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Hydrodynamics of Markets 1

6accdae13eff 7i3l9n4o4qrr4s8t12ux

Letter from Isaac Newton to Henry Oldenburg, 24 October 16761

Bob Montagnet: Yeah, good choice, Vlad.
Get back to the security system. How does it work?

Vlad: The way everything works. Mathematics.

“The Good Thief,” screenplay by Neil Jordan, 2002

1 Introduction
1.1 Background

Newton’s discovery of differential equations and calculus was crucial in devel-
oping classical mechanics because it allowed for the mathematical description
of the motion of objects. This discovery took a groundbreaking step in unify-
ing mathematics with physics, enabling the prediction of planetary orbits, the
motion of objects under various forces, and much more, and marked the begin-
ning of a new era in mathematics and science, laying the cornerstone for over
three centuries of advancements.
Newton understood the immediate impact of his discoveries and their poten-

tial to transform the understanding of the natural world. To establish and protect
his intellectual property rights at the same time, he concealed his discovery in
the fundamental anagram of calculus, which he included in his 1676 letter to
Oldenburg. This anagram contained a Latin statement describing the method
of fluxions (his term for calculus) when decoded. The need for an anagram
reflected that Newton was competitive and cautious in equal measure by bal-
ancing the desire for recognition with the fear of disclosure. The number of
occurrences of each Latin character in Newton’s sentence agrees with his ana-
gram, thus proving that the actual sentence was written in 1676.2 The original
letter is shown in Figure 1.
The fact that differential equations are instrumental in mathematics and

physics alike was firmly established in the late seventeenth century. How-
ever, methods for solving these equations remained ad hoc for more than a

1 Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa. –
“Given an equation involving any number of fluent quantities to find the fluxions, and vice
versa.” Vladimir Arnold paraphrased the statement as follows: “It is useful to solve differ-
ential equations.” Cambridge University Library, Department of Manuscripts and University
Archives. ItemReference Code: GBR/0012/MS Add.9597/2/18/56.

2 Newton’s anagram is an early example of a one-way hash function. An anagram is easy to
calculate, provided the message is known, but not vice versa. Hash functions are indispensable
in modern cryptography, including its applications to cryptocurrencies such as Bitcoin; see, for
example, Lipton and Treccani (2021).
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2 Quantitative Finance

Figure 1 Newton’s letter to Oldenburg, 1676. Reproduced by kind
permission of the Syndics of Cambridge University Library.
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Hydrodynamics of Markets 3

century until the work by Lagrange, Laplace, Fourier, and many other mathe-
maticians and physicists. In particular, the Fourier transform stands out as the
most potent tool in an applied mathematician’s toolkit, enabling the solving
of linear partial differential equations (PDEs) and partial pseudo-differential
equations (PPDEs) with spatially constant coefficients; it is also invaluable for
analyzing time series and tackling other critical tasks (Fourier (1822); Morse
& Feschbach (1953)).
At the heart of the n-dimensional Fourier method are wave functions,

expressed as follows:

F (t,x,k) = a (t) exp (ik · x), (1.1)

where x and k are n-dimensional vectors, · denotes the scalar product, a (t) is the
amplitude, and k · x is the phase. Depending on the particular problem at hand,
the amplitude a (t) can be a scalar or a vector, hence the notation. Substituting
F into a PDE with spatially constant coefficients, one reduces the problem of
interest to a system of ordinary differential equations (ODEs) or a single ODE
when a (t) is scalar. Of course, this system parametrically depends on k.
This Element studies PDEs and PPDEs with coefficients linearly dependent

on x, which are called affine. Hence, one must use a more general approach
and consider wave functions with time-dependent wave vectors:

K (t,x, β (t)) = a (t) exp (iβ (t) · x). (1.2)

