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Abstract. The purpose of this study is two-fold. First, the Hausdorff dimension formula
of the multidimensional multiplicative subshift (MMS) in N is presented. This extends
the earlier work of Kenyon et al [Hausdorff dimension for fractals invariant under
multiplicative integers. Ergod. Th. & Dynam. Sys. 32(5) (2012), 1567-1584] from N to N9,
In addition, the preceding work of the Minkowski dimension of the MMS in N is applied
to show that their Hausdorff dimension is strictly less than the Minkowski dimension.
Second, the same technique allows us to investigate the multifractal analysis of multiple
ergodic average in N?. Precisely, we extend the result of Fan ez al, [Multifractal analysis
of some multiple ergodic averages. Adv. Math. 295 (2016), 271-333] of the multifractal
analysis of multiple ergodic average from N to N¢.
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1. Introduction

In this article, we would like to study the following two related topics, namely, the
Hausdorff dimension of multidimensional multiplicative subshifts and the multifractal
analysis of the multiple ergodic average. Before presenting our main results, we give the
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1240 J. Ban et al

motivation of this study. Let (X, T') be a topological dynamical system, where T : X — X
is a continuous map on a compact metric space X, and F = (f1, ..., fg) be a d-tuple of
functions, where f; : X — R is continuous for 1 < i < d. The multiple ergodic theory is
to study the asymptotic behavior of the multiple ergodic average

n—1
1
AF () =~ > AT HTFE) - falTf (X)) (1)
k=0

Such a problem was initiated by Furstenberg, Katznelson, and Ornstein [13] in his proof
of the Szemerédi’s theorem. The L?-convergence of equation (1) was first considered by
Conze and Lesigne [7], then generalized by Host and Kra [15] when T; = T/ (TJ(x)
means the jth iteration of x under 7). Bourgain [5] proved the almost everywhere
convergence when d =2 and f; € L®(u) (u is probability measure on X). Gutman et al
[14] obtained the almost surely convergence when the system is weakly mixing pairwise
independently determined. The reader is referred to [9, 12] for an up-to-date investigation
into this subject.

Let X, ={0,...,m—1} and Q C ZEI be a subshift which is a closed and shift
o-invariant subset of E}E with the shift action o (x;) = x;4+ for all i € N. Suppose S is
the semigroup generated by primes pi, . . ., pr. Set

XS = {2, € SN : xlis € Qforalli € N, ged(i, ) = 1}, )

where gcd(i, §) = 1 means that gcd(i, s) = 1 forall s € S. The authors of [16] call Xg)
‘multiplicative subshifts’, since it is invariant under the multiplicative action. That is,

X =1 € X = foralli €N, (xiph=1 € X

It is worth noting that the investigation of Xg ) was initiated by the study of the set
X Pr-P2--Pk defined below. Namely, if py, . . ., px are primes, define

XPrPzesPl = ((x)2 € BN xixip, - xip, =0, forall i € N}, 3)

and it is clear that XP1-P2-Pk ig a special case of Xg ) with © being the subshift of

finite type with forbidden set F = {1, ..., m — 1}*¥*!. The dimensional theory of the
multiplicative subshifts and the multifractal analysis of the multiple ergodic average attract
more attention and have become popular research topics in recent years (cf. [1, 3, 6, 10,
11, 16-19]). Fan, Liao, and Ma [10] obtained the Hausdorff dimension of the level set of
equation (1) with f;(x) =x1,T; = Ti forall 1 <i < £. More precisely, fix 0 € [—1, 1]

and £ > 1,
1 1 1+6
dimp(Bg) =1 — - + —H( —), 4
img (Bg) £+€(2) 4
where
1 n
o 00 _ N. tmy — =
By = {(Xk)k=1€{ 1,1} .nlggon];xmzk Xek 9} )
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Hausdorff dimension of multidimensional multiplicative subshifts 1241

and H(t) = —tlog, t — (1 —t) log,(1 — t). In the same work of [10], the authors prove
that the Minkowski dimension of X2 (equation (3) with m = 2 and p; = 2) equals

dimy (X2) = Z

n=1

10%2 Fy
on+l

(6)

where {F},} is the Fibonacci sequence with F1 =2, F> =3, and F,,40 = Fy1 + F,(n > 1).
Later, Kenyon, Peres, and Solomyak [16] generalized the work of Fan, Ma, and Liao
[10] to investigate the dimension formula of X Z. Namely, for an integer g > 2,

X% ={)2,€{0,1,...,m— N A, Xiq) = lforalli € N}, @)
where A € M, ({0, 1}), and M, ({0, 1}) is the space of all m x m 0-1 matrices with entries

being O or 1.

THEOREM 1.1. [16, Theorem 1.3]
(1) Let A be a primitive 0-1 matrix. Then,

m—

1
1
=" log, S u. ®)
4 i=0

dimpy (X%) =

where (t,-):”:_o1 is a unique positive vector satisfying
m—1

i =" AG, ;.
Jj=0

(2)  The Minkowski dimension of X Z exists and equals
2\ log,, |AF]|

dimp (X§) = (@ = D* ) R ©)
k=1

where |A| is the sum of all entries of the matrix A.

Peres et al [17] obtained the Hausdorff dimension and Minkowski dimension of X2
(equation (3) with p; = 2, p» = 3 and m = 2). One objective of this paper is to extend
Theorem 1.1 from N to N¢ (Theorem 1.3).

The multifractal analysis of general multiple ergodic averages was pioneered by Fan,
Schmeling, and Wu [11]. Specifically, they take into account the broader form of the
multiple ergodic average as denoted below. Define the multiple ergodic average

l n
A = — .. .
n) =~ 0k gy - Xgge-1), (10)
k=1
where ¢ : st = {0,1,...,m— 1}@ — R is a continuous function with respect to the

discrete topology and £ > 1, g > 2. The level set with respect to the multiple ergodic
average in equation (10) is defined by

E@) =0, e 5+ lim A =af, ek (11)
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Let s € R, and let F (SZ’I, R™) denote the cone of non-negative real functions on se-1
The nonlinear operator N; : F(S¢~!, RT) — F(S~!, R*) is defined by

] 1/q
Nsy(ar, az, . .., ap-1) = <Z Yt D y (ay, L ap-y, j)) : (12)
jes
Define the pressure function by
Py(s) = (g — Dg" > log Y ¥s(j), (13)
jes

where v/, is a unique strictly positive fixed point of ;. The function v, is defined on §¢~!
and it can be extended on S* forall 1 <k < £ —2 by induction. That is, for a € Sk,

1/q
¥ (a) = ( > v, j)) : (14)

jes
The Legendre transform of P, is defined as

P(;,“(ot) = 32&(—501 + Py (s)). (15)

Denote by L, the set of @ € R such that E(«) # . The following theorem is obtained by
Fan, Schmeling, and Wu [11] and Wu [20] for the one-dimensional case.

