influenced by response styles or not (i.e., solely trait-
based responses). A limitation of such models is that the response process heterogeneity is strictly
related to between-person effects so that possible class switches cannot be detected.

Other approaches allow to investigate the within-person stability of RS and to detect changes
of respondents’ RS levels across discrete measurement occasions, like latent-state-trait models
(Weijters et al., 2010; Wetzel et al., 2016), or longitudinal IRTree models (Ames & Leventhal,
2021). A stronger focus on heterogeneous response processes rather than on changes of RS levels
per se is provided by hidden Markov models, in which respondents are assumed to hold one of
several discrete latent states associated with a particular type of response process, and in which
the assignment of respondents to states can change dynamically over measurement occasions
(see Kelava & Brandt, 2019). For instance, Colombi et al. (2021) analyzed longitudinal item
response data and defined two states, responding with or without the influence of RS, with part
of the respondents modeled to freely switch between the two states. Similarly, Ulitzsch et al.
(2022) proposed a response time-based mixture model, in which each response of a person is
assumed to be stemming from either a careless or an attentive status. Furthermore, heterogeneity
at the level of individual items was incorporated in some multi-process models, in which certain
decisions during the selection of response categories are assumed to be based on one of several
cognitively distinct processes (Plieninger & Heck, 2018; Thissen-Roe & Thissen, 2013; Tijmstra
& Bolsinova, in press). For example, in the model by Plieninger and Heck (2018), affirmative
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responses can be either an expression of acquiescence RS or of trait-based agreement with the
item content, though without accounting for systematically changing strategies.

Taken together, the past research linking RS modeling with heterogeneity of response pro-
cesses within and between persons has mainly focused on: (1) discrete instead of continuous
subpopulations or response states, (2) RS as an attribute that respondents may or may not have,
instead of treating them as one of several processes that respondents can use to varying degrees,
and (3) heterogeneity between measurement occasions or groups of items, instead of changes on
the level of individual items.

In contrast, higher interest in continuous changes of response strategies within ameasurement
situation exists in item response modeling outside the RS literature. In the research field of per-
formance decline, which describes a decreasing probability of correct responses for achievement
items at the end of a test (for an overview, see List et al., 2017), the gradual process change model
by Wollack and Cohen (2004) and Goegebeur et al. (2008) is a prominent model for generating
and analyzing smooth changes in response strategies (e.g., Huang, 2020; Jin &Wang, 2014; Shao
et al., 2016; Suh et al., 2012). In their approach, the response process of random guessing grad-
ually takes over from trait-based problem-solving, and linear as well as curvilinear trajectories
can be captured. In a later section of this article, we will account for shifts from effortful to
more and more heuristic responses in a similar way, but instead of modeling random guessing
for binary performance items, we model ordinal self-ratings and define heuristic responses as
strongly influenced by RS.

Thereby, we aim to tackle the previous limitation of RS modeling, being that systematic
within-person heterogeneity over the items of a questionnaire was not accounted for. Ignoring
shifts in response processes is not only a potential problem for measuring and interpreting person
and itemparameters, as the dynamic changes themselves can also be the focus of interest:Measures
of changes in trait and RS involvement can be used as a diagnostic tool to evaluate questionnaires
with regard to the associated burden and required effort, and to compare, for example, subgroups
of respondents (e.g., different age groups), subsets of items (e.g., positively and negatively worded
items), ormodes of data collection (e.g., online vs. lab). Furthermore, a formalmodel that describes
dynamic response strategies can help to understand the interplay of cognitive processes that
underlie item responses and to shed light on how respondents arrive at their judgments and
decisions. Therefore, we not merely aim to control trait estimates for RS effects but also to
provide a cognitive model accounting for dynamic response processes across items.

The remainder of this article is structured as follows: Firstly, traditional IRTree models are
introduced. Then, a new dynamic IRTree model for continuously shifting influences of trait-
based and RS-based processes is derived and evaluated by a first simulation study. Subsequently,
a more flexible, non-continuous version of this model is introduced and likewise tested by a
second simulation study. An empirical example is used to demonstrate the benefits of the dynamic
approach under realistic conditions. Lastly, the results are interpreted and discussed in light of
both basic and applied fields of research.

3. IRTree Model Parameterizations of Traits and Response Styles

Multi-process IRTree models (Böckenholt, 2012; Böckenholt & Meiser, 2017; De Boeck &
Partchev, 2012; Jeon & De Boeck, 2016) decompose response alternatives of rating scales into
a sequence of binary pseudo-items, which represent the decisions assumed to be taken by the
respondents during item responses. By assigning different latent traits to the pseudo-items, their
effects on response selection can be separated. Typically, one pseudo-item represents the decision
to agree vs. disagree with the item content, which is supposed to be made based on the substantive
trait, whereas all further pseudo-items relate to RS-based responding, like the judgment to give
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extreme vs. non-extreme responses guided by ERS (e.g., Böckenholt, 2017; Khorramdel & von
Davier, 2014; Plieninger & Meiser, 2014; Zettler et al., 2016).

3.1. Unidimensional Node Parameterization

In the following sections, we refer to items on a four-point Likert scale, and we decompose
the ordinal item responses into decision nodes of broad agreement and fine-grained extreme
responding based on the tree structure depicted in the upper part of of Fig. 1. The probability of
the ordinal response X pi ∈ {1, ..., 4}, representing the categories “strongly disagree”,“disagree”,
“agree”, and “strongly agree” of person p = 1, ..., N to item i = 1, ...I , is the product of the
probabilities of responses to the two pseudo-items Yhpi ∈ {0, 1} of agreement (h = 1) and
extreme responding (h = 2). This model structure serves as an exemplary illustration for our new
approach; dynamic response strategies can be easily adapted to differently structured trees and
response formats with more or fewer ordinal categories (see Sect. 7 for an extension to five-point
Likert-type items).

In the frequently applied Rasch IRTree, the two pseudo-items are each parameterized by
a dichotomous Rasch model, with the agreement decision dependent on θp, the person-specific
substantive trait, and the extreme decision dependent on ηp, the person-specific ERS. Therefore,
the ordinal category probability is obtained by:

p(X pi = xpi ) =
[
exp(y1pi (θp − β1i ))

1 + exp(θp − β1i )

] [
exp(y2pi (ηp − β2i ))

1 + exp(ηp − β2i )

]
, (1)

where βhi denotes the difficulty of pseudo-item h of item i . Note that this definition of only one
pseudo-item describing both extreme decision nodes reflects the assumption of identical decision-
making processes for extreme agreement and disagreement (i.e., directional invariance of extreme
responding, see Jeon & De Boeck, 2019).

3.2. Multidimensional Node Parameterization

The traditional IRTree model with unidimensional nodes implies that each decision during
the response selection is based on only one personal characteristic, either the substantive trait
or a RS. However, as derived above, we rather assume that respondents consistently make a
trait-based global decision to agree vs. disagree, but that the fine-grained decision in favor of the
particular extreme or moderate category is guided by both trait-based and ERS-based processes,
the composition of which is dependent on test-taking effort. In order to model this assumption,
the extreme decision nodes can be extended by within-node multidimensionality (see Jeon &
De Boeck, 2016; Meiser et al., 2019; von Davier & Khorramdel 2013) so that the respective
pseudo-item responses are affected by both the trait and the ERS. In addition, the strict Rasch
assumption of homogeneous item discrimination can be weakened by a 2PL parameterization
with item-specific loadings of the person parameters so that influences of trait and ERS are not
restricted to be constant throughout the questionnaire, but can vary depending on the item and its
position within the questionnaire.