Kelvin (1887) and Orr (1907) were the first to use such waves to analyze the
stability of the steady motions of an incompressible fluid.
Affine problems are not artificial constructs. They appear organically in

several situations, for example, when the linear description of the underlying
physical mechanism is either exact or provides an excellent approximation to
reality or when the evolution in the phase space is studied; see Section 3.
Subsequently and independently, affine PDEs and the associated wave func-

tions were used by many researchers in various areas, including the theory of
stochastic processes, physics, biology, and mathematical finance, to mention a
few. The Ornstein–Uhlenbeck (OU) and Feller processes are the simplest but
extremely important examples of affine processes; see Uhlenbeck and Ornstein
(1930), Chandresekhar (1943), and Feller (1951, 1952). For financial applica-
tions of affine processes see Duffie and Kan (1996), Duffie et al. (2000), Dai
and Singleton (2000), Lipton (2001), Duffie et al. (2003), Sepp (2007), Lipton
and Sepp (2008), and Filipovic (2009), among others.
This Element uses Kelvin waves of the form (1.2) to study transition

probability density functions (t.p.d.fs) for affine stochastic processes. These
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4 Quantitative Finance

processes can be either degenerate, namely, have more independent compo-
nents than the sources of uncertainty, or nondegenerate, when every component
has its source of uncertainty. Recall that the t.p.d.f. for a stochastic process
describes the likelihood of a system transitioning from one state to another
over a specified period. Knowing the iterated t.p.d.f. is fundamental for under-
standing the dynamics and behavior of stochastic processes over time and is
tantamount to knowing the process itself.
In this Element, Kelvin waves are also used to solve several essential and

intricate problems occurring in financial applications. These include pricing
options with stochastic volatility, path-dependent options, and Asian options
with geometric averaging, among many others.
The main objective is to link various financial engineering topics with their

counterparts in hydrodynamics and molecular physics and showcase the inter-
disciplinary nature of quantitative finance and economic modeling. Finding
such connections allows us to understand better how to model, price, and risk-
manage various financial instruments, derive several new results, and provide
additional intuition regarding their salient features. This Element continues pre-
vious efforts in this direction; see Lipton and Sepp (2008) and Lipton (2018),
chapter 12.
There are several approaches one can use to solve affine equations efficiently.

For instance, Lie symmetries are a powerful tool for studying certain classes of
affine equations. Numerous authors describe general techniques based on Lie
symmetries; see, for example, Ovsiannikov (1982), Ibragimov (1985), Olver
(1986), and Bluman and Kumei (1989), while their specific applications to
affine equations are covered by Berest (1993), Aksenov (1995), Craddock and
Platen (2004), Craddock (2012), and Kovalenko et al. (2014), among many
others. However, Lie symmetry techniques are exceedingly cumbersome and
might be challenging to use in practice, especially when complicated affine
equations are considered.
Laplace transform of spatial variables can be used in some cases, for

instance, for Feller processes; see, for example, Feller (1951, 1952). However,
they are hard to use for solving generic affine equations.
Reductions of a given equation to a simpler, solvable form is another power-

ful method that can be successfully used in many instances; see, for example,
Chandresekhar (1943), Carr et al. (2002), Lipton et al. (2014), and Lipton
(2018), chapter 9. Although the reduction method is quite powerful, experience
suggests it is often hard to use in practice.
Finally, the affine ansatz based on Kelvin waves provides yet another

approach, which is the focus of the present Element; see also Duffie and
Kan (1996), Dai and Singleton (2000), Duffie et al. (2003), Lipton and Sepp
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Hydrodynamics of Markets 5

(2008), Filipovic (2009), and Lipton (2018), chapter 12. Undoubtedly, the
affine framework, also known as the affine ansatz, is the most potent among
the abovementioned techniques due to its comprehensive nature, versatility,
and (relative) ease of use, even in complex situations. In practice, applications
of Kelvin waves consist of three steps:

• Effectively separating variables for the evolution problems with pseudo-
differential generators linearly dependent on spatial coordinates;

• Solving ODEs parametrized by time-dependent wave vectors; see (1.2);
• Aggregating their solutions together to get the solution to the original
problem.

However, despite being a ruthlessly efficient tool, Kelvin waves have limita-
tions – using them to solve evolution problems supplied with external boundary
conditions is challenging. This exciting topic is being actively researched now;
it will be discussed elsewhere in due course.