THEOREM 1.2. ([11, Theorem 1.1], [20, Theorem 3.1])

(1) Ly,= [P‘;(—oo), P(//,(+oo)], where Pl;(:I:oo) = limy_s 40 P(;(s).

2) Ifa= P(; (sq) for some sq € RU {£o0}, then E(x) # 0, and the Hausdorff dimen-
sion of E () is equal to

_P(;(Soz)sa +P<p(5a) . P;(Ol)

dimy E(a) = = .
# E@) qgt~1logm qt~1logm

The other objective of this paper is to extend Theorem 1.2 from N to N (Theorem 1.5).
The connection between Theorems 1.1 and 1.2 is that if £ =2 (respectively £ = 3)
and @(xg, Xor) = xpx2r (respectively @(xg, X2k, X3k) = XkX2xX3k) in equation (10), it
is mentioned in [18] (respectively [17]) that dimy E(0) = dimgy (X 2) (respectively
dimy E(0) = dimg (X??)). The study of Hausdorff dimension of multiplicative subshifts
can therefore be seen as a multifractal analysis of the multiple ergodic averages. From this
vantage point, this investigation aims to provide some multifractal analysis results of the
multiple ergodic averages in N,

To state the main results, we first introduce the multidimensional multiplicative subshift
below. For k > 1, let p1,...,px € N4, the multidimensional version of equation (3) is
defined as

XPUP2oPe = (x)icne € ZN ¢ xixip, - - Xip, = O foralli € NY), (16)

where i-j denotes the coordinate-wise product vector of i and j, that is, i-j=
1 jis- - -viaja) for i=(GDd_|, j= (i, € N9 It is obvious that XP1P2-Pk is the
N9 version of XP1:P2wPk, Recently, Ban, Hu, and Lai [1] established the Minkowski
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dimension of the set defined by equation (16). Precisely, let p; = (pi.1, pi2, - .-, Pid) €
Nd for all 1 <i <k, where Niz = (N\ {I})? is the set of d-dimensional vectors
that are component-wise greater than or equal to 2. Suppose ged(pi e, pj,¢) = 1 for all
1 <i<j<kandl < ¢ < d. The formula for the Minkowski dimension of XP1-P2----Pk jg
obtained as

k

1
1 )
. 1,112 """ Vi,

i=1
) (17)

00
1 1
8 Z 1_[ OO logm bM1,M2 ..... My
i=1 r

My,M>,...Mz=1 rM M;+1

where by, m,,...m, is the number of admissible patterns on the lattice Ly, ar,,..m, in
N](‘) ={0,1,.. .}k with forbidden set F = {x5=x; =x; =---=xg =1} (see [I,
Definition 2.6] for definitions of L, um,,....m, and rl(\jl? +1).

To the best of our knowledge, the dimension results of the multidimensional multiplica-
tive subshifts and the multifractal analysis of the multiple average in multidimensional
lattices have rarely been reported. Brunet [6] considers the self-affine sponges under the
multiplicative action, and establishes the associated Ledrappier—Young formula, Hausdorff
dimensions, and Minkowski dimension formula of such sponges. Ban, Hu, and Lai
obtained the large deviation principle for multiple average in N¢ [2].

It is also emphasized that the problems of multifractal analysis and dimension formula
of multiple average on ‘multidimensional lattices’ are new and challenging. The difficulty
is that it is not easy to decompose the multidimensional lattices into the independent
sublattices according to the given ‘multiple constraints’, e.g., the p; in equation (16), and
calculate its density among the entire lattice. Fortunately, the technique developed in [1]
is useful and leads us to investigate the Hausdorff dimension of the multidimensional
multiplicative subshifts and the multifractal analysis of multiple averages on N¢.

The first result of this paper is presented below, and it extends Theorem 1.1 from N
to N7,

THEOREM 1.3. Let A € M,,({0, 1}). For d > 1 and p = (p1, p2,...,Pd) € N>2, the
Hausdorff dimension of the set

Xg = {(xi)jene €10, 1, ..., m — I}Nd D Axg, xip) = 1 foralli e Nd}

m—1

dimp (x8) = PP Ly, Z ti,
pi

)ml

where (t; is a unique positive vector satisfying

PP = Z AG, ). (18)
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Theorem 1.3 is applied to show that the Hausdorff dimension of X g is strictly less than
its Minkowski dimension (Example 1.4).

Example 1.4. Whenm =2,p=(2,3)and A = [ { (1)], we have

1o 1 1o
po ==, Pol=-—¢, PlO==% potpn=1 po=1,
Ly Ly 1
then
=1+, 1°=r, (19)

which implies
35 5
Then the unique positive vector of equation (19) is (g, 1) &~ (1.0216, 1.1368). Thus,
(6—1)
6

dimy (X%) = log, (1o + t1)

IS

log(1.0216 4 1.1368
6log 2 og( + )

~ 0.9251
< 0.9348 ~ dimy (XR),

where the last estimate for the Minkowski dimension is obtained by the dimension formula
established in [1] (cf. equation (17)). Generally, the equality dimg (X g) = dimy; (X g)
holds only when the row sums of A are equal. The proof is similar to [16, Theorem 1.3].

For neN, let [[ 1,n]] be the interval of integers {1,2,...,n}. For N =
(N1, N, ..., Ng) € N%, denote [[ 1, N]] by [[ 1, Ni1] x[[ 1, N21] x - - x[[ L, Ng]l.
The notion N — oo means N; — oo for all 1 <i < d. The multidimensional multiple
ergodic average in N is defined by

1
ANG(X) = ———— > ... X pe1) (20)
Ny---Ny .
JelLNI
and its level set is
Nd . l
E((Y) = {(“xi)iENd S Em : Nli)moo m Z (p(Xj, e, .Xj,pl—l) = Ol}. (21)

Jel1.N]

The following result is an N9 version of Theorem 1.2. By abuse of notation, we continue
to write P, for the N version pressure function, and it is defined in equation (34).

THEOREM 1.5
(1) Ly,= [P‘/’,(—oo), P‘/’)(—i-oo)], where P(/’)(:I:oo) = limy— 400 Pq’,(s) and Py(s) is
defined by equation (34).
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If a = P, (sy) for some sq4 € RU {£o0}, then E(x and the Hausdorff dimen-
2) (//J( ) R U {400}, th (o) # 0 and th d d

sion of E () is equal to
_P(;(sot)sa + Py(sa) _ P(;(O‘)
(p1---p)~logm  (p1--- pa)t—'logm

dimy E(x) =

Example 1.6. Let p1 =2, pp =3, m=2,£=2, and ¢ be the potential given by ¢ (x, y) =
x1y1 with x = (xpjenz, ¥ = Oidjenz € E?z. (Here, 1 denotes the d-dimensional vector
with all components being 1.) So

. 00
lp (i1, LD e = [o 1}’

where [i] = {x = (Xi)jen2 t X1 =1}
Then the nonlinear equation (33) becomes
Y5 (0)° = ¥(0) + s (1),
Y (D = Y5(0) + €* P (1).
Since (0)*®° ¢ ZZN, then by Theorem 4.18, we have 0 = P(;(—oo). Taking s = —o0, we
obtain
¥ —00(0)° = Yoo (0) + Yoo (1),
Yooo(1)® = Yoo (0).