Figure 1 specifies this multidimensional 2PL parameterization of extreme responding, in
which the item-specific response strategy is reflected by the loadings α

(θ)
i and α

(η)
i of the substan-

tive trait θ and ERS η, respectively. Further note that the extreme pseudo-item is split between the
categories of disagreement and agreement, as proposed by Meiser et al. (2019): If the decision of
agreement is answered affirmatively (y1pi = 1), extreme agreement is modeled to be more likely
under high trait levels and high ERS levels. For disagreeing responses (y1pi = 0), in contrast, the
trait loadings are set to be negative, so that high trait levels increase the probability of moderate
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1

Agreement

ExtremeExtreme

p(Yhpi = yhpi)

Y1pi (Agreement) 0 0 1 1
exp(y1pi(θp−β1i))
1+exp(θp−β1i)

Y2pi (Extreme) 1 0 – –
exp(y2pi(α

(η)
i ηp−α

(θ)
i θp−β2i))

1+exp(α(η)
i ηp−α

(θ)
i θp−β2i)

– – 0 1
exp(y2pi(α

(η)
i ηp+α

(θ)
i θp−β2i))

1+exp(α(η)
i ηp+α

(θ)
i θp−β2i)

Figure 1.
Tree diagram, definition of pseudo-items, and multidimensional node probabilities for responses to four-point Likert-type
items. Due to the conditional definition of extreme responding, one of the two pseudo-item variants is missing by design

for each ordinal category, as indicated by ’–’ . The item-specific laodings are constrained with α
(η)
i ≥ 0 and α

(θ)
i ≥ 0.

(i.e., non-extreme) disagreement, whereas high ERS levels still make extreme disagreement more
likely. Therefore, the ordinal category probability is obtained by

p(X pi = xpi ) =
[
exp(y1pi (θp − β1i ))

1 + exp(θp − β1i )

] [
exp(y2pi (α

(η)
i ηp + α

(θ)
i θp − β2i ))

1 + exp(α(η)
i ηp + α

(θ)
i θp − β2i )

]y1pi

[
exp(y2pi (α

(η)
i ηp − α

(θ)
i θp − β2i ))

1 + exp(α(η)
i ηp − α

(θ)
i θp − β2i )

]1−y1pi

,

(2)

with α
(η)
i ≥ 0 and α

(θ)
i ≥ 0.

4. The Dynamic Response Strategy Model

The novel dynamic response strategy model (DRSM) bases on the multidimensional IRTree
parameterization and accounts for dynamic changes of response strategies over the course of the
questionnaire by modeling the loadings of response processes as a function of item position. We
use a modified form of the gradually changing function proposed by Wollack and Cohen (2004)
and Goegebeur et al. (2008), which can capture linear as well as curvilinear relationships of a
response process p, and is given by:

α
(p)
i =

(
γ

(p)
1 − γ

(p)
I

) (
1 −

(
i − 1

I − 1

)λ(p))
+ γ

(p)
I , (3)

with γ
(p)
1 ≥ 0, γ (p)

I ≥ 0, and λ(p) ≥ 0. The parameters γ
(p)
1 and γ

(p)
I are the loadings of process

p of the first and last item, respectively. The actual dynamic change is captured by the slope,
which is the difference between the last and first loadings (γ (p)

I − γ
(p)
1 ). Therefore, a positive

slope reflects a dynamically increasing influence, a negative slope reflects a decreasing influence,
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and a zero-slope trajectory reflects a non-dynamic, constant influence of the respective response
process. In the further course of the article, we will frequently refer to the absolute slope, which
accordingly describes the strength of the change, irrespective of the direction. The parameter
λ(p) determines the shape of the trajectory for process p over item position, which is linear for
λ(p) = 1, and curvilinear otherwise (see Fig. 2).

The proposed DRSM for dynamic response strategies of extreme decisions can be derived
by inserting a dynamic loading trajectory described by Eq. 3 into each the trait loadings and ERS
loadings in Eq. 2. Thereby, the process loadings of the DRSM are defined to be nonnegative
across all items, which is a frequently made assumption in IRTmodeling (e.g., Jin &Wang, 2014;
Kim & Bolt, 2021; Meiser et al., 2019). We consider this a reasonable constraint also for the
loading trajectories, since variations in test-taking effort should result in a varying degree of trait
and RS involvement, that is, in a varying size of the loadings, whereas a change toward negative
loadings would rather imply a qualitatively different effect of such latent personal characteristics
on response selection (e.g., high trait levels would then be associated with low instead of high
response categories). Nonetheless, the DRSM could likewise be specified without this constraint,
by allowing γ

(p)
1 and γ

(p)
I to vary freely, in order to put the underlying assumption to the test.

The consideration of negative loadings could additionally be a useful extension when some items
are inverted with regard to the substantive trait,1 meaning that high trait levels are associated
with endorsements of lower response categories. For such items, the DRSM could be adjusted
by inverting the signs of the trait loadings in Eq. 2, so that the loadings of extreme agreement
would be constrained negative and the loadings of extreme disagreement positive. The direction
in which the trait influences the response selection (i.e., toward higher or lower categories) could
thus be determined individually for each item, while the process loadings defined in Eq. 3 would
reflect the strength with which a process is involved, without specifying the direction. Further
note that the above parameterization of the DRSM refers to a fixed item order across respondents,
as the same index i is used for the difficulty parameters and the response process loadings.
An alternative approach would be the presentation of items in person-specific random order,
for which the model can be adjusted accordingly, by defining item-dependent difficulties and
position-dependent loadings.

Other reasonablemodifications of theDRSMwill be illustrated in this article, such as integrat-
ing dynamic influences of response processes not only into the two-dimensional decision nodes of
extreme responding, but also into the unidimensional trait-based agreement decision (see Sect. 6).
Further, IRTreemodels for response scales withmore than four categories often include additional
pseudo-items and additional RS, like decisions of moderate responding dependent on MRS, and
such can likewise be modeled by the DRSM (see Sect. 7). Moreover, the DRSM as described
above considers item position as the only predictor of response process loadings, thus implying a
continuous response strategy with monotonically changing loadings. This is a theoretical model
with an explicit focus on item position as one of possibly several factors influencing the impact
of trait-based and RS-based processes within each item. However, in the context of the second
simulation study, we derive a flexible extension of the DRSM, which still accounts for dynamic
loading trajectories, but at the same time can capture further (random) item-specific variation of
loadings.

1We thank an anonymous reviewer for pointing out the importance of distinguishing between positive and negative
response process loadings.
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Figure 2.
Relationship of loadings αi and item position i for I = 40 items with γ1 = 0.8, γI = 0.2 and λ = 1 (solid line), λ = 2
(dotted line), and λ = 0.5 (dashed line).