1.2 Main Results
This Element develops a coherent, unified mathematical framework using Kel-
vin waves as a powerful and versatile tool for studying t.p.d.fs in the context
of generic affine processes. It discovers previously hidden connections among
large classes of apparently unrelated problems from hydrodynamics, molecu-
lar physics, and financial engineering. All these problems require solving affine
(pseudo-) differential equations, namely, equations with coefficients, which lin-
early depend on spatial variables. The Element discusses some classical results
and derives several original ones related to:

• small wave-like perturbations of linear flows of ideal and viscous fluids
described by Euler and Navier–Stokes equations, respectively;

• motions of free and harmonically bound particles under the impact of ran-
dom external white-noise forces described by the Klein–Kramers equations
and the hypoelliptic Kolmogorov equation, which play an essential role in
statistical physics;

• Gaussian and non-Gaussian affine processes, such as the Ornstein–
Uhlenbeck and Feller processes, which are the archetypal mean-reverting
processes, and their generalizations;

• dynamics of financial markets, particularly derivative products.

To solve some of the more complicated problems, one must augment pri-
mary processes by introducing subordinate processes for auxiliary variables,
such as integrals over the original stochastic variable, and develop a uniform
mathematical formalism to construct t.p.d.fs for the abovementioned processes.
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6 Quantitative Finance

Quite unexpectedly, the analysis identifies and rectifies an error in the
original solution of the Kolmogorov equation. The rectified solution is dimen-
sionally correct, properly scales when the process parameters change, and
agrees with numerical results.
Furthermore, this Element derives many original results and extends and

reinterprets some well-known ones. For instance, it develops a concise and effi-
cient expression for t.p.d.fs in the case of processes with stochastic volatility.
Moreover, the analysis reveals an unexpected similarity between the propaga-
tion of vorticity in two-dimensional flows of viscous incompressible fluid and
themotion of a harmonically bound particle, which is used to find a new explicit
expression for the vorticity of a two-dimensional flow in terms of the Gaussian
density.
Finally, the Element applies the new methodology to various financial engi-

neering topics, such as pricing options with stochastic volatility, options with
path-dependent volatility, Asian options, volatility and variance swaps, options
on stocks with path-dependent volatility, and bonds and bond options. In
contrast to the classical approach, the Element treats primary fixed-income
products, such as bonds and bond options, as path-dependent, allowing us to
gain additional intuition regarding such products’ pricing and risk manage-
ment. It also highlights the flexibility of the interdisciplinary framework by
incorporating additional complexities into the picture, such as jump-diffusion
processes and, more generally, processes driven by affine pseudo-differential
processes frequently used in financial applications.

1.3 Element Structure
Section 2 introduces Kelvin waves. Section 2.1 introduces the Euler equations,
which describe the dynamics of a perfect fluid, alongside the Navier–Stokes
equation for viscous incompressible fluids. Section 2.2 discusses the exact equi-
libria of these equations, focusing on states where velocity varies linearly and
pressure quadratically with spatial coordinates, referred to as linear flows. Sec-
tion 2.3 illustrates that the renowned Kelvin waves provide solutions to the
linearized Euler and Navier–Stokes equations for small perturbations of the
linear flows. This section also explores the use of Kelvin waves in analyzing
the stability of these flows.
The Element uses Kelvin waves as a fundamental tool in the analytical arse-

nal, demonstrating their applicability across various study areas. For instance,
they allow one to discover profound and surprising links between the viscous
two-dimensional vorticity equations and the Klein–Kramers equation, a corner-
stone of stochastic physics; see Section 6.6. This connection results in a novel
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Hydrodynamics of Markets 7

formula representing vorticity as a Gaussian density and the stream function as
the solution to the associated Poisson equation.
Section 3 investigates the degenerate stochastic process introduced by Kol-

mogorov in 1934, alongside the associated Fokker–Planck equation and its
solution proposed by Kolmogorov. Further connections between the Kol-
mogorov and Klein–Kramers equations are explored in Section 4. To start
with, Section 3 summarizes Kolmogorov’s original findings. Surprisingly, the
Fokker–Planck equation, as used byKolmogorov in his seminal paper, is incon-
sistent with his initial assumptions regarding the underlying process.Moreover,
his proposed solution has dimensional inconsistencies and, as a result, does not
satisfy the Fokker–Planck equation and initial conditions. However, there is a
silver lining; Kolmogorov’s solution can be corrected via several complemen-
tary methods, which the section outlines. It concludes with an example of a
representative corrected solution to the Kolmogorov problem.
Section 4 explores a selection of representative affine stochastic processes in