Then,

(6 — 1) log[{y—o0(0) + ¥ (D]

dimy E(0) = 61002

~ (0.9251.

It is worth pointing out that the set Xz in Example 1.4 is a subset of E(0) in
Example 1.6, but dimg (X g) = dimg E(0). This phenomenon appears in the previous
paragraph for the one-dimensional version [17], and the N version of this equality is
confirmed in Examples 1.4 and 1.6 as well. Moreover, the spectrum o +— dimy E (o) is
presented in Figure 1.

The remainder of this paper is organized as follows. In §2, we give a partition of N¢
(Lemma 2.1) and then compute the limit of density (Lemma 2.2). In §§3 and 4, we prove
the Theorems 1.3 and 1.5 respectively.

2. Preliminaries

Given integers d > 1 and py, p2, ..., pg > 2, we let My ={(p\", p5y.....pY) :m=>
0} be the subset of N?, called a lacunary lattice. For i € N, denote by Mp() =1i-
M, the lattice obtained by pushing Mp by i. Finally, we define Z, = {ie N¢ : p; ¢
ij forsome 1 < j <d} as an index set of N such that for any i #j e Ly, Mpd N
My (j) = 9. The following lemmas give the disjoint decomposition of N¢ which is the
N4 version of [1, Lemma 2.1].

https://doi.org/10.1017/etds.2023.48 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2023.48

1246

J. Ban et al

0.98

0.96

094

092

09T

dimy, E(a)

0.88

086

0.84

082

0.8 . L A \ L A A
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

4%

FIGURE 1. The spectrum « +— dimpg (E(®)).

LEMMA 2.1. For p1, p2, ..., Ppa = 2,

N = | | Mp@.
ieZ,
More notation is needed to characterize the partition of [1, N]| forN = (Ny, ..., Ny) €

N?. We define Inye ={i € [[1, N]] : [Mp() N [[1, N]I| = £}, where | - | denotes cardinality.
The following lemma gives the limit of the density of Jn;¢ N Zp which is the N version

of [1,

Lemma 2.2].

LEMMA 2.2. For N1, Na, ..., Ng, and £ > 1, we have the following assertions.

ey
@
3
“

el = TTi=y LN/t = Tl LNk / i)

MmN oo [INe N Zpl/IINel = 1= 1/p1 -+ - pa.

MmN oo [ TNt N Zpl /N1 -+ Nao= (p1 -+ pa — D?/(p1 - pa)* .

imN_ o0 1/(N7 - - - Ng) ZévzllNd |u7N;€ mIp| log Fy = Z?il 1imN—>oo|u7N;Z mIpl/
Np--- Nglog Fy.

We decompose Enl\f] as follows:

ZEZd _ |_| SMP(1)9

ieZp

where S ={0,1,...,m — 1}.
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Let ¢ be a probability measure on X,,. We consider u as a measure on SMp® | wwhich
is identified with X,,, for every i € Z,. Then we define the infinite product measure P, on
|_|i€Ip SMp® of copies of . More precisely, for any word u of size [1, N]], we define

Puu) =[] wdulrmuonrsg): (22)
i€Z,NILN]

where [u«] denotes the cylinder of all words starting with u.

3. Proof of Theorem 1.3

Before embarking on the proof of Theorem 1.3, we sketch out the flow of the proof for
readers’ convenience. We first decompose the N¢ lattice into disjoint one-dimensional
sublattices, then define the probability measure PP, on X g. Subsequently, we calculate

the pointwise dimension (cf. equation (23)) at u € Enl\jd,

—logP
oo (P, ) =Nlim og u[bt|lll,N]]]’ 23)

0o Ny--- Ny
and the Hausdorff dimension of P, (cf. equation (24), also see [8] for dimension of a
measure),

dimy (P,) = inf{dimpy (F) : F Borel, P,,(F) = 1}, 24)

to obtain the lower bound of dimg (X g) (Lemma 3.1). Finally, we maximize the measure
dimension dimg (P,) (Lemma 3.2), and find an upper bound of dimH(Xg) (Lemma 3.3)
to obtain the Hausdorff dimension of X g.

LEMMA 3.1. (N? version of [16, Proposition 2.3]) Let = X4 be a shift of finite type on
E,IE and w be a probability measure on Q2. Then,

dimjoc(Py, x) = s(2, u)  for Py -almost every (a.e.) x € X", (25)
where
0 W
Hy, (Br)
S(Qu) =1 pa— DY — (26)
P b ,; (p1 -+ - p)¥H!

with By is the partition of Q2 into cylinders of length k and

HE(B) == ) (@) log,, ().

a e

Therefore, dimpy (P,) = s(2, ), and dimH(Xg) > 5(2, 1).

Proof. To obtain dimyec (P, u) = s(2, u) for Py-ae. u. We prove that for every
Z], @2, ey Za' e Nand ¢ = minlf,-fd Z,’,
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¢
..~ log Py [ulpi Nyl Hyy (Br)
1)1 f : > . —1 for P, -a.e. u,
W) ot =3 =N 2 m ) T e forBuac
and
—logP
(2) lim sup 0g Bylulp.ny]
N—oo Ni--- Ny
¢ Iz
Hy, (Br) (£ +1) log,, (2m)
<(p1---pa—1>2 for P, -a.e. u.
; (P p)*t T (pr- - pa)t g

Fixing ¢4, . .., €4 € N, we can restrict to N; = pfir,- and r; € Nforall 1 <i <d. Since
for p'ri < Ni < p{'(ri + 1). 1 < i < d. we have

— log Pylulpingl log ]PMM[[L(pflrl ~~~~~ Pﬁd’d)ﬂ]
Ni--- Ny - pfl(r1+1)"'l7§d(’”d+1)
_ ryeeerg — log P“M[[L(pflrl ,,,,, Pﬁd’d)ﬂ]
ri+D--@a+1 Pfl”l"'pfldrd ,

which implies that

—log Py ful ¢ ]

—log P L(p,!
lim inf —°8 wle Ny ] lim inf 1Py P pgr )

N>oo Ni---Na M ld ™00 pir - pyira

The lim sup is dealt with similarly.
Recall

Ine NTp = {i € T, N1, NT : [Mp@) N1, N]|| = €}

The method below estimates the main part G and remainder 7, which is similar to that of
Kenyon et al [16]. Let

)2
=J U Mpdnii,ND

k=1 ieInaNTp
and
Hwn :=[[1,N]| — On.
Then by the definition of the measure P,,, we have

PululpiNg] = Pululggl - Pululpy].
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CLAIM 1. We have

¢
Pululgyl = 1_[ 1_[ Pplul mpaynriNg]
k=1 ieInxNIp

¢
=1_[ H wlul ppaynpNg -

k=1 iEJN;kﬂIp

Proof of Claim 1. The proof comes directly from the definition of P, and it is omitted. []

CLAIM 2. Forallk < ¥,

3 — log,, lu| pmyanpiNgl

H (B,
(1 pa— PN Naf(pr - piy

iEjN;kﬂIp
2 .
as Ny = p,'ri > oofor1 <i < dand P-a.e. u.