4.1. Evaluating the Dynamic Response Strategy Model

Two simulation studies were conducted to systematically evaluate the proposed dynamic
modeling approaches (DRSM and an extended version), and to provide answers to the following
questions: Firstly, is the DRSM an appropriate cognitive explanatory model that reliably detects
and quantifies dynamic influences of response processes in the data? Secondly, is the DRSM a
beneficial psychometric measurement model that creates added value for the analysis of item
response data over existing models? Both questions were investigated under ideal conditions,
in which the data-generating model followed a continuous, model-implied response strategy
(Sect. 5), and under more realistic conditions, in which additional random variation was added
(Sect. 6). The proposed dynamic models were evaluated in relative comparison to IRTree models
representing reasonable alternatives.

5. Simulation Study 1

In the first simulation study, we addressed dynamic and non-dynamic continuous response
strategies, meaning that the trait and ERS loadings were constrained by continuous trajectories
so that influences of response processes were only depend on the position of items within the
questionnaire. For such scenarios, we examined the accuracy of the DRSM in recovering dynamic
response strategies (i.e., sensitivity to detect changes in the impact of trait and ERS), as well as
the risk of false-positive dynamics, which is finding such an effect if it is not present in the
data (i.e., specificity of unveiling dynamic changes only in cases where they do exist). Further,
we investigated the recovery of person and item parameters and the out-of-sample model fit in
comparison with alternative IRTree models.

5.1. Models of Continuous Response Strategies

The simulation study covered item response data under the assumption of continuous response
strategies, and all applied models can be derived from the general model structure described in
Fig. 1 and Eq. 2. The parameterization of the agreement pseudo-item was equal across models
and corresponded to a solely trait-dependent unidimensional Rasch model. The two-dimensional
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Table 1.
Loading constraints of models with continuous response strategies used in simulation study 1.

Model Trait loading α
(θ)
i ERS loading α

(η)
i

DRSM (γ
(θ)
1 − γ

(θ)
I )

(
1 −

(
i−1
I−1

)λ(θ)
)

+ γ
(θ)
I (γ

(η)
1 − γ

(η)
I )

(
1 −

(
i−1
I−1

)λ(η)
)

+ γ
(η)
I

Static α(θ) α(η)

ERS 0 1
Ordinal 1 0

definition of the extreme pseudo-item with item-specific loadings of trait and ERS served as a
superordinate framework, from which we derived unidimensional as well as two-dimensional
special cases, as defined in Table 1.

Under the DRSM, the item-specific loadings were determined by the trait and ERS trajec-
tories, which comprise the three parameters γ1, γI , and λ each. The static model excludes such
a change over items, but rather assumes a single constant loading for each of the two processes.
Besides thosemodels with two-dimensional response strategies, also unidimensionalmodels were
derived. Their extreme decision nodes were Rasch parameterized and included only one of the
person parameters with constant loading 1, that is the ERS η for the ERS model and the substan-
tive trait θ for the ordinal model. The loadings of the respective other parameter were set to 0.
The ERS model is equivalent to the traditional IRTree described by Eq. 1 and the ordinal model
corresponds to its counterpart as was proposed by Kim and Bolt (2021).

5.2. Data Generation

Using R (R Core Team, 2020), item response data were generated according to the four
IRTree models with continuous response strategies described above. In the DRSM, the trait and
ERS loading trajectories were systematically varied to cover a wide range of plausible dynamic
response strategies (resulting in six model variants). We only simulated decreasing trait loadings
and increasing ERS loadings, as these correspond to our theoretical consideration, and analogous
models can be specified for opposite trajectories. The trait loading trajectories were generated
with (γ1; γI ) set to (0.8; 0.2), (0.7; 0.3), (0.6; 0.4), and (0.5; 0.5), so that the absolute slopes were
of size 0.6, 0.4, 0.2, and 0.0. Likewise, the ERS loading trajectories were set to (0.2; 0.8), (0.3;
0.7), (0.4; 0.6), and (0.5; 0.5).2 We combined trait and ERS trajectories with different absolute
slopes so that the response strategy change was either large (i.e., one process changed by 0.6,
the other by 0.4), medium (0.4 and 0.2), or small (0.2 and 0.0). For each generated data set, both
trajectories were generated with the same value of λ, set to 2 or 0.5, which we considered as
reasonable values for a positively or negatively accelerated dynamic change, respectively. For
data generation with the static model, two model variants were defined, which are the constant
trait and ERS loadings (α(θ);α(η)) set to (0.3; 0.7) and (0.7; 0.3). The two unidimensional models
have fixed trait and ERS loadings and thus do not require to specify additional parameters.

For all model variants, 100 replications were conducted each for two sample sizes N , set to
500 and 1000, and with the two questionnaire lengths I , set to 20 and 40. Each data set consisted

2The center of all trait and ERS trajectories, that is (γ1 + γI )/2, was set to 0.5. This value was chosen for both
response processes because a prior study (Meiser et al., 2019) and our empirical application indicated (1) that trait-based
and RS-based processes have about the same influence on two-dimensional IRTree decisions, and (2) that the loadings
of the substantive trait are roughly twice as large in the broad agreement decision compared to fine-grained response
selection (e.g., in extreme decision nodes).
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of binary responses to the two pseudo-items of agreement and extreme responding under a certain
model variant and was generated as follows: Firstly, the person parameters, that are N trait levels
θp and N ERS levels ηp, were generated to be uncorrelated and sampled from independent
standard normal distributions. Likewise, 2I pseudo-item difficulties βhi were randomly drawn
from a standard normal distribution. Then, person and item parameters were inserted into the
respective equation of the model variant with its item-specific trait and ERS loadings. Lastly,
for each person and each item, binary responses to the pseudo-items were randomly sampled
according to the model-implied probabilities.

5.3. Model Estimation and Analysis

Each data generation step was followed by a model estimation step, in which all four models
with continuous response strategy changes (see Table 1) were applied to the respective data set. In
addition, also a 2PL model with freely estimated item-specific trait and ERS loadings was fitted
(the agreement node was Rasch parameterized as in the other models). The 2PL model is not
specifically targeted at continuous response strategies, but as all previously described continuous
models are nested within it, it could be a flexible, universal alternative.

Bayesian parameter estimation was performed using the No-U-Turn Sampler (Hoffman &
Gelman, 2014), a Markov chain Monte Carlo algorithm implemented in the software program
Stan (Carpenter et al., 2017). R served as the interface to Stan along with the package CmdStanR
(Gabry & Cešnovar, 2021). Four chains were run with each 1000 iterations and a warmup of 500
iterations. All estimated models reached convergence, indicated by values of the potential scale
reduction factor R̂ less than 1.05. Note that all point estimates reported in the following sections
are the expected a posteriori (EAP) estimates.

Priors were chosen according to recommendations in the Bayesian IRT literature (e.g., Luo&
Jiao, 2018; Stan Development Team, 2020). The priors for θp and ηp were set to standard normal
distributions, and a normally distributed hierarchical prior was applied to the item difficulties βhi

with a Cauchy(0, 5) hyperprior for the mean and nonnegative Cauchy(0, 5) for the standard
deviation. Weakly informative LogNormal(0, 2) priors were placed on (1) γ1 and γI of the
DRSM trajectories, (2) the constant loadings of the static model, and (3) the item-specific trait
and ERS loadings of the 2PL model (α(θ)

i , α
(η)
i ). This ensured the convergence of the models

even under conditions in which a response process did not contribute to the data generation, but
needed to be estimated by the model (e.g., estimating the influence of the ERS for ordinal data).
The shape λ of the DRSMwas defined in the interval [0.25, 4] and given a LogNormal(−0.5, 1)
prior. Again, this prior was chosen to ensure convergence, as only weak information is available to
estimate λ if the difference of γ1 and γI is small. In an extreme case of a zero-slope trajectory, λ can
take any value without having an effect on the loading trajectory. Further, the interval boundaries
were chosen to account for the fact that λ and 1

λ
have symmetrical effects on the curvature of the

trajectory, though in the opposite directions (see Fig. 2) and assured that the estimated shapes were
within the range of plausible trajectories that we considered to be continuously and not abruptly
changing.