statistical physics. First, it introduces the Langevin equation, which describes
the dynamics of an underdamped Brownian particle in a potential field. Fol-
lowing this, it derives the Klein–Kramers equation, capturing the probabilistic
aspects of the motion of such a particle. It turns out that the Kolmogorov equa-
tion derived in Section 3 is a particular case of the Klein–Kramers equation.
The section presents Chandrasekhar’s solutions to the Klein–Kramers equa-
tions describing free and harmonically bound particles. The Klein–Kramers
equation is inherently degenerate, with white noise impacting the particle’s
velocity but not its position. It is shown in Section 8 that many path-dependent
problems share this characteristic in mathematical finance. For instance, finan-
cial variables like the geometric price averages, which serve as the underlying
instruments for a particular class of Asian options, can be conceptualized as
path integrals, fitting into the category of degenerate stochastic processes.
Section 5 describes backward (Kolmogorov) and forward (Fokker–Planck)

equations for t.p.d.fs of multidimensional stochastic jump-diffusion processes.
The section explains the significance of studying t.p.d.fs. It sets up the gen-
eral framework for Kolmogorov and Fokker–Planck equations and identifies
the subset of affine stochastic processes amenable to analysis using the Kelvin-
wave formalism. Subsequently, the section introduces an augmentation tech-
nique, providing a natural approach to tackle degenerate problems. Finally, it
illustrates methods for transforming specific nonaffine processes into affine
form through coordinate transformations, enhancing the scope of problems
accessible by the Kelvin-wave methodology.
Section 6 studies Gaussian stochastic processes. It introduces a general

formula for regular Gaussian processes, accommodating both degenerate
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8 Quantitative Finance

scenarios and nondegenerate cases, as in Kolmogorov’s example. It expands
this formula to address the practically significant scenario of killed Gaussian
processes, followed by several illustrative examples. Then, the section presents
the derivation of the t.p.d.f. for the Kolmogorov process with time-varying
coefficients and explores the OU process with time-dependent coefficients and
its extension, the augmented OU process, which models the combined dynam-
ics of the process and its integral. Although the results are classical, their
derivation through Kelvin-wave expansions provides a novel and enriching
angle, offering an alternative viewpoint for understanding and deriving these
established results. Next, the section examines free and harmonically bound
particles, contrasting the Kelvin-wave method with Chandrasekhar’s classi-
cal approach. Finally, it revisits the basic concepts introduced in Section 2,
demonstrating the akin nature of the temporal-spatial evolution of vorticity in
the two-dimensional flow of a viscous fluid to the dynamics of a harmonically
bound particle. This finding is intriguing and unexpected, forging a connection
between seemingly unrelated physical phenomena.
Section 7 considers non-Gaussian processes. It starts with a general formula

for non-Gaussian dynamics, accommodating degenerate and nondegenerate
processes. Then, it expands this formula to killed processes. Several interesting
examples are studied. These examples include a Kolmogorov process driven by
anomalous diffusion, Feller processes with constant and time-dependent coeffi-
cients, and degenerate and nondegenerate augmented Feller processes. A novel
method for investigating finite-time explosions of t.p.d.fs for augmented Feller
processes is developed as a helpful by-product of the analysis. In addition,
arithmetic Brownian motions with path-dependent volatility and degenerate
and nondegenerate arithmetic Brownian motions with stochastic volatility are
analyzed in detail.
Section 8 illustrates the application of the methodology to financial engineer-

ing. To start with, it lays the foundation of financial engineering, providing a
primer for the uninitiated. Then, the section introduces the geometric Brownian
motion, a staple in financial modeling, and discusses the modifications neces-
sary to reflect the complexities of financial markets better. Several traditional
models, such as Bachelier, Black–Scholes, Heston, and Stein–Stein models,
and a novel path-dependent volatility model are explored via the Kelvin-wave
formalism. In addition, it is shown how to price Asian options with geomet-
ric averaging via the Kolmogorov’s solution described in Section 3. Besides,
volatility and variance swaps and swaptions, bonds and bond options are inves-
tigated by linking financial formulas to those used in physics for underdamped
Brownian motion.
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Hydrodynamics of Markets 9

Section 9 succinctly outlines potential future expansions of the work pre-
sented in this Element and summarizes the conclusions. Finally, this Element
is a revised and expanded version of Lipton (2023).
A note on notation: Given the wide-ranging scope of this Element, from

hydrodynamics to molecular physics, probability theory, and financial engi-
neering, adopting a unified notation system is impractical. Each field has its
conventions carved in stone, leading to inevitable variations in notation. Nota-
tion is designed for consistency within and, where possible, across sections.
However, readers are encouraged to remain vigilant to maintain coherence in
their understanding.

