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Abstract. The purpose of this study is two-fold. First, the Hausdorff dimension formula
of the multidimensional multiplicative subshift (MMS) in Nd is presented. This extends
the earlier work of Kenyon et al [Hausdorff dimension for fractals invariant under
multiplicative integers. Ergod. Th. & Dynam. Sys. 32(5) (2012), 1567–1584] from N to Nd .
In addition, the preceding work of the Minkowski dimension of the MMS in Nd is applied
to show that their Hausdorff dimension is strictly less than the Minkowski dimension.
Second, the same technique allows us to investigate the multifractal analysis of multiple
ergodic average in Nd . Precisely, we extend the result of Fan et al, [Multifractal analysis
of some multiple ergodic averages. Adv. Math. 295 (2016), 271–333] of the multifractal
analysis of multiple ergodic average from N to Nd .
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multifractal analysis
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1. Introduction
In this article, we would like to study the following two related topics, namely, the
Hausdorff dimension of multidimensional multiplicative subshifts and the multifractal
analysis of the multiple ergodic average. Before presenting our main results, we give the
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motivation of this study. Let (X, T ) be a topological dynamical system, where T : X → X

is a continuous map on a compact metric space X, and F = (f1, . . . , fd) be a d-tuple of
functions, where fi : X → R is continuous for 1 ≤ i ≤ d . The multiple ergodic theory is
to study the asymptotic behavior of the multiple ergodic average

AnF(x) = 1
n

n−1∑
k=0

f1(T
k

1 (x))f2(T
k

2 (x)) · · · fd(T kd (x)). (1)

Such a problem was initiated by Furstenberg, Katznelson, and Ornstein [13] in his proof
of the Szemerédi’s theorem. The L2-convergence of equation (1) was first considered by
Conze and Lesigne [7], then generalized by Host and Kra [15] when Tj = T j (T j (x)
means the jth iteration of x under T). Bourgain [5] proved the almost everywhere
convergence when d = 2 and fj ∈ L∞(μ) (μ is probability measure on X). Gutman et al
[14] obtained the almost surely convergence when the system is weakly mixing pairwise
independently determined. The reader is referred to [9, 12] for an up-to-date investigation
into this subject.

Let �m = {0, . . . , m− 1} and � ⊆ �N
m be a subshift which is a closed and shift

σ -invariant subset of �N
m with the shift action σ(xi) = xi+1 for all i ∈ N. Suppose S is

the semigroup generated by primes p1, . . . , pk . Set

X
(S)
� = {(xi)∞i=1 ∈ �N

m : x|iS ∈ � for all i ∈ N, gcd(i, S) = 1}, (2)

where gcd(i, S) = 1 means that gcd(i, s) = 1 for all s ∈ S. The authors of [16] call X(S)�
‘multiplicative subshifts’, since it is invariant under the multiplicative action. That is,

x = (xk)k≥1 ∈ X(S)� ⇒ for all i ∈ N, (xik)k≥1 ∈ X(S)� .

It is worth noting that the investigation of X(S)� was initiated by the study of the set
Xp1,p2,...,pk defined below. Namely, if p1, . . . , pk are primes, define

Xp1,p2,...,pk = {(xi)∞i=1 ∈ �N

m : xixip1 · · · xipk = 0, for all i ∈ N}, (3)

and it is clear that Xp1,p2,...,pk is a special case of X(S)� with � being the subshift of
finite type with forbidden set F = {1, . . . , m− 1}k+1. The dimensional theory of the
multiplicative subshifts and the multifractal analysis of the multiple ergodic average attract
more attention and have become popular research topics in recent years (cf. [1, 3, 6, 10,
11, 16–19]). Fan, Liao, and Ma [10] obtained the Hausdorff dimension of the level set of
equation (1) with fi(x) = x1, Ti = T i for all 1 ≤ i ≤ �. More precisely, fix θ ∈ [−1, 1]
and � ≥ 1,

dimH (Bθ ) = 1 − 1
�

+ 1
�
H

(
1 + θ

2

)
, (4)

where

Bθ :=
{
(xk)

∞
k=1 ∈ {−1, 1}N : lim

n→∞
1
n

n∑
k=1

xkx2k · · · x�k = θ

}
(5)
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and H(t) = −t log2 t − (1 − t) log2(1 − t). In the same work of [10], the authors prove
that the Minkowski dimension of X2 (equation (3) with m = 2 and p1 = 2) equals

dimM(X
2) =

∞∑
n=1

log2 Fn

2n+1 , (6)

where {Fn} is the Fibonacci sequence with F1 = 2, F2 = 3, and Fn+2 =Fn+1 + Fn(n≥ 1).
Later, Kenyon, Peres, and Solomyak [16] generalized the work of Fan, Ma, and Liao

[10] to investigate the dimension formula of XqA. Namely, for an integer q ≥ 2,

X
q
A := {(xi)∞i=1 ∈ {0, 1, . . . , m− 1}N : A(xi , xiq) = 1 for all i ∈ N}, (7)

whereA ∈ Mm({0, 1}), andMm({0, 1}) is the space of allm×m 0-1 matrices with entries
being 0 or 1.

THEOREM 1.1. [16, Theorem 1.3]
(1) Let A be a primitive 0-1 matrix. Then,

dimH (X
q
A) = q − 1

q
logm

m−1∑
i=0

ti , (8)

where (ti)m−1
i=0 is a unique positive vector satisfying

t
q
i =

m−1∑
j=0

A(i, j)tj .

(2) The Minkowski dimension of XqA exists and equals

dimM(X
q
A) = (q − 1)2

∞∑
k=1

logm |Ak−1|
qk+1 , (9)

where |A| is the sum of all entries of the matrix A.

Peres et al [17] obtained the Hausdorff dimension and Minkowski dimension of X2,3

(equation (3) with p1 = 2, p2 = 3 and m = 2). One objective of this paper is to extend
Theorem 1.1 from N to Nd (Theorem 1.3).

The multifractal analysis of general multiple ergodic averages was pioneered by Fan,
Schmeling, and Wu [11]. Specifically, they take into account the broader form of the
multiple ergodic average as denoted below. Define the multiple ergodic average

Anϕ(x) = 1
n

n∑
k=1

ϕ(xk , xkq , . . . , xkq�−1), (10)

where ϕ : S� = {0, 1, . . . , m− 1}� → R is a continuous function with respect to the
discrete topology and � ≥ 1, q ≥ 2. The level set with respect to the multiple ergodic
average in equation (10) is defined by

E(α) =
{
(xk)

∞
k=1 ∈ �N

m : lim
n→∞ Anϕ(x) = α

}
, α ∈ R. (11)
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Let s ∈ R, and let F(S�−1, R+) denote the cone of non-negative real functions on S�−1.
The nonlinear operator Ns : F(S�−1, R+) → F(S�−1, R+) is defined by

Nsy(a1, a2, . . . , a�−1) =
( ∑
j∈S

esϕ(a1,a2,...,a�−1,j)y(a2, . . . , a�−1, j)
)1/q

. (12)

Define the pressure function by

Pϕ(s) = (q − 1)q�−2 log
∑
j∈S

ψs(j), (13)

where ψs is a unique strictly positive fixed point of Ns . The function ψs is defined on S�−1

and it can be extended on Sk for all 1 ≤ k ≤ �− 2 by induction. That is, for a ∈ Sk ,

ψ(k)s (a) =
( ∑
j∈S

ψ(k+1)
s (a, j)

)1/q

. (14)

The Legendre transform of Pϕ is defined as

P ∗
ϕ (α) := inf

s∈R(−sα + Pϕ(s)). (15)

Denote by Lϕ the set of α ∈ R such that E(α) 
= ∅. The following theorem is obtained by
Fan, Schmeling, and Wu [11] and Wu [20] for the one-dimensional case.

THEOREM 1.2. ([11, Theorem 1.1], [20, Theorem 3.1])
(1) Lϕ = [P ′

ϕ(−∞), P ′
ϕ(+∞)], where P ′

ϕ(±∞) = lims→±∞ P ′
ϕ(s).

(2) If α = P ′
ϕ(sα) for some sα ∈ R ∪ {±∞}, then E(α) 
= ∅, and the Hausdorff dimen-

sion of E(α) is equal to

dimH E(α) = −P ′
ϕ(sα)sα + Pϕ(sα)

q�−1 log m
= P ∗

ϕ (α)

q�−1 log m
.