5.4. Results

The DRSM and the four alternative models considered in the simulation study only differed
in their constraints regarding the loadings of response processes. To give an overview of how
the models behaved when fitted to item response data generated under such constraints, Fig. 3
illustrates the trait loading estimates provided by the differentmodels for exemplary data sets. Even
though these examples cannot summarize the entirety of simulations, beneficial characteristics of
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the DRSM in comparison with alternative models become clear, which we will elaborate on in
the following.3

5.4.1. Sensitivity: Estimation of Dynamic Trajectories The first aim of the simulation was to
examine the sensitivity of the DRSM, and accordingly, to answer the question of whether it is
suitable for detecting and quantifying dynamic trajectories of trait and ERS loadings. Therefore,
we evaluated (1) the recovery of the slope (γI − γ1), which is probably the most informative
dynamic measure, as it quantifies the change over the course of the questionnaire, (2) the recovery
of the shape λ, and (3) the precision of estimates of the trajectory parameters γ1, γI , and λ.

Figure 4a, b summarizes the slope estimates of trait and ERS loadings by the DRSM and
reveals a good recovery of both trajectories. Irrespective of sample size and questionnaire length,
the means across simulation replications closely matched the respective true generated values.
The good recovery of slopes is in line with consistently small posterior SDs of γ1 and γI (two
bottom lines in Fig. 4c), meaning that they were estimated quite precisely. In contrast, λ estimates
had high uncertainty and the posterior SDs were a multiple of those of the other two parameters.
Note that the difference in posterior SDs between λ set to 0.5 and 2, as apparent in Fig. 4c, stems
from the nonlinear relationship of λ and trajectory curvature, since the smaller λ is, the large the
change in the degree of curvature induced by slight changes in the parameter. In general, all three
trajectory parameters were estimated more precisely the larger the size of the data set, determined
by N and I (see Table A1). Moreover, the larger the absolute slope, the higher the precision of λ

estimates, whereas estimates of γ1 and γI were not affected by the slope.
The link between slope and shape was already discussed with regard to the informative prior

on λ, which was imposed to assure convergence in case of flat trajectories. Accordingly, the λ

estimates of trajectories with small absolute slopes were highly influenced by the prior, which
moved the parameter toward the value 1 (see Fig. 4d). The steeper the trajectories, the more
information regarding the shape was provided by the data, the prior had less influence, and the
λ estimates moved closer to the true values of 2 and 0.5, respectively. However, even for large
slopes, the uncertainty of λ estimates was high so that EAP estimates should not be interpreted in a
substantial manner without considering the uncertainty (e.g., the rough classification as positively
or negatively accelerated trajectory is possible if the credible interval (CI) does not contain the
value 1). Altogether, the analysis of sensitivity demonstrated that the DRSM is an appropriate
cognitive model for investigating dynamic response strategies; it was highly suitable to detect
systematic changes of response process influences, to assess the magnitude of such changes with
high precision, and to roughly inform about the shape of the trajectory, if the DRSM itself was
used to generate the data.

5.4.2. Specificity: Estimation of Non-dynamic Trajectories Furthermore, also the specificity
was to be examined, that is, whether the model accurately detected the absence of dynamic
changes. To answer this question, we evaluated simulation conditions in which the DRSM was
fitted to non-dynamic data generated by the unidimensional models and the static model, which
all have zero-slope trajectories. Indeed, the estimated slopes by the DRSM were all very close to
0 and had low variance (see Table A2), demonstrating that the model consistently detected the
absence of dynamic changes (also see the illustration of estimated trajectories in exemplary zero-
slope data sets in Fig. 3). The more parsimonious models were successfully mimicked, meaning
that the estimated parameters by the DRSM reflected the restrictions of models nested within
it. Therefore, the DRSM is a suitable cognitive model also for data with non-dynamic response
strategies.

3The detailed results of all replications conducted in the simulation study can be foundon theOpenScienceFramework
repository: https://osf.io/kc8ve/.
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Figure 3.
Trait loading estimates of the static model, DRSM, and 2PL model to exemplary data sets generated by the four models
of continuous response strategies used in simulation study 1. Trait loadings of the ordinal and ERS model are not shown,
as they are not estimated, but fixed at 1 and 0, respectively.

5.4.3. Parameter Recovery Besides investigating the adequacy of the DRSM to accurately
describe different response strategies, we aimed to examine its quality as a psychometric model.
To this end, the recovery of person parameters (θp and ηp) and item parameters (βhi and αi ) was
compared across models, measured by root mean square error (RMSE). There were only minor
differences in parameter recovery between conditions with different sample sizes or questionnaire
lengths, except that the overall levels of RMSEs were smaller, the larger the data set (see Fig. A1).
The results for conditions with N = 1000 and I = 40 are illustrated in Fig. 5. In general, the
models with two-dimensional extreme decision nodes (static model, DRSM, and 2PL model)
yielded considerably smaller errors compared to the unidimensional models (ordinal and ERS).
The unidimensional models showed good parameter recovery only for data sets generated by the
respective model itself but performed poorly for data generation with all other models.

The two-dimensional models, in contrast, were nearly equally well suited to recover the
parameters of all kinds of data sets, with the exception of the response process loadings. Here,
the 2PL model revealed comparably large errors, which is in line with the finding that its freely
estimated loadings do not perfectly mimic the underlying dynamic or non-dynamic continuous
trajectories, but rather scatter around them (see Fig. 3). The static model and DRSM recovered all
parameters of models nested within them well, though unsurprisingly, the static model showed
larger errors for the loadings of the DRSM. This shows that the DRSM was the model with
the overall best parameter recovery and that it did not pose a risk of increased errors in case of
misspecifications, but successfully mimicked lower-parameterized models.
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Figure 4.
Estimates and precision of trajectory parameters by the DRSM for continuous dynamic data in simulation study 1. Error
bars represent the SDs of estimates across simulation replications.

5.4.4. Model Fit The five models were further compared with regard to their fit, for which
we calculated the out-of-sample prediction accuracy by an approximation of leave-one-out cross-
validation (LOO; Vehtari et al., 2017). LOO is a fully Bayesian information criterion, which has
been shown to outperform alternative methods like Akaike’s information criterion (AIC; Akaike,
1974) or the deviance information criterion (DIC; Spiegelhalter et al., 2002) in IRT model selec-
tion (Luo & Al-Harbi, 2017). Table 2 lists the average LOO information criterion values (small
values indicate better fit), as well as the proportion of simulation replications in which the respec-
tive model was the best one in predicting the data.