Proof of Claim 2. Since the u — — log,, ulu| MpnpiNy] are independent and identi-
cally distributed (i.i.d.) for i € Inx N Zp, their expectation equals H}, (Br). Note that

(p1-++pa— 1Ny -+ Ng

|INk N Zp| =
P (p1 -+ p)FH!

Fixing k < min;<;<4 ¢; and taking N; = pfi ri,ri = oo forall 1 <i < d, we get infinite
i.i.d. random variables. The proof is completed by the law of large numbers (LLN). O

Then item (1) is followed by

— log,, Ppululgyl

3
3) Ni-- Ny
B XE: (p1- - pa—1) 5 — log,, f2[ul My Ng]
- k+1 —1)2 k+1
o PPt f g (P pa = DTN Naf (pre s pa)™)

¢ 2 gkt
(p1 -+ pa— D"Hy (Br)
— ,; (p1 -+ pa)t!

and

@ Pylulping] < Pyululgyl

To prove item (2), we work with P, [u]3,]. Since

Y4
Ny - - Ngk
HNl =Ny~ Ng=» (p1-pg— D) ———
,; (p1 -+ pa)**!
Ni---N
=‘—"Z[(z+1)——}
(p1---pa) Pl Dd
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d
=+ ][]pn -
i=1

pl P pd im
d
li—t
<(E+1)1_[pl. Ti,
i=1
then
o0 o0
Yoo Y e oo
Flyeetg=1 Iseetd=1
d li—L
where C =[( + 1) —€/p1--- pal [[j=; P;' > 0.
Define

SN = € X8 : Bylulrag] < (2) ),
Since there are at most m !N/ cylinder sets [u|3, ], we have

P, (S(HN)) < 271N,

This implies
o o
Y O PuSHN) = Y 27N <oo
Flyeenstg=1 Flseenstd=1
Thus,
o0
li =0.
Jim T Pu(S(HN) =0
r1=N1,...,rq=Ng
That is,
o0
IP’M( N U S(?—LN)) =0.
Ni,....Ng>1r1=Ny,...rq=Ny
Hence for P, -a.e. u € Xg, there exists My (u), ..., My(u) € N such that u ¢ S(HN) for
all Ny = pi'ri = My(u), . .., Ng = py'ra > Ma(u). For such u and N; > M;(u) for all

1 <i <d, we have

—log,, P, [ulyy] - |HN| log,, (2m) - £+ 1) log,,(2m)
Ni---Ng Ni---Ng (p1---pa)t

The proof is complete. O

LEMMA 3.2. (Nd version of [16, Corollary 2.6]) Let A be a primitive m x m 0-1 matrix
and Q = X 4 be the corresponding subshift of finite type. Let t = (ti)f":_ol be the solution of
equation (18). Then the unique optimal measure on X 4 is Markov, with the vector of initial

probabilities P = (P,-);”;O1 = (Z?ZO] z‘,-)_1 t and the matrix of transition probabilities
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_ tj . ..
(Pip! where pij = iy AG, ) = 1. @7
i

Moreover, s(2, ) = (p1 - - - pa — 1) log,, 1y, where tgl'"p” = Z;":Bl f.

Proof. Since

= Hy(Bo _[ = Hy(B) & Hp(Br(0) ]
,;(plmpd)k*‘ B ,;(m---pd)"“ g ];(Pl"'Pd)k'H
and

we have
pr---pa—1
S(Q,P)=—[H“( 1)+ PS(Q, }

where P; = u[i] and w; is the conditional measures of w on €2;.

Since the measure [P, is completely determined by the probability vector P = (P; )m !
and the measures p; on €2;, the optimizations on €2; are independent forall0 <i <m — 1.
Thus, if P, is optimal for €2, then p; is optimal for €;,0 < i < m — 1. Since

m;lx [H“(,Bl)-i- ZPS(Q ):|
m—1 m—1
:max[—ZP,-longi—i— ZPS(Q)}
P i=0 P

m—1
= m;lx [ X(; P;(a; — log,, P,‘)i|,
=

we have

s(2) : = max{s(2, P,) : uis a probability measure on £2}

-1
= max pl—d[z P;(a; — log,, P)]

P P1-- - Dd e

where a; = s(2;)/p1--- pa — 1.
Then we obtain the optimal probability vector

mé ti

m—1 p1pd”’
Z] =0 m* t¢

— Py, Pi=

ty = mS(Q)/PI”'Pd—l, t = mS(Qi)/[’l"'Pd—l, i<m-—1,
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and

m—1

Pl Pd _ zz:t’

Due to the conditional entropy, we have
Hyy (Be+1) = Hyy (Br) + Hyy (Bet 1185,

where for two partitions « and g,

Hi@|B) =) (— > W(A|B) log,, M(AIB))M(B)-

Bep Aea
Then,
o Iz
Hy (Br)
SQUP)=(p1 - pa— 1) ———
® ];(pl...pd)k-l—]
p1---pa—1 Hy (Br+11Br)
= (—>[H“(ﬂ )+ Z PP |
p1 Dd (p1 -+ pa)
Observe that
m—1 f :
1 1
Hri’f(ﬂl) = - Z tpl...pd logm(tplpd)
i=0 ¢ ¢
= p1--- palog, 1y Z p1 57 108, ti
i=0 ¢
m—1
=p1--- palog, ty — Z wli] log,, t;
i=0
and

uw tuu)
HE BB = 3 M[u]<— Y g, (t,,—,,)>

[ulepy wiluwleBryr U

1,
= > M[M]<P1"'Pd g tu = D, gy 10 fun

[uleBk wiluwlefrrr ¥
=pi---pa Y, wlullog, ty— Y plvllog, b
[ulepBk U]EﬂkJr]

where p[uw] = pulty,/tF""7¢. Then we have
s(Q,Pu) = (p1--- pa—1) log, ty

The proof is complete.
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LEMMA 3.3. (N9 version of [16, Lemma 5.2]) Let u be a Markov measure on 2, with the
vector of initial probabilities P = (Z?’;Ol 1)~ 't and the matrix of transition probabilities

_ lj A
(i)' where pj = T AGH =1 (28)
1

Then,

.o log Py ([x[piNgD)

lim inf -——————— < -+-pg—1)log,, t

im in NN, <1 pa—1)log, 14
forallx Xg.
Proof. The proof is similar to that of Lemma 4.9 when ¢ is a zero function. O

LEMMA 3.4. (N? version of [16, Proposition 2.4]) Let Q = 4 be a shift of finite type on
E}E. Then,

dimy (X%) = sup dimy (P,) = sup s(2, ), (29)
2 2
where the supremum is over the Borel probability measures on 2.