The other objective of this paper is to extend Theorem 1.2 from N to Nd (Theorem 1.5).
The connection between Theorems 1.1 and 1.2 is that if � = 2 (respectively � = 3)
and ϕ(xk , x2k) = xkx2k (respectively ϕ(xk , x2k , x3k) = xkx2kx3k) in equation (10), it
is mentioned in [18] (respectively [17]) that dimH E(0) = dimH (X

2) (respectively
dimH E(0) = dimH (X

2,3)). The study of Hausdorff dimension of multiplicative subshifts
can therefore be seen as a multifractal analysis of the multiple ergodic averages. From this
vantage point, this investigation aims to provide some multifractal analysis results of the
multiple ergodic averages in Nd .

To state the main results, we first introduce the multidimensional multiplicative subshift
below. For k ≥ 1, let p1, . . . , pk ∈ Nd , the multidimensional version of equation (3) is
defined as

Xp1,p2,...,pk = {(xi)i∈Nd ∈ �N
d

m : xixi·p1 · · · xi·pk = 0 for all i ∈ Nd}, (16)

where i · j denotes the coordinate-wise product vector of i and j, that is, i · j =
(i1j1, . . . , idjd) for i = (il)

d
l=1, j = (jl)

d
l=1 ∈ Nd . It is obvious that Xp1,p2,...,pk is the

Nd version of Xp1,p2,...,pk . Recently, Ban, Hu, and Lai [1] established the Minkowski
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dimension of the set defined by equation (16). Precisely, let pi = (pi,1, pi,2, . . . , pi,d) ∈
Nd≥2 for all 1 ≤ i ≤ k, where Nd≥2 = (N \ {1})d is the set of d-dimensional vectors
that are component-wise greater than or equal to 2. Suppose gcd(pi,�, pj ,�) = 1 for all
1 ≤ i < j ≤ k and 1 ≤ � ≤ d . The formula for the Minkowski dimension of Xp1,p2,...,pk is
obtained as

dimM(X
p1,p2,...,pk ) =

[ k∏
i=1

(
1 − 1

pi,1pi,2 · · · pi,d
)]

×
∞∑

M1,M2,...,Md=1

[ d∏
i=1

(
1

r
(i)
Mi

− 1

r
(i)
Mi+1

)]
logm bM1,M2,...,Md

,

(17)

where bM1,M2,...,Md
is the number of admissible patterns on the lattice LM1,M2,...,Md

in
Nk0 = {0, 1, . . .}k with forbidden set F = {x�0 = x�e1 = x�e2 = · · · = x�ek = 1} (see [1,
Definition 2.6] for definitions of LM1,M2,...,Md

and r(i)Mi+1).
To the best of our knowledge, the dimension results of the multidimensional multiplica-

tive subshifts and the multifractal analysis of the multiple average in multidimensional
lattices have rarely been reported. Brunet [6] considers the self-affine sponges under the
multiplicative action, and establishes the associated Ledrappier–Young formula, Hausdorff
dimensions, and Minkowski dimension formula of such sponges. Ban, Hu, and Lai
obtained the large deviation principle for multiple average in Nd [2].

It is also emphasized that the problems of multifractal analysis and dimension formula
of multiple average on ‘multidimensional lattices’ are new and challenging. The difficulty
is that it is not easy to decompose the multidimensional lattices into the independent
sublattices according to the given ‘multiple constraints’, e.g., the pi in equation (16), and
calculate its density among the entire lattice. Fortunately, the technique developed in [1]
is useful and leads us to investigate the Hausdorff dimension of the multidimensional
multiplicative subshifts and the multifractal analysis of multiple averages on Nd .

The first result of this paper is presented below, and it extends Theorem 1.1 from N

to Nd .

THEOREM 1.3. Let A ∈ Mm({0, 1}). For d ≥ 1 and p = (p1, p2, . . . , pd) ∈ Nd≥2, the
Hausdorff dimension of the set

X
p
A = {(xi)i∈Nd ∈ {0, 1, . . . , m− 1}Nd : A(xi, xi·p) = 1 for all i ∈ Nd}

is

dimH (X
p
A) = p1 · · · pd − 1

p1 · · · pd logm

m−1∑
i=0

ti ,

where (ti)m−1
i=0 is a unique positive vector satisfying

t
p1···pd
i =

m−1∑
j=0

A(i, j)tj . (18)
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Theorem 1.3 is applied to show that the Hausdorff dimension of Xp
A is strictly less than

its Minkowski dimension (Example 1.4).

Example 1.4. When m = 2, p = (2, 3) and A = [ 1 1
1 0 ], we have

p00 = t0

t60
, p01 = t1

t60
, p10 = t0

t61
, p00 + p01 = 1, p10 = 1,

then

t60 = t0 + t1, t61 = t0, (19)

which implies

t35
1 = t51 + 1.

Then the unique positive vector of equation (19) is (t0, t1) ≈ (1.0216, 1.1368). Thus,

dimH (X
p
A) = (6 − 1)

6
log2(t0 + t1)

≈ 5
6 log 2

log(1.0216 + 1.1368)

≈ 0.9251

< 0.9348 ≈ dimM(X
p
A),

where the last estimate for the Minkowski dimension is obtained by the dimension formula
established in [1] (cf. equation (17)). Generally, the equality dimH (X

p
A) = dimM(X

p
A)

holds only when the row sums of A are equal. The proof is similar to [16, Theorem 1.3].

For n ∈ N, let [[ 1, n]] be the interval of integers {1, 2, . . . , n}. For N =
(N1, N2, . . . , Nd) ∈ Nd , denote [[ 1, N]] by [[ 1, N1]] ×[[ 1, N2]] × · · · ×[[ 1, Nd ]].
The notion N → ∞ means Ni → ∞ for all 1 ≤ i ≤ d . The multidimensional multiple
ergodic average in Nd is defined by

ANϕ(x) = 1
N1 · · · Nd

∑
j∈[[1,N]]

ϕ(xj, . . . , xj·p�−1) (20)

and its level set is

E(α) =
{
(xi)i∈Nd ∈ �N

d

m : lim
N→∞

1
N1 · · · Nd

∑
j∈[[1,N]]

ϕ(xj, . . . , xj·p�−1) = α

}
. (21)

The following result is an Nd version of Theorem 1.2. By abuse of notation, we continue
to write Pϕ for the Nd version pressure function, and it is defined in equation (34).

THEOREM 1.5
(1) Lϕ = [P ′

ϕ(−∞), P ′
ϕ(+∞)], where P ′

ϕ(±∞) = lims→±∞ P ′
ϕ(s) and Pϕ(s) is

defined by equation (34).
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(2) If α = P ′
ϕ(sα) for some sα ∈ R ∪ {±∞}, then E(α) 
= ∅ and the Hausdorff dimen-

sion of E(α) is equal to

dimH E(α) = −P ′
ϕ(sα)sα + Pϕ(sα)

(p1 · · · pd)�−1 log m
= P ∗

ϕ (α)

(p1 · · · pd)�−1 log m
.

Example 1.6. Let p1 = 2, p2 = 3, m= 2, �= 2, and ϕ be the potential given by ϕ(x, y) =
x1y1 with x = (xi)i∈N2 , y = (yi)i∈N2 ∈ �N

2

2 . (Here, 1 denotes the d-dimensional vector
with all components being 1.) So

[ϕ([i], [j ])](i,j)∈{0,1}2 =
[

0 0
0 1

]
,

where [i] = {x = (xi)i∈N2 : x1 = i}.
Then the nonlinear equation (33) becomes

ψs(0)6 = ψs(0)+ ψs(1),

ψs(1)6 = ψs(0)+ esψs(1).

Since (0)∞ ∈ �N

2 , then by Theorem 4.18, we have 0 = P ′
ϕ(−∞). Taking s = −∞, we

obtain

ψ−∞(0)6 = ψ−∞(0)+ ψ−∞(1),
ψ−∞(1)6 = ψ−∞(0).

Then,

dimH E(0) = (6 − 1) log[ψ−∞(0)+ ψ−∞(1)]
6 log 2

≈ 0.9251.

It is worth pointing out that the set Xp
A in Example 1.4 is a subset of E(0) in

Example 1.6, but dimH (X
p
A) = dimH E(0). This phenomenon appears in the previous

paragraph for the one-dimensional version [17], and the Nd version of this equality is
confirmed in Examples 1.4 and 1.6 as well. Moreover, the spectrum α �→ dimH E(α) is
presented in Figure 1.

The remainder of this paper is organized as follows. In §2, we give a partition of Nd

(Lemma 2.1) and then compute the limit of density (Lemma 2.2). In §§3 and 4, we prove
the Theorems 1.3 and 1.5 respectively.