Across all conditions, the respective data-generating model itself provided the best out-of-
sample fit in the majority of replications and entailed the smallest average LOO values. The
DRSM was almost always selected as the best-fitting model for data sets with dynamic response
strategies of medium or large size. For small response strategy changes (i.e., one process changed
with absolute slope 0.2, the other was constant with slope 0.0), the DRSM was still the best-
fitting model, though also the static model often predicted the data well. This condition of small
dynamic changes was the only one in which we found substantial differences across sample sizes
and questionnaire lengths: For N = 500 and I = 20, the DRSM itself was selected in only 50 %
of replications, whereas it was selected in 92 % for N = 1000 and I = 40. Thus, only if limited
data was available, the zero-slope trajectories of the static model gave a good approximation of
dynamic loadings. The larger the data set, the more evident the advantage of the more complex
DRSM and its additionally estimated parameters was.

For data sets generated by the unidimensional models, not only the respective model itself,
but also the static model and DRSMpredicted the data well, as can be seen by average LOO values
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Figure 5.
RMSEs of estimated person and item parameters for continuous data in simulation study 1. The boxplots summarize
the results for the simulation condition with N = 1000 and I = 40. For data generation with the static model, only the

condition with α
(θ)
i = 0.7; α(η)

i = 0.3 is shown. RMSEs of η estimates for data generated with or estimated by the ordinal
model are missing, as the model does not incorporate an ERS influence.

quite close to the values of the data-generating model. This can be explained by the fact that both
two-dimensional models closely mimicked the lower-parameterized models and did not overfit
despite their greater flexibility (see the good recovery of person and item parameters in Figs. 5 and
3). The same holds true for static data, which was mostly best predicted by the static model itself,
but for which the DRSM also revealed small LOO values. In contrast, the 2PL model was hardly
ever selected as the best-fitting model, and the average LOO values were considerably larger
than those of the DRSM. The analysis of the parameter recovery suggests that these indicators of
overfitting and reduced generalizability of the 2PL model are mainly due to the comparably poor
recovery of loading estimates.

The DRSM thus offered the best compromise between flexibility on the one hand, and gen-
eralizability on the other hand, if dynamic or non-dynamic continuous response strategies are
present in the data. The model not only proved to be a valuable cognitive model of response
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Table 2.
Model comparisons by LOO out-of-sample prediction accuracy for continuous data in simulation study 1.

Data generation Average LOO information criterion Proportion of replications in favor of
Model Abs. slopes ORD ERS Static DRSM 2PL ORD ERS Static DRSM 2PL

ORD 0/0 87,419 92,860 87,422 87,423 87,492 0.68 0 0.22 0.10 0
ERS 0/0 96,649 88,135 88,137 88,139 88,212 0 0.58 0.28 0.14 0
Static 0/0 92,071 91,416 89,751 89,754 89,853 0 0 0.74 0.26 0
DRSM 0.2/0.0 91,885 91,465 90,036 90,019 90,125 0 0 0.25 0.75 0

0.4/0.2 92,053 91,755 90,264 90,163 90,266 0 0 0.01 0.99 0
0.6/0.4 91,872 91,665 90,107 89,841 89,942 0 0 0 1.00 0

The LOO values and proportions in bold indicate the overall best-fitting model in the respective data
generation condition.
The average LOO information criterion values include the replications with N = 1000 and I = 40. The
other conditions yielded comparable patterns.

strategies with high sensitivity (i.e., dynamic changes of response process influences over items
are reliably captured) and high specificity (i.e., dynamic changes are not falsely revealed)—it is
further a beneficial psychometric measurement model, which provides added value in terms of
parameter recovery and models selection.

6. Simulation Study 2

In order to further investigate the benefits of the DRSM under real-world conditions, the
second simulation study addressed non-continuous dynamic response strategies. They are char-
acterized by a general trend of loadings over the course of the questionnaire, but, in contrast
to continuous strategies, allow for item-specific deviations from the trajectories. Such loading
patterns are probably more frequently encountered in empirical data than strictly continuous tra-
jectories, because even though previous research indicated that item position is a crucial factor
influencing the impact of response processes, additional item-specific variation of loadings could
arise; for instance, due to the items’ levels of abstractness or complexity (e.g., positively vs. neg-
atively worded items, grammatical or linguistic complexity). Such additional variance between
items does hardly affect the overall dynamic response strategy change across item positions and,
as a result, should not limit the validity of the DRSM as a cognitive model. Thus, the first aim of
the simulation study is to put this assumption to the test and to analyze the performance of the
DRSM in detecting dynamic changes in the presence of additional random variation of loadings.
However, even if general changes in the response behavior can be detected, the DRSM would
simplify the true, underlying data-generating processes. Therefore, we propose a more flexible
extension, the F-DRSM, which can capture the hypothesized non-continuous dynamic response
strategies in addition to systematic underlying trajectories. Thus, the second aim of the simulation
study is to evaluate the F-DRSM and to examine its psychometric properties.

6.1. The Flexible Dynamic Response Strategy Model

The F-DRSM can be seen as a combination of the DRSM and 2PL model: The item-specific
loadings are the sum of a systematic component, which is defined by a continuous trajectory, and
unsystematic, random noise. Fixing this unsystematic component for each item to 0 would yield
the DRSM, whereas omitting the systematic trajectory component would result in the 2PLmodel.
In the F-DRSM, the random noise is assumed to stem from a common normal distribution across
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all items, in which the mean is fixed to zero, and the standard deviation indicates the strength of
the deviation from the trajectory. The F-DRSM loadings of a response process p are defined by:

α
(p)
i ∼ Normal(μ(p)

i , σ (p)),

μ
(p)
i = (γ

(p)
1 − γ

(p)
I )

(
1 −

(
i − 1

I − 1

)λ(p))
+ γ

(p)
I ,

σ (p) ∼ Cauchy(0, 5). (4)

The F-DRSM provides estimates for (1) the item-specific loadings α
(p)
i , (2) the underlying

dynamic trajectory, and (3) the standard deviation σ (p), with which the loadings scatter around the
trajectory. Thereby, the item-specific loadings are allowed to deviate from the respective values
predicted by the common trajectory (μ(p)

i ) but are at the same time shrunken to this mean. The
trajectory can thus be seen as a prior for the free loadings, which is not fixed but estimated from
the data. Whether this prior is rather informative or uninformative depends on the data: If almost
all item-specific loadings of a process closely fit a trajectory, the remaining loadings are strongly
shrunken to this trajectory. In contrast, if the data suggest that the loadings largely scatter and
do not form a trajectory, the individual loading estimates are hardly affected by the trajectory
estimate, and the F-DRSM converges to the standard 2PL model. As the extent of unsystematic
variation of loadings does not have to be determined a priori, but emerges as an estimate from
the model, hypotheses regarding the strength of the continuous trend can be tested. Moreover,
the variance of loadings does not have to remain unsystematic but can be explained by further
predictors.