2 Fluid Flows
2.1 Euler and Navier–Stokes Equations

Hydrodynamics studies how fluids (liquids and gases) move, primarily relying
on fluid motion’s fundamental equations: the Euler and Navier–Stokes equa-
tions, with the Euler equations applicable to inviscid (frictionless) flow and the
Navier–Stokes equations describing viscous fluids. Hydrodynamics has numer-
ous applications across various fields, including engineering, astrophysics,
oceanography, and climate change, among many others.
Recall that the Euler system of partial differential equations (PDEs) describ-

ing the motion of an inviscid, incompressible fluid has the form

∂V
∂t
+ (V·∇)V + ∇

(
P
ρ

)
= 0,

∇ · V = 0; (2.1)

where t is time, x is the position, V (t,x) is the velocity vector, P (t,x) is the
pressure, ρ is the constant density, ∇ is the gradient, and · denotes the scalar
product; see, for example, Chandrasekhar (1961). In Cartesian coordinates, the
equations in (2.1) can be written as follows:

∂Vi
∂t
+ Vj

∂Vi
∂xj
+

∂

∂xi

(
P
ρ

)
= 0,

∂Vi
∂xi
= 0. (2.2)

Here and in what follows, Einstein’s summation convention over repeated
indices is used.
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The motion of the incompressible viscous fluid is described by the classical
Navier–Stokes equations of the form:

∂V
∂t
+ (V·∇)V − ν∆V+∇

(
P
ρ

)
= 0,

∇ · V = 0; (2.3)

where ν is the kinematic viscosity; see, for example, Chandrasekhar (1961).
Explicitly,

∂Vi
∂t
+ Vj

∂Vi
∂xj

− ν ∂2Vi
∂xj∂xj

+
∂

∂xi

(
P
ρ

)
= 0,

∂Vi
∂xi
= 0. (2.4)

The diffusive term −ν∆V in (2.4) describes frictions ignored in (2.3). Due to
their greater generality, the Navier–Stokes equations are fundamental to under-
standing important phenomena, such as the transition from laminar to turbulent
flow.

2.2 Linear Flows
This section studies exact solutions of the Euler and Navier–Stokes equations
known as linear flows. These solutions are valuable for several reasons: (a)
exact solutions provide precise, analytical descriptions of fluid flow patterns
under specific conditions; (b) they serve as benchmarks for understanding fun-
damental hydrodynamics phenomena like wave propagation; (c) they provide
a bridge which is crucial for more complex studies by simplifying the inher-
ently complex and nonlinear nature of hydrodynamics, and making it possible
to understand the behavior of more general fluid flows. Linear solutions of
the Euler and Navier–Stokes equations help to study fluid flow stability. This
understanding is crucial in predicting and controlling flow behavior in various
engineering applications, from aerospace to hydraulic engineering. By starting
with linear solutions, one can incrementally introduce nonlinear effects, allow-
ing for a systematic study of nonlinear phenomena in hydrodynamics. This
approach can uncover the mechanisms behind complex flows, including turbu-
lence and chaotic flow behaviors. Exact linear solutions of the Euler equations
provide a clear, analytical framework for exploring the behavior of fluids and
validating more complicated models.
It is easy to show that the equations in (2.1) have a family of solutions

(V (t,x) ,P (t,x)), linearly depending on spatial coordinates:

V (t,x) = L (t) x, P (t,x)
ρ
=
P0
ρ
+
1
2
M (t) x · x, (2.5)
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where the 3 × 3 matrices L (t),M (t), are such that

dL (t)
dt
+ L2 (t) +M (t) = 0,

Tr (L (t)) = 0, M (t) = M∗ (t). (2.6)

It is clear that linear flows, given by (2.5), are unaffected by viscosity, hence
they satisfy (2.14).
Flows (2.5) have stagnation points at the origin. Typical examples are planar

flows of the form

V1 =
1
2
(sx1 − wx2) , V2 =

1
2
(wx1 − sx2) , V3 = 0,

P
ρ
=
P0
ρ
+
1
4

(
w2 − s2

) (
x21 + x

2
2

)
. (2.7)

These flows are elliptic when s < w, and hyperbolic otherwise; see, for
example, Friedlander and Lipton-Lifschitz (2003).