Proof. By Lemmas 4.11 and 3.3, we will then get dimH(Xg) <(p1---pa—1log, ty.
Equation (29) then follows by Lemma 3.2. O

Proof of Theorem 1.3. The proof is complete by Lemmas 3.1 and 3.4.

4. Proof of Theorem 1.5

The stages of the proof of Theorem 1.5 follow Fan, Schmeling, and Wu [11]. First, we
establish the LLN in our setting (Lemma 4.4), then use the unique positive solution
of nonlinear operator N to construct a family of telescopic product measures PP, in
equations (35) and (36). Then the convexity of such solution, LLN, and Billingsley
lemma (Lemma 4.11) give the upper and lower bound of Hausdorff dimension of E(«)
(Lemma 4.12 and Lemma 4.16 respectively), and we establish Theorem 4.1 in §4.1. To
complete the proof of Theorem 1.5, we prove the case when s tends to oo in §4.2
(Theorems 4.18 and 4.19).

4.1. The case when s is finite

THEOREM 4.1

1) Ifa= P(//)(sa)for some sy € R, then

_Pé(sot)sa + P(p(sot) _ P(;;(Of)
(p1---pa)~"logm — (pi--- pa)t~'logm’

(2) Fora e (P)(~00), Py(0)], dimy E¥(a) = dimy E(a).
(3) Fora e [P(/’)(O), Pé,(—i—oo)), dimyg E~ (o) = dimgy E(a).

dimyg E(x) =

Proof. The proof follows from Lemmas 4.16 and 4.12 below. O
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Consider a probability space (Zﬁd, P.). Let Xj(x) =x; be the jth coordinate
projection. For i € Z,, consider the process YW = (x j)jeM,)- Then, by the definition of
IP,., the following fact is obvious.

LEMMA 4.2. The processes Y® = (X§)je My forie 1, are P -independent and iden-
tically distributed with | as the common probability law.

Now we consider (UieIp sMp® IP,.) as a probability space (€2, P,). Let (Fj)jene be
functions defined on %,,. For each J, there exists a unique i(j) € Z such that j € Mp(i(j)).
Then, x > Fj(x|m,ag)) defines a random variable on €. Later, we will study the
LLN for variables {Fj(x| Mp(i(j)))}jeNd. Notice that if i(j) # i(j'), then the two variables
Fj(xI mpagy) and Fy (x| M) are independent. However, if i(j) = i(j’), they are not
independent in general. To prove the LLN, we will need the following technical lemma
which allows us to compute the expectation of the product of Fj(x|a1,()))-

LEMMA 4.3. Let (Fj)jeNd be functions defined on Z,,. Then for any N1, Np, ..., Ng > 1,
we have
Ni---Nyg
Epu< I ﬂ(xwp(m)))) =[] 11 EM( I1 Fy<y>).
jel1,NT] =1 ieInenTy yeMpMHNILN]

In particular, for any function G defined on %y, for any i € N¢,

Ep, G (x| Mmpi) = EuG Q).

Proof. Let
on® = ] FiGlmpion
JElLN]
and
oniw =[] FGlma)-

yeMpHNI1N]

Since the variables x| o1, ) for i € Zp are independent under P, (by Lemma 4.2), we have

Ep,ON= [] FEzr.Oni (30)

ieZ,N[1,N]]

Then by the definition of Jn;¢ N Zp, we can rewrite equation (30) to get

Ny-+Ng
Ep,On= [] [[ Ee.On:
=1 ieIneNTp
However, the marginal measures on § Mp® of P, are equal to u. So,

EP,LQNFEM( I Fy(y>).

yeMpHNILN]
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Now, for any function G defined on %, and any j € N?, if we set Fi=Gand Fy =1
for j’ # j, we have
Ep, G (x| Mpdgy) = EnG ().
The proof is thus completed. O

To prove the LLN, we need the following result. Recall that the covariance of two
bounded functions f, g with respect to u is defined by

covy(f, ) =Eul(f —Euf)g—E gl

When the functions (Fj);cne are all the same function F, we have the following LLN.

LEMMA 4.4. Let F be a function defined on X,,. Suppose that there exist C > 0 and
0 <n < p1--- pa such that for any i € I, and any €1, £, € NU {0},

covy (Fiptrs Fipn) = cplatt)/2,

(pt = (pf, pg, cee pﬁ,).) Then for P, -a.e. x € Z,IEd,

. 1
N N, 2 FOlaig) — B =0
Jel1.N]

Proof. Without loss of generality, we may assume Ep, F'(x|r,ig)) = 0 for all j € N9,
Our goal is to prove limn_, oo YN = 0 [P, -almost everywhere, where

1

W= Y X; with Xj = F(x|adgy)-
! 4 jelN]

It is enough to show

o0

> Ep,Y§ < +oo.

Ni,N3,....,Ng=1
Notice that
1
2
BN e, 2 B b
Jrj2€[1.N]]

By Lemma 4.2, we have Ep, Xj, Xj, # 0 only if i(ji) = i(j2). So,
Z Ep, Xj Xj, = Z Z Ep, Xj; X,
Jr.J2€lL.N]] I€ZpNILNI j1.j2eMpHNILLN]

By Lemma 2.2, we can rewrite the above sum as

Ni---Ng
> 2 Y. Ep XX (32)

=1 iEjN;gﬂIp jl,jzeMp(i)ﬂ[[l,N]]

Recall that Ep, Xj = E, F for all je N? (Lemma 4.3). For ji,j» € Mp@® N1, NI,
we write ji =i-p‘ and jo=1i-p®? with 0 <€, €, < |Mp@) N1, NIJ|. By the
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Cauchy—Schwarz inequality and hypothesis, we obtain

|Ep, Xj, Xj,| < E, F? < CyMeOOILNIL
So,

S Er, Xj Xpl < CIMp@) N [1, N2y e®OINIL
Jrd2eMpHNILN]

Substituting this estimate into equation (32) and using Lemma 2.2, we get

vy

=1 iEJN;g ﬂIp

> B, XjXj| <
J1d2€lLN]

min {Llog,, Ni]}

- x (1 L%J—ﬂ )

I.lngl»--pd d
k=1 Pk k=1L Pk

=1
Then, applying Lemma 2.2, the last sum is bounded by

log,,..p; N1-+Na)

Ni---N e —1)2 I
(N1 A)(p1---pa—1 ; o1 o)

n Liog,, ., N1--Na]
=o(n~N - Ny ———
P1: - Pd

=O((Ny -~ Na)' ™)

627]2

for some € > 0, which gives the convergence of the series preceding equation (31). The
proof is complete. O

LEMMA 4.5. Let u be any probability measure on X, and let F € F(S*%). For P,-a.e.
xezlV

m > we have

. 1
1\11me M—N Z F(Xj, ey Xj,pe—l)

4 jelNI
00 1 k—1
2
=(p1---pa—1) Z m ZE;LF(yj,---,yj—s-l—l)-
k=1 j=0

Proof. Foreach j € [[1, NJ], take

F(x|/\/lp(i(j))) = F(xj, ..., Xj,pzfl).