6.2. Data Generation and Model Estimation

All generated data sets of the second simulation study contained item responses of N = 1000
respondents to I = 40 items on a four-point scale under the model assumptions of the F-DRSM.
In contrast to the first simulation study, not only the two-dimensional IRTree nodes of extreme
responding but also the unidimensional agreement node was given a 2PL parameterization with
item-specific trait loadings, so that the ordinal category probability was given by:

p(X pi = xpi ) =
[
exp(y1pi (α

(θ)
1i θp − β1i ))

1 + exp(α(θ)
1i θp − β1i )

] [
exp(y2pi (α

(η)
i ηp + α

(θ)
2i θp − β2i ))

1 + exp(α(η)
i ηp + α

(θ)
2i θp − β2i )

]y1pi

[
exp(y2pi (α

(η)
i ηp − α

(θ)
2i θp − β2i ))

1 + exp(α(η)
i ηp − α

(θ)
2i θp − β2i )

]1−y1pi

.

(5)

Thus, three noisy trajectories were defined, that are the trait loadings of agreement (α(θ)
1i ), the

trait loadings of extreme responding (α(θ)
2i ), and the ERS loadings of extreme responding (α(η)

i ).
The absolute slopes of these three trajectories were varied (0.0, 0.2, 0.4, 0.6), whereby all trait
trajectories decreased over items and the ERS trajectories increased. The standard deviation of the
unsystematic noise was set to either 0.1 or 0.2 for all trajectories. All further settings were chosen
as in the first study. Examples of the resulting non-continuous dynamic loadings for different
underlying trajectories are given in Fig. 6. We generated 100 data sets for each model variant and
fitted the DRSM, the F-DRSM, and the 2PLmodel, using the sameBayesian parameter estimation
and priors as in the first study.
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Figure 6.
Examples of randomly generated loadings under the F-DRSM.

6.3. Results

6.3.1. Slope Estimates To evaluate the utility of the two dynamic models as cognitive models
for describing systematic changes in response strategies, we analyzed the recovery of the slopes
of the three response process trajectories. In addition, also the slope recovery of the 2PL model
was investigated, which does not provide estimates of trajectories inherently, so that we fitted
dynamic functions through the freely estimated loadings in a post hoc analysis. In contrast to the
F-DRSM, the estimation of the loadings in the 2PL model is independent of the estimation of the
trajectories.

Notably, the DRSM, F-DRSM, and 2PLmodel recovered the slopes equally well, irrespective
of the size of the slope and irrespective of the SD of the unsystematic component, demonstrating
that dynamic as well as non-dynamic response processes were successfully detected (see Table A3
for the comparison of slope estimates by the three models). Moreover, the data set-specific slope
estimates of DRSM, F-DRSM, and 2PL model hardly differed from each other and were highly
correlated, which underlines that the models drew almost identical conclusions regarding the
response strategy changes. This suggests that, for the sole sake of determining the size of strategy
changes, there is no practical difference between (1) taking a continuous dynamic trajectory as
a direct estimate of individual loadings, (2) using it as a prior that shrinks the loadings, or (3)
fitting the trajectory after estimating the loadings freely. However, the models largely differed in
the uncertainty with which the slopes were estimated, as the DRSM yielded considerably higher
precision of trajectory parameter estimates and had the smallest posterior SDs of slopes. Thus,
the DRSM enables more specific conclusions to be drawn about the extent of response strategy
changes (e.g., whether the change is different from 0, or whether there are differences between
groups of items or persons), so that it should be preferred over the other models for response
behavior analyses.

6.3.2. Model Fit and Parameter Recovery Furthermore, the three models also differed in their
suitability as psychometric models: Model comparisons by LOO out-of-sample prediction accu-
racy clearly showed the benefits of the F-DRSM, which provided the smallest LOO values and
was chosen as the best-fitting model in all replications (see Table 3). Even under conditions with
large unsystematic SD of 0.2, in which the item-specific loadings largely scatter so that trajec-
tories are hardly recognizable (see Fig. 6), the F-DRSM was advantageous over the unrestricted
estimation by the 2PL model. Unsurprisingly, the DRSM could not predict the data well, since it
cannot properly capture the non-continuous patterns of loadings.
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Table 3.
Model comparisons by LOO out-of-sample prediction accuracy for non-continuous data in simulation study 2.

Data generation Average LOO information criterion Proportion of replications in favor of
Abs.
slope

SD DRSM F-DRSM 2PL DRSM F-DRSM 2PL

0.0 0.1 90,230 90,140 90,210 0 1.00 0
0.2 90,365 89,836 89,864 0 1.00 0

0.2 0.1 89,969 89,883 89,952 0 1.00 0
0.2 90,509 89,987 90,015 0 1.00 0

0.4 0.1 89,926 89,840 89,904 0 1.00 0
0.2 89,814 89,328 89,354 0 1.00 0

0.6 0.1 89,605 89,521 89,582 0 1.00 0
0.2 89,638 89,162 89,184 0 1.00 0

The LOO values and proportions in bold indicate the overall best-fitting model in the respective data
generation condition.

Likewise, the analysis of parameter recovery demonstrated the superiority of the F-DRSM,
which yielded the smallest errors across person and itemparameters (see Fig. 7). Aswas the case in
the first simulation study, also the 2PL model provided a good recovery, except for slightly higher
RMSEs of loadings. The DRSM showed comparably high errors for the item parameters but still
recovered the person-specific substantive trait levels as accurately as the higher-parameterized
models. This suggests that the model adjusted the item difficulties in a way that they counteracted
the deviations of individual loadings from a continuous trajectory. In line with this, the smaller
the unsystematic SD, the smaller the disadvantage of the DRSM compared to the more flexible
models.

Overall, the second simulation study clearly showed the benefits of modeling dynamic
response strategies under real-world conditions and revealed that both the DRSM and the F-
DRSM are models with high utility, though for different kinds of research goals. On the one hand,
the DRSM accurately reflected the magnitude of response strategy changes over the items of a
questionnaire, and although the two alternative models produced almost identical results at the
level of point estimates, the DRSM had the advantage of more precise estimates. Therefore, we
recommend using the DRSM as a cognitive explanatory model if the goal is to analyze data sets
with a focus on investigating the respondents’ behavior. Further, the recovery of person-specific
trait levels was hardly affected by model choice, making the DRSM a parsimonious and conve-
nient model for controlling substantive trait estimates for dynamic RS effects. Nevertheless, the
DRSM inevitably simplifies the true loading patterns whenever strategy changes are not perfectly
continuous. Therefore, the more flexible F-DRSM is the preferable model for investigating influ-
ences of response processes on the level of individual items, as it can accurately capture random
fluctuations of response strategies in addition to the underlying continuous trend. Further, it was
even better suited than a 2PL model in terms of model selection and parameter recovery, so the
F-DRSM has proven to be a beneficial psychometric model for the analysis of item response data
under influence of response style effects.

7. Empirical Application

To demonstrate the advantages ofmodeling response strategy changes in real data, we applied
the proposed dynamic models as well as the other models used in the simulation studies to
an empirical data set taken from Johnson (2014). The data consists of item responses to the
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Figure 7.
RMSEs of estimated person and item parameters for non-continuous data in simulation study 2.

IPIP-NEO-120 with 120 items on five broad personality domains (Neuroticism, Extraversion,
Conscientiousness, Agreeableness, and Openness to Experience), and we randomly selected 1000
participants of the large online sample from the American population with complete data. The
response scale of the IPIP-NEO-120 comprises five rating categories, which is why we extended
the tree structure of Fig. 1 by an additional node of moderate vs. non-moderate responding (e.g.,
Böckenholt, 2012; Böckenholt & Meiser, 2017; Khorramdel & von Davier, 2014). The extended
tree of five-point rating scales is depicted in Fig. 8.