2. Preliminaries
Given integers d ≥ 1 and p1, p2, . . . , pd ≥ 2, we let Mp = {(pm1 , pm2 , . . . , pmd ) : m ≥
0} be the subset of Nd , called a lacunary lattice. For i ∈ Nd , denote by Mp(i) = i ·
Mp the lattice obtained by pushing Mp by i. Finally, we define Ip = {i ∈ Nd : pj �
ij for some 1 ≤ j ≤ d} as an index set of Nd such that for any i 
= j ∈ Ip, Mp(i) ∩
Mp(j) = ∅. The following lemmas give the disjoint decomposition of Nd which is the
Nd version of [1, Lemma 2.1].
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1246 J. Ban et al

FIGURE 1. The spectrum α �→ dimH (E(α)).

LEMMA 2.1. For p1, p2, . . . , pd ≥ 2,

Nd =
⊔
i∈Ip

Mp(i).

More notation is needed to characterize the partition of [[1, N]] for N = (N1, . . . , Nd) ∈
Nd . We define JN;� ={i ∈ [[1, N]] : |Mp(i) ∩ [[1, N]]| = �}, where | · | denotes cardinality.
The following lemma gives the limit of the density of JN;� ∩ Ip which is the Nd version
of [1, Lemma 2.2].

LEMMA 2.2. For N1, N2, . . . , Nd , and � ≥ 1, we have the following assertions.
(1) |JN;�| = ∏d

k=1�Nk/p�−1
k � − ∏d

k=1�Nk/p�k�.
(2) limN→∞ |JN;� ∩ Ip|/|JN;�| = 1 − 1/p1 · · · pd .
(3) limN→∞ |JN;� ∩ Ip|/N1 · · · Nd = (p1 · · · pd − 1)2/(p1 · · · pd)�+1.
(4) limN→∞ 1/(N1 · · · Nd)∑N1···Nd

�=1 |JN;� ∩ Ip| log F� = ∑∞
�=1 limN→∞|JN;� ∩ Ip|/

N1 · · · Nd log F�.

We decompose �N
d

m as follows:

�N
d

m =
⊔
i∈Ip

SMp(i),

where S = {0, 1, . . . , m− 1}.
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Let μ be a probability measure on �m. We consider μ as a measure on SMp(i), which
is identified with �m, for every i ∈ Ip. Then we define the infinite product measure Pμ on⊔

i∈Ip
SMp(i) of copies of μ. More precisely, for any word u of size [[1, N]], we define

Pμ([u]) =
∏

i∈Ip∩[[1,N]]

μ([u|Mp(i)∩[[1,N]]]), (22)

where [u] denotes the cylinder of all words starting with u.

3. Proof of Theorem 1.3
Before embarking on the proof of Theorem 1.3, we sketch out the flow of the proof for
readers’ convenience. We first decompose the Nd lattice into disjoint one-dimensional
sublattices, then define the probability measure Pμ on Xp

A. Subsequently, we calculate
the pointwise dimension (cf. equation (23)) at u ∈ �N

d

m ,

dimloc(Pμ, u) = lim
N→∞

− log Pμ[u|[[1,N]]]
N1 · · · Nd , (23)

and the Hausdorff dimension of Pμ (cf. equation (24), also see [8] for dimension of a
measure),

dimH (Pμ) = inf{dimH (F ) : F Borel, Pμ(F ) = 1}, (24)

to obtain the lower bound of dimH (X
p
A) (Lemma 3.1). Finally, we maximize the measure

dimension dimH (Pμ) (Lemma 3.2), and find an upper bound of dimH (X
p
A) (Lemma 3.3)

to obtain the Hausdorff dimension of Xp
A.

LEMMA 3.1. (Nd version of [16, Proposition 2.3]) Let � = �A be a shift of finite type on
�N
m and μ be a probability measure on �. Then,

dimloc(Pμ, x) = s(�, μ) for Pμ-almost every (a.e.) x ∈ Xp
A, (25)

where

s(�, μ) := (p1 · · · pd − 1)2
∞∑
k=1

H
μ
m(βk)

(p1 · · · pd)k+1 (26)

with βk is the partition of � into cylinders of length k and

Hμ
m(βk) = −

∑
α∈βk

μ(α) logm μ(α).

Therefore, dimH (Pμ) = s(�, μ), and dimH (X
p
A) ≥ s(�, μ).

Proof. To obtain dimloc(Pμ, u) = s(�, μ) for Pμ-a.e. u. We prove that for every
�1, �2, . . . , �d ∈ N and � = min1≤i≤d �i ,
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(1) lim inf
N→∞

− log Pμ[u|[[1,N]]]
N1 · · · Nd ≥ (p1 · · · pd − 1)2

�∑
k=1

H
μ
m(βk)

(p1 · · · pd)k+1 for Pμ-a.e. u,

and

(2) lim sup
N→∞

− log Pμ[u|[[1,N]]]
N1 · · · Nd

≤ (p1 · · · pd − 1)2
�∑
k=1

H
μ
m(βk)

(p1 · · · pd)k+1 + (�+ 1) logm(2m)
(p1 · · · pd)� for Pμ-a.e. u.

Fixing �1, . . . , �d ∈ N, we can restrict to Ni = p
�i
i ri and ri ∈ N for all 1 ≤ i ≤ d . Since

for p�ii ri ≤ Ni < p
�i
i (ri + 1), 1 ≤ i ≤ d , we have

− log Pμ[u|[[1,N]]]
N1 · · · Nd ≥

− log Pμ[u|
[[1,(p

�1
1 r1,...,p

�d
d rd )]]

]

p
�1
1 (r1 + 1) · · · p�dd (rd + 1)

= r1 · · · rd
(r1 + 1) · · · (rd + 1)

− log Pμ[u|
[[1,(p

�1
1 r1,...,p

�d
d rd )]]

]

p
�1
1 r1 · · · p�dd rd

,

which implies that

lim inf
N→∞

− log Pμ[u|[[1,N]]]
N1 · · · Nd = lim inf

r1,...,rd→∞

− log Pμ[u|
[[1,(p

�1
1 r1,...,p

�d
d rd )]]

]

p
�1
1 r1 · · · p�dd rd

.

The lim sup is dealt with similarly.
Recall

JN;� ∩ Ip = {i ∈ Ip ∩ [[1, N]] : |Mp(i) ∩ [[1, N]]| = �}.

The method below estimates the main part G and remainder H, which is similar to that of
Kenyon et al [16]. Let

GN :=
�⋃
k=1

⋃
i∈JN;k∩Ip

(Mp(i) ∩ [[1, N]])

and

HN := [[1, N]] − GN.

Then by the definition of the measure Pμ, we have

Pμ[u|[[1,N]]] = Pμ[u|GN] · Pμ[u|HN].
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CLAIM 1. We have

Pμ[u|GN] =
�∏
k=1

∏
i∈JN;k∩Ip

Pμ[u|Mp(i)∩[[1,N]]]

=
�∏
k=1

∏
i∈JN;k∩Ip

μ[u|Mp(i)∩[[1,N]]].

Proof of Claim 1. The proof comes directly from the definition of Pμ and it is omitted.

CLAIM 2. For all k ≤ �,

∑
i∈JN;k∩Ip

− logm μ[u|Mp(i)∩[[1,N]]]

(p1 · · · pd − 1)2(N1 · · · Nd/(p1 · · · pd)k+1)
→ Hμ

m(βk),

as Ni = p
�i
i ri → ∞ for 1 ≤ i ≤ d and Pμ-a.e. u.

Proof of Claim 2. Since the u �→ − logm μ[u|Mp(i)∩[[1,N]]] are independent and identi-
cally distributed (i.i.d.) for i ∈ JN;k ∩ Ip, their expectation equals Hμ

m(βk). Note that

|JN;k ∩ Ip| = (p1 · · · pd − 1)2N1 · · · Nd
(p1 · · · pd)k+1 .

Fixing k ≤ min1≤i≤d �i and taking Ni = p
�i
i ri , ri → ∞ for all 1 ≤ i ≤ d , we get infinite

i.i.d. random variables. The proof is completed by the law of large numbers (LLN).

Then item (1) is followed by

(3)
− logm Pμ[u|GN]
N1 · · · Nd

=
�∑
k=1

(p1 · · · pd − 1)2

(p1 · · · pd)k+1

∑
i∈JN;k∩Ip

− logm μ[u|Mp(i)∩[[1,N]]]

(p1 · · · pd − 1)2(N1 · · · Nd/(p1 · · · pd)k+1)

−→
�∑
k=1

(p1 · · · pd − 1)2Hμ
m(βk)

(p1 · · · pd)k+1 ,

and

(4) Pμ[u|[[1,N]]] ≤ Pμ[u|GN].