Then, the proof follows by Lemmas 2.2 and 4.4. O
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LEMMA 4.6. ForP,-a.e. x € Eﬁd, we have

where He() = — 3, .4, (a1 - - - ac]) log u(lay - - - ag).

Proof. The proof is similar to the proof of [11, Theorem 1.3] combined with Lemmas 2.1,
2.2, and 4.5. ]

Let F(St~!, RT) denote the cone of non-negative real functions on St~ and s € R.
The nonlinear operator N : F(S*~!, RT) — F(§¢~!, RY) is defined by

) 1/p1-pa

Nsy(ar, az, ..., a01) = (Z e Pzt y (a5 apy, j)) . (33)
jes
Define the pressure function by
Py(s) = (p1 - pa — D(p1 -+ - pa) "2 log > (). (34)
jes

where ¥ is the unique strictly positive fixed point of A;. The function v/, is defined on

S¢1 and it can be extended on S* for all 1 < k < £ — 2 by induction: fora € Sk,

1/p1++pa
y® (@) = ( Yo v, j)) .
jes
Then we defined (¢ — 1)-step Markov measure (s on X, with the initial law

-1

I//S(a17 A ] aj)
ws([at, ..., ae—1]) = (35)
' jl_lzllﬂfl Play, ..., a;-1)
and the transition probability
Wv(aZ’ Lo, ap)
Os([ar. . ...ae-1l [az. . . .. ap]) = ¥ —— . (36)
' yl P ay, L aemy)
In the following, we are going to establish a relation between the mass Py, ([x{v Lo Nd])
and the multiple ergodic sum Zjel[l,N]] o (xj, . .. ,xj,pz_|). This can be regarded as the

Gibbs property of the measure P, .
Recall that for any j € N, there is a unique i(j) € 7y such that j =i(j) - p/.j>0.
Define

NN LLOROR SRR R R VRS
~ G- p Y, G - pl) ifj=e— 1

d
For x = (xj)jend € =, we define

BN(x) = ) log ¥ (xly).

jel1.N]

The following formula is a consequence of the definitions of u, and P, .
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LEMMA 4.7. We have

log Py, (xlpNgD = > @t s Xjpe-1)
JelLIN/pt=1]]

Ni--- Ny
_ Nl"'Nd_ - = plpdloglﬁs(@)
Pl Pd

— Pt paBNp (X) + BN(X).
(For € > 1, [N/p‘] = (LN1/pi). ... LNa/Pg]).)
Proof. By the definition of P, , we have
log Py, ([x [Ny = Z log s (x| My @npiNgD- 37)
ieZ,NILN]
However, by the definition of pug, if [My (1) N [[1, N]]| < £ — 1, we have

[Mp@N[1N]|-1

log s ([x| My iynpiNgD) = > log
j=0

ST g, )

1 Pd °
ke M, ()N[1N] s X3y )

ws(-xis e ey xi<pj)
wsplmpd(xi’ LRI xi-pjfl)

(38)

If IMp@@) N [[1, NTI| = £, log s (x| M, Gynpi.Ng D is equal to

¢
Vs (i, - - o, Xipi)

Y P G L X )

-2
log

Jj=0
MpOHNILN]|-1

N | P(l)i[ T log WS (xi~p-f7[+2’ ey Xi,pj)e

P1Pd
s (xi.pj7/é+l, ey Xi,pjfl)

SP( o —+1 5w )

j=t—1
Mp@N[LN]|—1 Mp@N[LN]|—1
[MpHNILN]] U (i, - . . ’xi‘p-f) [MpHNILN]]

= log + s O(Xg i1y - o« s Xipi)
2 U (s Xipie1) 2 P "

=0 =1
Yy (x[a)
= D log—p o+ > (X1, (39)
ke MpON[1N] s T2 py) ke Mp@HN[1.N] k<N

where Kk < Nmeans k; < N; foralll <i <d.
Substituting equations (38) and (39) into equation (37), we get

log Py, ([xIpiNg]) = Sy + s SN (40)
where
Y5 (X]5y)
SL = log — kT
N Z Z w!’l pd(‘xb%k/m)

i€ZpNI1N] ke MpHN[1.N]]

NEEDY > (x[).

ieZpN[1.N] ke MpHNI1LN]k<N
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For any fixed i € Z, N [[1, N]], we write

> log — o) _ > log Y(xliy)

P1Pd -
ke Mp{HNILNT Vs (xlﬂk/m) ke Mp{HNILNT

— P11 Pd Z 1Og ws(xb»tk/m)'

ke MpHNI1NT
Recall that if

Mp@ N[, N] = {i,i-p,...,i-p"},
then we denote
Mp@ NI IN/pIT = {ii-p,....i-pP7 1,

and when k = i, we have x Ip = @.
Then we can write

Vs (% [50)
Yo log e = —pipa) Y log y(xly)
ke MpHNLLN] vs Ol srpy) ke MpHNI1,IN/p]1
— p1 -+ palog Ys(9)

+ > log Y5 (x[1,,)-
ke MpON[1N]k-pg M, HNI1N]

Now we take the sum over i € Z, N [[1, N]| to get

S\=0=pi-pa) Y logy(xly)
k=<|[N/p]

Nl"'Nd
Pl Pd

+ ) log Ys(xly).

k<N.k-pg[LN]
‘We can rewrite
A=pi---pa) Y logylely)+ D logy(xly)
k=[N/p] k=N.k-p¢[[1.N]]
= —p1--- pdB|N/p)(x) + BN(X).

Thus,
) Ni--- Ny
SN=-—p1-+ pa\N1--+Ng— m log s (W) — p1 - - - paB|N/p)(x) + BN (x).

However, we have
S{\/J = Z 16T R )Cj,p/z—l).
JEMLIN/pt—L]]]

Substituting these expressions of S{V and S{\’I into equation (40), we get the desired
result. H
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4.1.1. Upper bound for the Hausdorff dimension. The purpose of this subsection is to
provide a few lemmas needed to prove Lemma 4.12. The following results will be useful
for estimation of the pointwise dimensions of P, .