The decision of moderate responding was modeled to be dependent on the respondent’s mid-
point RS (MRS) κp, weighted with an item-specific loading α

(κ)
i , and on the item difficulty β0i

of the additional pseudo-item (h = 0). As was done in the second simulation study, the trait load-
ings of the agreement node (α(θ)

1i ) were not fixed but estimated so that our theoretical assumption
of dynamically changing response strategies predominantly occurring in fine-grained decisions
could be empirically tested. Thus, all four response processes (MRS-based moderate responding,
trait-based agreement, trait-based extreme responding, and ERS-based extreme responding) had
independent item-specific loadings,whichwere either fixed (ordinal andERSmodel), or estimated
according to the model-specific constraints. Further, we let the variances of person parameters
be estimated unless a standard normal prior was needed for model identification (i.e., one of the
five traits and both RS for the static model and DRSM; all traits and both RS for the F-DRSM
and 2PL model). We used the same Bayesian model estimation as in the simulation studies, with
four chains, 500 warmup iterations, and 1000 post-warmup iterations to assure convergence (all
R̂ < 1.05).

For the analysis of dynamic response strategy changes, we examined the estimates of the
DRSM, as the simulations suggested that it provides the most precise trajectory estimates. As
hypothesized, the estimated slopes ofMRS loadingsα(κ)

i andERS loadingsα(η)
i wereof substantial

size and were both significantly larger than 0, meaning that the response strategy changed toward
more RS involvement (see Table 4).Moreover, the influence of the substantive trait on fine-grained
extreme decisions decreased, as indicated by a negative slope of loadings α

(θ)
2i , which is in line

with the idea of RS-based processes taking over from trait-based responding in two-dimensional
pseudo-items. This is original evidence that fine-grained decisions—and in particular, the RS-
based processes—are highly dependent on the item position, suggesting an increase in fatigue
and satisficing over the course of the questionnaire. Contrary to our assumption, we found that
the trait loadings of the broad agreement decision (α(θ)

1i ) also decreased over time. However, as
will be argued below, this is probably due to other item characteristics than the position within
the questionnaire. Furthermore, the λ estimates were 0.48 (MRS), 0.33 (ERS), 0.67 (trait-based
agreement), and 0.59 (trait-based extreme responding), though only the 95 % CIs of the two RS
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Figure 8.
Tree diagram, definition of pseudo-items, and node probabilities for responses to five-point Likert-type items. Pseudo-
items that are missing by design are marked with ’–’.

trajectories did not include 1. This indicates that the response strategy change was most dominant
in earlier item positions and is decelerated at the end of the questionnaire (also see Fig. 9).

The models were further compared by the LOO information criterion, which demonstrated
that the F-DRSM provided the best fit (see Table 4). As was the case in the second simulation
study, shrinking loadings to a dynamic trajectory was advantageous over freely estimating them
or constraining them to a continuous function. The shrinkage effect is clearly visible in Fig. 9,
which displays the estimated item-specific loadings by the 2PL model as well as the loadings
and trajectories by the F-DRSM. Notably, the MRS and ERS loadings of the F-DRSM closely
scatter around the respective estimated dynamic trajectories and the estimated SDs are 0.15 and
0.12, respectively. In contrast, the trait loadings of agreement and extreme responding scatter
much stronger and the estimated SDs are 0.74 and 0.41, respectively.4 This indicates that the
item position is a crucial determinant of the impact of RS-based response processes, whereas
trait-based responding is greatly affected by other factors (e.g., other item characteristics or item
content).

To give an example of how such additional factors can be investigated, we fitted an additional
model with separate dynamic trajectories for positively and negatively worded items. For three
of the four response processes, there were hardly any differences between the loading trajectories
of positively and negatively worded items.5 Only trait-based agreement (α(θ)

1i ) differed largely
between conditions: Positively worded items had high trait loadings throughout the questionnaire
and the slope was not significantly different from zero (γ1 = 1.524; γI = 1.345), whereas
negatively worded items started with significantly smaller loadings, which then increased over
items (γ1 = 0.990; γI = 1.265). In the later part of the questionnaire, the conditions did not differ
anymore (at 5 % error level). This suggests that it took the respondents some practice to process
negativelyworded items as accurately as positivelyworded ones. Further, negativelyworded items

4The second simulation study revealed accurate recovery of theSD of the unsystematic component.Across replications
with low SD of 0.1: M = 0.103, SD = 0.023; with high SD of 0.2: M = 0.201, SD = 0.030.

5The only significant differences at 5 % error level were in γI and slope of the trait loadings of extreme responding

(α(θ)
2i ), which indicated that loadings of positively worded items had a stronger decline.
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Table 4.
Model fit and slope estimates for the empirical data set.

Model LOO Estimated slope and 95 %-CI

α
(κ)
i α

(η)
i α

(θ)
1i α

(θ)
2i

Ordinal 311,417 0 0 0 0
ERS 305,271 0 0 0 0
Static 300,667 0 0 0 0
DRSM 300,433 0.31 [0.20, 0.42] 0.54 [0.43, 0.66] −0.28 [−0.43, −0.16] −0.12 [−0.22, −0.03]
F-DRSM 296,649 0.30 [0.14, 0.49] 0.54 [0.35, 0.72] −0.34 [−0.92, 0.24] −0.08 [−0.37, 0.28]
2PL 296,718 0.31 [0.13, 0.50] 0.57 [0.36, 0.79] −0.38 [−1.02, 0.19] −0.02 [−0.35, 0.31]

α
(κ)
i = loadings of MRS-based moderate responding; α

(η)
i = loadings of ERS-based extreme responding;

α
(θ)
1i = loadings of trait-based agreement; α(θ)

2i = loadings of trait-based extreme responding.

occur more frequently in the later part of the IPIP-NEO-120, which would lead to artifacts such
as the unexpected negative slope of trait-based agreement in the models not accounting for item
wording (see α

(θ)
1i in Table 4).

Taken together, our empirical application gave a first indication that there are qualitatively
different mechanisms behind (1) response process of fine-grained decisions, which seem to be
susceptible to response strategy changes toward heuristic responding (e.g., due to loss of motiva-
tion or fatigue) and (2) broad agreement decisions, which appear not to be affected by satisficing
and reduced test-taking effort. However, more research focusing on response strategies as a psy-
chological, cognitive construct is needed, in order to better understand how respondents arrive at
their decisions, why they change their behavior over time, and how covariates (e.g., itemwording)
can explain different strategies.

8. Discussion

The present research introduced the dynamic response strategy model (DRSM) as well
as a more flexible extension (F-DRSM) and demonstrated how these models overcome the
previous limitation of response style (RS) modeling, being that systematically changing influ-
ences of response processes over the items of a questionnaire were not accounted for. The new
approaches address such dynamic response behaviors by modeling item position-dependent load-
ings of response processes (e.g., trait-based or RS-based response selection) in unidimensional
and two-dimensional IRTree decision nodes. These loadings are assumed to follow continuous or
non-continuous trajectories, which can either be dynamically changing with a linear or curvilinear
shape, reflecting a response strategy change throughout the questionnaire, or be static ones, reflect-
ing a constant response behavior. While the DRSM is an idealized and theory-driven model of
strictly continuously changing loadings, the F-DRSM is adapted tomore realistic, non-continuous
settings, in which the item-specific loadings scatter around an underlying trajectory with normally
distributed noise.