To prove item (2), we work with Pμ[u|HN]. Since

|HN| = N1 · · · Nd −
�∑
k=1

(p1 · · · pd − 1)2
N1 · · · Ndk
(p1 · · · pd)k+1

= N1 · · · Nd
(p1 · · · pd)�

[
(�+ 1)− �

p1 · · · pd
]
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= (�+ 1)
d∏
i=1

p
�i−�
i ri − �

p1 · · · pd
d∏
i=1

p
�i−�
i ri

< (�+ 1)
d∏
i=1

p
�i−�
i ri ,

then
∞∑

r1,...,rd=1

2−|HN| =
∞∑

r1,...,rd=1

2−Cr1···rd < ∞,

where C = [(�+ 1)− �/p1 · · · pd ]
∏d
i=1 p

�i−�
i > 0.

Define

S(HN) := {u ∈ Xp
A : Pμ[u|HN] ≤ (2m)−|HN|}.

Since there are at most m|HN| cylinder sets [u|HN], we have

Pμ(S(HN)) ≤ 2−|HN|.

This implies

∞∑
r1,...,rd=1

Pμ(S(HN)) ≤
∞∑

r1,...,rd=1

2−|HN| < ∞.

Thus,

lim
N→∞

∞∑
r1=N1,...,rd=Nd

Pμ(S(HN)) = 0.

That is,

Pμ

( ⋂
N1,...,Nd≥1

∞⋃
r1=N1,...,rd=Nd

S(HN)

)
= 0.

Hence for Pμ-a.e. u ∈ Xp
A, there exists M1(u), . . . , Md(u) ∈ N such that u /∈ S(HN) for

all N1 = p
�1
1 r1 ≥ M1(u), . . . , Nd = p

�d
d rd ≥ Md(u). For such u and Ni ≥ Mi(u) for all

1 ≤ i ≤ d , we have

− logm Pμ[u|HN]
N1 · · · Nd <

|HN| logm(2m)
N1 · · · Nd <

(�+ 1) logm(2m)
(p1 · · · pd)� .

The proof is complete.

LEMMA 3.2. (Nd version of [16, Corollary 2.6]) Let A be a primitive m×m 0-1 matrix
and� = �A be the corresponding subshift of finite type. Let t̄ = (ti)

m−1
i=0 be the solution of

equation (18). Then the unique optimal measure on�A is Markov, with the vector of initial
probabilities P = (Pi)

m−1
i=0 = (

∑m−1
i=0 ti )

−1 t̄ and the matrix of transition probabilities
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(pij )
m−1
i,j=0 where pij = tj

t
p1···pd
i

if A(i, j) = 1. (27)

Moreover, s(�, μ) = (p1 · · · pd − 1) logm tφ , where tp1···pd
φ = ∑m−1

i=0 ti .

Proof. Since

∞∑
k=1

H
μ
m(βk)

(p1 · · · pd)k+1 =
[ ∞∑
k=1

H
μ
m(β1)

(p1 · · · pd)k+1 + 1
p1 · · · pd

m−1∑
i=0

Pi

∞∑
k=1

H
μi
m (βk(�i))

(p1 · · · pd)k+1

]

and
∞∑
k=1

1
(p1 · · · pd)k = 1

p1 · · · pd − 1
,

we have

s(�, Pμ) = p1 · · · pd − 1
p1 · · · pd

[
Hμ
m(β1)+ 1

p1 · · · pd − 1

m−1∑
i=0

Pis(�i , μi)
]

,

where Pi = μ[i] and μi is the conditional measures of μ on �i .
Since the measure Pμ is completely determined by the probability vector P = (Pi)

m−1
i=0

and the measuresμi on�i , the optimizations on�i are independent for all 0 ≤ i ≤ m− 1.
Thus, if Pμ is optimal for �, then μi is optimal for �i , 0 ≤ i ≤ m− 1. Since

max
p

[
Hμ
m(β1)+ 1

p1 · · · pd − 1

m−1∑
i=0

Pis(�i)

]

= max
p

[
−
m−1∑
i=0

Pi logm Pi + 1
p1 · · · pd − 1

m−1∑
i=0

Pis(�i)

]

= max
p

[ m−1∑
i=0

Pi(ai − logm Pi)
]

,

we have

s(�) : = max{s(�, Pμ) : μ is a probability measure on �}

= max
p

p1 · · · pd − 1
p1 · · · pd

[ m−1∑
i=0

Pi(ai − logm Pi)
]

,

where ai = s(�i)/p1 · · · pd − 1.
Then we obtain the optimal probability vector

P = (Pi)
m−1
i=0 , Pi = mai∑m−1

j=0 m
aj

= ti

t
p1···pd
φ

,

tφ = ms(�)/p1···pd−1, ti = ms(�i)/p1···pd−1, i ≤ m− 1,
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and

t
p1···pd
φ =

m−1∑
i=0

ti .

Due to the conditional entropy, we have

Hμ
m(βk+1) = Hμ

m(βk)+Hμ
m(βk+1|βk),

where for two partitions α and β,

Hμ
m(α|β) =

∑
B∈β

(
−

∑
A∈α

μ(A|B) logm μ(A|B)
)
μ(B).

Then,

s(�, Pμ) = (p1 · · · pd − 1)2
∞∑
k=1

H
μ
m(βk)

(p1 · · · pd)k+1

=
(
p1 · · · pd − 1
p1 · · · pd

)[
Hμ
m(β1)+

∞∑
k=1

H
μ
m(βk+1|βk)
(p1 · · · pd)k

]
.

Observe that

Hμ
m(β1) = −

m−1∑
i=0

ti

t
p1···pd
φ

logm(
ti

t
p1···pd
φ

)

= p1 · · · pd logm tφ −
m−1∑
i=0

ti

t
p1···pd
φ

logm ti

= p1 · · · pd logm tφ −
m−1∑
i=0

μ[i] logm ti

and

Hμ
m(βk+1|βk) =

∑
[u]∈βk

μ[u]
(

−
∑

w:[uw]∈βk+1

tuw

t
p1···pd
u

logm

(
tuw

t
p1···pd
u

))

=
∑

[u]∈βk
μ[u]

(
p1 · · · pd logm tu −

∑
w:[uw]∈βk+1

tuw

t
p1···pd
u

logm tuw

)

= p1 · · · pd
∑

[u]∈βk
μ[u] logm tu −

∑
[v]∈βk+1

μ[v] logm tv ,

where μ[uw] = μ[u]tuw/t
p1···pd
u . Then we have

s(�, Pμ) = (p1 · · · pd − 1) logm tφ .

The proof is complete.
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LEMMA 3.3. (Nd version of [16, Lemma 5.2]) Let μ be a Markov measure on �, with the
vector of initial probabilities P = (

∑m−1
i=0 ti )

−1 t̄ and the matrix of transition probabilities

(pij )
m−1
i,j=0 where pij = tj

t
p1···pd
i

if A(i, j) = 1. (28)

Then,

lim inf
N→∞ − log Pμ([x|[[1,N]]])

N1 · · · Nd ≤ (p1 · · · pd − 1) logm tφ

for all x ∈ Xp
A.

Proof. The proof is similar to that of Lemma 4.9 when ϕ is a zero function.

LEMMA 3.4. (Nd version of [16, Proposition 2.4]) Let � = �A be a shift of finite type on
�N
m. Then,

dimH (X
p
A) = sup

μ
dimH (Pμ) = sup

μ
s(�, μ), (29)

where the supremum is over the Borel probability measures on �.

Proof. By Lemmas 4.11 and 3.3, we will then get dimH (X
p
A) ≤ (p1 · · · pd − 1) logm tφ .

Equation (29) then follows by Lemma 3.2.

Proof of Theorem 1.3. The proof is complete by Lemmas 3.1 and 3.4.

4. Proof of Theorem 1.5
The stages of the proof of Theorem 1.5 follow Fan, Schmeling, and Wu [11]. First, we
establish the LLN in our setting (Lemma 4.4), then use the unique positive solution
of nonlinear operator Ns to construct a family of telescopic product measures Pμs in
equations (35) and (36). Then the convexity of such solution, LLN, and Billingsley
lemma (Lemma 4.11) give the upper and lower bound of Hausdorff dimension of E(α)
(Lemma 4.12 and Lemma 4.16 respectively), and we establish Theorem 4.1 in §4.1. To
complete the proof of Theorem 1.5, we prove the case when s tends to ±∞ in §4.2
(Theorems 4.18 and 4.19).