LEMMA 4.8. [11, Lemma 7.1] Let (a,)n>1 be a bounded sequence of non-negative real
numbers. Then,

lgigf(atn/ﬂ —ay) <0.
We define
1
E+(a) = {(Xj)jeNd S an\f] 2 lim sup — Z O1C TN Xj_pZ—l) < Ol}
N—oo jel 1N
and
— N e |
E (o) := {()Cj)jeNd €, : lll\llggéfﬁ ‘ Z Pxj, . oo, Xjpe-1) = a}.
Jel1L.N]
It is clear that
E(a) = ET (@) N E™ ().
The upper bound of pointwise dimensions are obtained.
LEMMA 4.9. For every x € E*(a), we have

P(s) —as
(p1-- p)t~"logm’

foralls <0, DP,,x) <

For every x € E™ («), we have
P(s) —as
(p1-- pa)t~"logm’

foralls >0, DP,,x) <

Consequently, for every x € E (), we have
P(s) —as
pi---pa)tlogm’

foralls e R, DP,, x) < (

Proof. The proof is based on Lemma 4.7, which implies that for any x € an\;d and

Ny, ..., Ng = 1, we have
log P
DMy, x):=— og Py, ([x|1,nyg )
Ny Ny
s
= NN, 2 Pl i)

JelLIN/p=1]]
+(Nl"'Nd—LNI"'Nd/Pl"'PdJ)p
Ni--- Ny
B|N/p) (%) __ Bn(x)
Ni---Na/p1---pa Ni---Ng

1+ palog ¥y (¥)
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Since the function v is bounded, so is the sequence (By.pi (x)/k1 p’i - kg Piz)?io Then
by Lemma 4.8 with n = klp’i e kdpé and g = p1 - - - p4, we have

B B
lim inf NpI() __Bn@)
N—oo Ni---Na/pi---pa Ni---Nag
By ,i-1(x) By, (x)
< lim inf ——— L )
1—> 0 klpl kdpd klplkdpd
Therefore,
. s
Q(Pﬂs’ x) =< lll\lrggf_m Z (p()Cj, ey )Cj,pli—l)
JelLIN/p*1]1
+ (p1 -+ pa— 1 log, Vs (D).
Now suppose that x € E™ () and s < 0. Since
1

lim inf —————— Z QX s Xjpe-1)

Nooo Nj---N,
o 4 jelLIN/pt1 ]
1
< lim sup NN, Z o(Xj, . .- xj,peq)
N,
N=o0 JelLIN/pE1 ]
o

<—
(p1-- - pa)*

we have
S
liminf ——— S
minf -T2 PO )
JelLIN/pt=1]]
.. 1
< -5 lll\lnilo%f l—j\fd Z (p()Cj, ey .Xj,pe—l)
JelLIN/pt=1]T
—Su
E —@—l’
(p1--- pa)
so that
D(P,,. x) < ik +( 1) log,, ¥ (@)
D 0 X) = — P11 Pd— 0og
a (p1 -+ pa)"logm "
Py(s) —as

~(p1- - pa)t " logm’

where the last equation follows from

Py(s) = (p1-+-pa— D(p1 - pa) 2 log ¥ ¥s(j)
jes
= (p1-+pa—D(p1-- pa)'~" log ¥ (@)

By an analogous argument, we can prove the same result for x € E~ («) and s > 0. The
proof is complete. O
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Recall that L, is the set of « such that E () # . The following lemma gives the range
of Ly.

LEMMA 4.10. We have L, C [P(;(—oo), Pé(—}—oo)].

Proof. We prove it by contradiction. Suppose that E(«) # ) for some o < P(;(—oo). Let
x € E(a). Then by Lemma 4.9, we have

lim inf — log P, ([x[p1.np)) < Py(s) —as
N—o0 Ny--- Ny (p1 -+ pa) " logm

for all s € R. 41)

However, by mean value theorem, we have
Py(s) —as = Py(s) — Py(0) —as + Py,(0) = P(;(ns)s —as + P,(0) 42)

for some real number 7, between 0 and s. Since P, is convex, P(; is increasing on R.
Assume s < 0, we have

P,(ns)s — as + Py(0) < Py (—00)s —as + Py(0) = (P, (—00) —a)s + Py (0). (43)

Since P(;(—oo) — o > 0, we deduce from equations (42) and (43) that for s close to —oo,
we have Py(s) — as < 0. Then by equation (41), for s small enough, we obtain

tim inf — 108 Puc (X lnsa) -

07
N—oo Ny--- Ny

which implies Py, ([x|1,vy;,...N.H1)) > 1 with minj<j<g N;j; — 00 as i — oo. This
contradicts the fact that P,  is a probability measure on Enl\jd. Thus, we have proved
that for o such that E(«) # @, we have o > P(;(—oo). By a similar argument, we have
a < P(/’,(—I—oo). O

LEMMA 4.11. (Billingsley’s lemma [4]) Let E be a Borel set in E,IE(I and let v be a finite
Borel measure on E,de.

(1) We have dimy (E) > cif v(E) > 0 and D(v, x) > c for v-a.e. x.

(2) We have dimy(E) < cif D(v,x) <cforallx € E.

Recall that
P; (o) = siglg(P(p (s) — as).

An upper bound of the Hausdorff dimensions of level sets is a direct consequence of
Lemmas 4.9 and 4.11.

LEMMA 4.12. Forany o € (P;(—oo), P(/’J (0)), we have

P —
dimy E*(a) < inf 0(s) =
s<0 (p1 -+ pa)*~' logm

For any a € (P(; (0), P(;,(—i—oo)), we have

P —
dimy E~(a) < inf 0(s) =
520 (p1 -+ pa)*~" logm
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In particular, we have

) Py ()
dimyg E(a) < r=) .
(p1---pa)~"logm

4.1.2. Lower bound for the Hausdorff dimension. ~This subsection is intended to estab-
lish Lemma 4.16. First, we need to do some preparations for proving the Ruelle-type
formula below. We deduce some identities concerning the functions ;.

Recall that v (a) are defined fora € | J; ;-4 Sk. Fora € S~!, we have

Yl @) =) e Py (Ta, b)
beS

and fora € S¥, 1 <k < ¢ — 2, we have

PP a) =) y(a, b).

beS

Differentiating the two sides of each of the above two equations with respect to s, we get
foralls € S¢1,

prec pa¥l T @pl@) = e D g(a, by (Ta, by + Y Pyl (Ta, b)
beS beS

and for all a € U1§k55_2 Sk,
pre pa¥?T T @yyl@) = Y wia. b).
beS

Dividing these equations by ¥/'""?¢ (a) (for different a), we get the following lemma.

LEMMA 4.13. Foranya € St1 we have

@ e Dg@ byys(Tab) | s e y(Tah)
Pty @ T A PP Syl ()
and for any a € Uy <1 <¢_» Sk,
¥!(a) v!(a, b)
P pa =) S (45)
Vs(a) = v @)
‘We denote
vi(a) @Dy (Ta, b) o
= = — -~ (forall .
w(a) 1ﬂé(a),v(a) Py ST (foralla € S*71)

Then we have the following identities.
LEMMA 4.14. (Nd version of [11, Lemma 7.7 and Theorem 5.1]) For any n € N, we have

EuoOrt = pr - paBpw ) — B o) (foralln > 0),  (46)

Eu w2 =E v (foralin > 1), (47)
P, (s)

B w(yg?) = ,
o pr---pa(pr---pa—1)

(48)
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and
k—1
/
pd)kﬂ ZIEM(y,,...,y,-M_l) =P)(s).  (49)

- pa— 1) Z

Proof. Using a similar argument from Lemma 4.5, the proof is almost identical to the
proof of of [11, Lemma 7.7 and Theorem 5.1] by changing g to p; - - - pg. O

(p1 -

As an application of Lemma 4.14, we get the following formula for dimy P, .