Simulation studieswere conducted to compare the dynamicmodels and reasonable alternative
models in terms of their suitability as cognitive explanatory models (i.e., requiring accurate quan-
tification of dynamic changes of response processes and correct identification of non-dynamic,
constant response strategies) as well as psychometric measurement models (i.e., requiring good
recovery of person and item parameters and model fit). The DRSM turned out to be a capable
cognitive model, as it reliably captured dynamically changing influences of response processes,
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Figure 9.
Loading estimates by the F-DRSM and 2PL model to the empirical data set.

irrespective of whether the data followed a continuous or non-continuous response strategy.More-
over, it did not pose the danger of misinterpretations due to falsely identified dynamics in the case
of constant response strategies. Although perfectly continuous trajectories of response process
loadings are most likely a simplification of real-world settings, the DRSM is a parsimonious for-
malization of the underlying general trend of the respondents’ behavior. Regardless of whether
the model can capture all characteristics of a data set well, it proved to be a simple but appropriate
model for investigating response strategies and changes of those over items. As such, it can be
used to investigate how respondents arrive at their decisions, to uncover increasing satisficing or
reduced test-taking effort, to evaluate questionnaires with regard to their cognitive load and bur-
den, and to compare subgroups of respondents or items. The empirical application demonstrated
that it is worthwhile to address such research questions, as the findings provided new insights
on factors influencing the impact of different response processes on response selection, which
eventually affect the data quality. Knowing about such factors, like item wording, can inform and
improve test construction. Furthermore, constraining loadings to a trajectory is easy to implement,
also outside Bayesian estimation methods, and requires only minor adjustments of the tradition-
ally applied IRTree models and only few additional parameters to estimate. Therefore, the DRSM
is a convenient model in applied fields of research to analyze personal characteristics, attitudes,
or beliefs, and to control substantive trait estimates for dynamic RS effect.

Nevertheless, under realistic conditions of non-continuous response strategy changes, the
constraint of continuous trajectories inevitably impairs the accurate representation of the true
item-specific response behavior. Accordingly, the simulations showed that the more flexible mod-
els with item-specific influences of response process were superior in terms of psychometric
properties. Notably, the F-DRSM with the underlying assumption of the response strategy being
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a composition of a systematic item position-dependent component and unsystematic noise was
preferable not only to the continuous DRSM, but also to the unconstrained estimation of loadings
by the 2PL model; both in simulated data and in the empirical application. Whenever the influ-
ences of response processes follow some sort of systematic over items, the F-DRSM effectively
uses the information on this general trend for the estimation, making it a successful analysis
model with good psychometric properties. The F-DRSM additionally comes with the advantage
that the extent of unsystematic variance is estimated by the model so that the relative importance
of the item position for the item-specific response strategy can be determined. For example, the
empirical application not only showed that the influences of different response processes changed
to different degrees over items, but also that the unsystematic variance greatly differed between
trait-based and RS-based responding. The F-DRSM, therefore, allows to examine response strate-
gies beyond the effect of the item position and opens up new possibilities for investigating the
roles of different response processes in item responding.

Overall, the two new dynamic models provide a surplus value to previous RS modeling
because they facilitate the investigation of systematic heterogeneity of response processes across
items of a questionnaire, which goes beyond existing approaches on discrete heterogeneity across
measurement situations (e.g., Ames & Leventhal, 2021; Colombi et al., 2021; Weijters et al.,
2010) or classes of respondents (e.g., Gollwitzer et al., 2005; Khorramdel et al., 2019; Meiser &
Machunsky, 2008; Tijmstra et al., 2018). Thereby, our proposed models are a valuable first step
toward transforming the heterogeneity of response processes over items into systematic variance,
and toward answering the question of how respondents arrive at their judgments and decisions.

8.1. Limitations and Future Directions

A limitation of the proposed models is that we defined the loading trajectories at the group
level, which was based on the assumption that the factors leading to a change in the response
strategy across items (e.g., loss of motivation) apply to all respondents to a similar extent. The
estimated loading trajectories, however, can only represent the average response behavior and do
not allow a differentiated assessment of individual response processes. In contrast, the mixture
IRTree model by Kim and Bolt (2021) facilitates to distinguish groups of respondents by their
response strategy, though under the strict assumption that all decisions during response selection
are unidimensional and based either on the substantive trait or on the ERS, without considering
a combination of processes, and without accommodating systematic changes. An integration of
both approaches in the sense of a mixture DRSM (or F-DRSM) seems promising, as it may
allow identifying classes of respondents with a dynamically changing response strategy, with a
constant response strategy, and also respondents with only one of the two processes involved
(which then follow the ERS or ordinal model). Such a model could be used in future studies to
examine the heterogeneity of response processes between persons and simultaneously account
for within-person changes across the items of a questionnaire.

A limitation of the conducted simulation studies is the chosen range of dynamic scenarios,
which only partially covers all conceivable empirical response strategy changes. For instance, the
simulated variation of the unsystematic component of the F-DRSMwas lower than thosewe found
for some processes in the empirical application. However, the process loadings in the simulation
were centered around 0.5, while they were substantially larger in the application, which could
naturally lead to a higher variance of the noise. Nonetheless, the conclusions drawn from the
simulation study are limited to small or medium unsystematic variation, while the suitability of
the F-DRSM for larger variations of loadings was suggested by empirical findings.

Further investigations might also be needed with regard to the shape of loading trajectories,
as the proposed models are based on monotonous functions of loadings. If the response strategy
changes were non-monotonic, for example, because respondents need to warm up to the task in
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the first part of a questionnaire, but lose motivation later on, U-shaped functions might be more
appropriate. Even more complex loading patterns could result if respondents repeatedly alternate
between responding with high and low effort, or if they start changing their strategy at a certain
point within the questionnaire rather than from the very first item. Such complex patterns could
in principle be investigated using the DRSM by replacing the curvilinear trajectories with other
functions that match those hypotheses, although this would be challenging for model estimation
and would likely require much larger data sets to achieve satisfactory precision of the results.

Also, the loadings might not only be associated with the time respondents spent on the
test, which is captured by the item position, but further be dependent on the item content. For
instance, in multidimensional questionnaires (such as the IPIP-NEO-120 used in the empirical
application), the respondents’ interest or expertise might differ between trait dimensions, leading
to a correlation of response process loadings with the measured dimensions. Though we have not
addressed such dependencies, they could be empirically tested and accounted for by estimating
dimension-specific trajectories, or by explaining the unsystematic variation of loadings in the
F-DRSM by trait dimensions.

In addition, the present research investigated dynamic response strategies exclusively in the
framework of IRTree models. However, our modeling approach with focus on response process
loadings could likewise be integrated in other IRTmodel classes for which extensions for response
styles were developed, such as the generalized partial credit model (Muraki, 1992) or the graded
responsemodel (Samejima, 1969). Notwithstanding such conceivable extensions, with theDRSM
and F-DRSM, we have presented two of several ways to approach dynamic response processes
in item responding, and leave further adaptations, developments, and generalizations to future
research.
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