4.1. The case when sα is finite

THEOREM 4.1
(1) If α = P ′

ϕ(sα) for some sα ∈ R, then

dimH E(α) = −P ′
ϕ(sα)sα + Pϕ(sα)

(p1 · · · pd)�−1 log m
= P ∗

ϕ (α)

(p1 · · · pd)�−1 log m
.

(2) For α ∈ (P ′
ϕ(−∞), P ′

ϕ(0)], dimH E
+(α) = dimH E(α).

(3) For α ∈ [P ′
ϕ(0), P

′
ϕ(+∞)), dimH E

−(α) = dimH E(α).

Proof. The proof follows from Lemmas 4.16 and 4.12 below.
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Consider a probability space (�N
d

m , Pμ). Let Xj(x) = xj be the jth coordinate
projection. For i ∈ Ip, consider the process Y (i) = (Xj)j∈Mp(i). Then, by the definition of
Pμ, the following fact is obvious.

LEMMA 4.2. The processes Y (i) = (Xj)j∈Mp(i) for i ∈ Ip are Pμ-independent and iden-
tically distributed with μ as the common probability law.

Now we consider (
⊔

i∈Ip
SMp(i), Pμ) as a probability space (�, Pμ). Let (Fj)j∈Nd be

functions defined on�m. For each j, there exists a unique i(j) ∈ Ip such that j ∈ Mp(i(j)).
Then, x �→ Fj(x|Mp(i(j))) defines a random variable on �. Later, we will study the
LLN for variables {Fj(x|Mp(i(j)))}j∈Nd . Notice that if i(j) 
= i(j′), then the two variables
Fj(x|Mp(i(j))) and Fj′(x|Mp(i(j′))) are independent. However, if i(j) = i(j′), they are not
independent in general. To prove the LLN, we will need the following technical lemma
which allows us to compute the expectation of the product of Fj(x|Mp(i(j))).

LEMMA 4.3. Let (Fj)j∈Nd be functions defined on�m. Then for anyN1, N2, . . . , Nd ≥ 1,
we have

EPμ

( ∏
j∈[[1,N]]

Fj(x|Mp(i(j)))

)
=
N1···Nd∏
�=1

∏
i∈JN;�∩Ip

Eμ

( ∏
y∈Mp(i)∩[[1,N]]

Fy(y)

)
.

In particular, for any function G defined on �m, for any i ∈ Nd ,

EPμ
G(x|Mp(i)) = EμG(·).

Proof. Let

QN(x) =
∏

j∈[[1,N]]

Fj(x|Mp(i(j)))

and

QN,i(x) =
∏

y∈Mp(i)∩[[1,N]]

Fy(x|Mp(i)).

Since the variables x|Mp(i) for i ∈ Ip are independent under Pμ (by Lemma 4.2), we have

EPμ
QN =

∏
i∈Ip∩[[1,N]]

EPμ
QN,i. (30)

Then by the definition of JN;� ∩ Ip, we can rewrite equation (30) to get

EPμ
QN =

N1···Nd∏
�=1

∏
i∈JN;�∩Ip

EPμ
QN,i.

However, the marginal measures on SMp(i) of Pμ are equal to μ. So,

EPμ
QN,i = Eμ

( ∏
y∈Mp(i)∩[[1,N]]

Fy(y)

)
.
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Now, for any function G defined on �m and any j ∈ Nd , if we set Fj = G and Fj′ = 1
for j′ 
= j, we have

EPμ
G(x|Mp(i(j))) = EμG(y).

The proof is thus completed.

To prove the LLN, we need the following result. Recall that the covariance of two
bounded functions f , g with respect to μ is defined by

covμ(f , g) = Eμ[(f − Eμf )(g − Eμg)].

When the functions (Fj)j∈Nd are all the same function F, we have the following LLN.

LEMMA 4.4. Let F be a function defined on �m. Suppose that there exist C > 0 and
0 < η < p1 · · · pd such that for any i ∈ Ip and any �1, �2 ∈ N ∪ {0},

covμ(Fi·p�1 , Fi·p�2 ) ≤ Cη(�1+�2)/2.

(p� = (p�1, p�2, . . . , p�d).) Then for Pμ-a.e. x ∈ �N
d

m ,

lim
N→∞

1
N1 · · · Nd

∑
j∈[[1,N]]

(F (x|Mp(i(j)))− EμF) = 0.

Proof. Without loss of generality, we may assume EPμ
F (x|Mp(i(j))) = 0 for all j ∈ Nd .

Our goal is to prove limN→∞ YN = 0 Pμ-almost everywhere, where

YN = 1
N1 · · · Nd

∑
j∈[[1,N]]

Xj with Xj = F(x|Mp(i(j))).

It is enough to show
∞∑

N1,N2,...,Nd=1

EPμ
Y 2

N < +∞.

Notice that

EPμ
Y 2

N = 1
(N1 · · · Nd)2

∑
j1,j2∈[[1,N]]

EPμ
Xj1Xj2 . (31)

By Lemma 4.2, we have EPμ
Xj1Xj2 
= 0 only if i(j1) = i(j2). So,∑

j1,j2∈[[1,N]]

EPμ
Xj1Xj2 =

∑
i∈Ip∩[[1,N]]

∑
j1,j2∈Mp(i)∩[[1,N]]

EPμ
Xj1Xj2 .

By Lemma 2.2, we can rewrite the above sum as

N1···Nd∑
�=1

∑
i∈JN;�∩Ip

∑
j1,j2∈Mp(i)∩[[1,N]]

EPμ
Xj1Xj2 . (32)

Recall that EPμ
Xj = EμF for all j ∈ Nd (Lemma 4.3). For j1, j2 ∈ Mp(i) ∩ [[1, N]],

we write j1 = i · p�1 and j2 = i · p�2 with 0 ≤ �1, �2 ≤ |Mp(i) ∩ [[1, N]]|. By the
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Cauchy–Schwarz inequality and hypothesis, we obtain

|EPμ
Xj1Xj2 | ≤ EμF

2 ≤ Cη|Mp(i)∩[[1,N]]|.

So, ∑
j1,j2∈Mp(i)∩[[1,N]]

|EPμ
Xj1Xj2 | ≤ C|Mp(i) ∩ [[1, N]]|2η|Mp(i)∩[[1,N]]|.

Substituting this estimate into equation (32) and using Lemma 2.2, we get

∣∣∣∣ ∑
j1,j2∈[[1,N]]

EPμ
Xj1Xj2

∣∣∣∣ ≤
N1···Nd∑
�=1

∑
i∈JN;�∩Ip

�2η�

=
mini {�logpi Ni�}∑

�=1

( d∏
k=1

⌊
Nk

p�−1
k

⌋
−

d∏
k=1

⌊
Nk

p�k

⌋)
�2η�

≤
�logp1···pd N1···Nd�∑

�=1

( d∏
k=1

⌊
Nk

p�−1
k

⌋
−

d∏
k=1

⌊
Nk

p�k

⌋)
�2η�.

Then, applying Lemma 2.2, the last sum is bounded by

(N1 · · · Nd)(p1 · · · pd − 1)2
�logp1···pd N1···Nd�∑

�=1

�2η�

(p1 · · · pd)�+1

= O

(
N1 · · · Nd

(
η

p1 · · · pd
)�logp1···pd N1···Nd�)

= O((N1 · · · Nd)1−ε)

for some ε > 0, which gives the convergence of the series preceding equation (31). The
proof is complete.

LEMMA 4.5. Let μ be any probability measure on �m and let F ∈ F(S�). For Pμ-a.e.
x ∈ �N

d

m , we have

lim
N→∞

1
N1 · · · Nd

∑
j∈[[1,N]]

F(xj, . . . , xj·p�−1)

= (p1 · · · pd − 1)2
∞∑
k=1

1
(p1 · · · pd)k+1

k−1∑
j=0

EμF(yj , . . . , yj+�−1).

Proof. For each j ∈ [[1, N]], take

F(x|Mp(i(j))) = F(xj, . . . , xj·p�−1).

Then, the proof follows by Lemmas 2.2 and 4.4.
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LEMMA 4.6. For Pμ-a.e. x ∈ �N
d

m , we have

D(Pμ, x) = (p1 · · · pd − 1)2

log m

∞∑
�=1

H�(μ)

(p1 · · · pd)�+1 ,

where H�(μ) = − ∑
a1···a� μ([a1 · · · a�]) log μ([a1 · · · a�]).

Proof. The proof is similar to the proof of [11, Theorem 1.3] combined with Lemmas 2.1,
2.2, and 4.5.