LEMMA 4.15. For any s € R, we have

—sP/(s) + Py(s)
dimy P, = =P + Fos)

(p1---p)
Proof. By Lemma 4.7, we have
log P, ([xIi,ngD s Z
_ L > = O(Xjy - - oy Xype-1)
Ni---N, Ni---N Jp
! d ! ¢ jen,IN/p-
(Ny -+ Ng—|Ni---Ng/p1---pdal)
+ P - pd log s (¥)
Ni--- Ny
B|N/pj(x) Bn(x)

+ - .
Niy---Na/pi---pa Ni---Ng

Applying the LLN to the function v/, we get the P, -almost everywhere existence of the
limit limN— 0 BN(x)/N1 - - - Ng. So,
lim B|N/p) (%) _ BN(x)
N—oco Ny -+ Ng/p1---ps Ni---Ng

However, by the Lemmas 4.14 and 4.5, we have

. 1
lim NN Z o(xj, ..., Xj_pe—l)

N—oo N i
jel1,IN/p=11
/
P¢(S)

=0, [Py, -almost everywhere.

IP,.,-almost everywhere.

)671 ’

So we obtain that for P, -a.e. x € EN

108 Py (lpsg]) _ —sP,(s) + Py(s)
N—oo Ni---Ng (p1- - pa)*~!

The proof is complete. O

By Lemmas 4.14, 4.15, and Billingsley’s lemma, we get the following lower bound for
dimy E(P(; (5)).
LEMMA 4.16. For any s € R, we have
—sP’ () + Py(s)
(1 p)t T logm’

dimgy E(P () >
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4.2. The case when s, tends to £00

LEMMA 4.17. [11, Theorem 5.6] Suppose that omin < dmax. Then:
@) Pq/) (s) is strictly increasing on R;
(2)  amin < qu(—OO) < Pé("‘oo) =< Omax-

Proof. The proof is similar to [11, Theorem 5.6]. Thus, we omit it. O

THEOREM 4.18

(1)  We have the equality
Omin = Pq;(—OO)
if and only if there exists a sequence (y;)72, € Xy, such that

O(Vks Yh+1s + « -5 Yktt—1) = Omin  forall k > 1.

(2) We have the equality
max = Py, (+00)
if and only if there exists a sequence (x;)72, € X, such that
O(Xky Xkt 15+ + > Xppt—1) = Omax  forallk > 1.

Proof. We give the proof of the criterion for oy, = P(; (—00). That for P(; (+00) = amax
is similar.
Sufficient condition. Suppose that there exists a sequence (Zi);O:o € X, such that
©(Zjs Zj+15 - - - » Zj+£—1) = &min forall j > 0.

We are going to prove that omin = P(;(—oo). By Lemma 4.17, we have o < Pgl’,(—oo),

. d
thus we only need to show that oty > P(/’, (—00). To see this, we need to find an x € 25

such that

. 1
I LS s =
Jell1.N]

Then by Lemma 4.10, amin € [P(;(—oo), P(;(+oo)], SO Cmin > P(;(—oo). We can do this
by choosing x = (xj)jene = HieIp (Xi.pi) 720 With

(Xipi) oo = (zj)52y forallie Z,.
Necessary condition. Suppose that there is no (z j)?o:O € %, such that
©(Zj, Zj4+1s - - -2 Zjpe—1) = @min  forall j > 0.
We show that there exists an € > 0 such that
P(;(s) > Omin +€ foralls € R,

which will imply that P(;(—oo) > O'min-
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n+¢—1

From the hypothesis, we deduce that there are no words z;, with n > m* such that

O(Zj, Zj41s -+ - » Zj4l—1) = QAmin forall0 < j < n. (50)

01

. -1
Indeed, since zj I g

€ St for all 0 < j < n, there are at most m® choices for z;
for any word with n > m?, there exist at least two Jj1 < j2 €10, ..., n} such that

JiHe=1 _ _ja+t—1
Ji i

Then if the word z =1 satisfies equation (50), the infinite sequence
(}’j)?o:o = (02—
would verify that
@(Yj, Yjtls -5 Yjre—1) = Umin Tforall j > 0.

. . . tip_ e
This contradicts the hypothesis. We conclude that for any word z; =l e gm' =1 there
exists at leastone 0 < j < m* such that

/
©(Zjs Zjtls - -+ > Tj+b—1) = Cppin > Cmin,

where o/ . is the second smallest value of ¢ over st
We deduce from the above discussions that for any (z /)?i() € X, and k > 0, we have

k+m?

¢ ¢
Z O(Zjs Zjtls e - oo Zjpo—1) = M min + oty = (M° + Dotmin + 8,
=k

where § = ar’n — omin > 0. This implies that for any (z /) 20 € Xy and n > 1, we have

n
s / ) j — 2 i - . 1 8~ 51
Z ©(zj, 2j+1 Zj+e—1) = NOmin + \‘me T 1J (51

By Lemma 4.14, we have

o
1
Pys)=(p1- pa—1D>Y = Y B0 YD)
iy (P1o Pt
) 1 k—1

=(p1---pa—D)

k=1

——7 B, Wjs - Yjre—1)- (52)
oy s ;}rp Vive- o Vit

By equations (51) and (52), we get

/ = —1 k
P¢(S) =1 pd— 1)2 X_: (p1 - - - pa)kt! (kOlmin t Lm( + 1J8>
|_k/(m +1)]
= Cmin ) t -1
min +0(P1 Y Z (p1 -+ pa)kt!
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Since
o0 ¢
Lk/(m® +1)]
8(1---d—1)2 — >0,
P P ,; (p1 -+ p)FH!

we have proved that there exists an € > 0 such that P(; (8) > amin + ¢, foralls e R. [

So far, we have calculated dimy E () for a € (P(;(—oo), P(;, (4+00)). Now we turn to
the case when o = P(/’)(—oo) or Pq’)(+oo).

THEOREM 4.19. [11, Theorem 7.11] Ifa = Pq’) (£00), then E(a) # @ and
P(Py(£00)) |
(p1 -+ pa)"logm

dimy E(P)(+00)) =

Proof. The proof of Theorem 4.19 follows from the following three lemmas established
by Fan, Schmeling, and Wu [11]. O

The same argument of Lemma 4.14 is applied for obtaining the lemmas below.

LEMMA 4.20. [11, Proposition 7.12] We have
Pu o (E(P(;(—oo))) =1.
In particular, E(P(/’)(—oo)) £ (.
LEMMA 4.21. [11, Proposition 7.13] We have
—P/(5)Sq + P,(s P*(P! (—o0
dimg P, = lim ﬁ"()“e 1“’() = o “’(“)) .
s=>=00 (py -+ pa)~ logm  (p1---pa)*~" logm

LEMMA 4.22. [11, Proposition 7.14]

P (P)(~00))
(p1-- pa)tVlogm’

dimy E(P)(—00)) =
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