Let F(S�−1, R+) denote the cone of non-negative real functions on S�−1 and s ∈ R.
The nonlinear operator Ns : F(S�−1, R+) → F(S�−1, R+) is defined by

Nsy(a1, a2, . . . , a�−1) =
( ∑
j∈S

esϕ(a1,a2,...,a�−1,j)y(a2, . . . , a�−1, j)
)1/p1···pd

. (33)

Define the pressure function by

Pϕ(s) = (p1 · · · pd − 1)(p1 · · · pd)�−2 log
∑
j∈S

ψs(j), (34)

where ψs is the unique strictly positive fixed point of Ns . The function ψs is defined on
S�−1 and it can be extended on Sk for all 1 ≤ k ≤ �− 2 by induction: for a ∈ Sk ,

ψ(k)s (a) =
( ∑
j∈S

ψ(k+1)
s (a, j)

)1/p1···pd
.

Then we defined (�− 1)-step Markov measure μs on �m with the initial law

πs([a1, . . . , a�−1]) =
�−1∏
j=1

ψs(a1, . . . , aj )
ψ
p1...pd
s (a1, . . . , aj−1)

(35)

and the transition probability

Qs([a1, . . . , a�−1], [a2, . . . , a�]) = esϕ(a1,...,a�) ψs(a2, . . . , a�)
ψ
p1...pd
s (a1, . . . , a�−1)

. (36)

In the following, we are going to establish a relation between the mass Pμs ([x
N1,...,Nd
1 ])

and the multiple ergodic sum
∑

j∈[[1,N]] ϕ(xj, . . . , xj·p�−1). This can be regarded as the
Gibbs property of the measure Pμs .

Recall that for any j ∈ Nd , there is a unique i(j) ∈ Ip such that j = i(j) · pj , j ≥ 0.
Define

λj :=
{{i(j), i(j) · p, . . . , i(j) · pj } if j < �− 1,

{i(j) · pj−(�−1), . . . , i(j) · pj } if j ≥ �− 1.

For x = (xj)j∈Nd ∈ �N
d

m , we define

BN(x) :=
∑

j∈[[1,N]]

log ψs(x|λj).

The following formula is a consequence of the definitions of μs and Pμs .
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LEMMA 4.7. We have

log Pμs ([x|[[1,N]]]) = s
∑

j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

−
(
N1 · · · Nd −

⌊
N1 · · · Nd
p1 · · · pd

⌋)
p1 · · · pd log ψs(∅)

− p1 · · · pdB�N/p�(x)+ BN(x).

(For � ≥ 1, �N/p�� = (�N1/p
�
1�, . . . , �Nd/p�d�).)

Proof. By the definition of Pμs , we have

log Pμs ([x|[[1,N]]]) =
∑

i∈Ip∩[[1,N]]

log μs([x|Mp(i)∩[[1,N]]]). (37)

However, by the definition of μs , if |Mp(i) ∩ [[1, N]]| ≤ �− 1, we have

log μs([x|Mp(i)∩[[1,N]]]) =
|Mp(i)∩[[1,N]]|−1∑

j=0

log
ψs(xi, . . . , xi·pj )

ψ
p1···pd
s (xi, . . . , xi·pj−1)

=
∑

k∈Mp(i)∩[[1,N]]

log
ψs(x|λk)

ψ
p1···pd
s (x|λ�k/p�)

.

(38)

If |Mp(i) ∩ [[1, N]]| ≥ �, log μs([x|Mp(i)∩[[1,N]]]) is equal to

�−2∑
j=0

log
ψs(xi, . . . , xi·pj )

ψ
p1···pd
s (xi, . . . , xi·pj−1)

+
|Mp(i)∩[[1,N]]|−1∑

j=�−1

log
ψs(xi·pj−�+2 , . . . , xi·pj )e

sϕ(xi·pj−�+1 ,...,xi·pj )

ψ
p1···pd
s (xi·pj−�+1 , . . . , xi·pj−1)

=
|Mp(i)∩[[1,N]]|−1∑

j=0

log
ψs(xi, . . . , xi·pj )

ψ
p1···pd
s (xi, . . . , xi·pj−1)

+ s

|Mp(i)∩[[1,N]]|−1∑
j=�−1

ϕ(xi·pj−�+1 , . . . , xi·pj )

=
∑

k∈Mp(i)∩[[1,N]]

log
ψs(x|λk)

ψ
p1···pd
s (x|λ�k/p�)

+
∑

k∈Mp(i)∩[[1,N]],k≤N

ϕ(x|λk), (39)

where k ≤ N means ki ≤ Ni for all 1 ≤ i ≤ d .
Substituting equations (38) and (39) into equation (37), we get

log Pμs ([x|[[1,N]]]) = S′
N + sS′′

N, (40)

where

S′
N =

∑
i∈Ip∩[[1,N]]

∑
k∈Mp(i)∩[[1,N]]

log
ψs(x|λk)

ψ
p1···pd
s (x|λ�k/p�)

S′′
N =

∑
i∈Ip∩[[1,N]]

∑
k∈Mp(i)∩[[1,N]],k≤N

ϕ(x|λk).
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For any fixed i ∈ Ip ∩ [[1, N]], we write∑
k∈Mp(i)∩[[1,N]]

log
ψs(x|λk)

ψ
p1···pd
s (x|λ�k/p�)

=
∑

k∈Mp(i)∩[[1,N]]

log ψs(x|λk)

− p1 · · · pd
∑

k∈Mp(i)∩[[1,N]]

log ψs(x|λ�k/p�).

Recall that if

Mp(i) ∩ [[1, N]] = {i, i · p, . . . , i · pj0},
then we denote

Mp(i) ∩ [[1, �N/p�]] = {i, i · p, . . . , i · pj0−1},
and when k = i, we have x|λk/p = ∅.

Then we can write∑
k∈Mp(i)∩[[1,N]]

log
ψs(x|λk)

ψ
p1···pd
s (x|λ�k/p�)

= (1 − p1 · · · pd)
∑

k∈Mp(i)∩[[1,�N/p�]]

log ψs(x|λk)

− p1 · · · pd log ψs(∅)
+

∑
k∈Mp(i)∩[[1,N]],k·p/∈Mp(i)∩[[1,N]]

log ψs(x|λk).

Now we take the sum over i ∈ Ip ∩ [[1, N]] to get

S′
N = (1 − p1 · · · pd)

∑
k≤�N/p�

log ψs(x|λk)

− p1 · · · pd
(
N1 · · · Nd −

⌊
N1 · · · Nd
p1 · · · pd

⌋)
log ψs(∅)

+
∑

k≤N,k·p/∈[[1,N]]

log ψs(x|λk).

We can rewrite

(1 − p1 · · · pd)
∑

k≤�N/p�
log ψs(x|λk)+

∑
k≤N,k·p/∈[[1,N]]

log ψs(x|λk)

= −p1 · · · pdB�N/p�(x)+ BN(x).

Thus,

S′
N = −p1 · · · pd

(
N1 · · · Nd −

⌊
N1 · · · Nd
p1 · · · pd

⌋)
log ψs(∅)− p1 · · · pdB�N/p�(x)+ BN(x).

However, we have

S′′
N =

∑
j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1).

Substituting these expressions of S′
N and S′′

N into equation (40), we get the desired
result.
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4.1.1. Upper bound for the Hausdorff dimension. The purpose of this subsection is to
provide a few lemmas needed to prove Lemma 4.12. The following results will be useful
for estimation of the pointwise dimensions of Pμs .

LEMMA 4.8. [11, Lemma 7.1] Let (an)n≥1 be a bounded sequence of non-negative real
numbers. Then,

lim inf
n→∞ (a�n/q� − an) ≤ 0.

We define

E+(α) :=
{
(xj)j∈Nd ∈ �N

d

m : lim sup
N→∞

1
N

∑
j∈[[1,N]]

ϕ(xj, . . . , xj·p�−1) ≤ α

}

and

E−(α) :=
{
(xj)j∈Nd ∈ �N

d

m : lim inf
N→∞

1
N

∑
j∈[[1,N]]

ϕ(xj, . . . , xj·p�−1) ≥ α

}
.

It is clear that

E(α) = E+(α) ∩ E−(α).

The upper bound of pointwise dimensions are obtained.

LEMMA 4.9. For every x ∈ E+(α), we have

for all s ≤ 0, D(Pμs , x) ≤ P(s)− αs

(p1 · · · pd)�−1 log m
.

For every x ∈ E−(α), we have

for all s ≥ 0, D(Pμs , x) ≤ P(s)− αs

(p1 · · · pd)�−1 log m
.

Consequently, for every x ∈ E(α), we have

for all s ∈ R, D(Pμs , x) ≤ P(s)− αs

(p1 · · · pd)�−1 log m
.

Proof. The proof is based on Lemma 4.7, which implies that for any x ∈ �N
d

m and
N1, . . . , Nd ≥ 1, we have

D(Pμs , x) : = − log Pμs ([x|[[1,N]]])
N1 · · · Nd

= − s

N1 · · · Nd
∑

j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

+ (N1 · · · Nd − �N1 · · · Nd/p1 · · · pd�)
N1 · · · Nd p1 · · · pd log ψs(∅)

+ B�N/p�(x)
N1 · · · Nd/p1 · · · pd − BN(x)

N1 · · · Nd .
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Since the function ψs is bounded, so is the sequence (Bk·pi (x)/k1p
i
1 · · · kdpid)∞i=0. Then

by Lemma 4.8 with n = k1p
i
1 · · · kdpid and q = p1 · · · pd , we have

lim inf
N→∞

B�N/p�(x)
N1 · · · Nd/p1 · · · pd − BN(x)

N1 · · · Nd
≤ lim inf

i→∞
Bk·pi−1(x)

k1p
i−1
1 · · · kdpi−1

d

− Bk·pi (x)
k1p

i
1 · · · kdpid

≤ 0.

Therefore,

D(Pμs , x) ≤ lim inf
N→∞ − s

N1 · · · Nd log m

∑
j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

+ (p1 · · · pd − 1) logm ψs(∅).
Now suppose that x ∈ E+(α) and s ≤ 0. Since

lim inf
N→∞

1
N1 · · · Nd

∑
j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

≤ lim sup
N→∞

1
N1 · · · Nd

∑
j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

≤ α

(p1 · · · pd)�−1 ,

we have

lim inf
N→∞ − s

N1 · · · Nd
∑

j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

≤ −s lim inf
N→∞

1
N1 · · · Nd

∑
j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

≤ −sα
(p1 · · · pd)�−1 ,

so that

D(Pμs , x) ≤ −sα
(p1 · · · pd)�−1 log m

+ (p1 · · · pd − 1) logm ψs(∅)

= Pϕ(s)− αs

(p1 · · · pd)�−1 log m
,

where the last equation follows from

Pϕ(s) = (p1 · · · pd − 1)(p1 · · · pd)�−2 log
∑
j∈S

ψs(j)

= (p1 · · · pd − 1)(p1 · · · pd)�−1 log ψ(∅).
By an analogous argument, we can prove the same result for x ∈ E−(α) and s ≥ 0. The

proof is complete.
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Recall that Lϕ is the set of α such that E(α) 
= ∅. The following lemma gives the range
of Lϕ .

LEMMA 4.10. We have Lϕ ⊂ [P ′
ϕ(−∞), P ′

ϕ(+∞)].

Proof. We prove it by contradiction. Suppose that E(α) 
= ∅ for some α < P ′
ϕ(−∞). Let

x ∈ E(α). Then by Lemma 4.9, we have

lim inf
N→∞ − log Pμs ([x|[[1,N]]])

N1 · · · Nd ≤ Pϕ(s)− αs

(p1 · · · pd)�−1 log m
for all s ∈ R. (41)

However, by mean value theorem, we have

Pϕ(s)− αs = Pϕ(s)− Pϕ(0)− αs + Pϕ(0) = P ′
ϕ(ηs)s − αs + Pϕ(0) (42)

for some real number ηs between 0 and s. Since Pϕ is convex, P ′
ϕ is increasing on R.

Assume s < 0, we have

P ′
ϕ(ηs)s − αs + Pϕ(0) ≤ P ′

ϕ(−∞)s − αs + Pϕ(0) = (P ′
ϕ(−∞)− α)s + Pϕ(0). (43)

Since P ′
ϕ(−∞)− α > 0, we deduce from equations (42) and (43) that for s close to −∞,

we have Pϕ(s)− αs < 0. Then by equation (41), for s small enough, we obtain

lim inf
N→∞ − log Pμs ([x|[[1,N]]])

N1 · · · Nd < 0,

which implies Pμs ([x|[[1,(N1,i ,...,Nd,i )]]]) > 1 with min1≤j≤d Nj ,i → ∞ as i → ∞. This

contradicts the fact that Pμs is a probability measure on �N
d

m . Thus, we have proved
that for α such that E(α) 
= ∅, we have α ≥ P ′

ϕ(−∞). By a similar argument, we have
α ≤ P ′

ϕ(+∞).

LEMMA 4.11. (Billingsley’s lemma [4]) Let E be a Borel set in �N
d

m and let ν be a finite
Borel measure on �N

d

m .
(1) We have dimH (E) ≥ c if ν(E) > 0 and D(ν, x) ≥ c for ν-a.e. x.
(2) We have dimH (E) ≤ c if D(ν, x) ≤ c for all x ∈ E.

Recall that

P ∗
ϕ (α) = inf

s∈R(Pϕ(s)− αs).

An upper bound of the Hausdorff dimensions of level sets is a direct consequence of
Lemmas 4.9 and 4.11.

LEMMA 4.12. For any α ∈ (P ′
ϕ(−∞), P ′

ϕ(0)), we have

dimH E
+(α) ≤ inf

s≤0

Pϕ(s)− αs

(p1 · · · pd)�−1 log m
.

For any α ∈ (P ′
ϕ(0), P

′
ϕ(+∞)), we have

dimH E
−(α) ≤ inf

s≥0

Pϕ(s)− αs

(p1 · · · pd)�−1 log m
.
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In particular, we have

dimH E(α) ≤ P ∗
ϕ (α)

(p1 · · · pd)�−1 log m
.

4.1.2. Lower bound for the Hausdorff dimension. This subsection is intended to estab-
lish Lemma 4.16. First, we need to do some preparations for proving the Ruelle-type
formula below. We deduce some identities concerning the functions ψs .

Recall that ψs(a) are defined for a ∈ ⋃
1≤k≤�−1 S

k . For a ∈ S�−1, we have

ψ
p1···pd
s (a) =

∑
b∈S

esϕ(a,b)ψs(T a, b)

and for a ∈ Sk , 1 ≤ k ≤ �− 2, we have

ψ
p1···pd
s (a) =

∑
b∈S

ψs(a, b).

Differentiating the two sides of each of the above two equations with respect to s, we get
for all s ∈ S�−1,

p1 · · · pdψp1···pd−1
s (a)ψ ′

s(a) =
∑
b∈S

esϕ(a,b)ϕ(a, b)ψs(T a, b)+
∑
b∈S

esϕ(a,b)ψ ′
s(T a, b)

and for all a ∈ ⋃
1≤k≤�−2 S

k ,

p1 · · · pdψp1···pd−1
s (a)ψ ′

s(a) =
∑
b∈S

ψ ′
s(a, b).

Dividing these equations by ψp1···pd
s (a) (for different a), we get the following lemma.

LEMMA 4.13. For any a ∈ S�−1, we have

p1 · · · pd ψ
′
s(a)

ψs(a)
=

∑
b∈S

esϕ(a,b)ϕ(a, b)ψs(T a, b)
ψ
p1···pd
s (a)

+
∑
b∈S

esϕ(a,b)ψ ′
s(T a, b)

ψ
p1···pd
s (a)

(44)

and for any a ∈ ⋃
1≤k≤�−2 S

k ,

p1 · · · pd ψ
′
s(a)

ψs(a)
=

∑
b∈S

ψ ′
s(a, b)

ψ
p1···pd
s (a)

. (45)

We denote

w(a) = ψ ′
s(a)

ψ ′
s(a)

, v(a) =
∑
b∈S

esϕ(a,b)ψ ′
s(T a, b)

ψ
p1···pd
s (a)

(for all a ∈ S�−1).

Then we have the following identities.

LEMMA 4.14. (Nd version of [11, Lemma 7.7 and Theorem 5.1]) For any n ∈ N, we have

Eμsϕ(y
n+�−1
n ) = p1 · · · pdEμsw(yn+�−2

n )− Eμs v(y
n+�−2
n ) (for all n ≥ 0), (46)

Eμsw(y
n+�−2
n ) = Eμs v(y

n+�−3
n−1 ) (for all n ≥ 1), (47)

Eμsw(y
�−2
0 ) = P ′

ϕ(s)

p1 · · · pd(p1 · · · pd − 1)
, (48)
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and

(p1 · · · pd − 1)2
∞∑
k=1

1
(p1 · · · pd)k+1

k−1∑
j=0

Eμsϕ(yj , . . . , yj+�−1) = P ′
ϕ(s). (49)

Proof. Using a similar argument from Lemma 4.5, the proof is almost identical to the
proof of of [11, Lemma 7.7 and Theorem 5.1] by changing q to p1 · · · pd .

As an application of Lemma 4.14, we get the following formula for dimH Pμs .

LEMMA 4.15. For any s ∈ R, we have

dimH Pμs = −sP ′
ϕ(s)+ Pϕ(s)

(p1 · · · pd)�−1 .

Proof. By Lemma 4.7, we have

− log Pμs ([x|[[1,N]]])
N1 · · · Nd = − s

N1 · · · Nd
∑

j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

+ (N1 · · · Nd − �N1 · · · Nd/p1 · · · pd�)
N1 · · · Nd p1 · · · pd log ψs(∅)

+ B�N/p�(x)
N1 · · · Nd/p1 · · · pd − BN(x)

N1 · · · Nd .

Applying the LLN to the function ψs , we get the Pμs -almost everywhere existence of the
limit limN→∞ BN(x)/N1 · · · Nd . So,

lim
N→∞

B�N/p�(x)
N1 · · · Nd/p1 · · · pd − BN(x)

N1 · · · Nd = 0, Pμs -almost everywhere.

However, by the Lemmas 4.14 and 4.5, we have

lim
N→∞

1
N1 · · · Nd

∑
j∈[[1,�N/p�−1�]]

ϕ(xj, . . . , xj·p�−1)

= P ′
ϕ(s)

(p1 · · · pd)�−1 , Pμs -almost everywhere.

So we obtain that for Pμs -a.e. x ∈ �N
d

m ,

lim
N→∞ − log Pμs ([x|[[1,N]]])

N1 · · · Nd = −sP ′
ϕ(s)+ Pϕ(s)

(p1 · · · pd)�−1 .

The proof is complete.

By Lemmas 4.14, 4.15, and Billingsley’s lemma, we get the following lower bound for
dimH E(P

′
ϕ(s)).

LEMMA 4.16. For any s ∈ R, we have

dimH E(P
′
ϕ(s)) ≥ −sP ′

ϕ(s)+ Pϕ(s)

(p1 · · · pd)�−1 log m
.
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4.2. The case when sα tends to ±∞
LEMMA 4.17. [11, Theorem 5.6] Suppose that αmin < αmax. Then:
(1) P ′

ϕ(s) is strictly increasing on R;
(2) αmin ≤ P ′

ϕ(−∞) < P ′
ϕ(+∞) ≤ αmax.

Proof. The proof is similar to [11, Theorem 5.6]. Thus, we omit it.

THEOREM 4.18
(1) We have the equality

αmin = P ′
ϕ(−∞)

if and only if there exists a sequence (yi)∞i=1 ∈ �m such that

ϕ(yk , yk+1, . . . , yk+�−1) = αmin for all k ≥ 1.

(2) We have the equality

αmax = P ′
ϕ(+∞)

if and only if there exists a sequence (xi)∞i=1 ∈ �m such that

ϕ(xk , xk+1, . . . , xk+�−1) = αmax for all k ≥ 1.

Proof. We give the proof of the criterion for αmin = P ′
ϕ(−∞). That for P ′

ϕ(+∞) = αmax

is similar.

Sufficient condition. Suppose that there exists a sequence (zi)∞j=0 ∈ �m such that

ϕ(zj , zj+1, . . . , zj+�−1) = αmin for all j ≥ 0.

We are going to prove that αmin = P ′
ϕ(−∞). By Lemma 4.17, we have αmin ≤ P ′

ϕ(−∞),

thus we only need to show that αmin ≥ P ′
ϕ(−∞). To see this, we need to find an x ∈ �N

d

m

such that

lim
N→∞

1
N

∑
j∈[[1,N]]

ϕ(xj, . . . , xj·p�−1) = αmin.

Then by Lemma 4.10, αmin ∈ [P ′
ϕ(−∞), P ′

ϕ(+∞)], so αmin ≥ P ′
ϕ(−∞). We can do this

by choosing x = (xj)j∈Nd = ∏
i∈Ip

(xi·pj )∞j=0 with

(xi·pj )∞j=0 = (zj )
∞
j=0 for all i ∈ Ip.

Necessary condition. Suppose that there is no (zj )∞j=0 ∈ �m such that

ϕ(zj , zj+1, . . . , zj+�−1) = αmin for all j ≥ 0.

We show that there exists an ε > 0 such that

P ′
ϕ(s) ≥ αmin + ε for all s ∈ R,

which will imply that P ′
ϕ(−∞) ≥ αmin.
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From the hypothesis, we deduce that there are no words zn+�−1
0 with n ≥ m� such that

ϕ(zj , zj+1, . . . , zj+�−1) = αmin for all 0 ≤ j ≤ n. (50)

Indeed, since zj+�−1
j ∈ S� for all 0 ≤ j ≤ n, there are at most m� choices for zj+�−1

j . So
for any word with n ≥ m�, there exist at least two j1 < j2 ∈ {0, . . . , n} such that

z
j1+�−1
j1

= z
j2+�−1
j2

.

Then if the word zn+�−1
0 satisfies equation (50), the infinite sequence

(yj )
∞
j=0 = (zj1 , . . . , zj2−1)

∞

would verify that

ϕ(yj , yj+1, . . . , yj+�−1) = αmin for all j ≥ 0.

This contradicts the hypothesis. We conclude that for any word zm
�+�−1

0 ∈ Sm�+�−1, there
exists at least one 0 ≤ j ≤ m� such that

ϕ(zj , zj+1, . . . , zj+�−1) ≥ α′
min > αmin,

where α′
min is the second smallest value of ϕ over S�.

We deduce from the above discussions that for any (zj )∞j=0 ∈ �m and k ≥ 0, we have

k+m�∑
j=k

ϕ(zj , zj+1, . . . , zj+�−1) ≥ m�αmin + α′
min = (m� + 1)αmin + δ,

where δ = α′
min − αmin > 0. This implies that for any (zj )∞j=0 ∈ �m and n ≥ 1, we have

n−1∑
j=0

ϕ(zj , zj+1, . . . , zj+�−1) ≥ nαmin +
⌊

n

m� + 1

⌋
δ. (51)

By Lemma 4.14, we have

P ′
ϕ(s) = (p1 · · · pd − 1)2

∞∑
k=1

1
(p1 · · · pd)k+1

k−1∑
j=0

Eμsϕ(yj , . . . , yj+�−1)

= (p1 · · · pd − 1)2
∞∑
k=1

1
(p1 · · · pd)k+1Eμs

k−1∑
j=0

ϕ(yj , . . . , yj+�−1). (52)

By equations (51) and (52), we get

P ′
ϕ(s) = (p1 · · · pd − 1)2

∞∑
k=1

1
(p1 · · · pd)k+1

(
kαmin +

⌊
k

m� + 1

⌋
δ

)

= αmin + δ(p1 · · · pd − 1)2
∞∑
k=1

�k/(m� + 1)�
(p1 · · · pd)k+1 .
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Since

δ(p1 · · · pd − 1)2
∞∑
k=1

�k/(m� + 1)�
(p1 · · · pd)k+1 > 0,

we have proved that there exists an ε > 0 such that P ′
ϕ(s) ≥ αmin + ε, for all s ∈ R.

So far, we have calculated dimH E(α) for α ∈ (P ′
ϕ(−∞), P ′

ϕ(+∞)). Now we turn to
the case when α = P ′

ϕ(−∞) or P ′
ϕ(+∞).

THEOREM 4.19. [11, Theorem 7.11] If α = P ′
ϕ(±∞), then E(α) 
= ∅ and

dimH E(P
′
ϕ(±∞)) = P ∗

ϕ (P
′
ϕ(±∞))

(p1 · · · pd)�−1 log m
.

Proof. The proof of Theorem 4.19 follows from the following three lemmas established
by Fan, Schmeling, and Wu [11].

The same argument of Lemma 4.14 is applied for obtaining the lemmas below.

LEMMA 4.20. [11, Proposition 7.12] We have

Pμ−∞(E(P
′
ϕ(−∞))) = 1.

In particular, E(P ′
ϕ(−∞)) 
= ∅.

LEMMA 4.21. [11, Proposition 7.13] We have

dimH Pμ−∞ = lim
s→−∞

−P ′
ϕ(s)sα + Pϕ(s)

(p1 · · · pd)�−1 log m
= P ∗

ϕ (P
′
ϕ(−∞))

(p1 · · · pd)�−1 log m
.

LEMMA 4.22. [11, Proposition 7.14]

dimH E(P
′
ϕ(−∞)) = P ∗

ϕ (P
′
ϕ(−∞))

(p1 · · · pd)�−1 log m
.
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