2.3 Kelvin Waves in an Incompressible Fluid
The study of small perturbations of exact solutions of the Euler and Navier–
Stokes equations is the core of the stability analysis in fluid dynamics. Exam-
ining their behavior is essential for predicting how fluid flows evolve under
slight disturbances. One can determine whether a particular flow is stable or
unstable by introducing small perturbations to an exact solution and observing
the system’s response. If these perturbations grow over time, the flow is con-
sidered unstable; if they decay or remain bounded, the flow is stable. One of
this analysis’s most critical applications is understanding the transition from
laminar (smooth and orderly) to turbulent (chaotic and unpredictable) flows.
Small perturbations can exhibit exponential growth, leading to the onset of tur-
bulence. For more detailed investigations, direct numerical simulations of the
perturbedNavier–Stokes equations can be used to study the nonlinear evolution
of perturbations. This approach can capture the complete transition from ini-
tial instability to fully developed turbulence, offering insights into the complex
interactions that drive flow dynamics. The study of perturbations offers the-
oretical insights into the fundamental nature of fluid dynamics, including the
mechanisms of flow instability, transition, and turbulence structure. It helps in
developing reduced-order models and theories that explain complex fluid phe-
nomena. Here, Kelvin waves are used as the primary tool for studying small
perturbations of linear flows. In the rest of this Element, Kelvin waves are used
for other purposes. This section is dedicated to their brief description.
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It is necessary to study the behavior of perturbations of solutions given by
(2.5), which are denoted by (v (t,x) ,p (t,x)). By neglecting the quadratic term
(v · ∇)v, one can write the system of PDEs for (v,p) as follows:

∂v
∂t
+ (L (t) x·∇)v+L (t) v+∇

(
p
ρ

)
= 0,

∇ · v = 0. (2.8)

It has been known for a long time that linear PDEs (2.8) havewavelike solutions
of the form:(

v (t,x) , p (t,x)
ρ

)
= (a (t) ,a (t)) exp (iβ (t) · (x − r (t))), (2.9)

where (a (t) ,a (t)) are time-dependent amplitudes, and β (t) is the time-
dependent wave vector; see Kelvin (1887), Orr (1907), Craik and Criminale
(1986), and Friedlander and Lipton-Lifschitz (2003). In this Element, these
solutions are called theKelvinwaves. It should be emphasized that the so-called
affine ansatz is a special instance of Kelvin wave. This observation allows one
to discover similarities among seemingly unrelated topics, which, in turn, facil-
itates their holistic and comprehensive study. An excerpt fromKelvin’s original
paper is shown in Figure 2.
As one can see from Figure 2, Kelvin considered the special case of the

so-called shear linear flow of the form

V (t,x) = (V1 (x2) ,0,0) = (l12x2,0,0), (2.10)

between two plates, x2 = 0 and x2 = L, the first one at rest and the second one
moving in parallel.
The triplet r (t), β (t), a (t) satisfies the following system of ODEs:

dr (t)
dt

− L (t) r (t) = 0, r (0) = r0,

dβ (t)
dt
+ L∗ (t) β (t) = 0, β (0) = β0,

da (t)
dt
+ L (t) a (t) − 2

L (t) a (t) · β (t)
β (t) · β (t) β (t) = 0, a (0) = a0,

β0 · a0 = 0. (2.11)

Here and in what follows, the superscript ∗ stands for transpose. The corre-
sponding p (t) can be found via the incompressibility condition. It is easy to
show that for t ≥ 0,

β (t) · r (t) = β0 · r0, β (t) · a (t) = 0. (2.12)
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Figure 2 An excerpt from Kelvin’s original paper, where Kelvin waves are
introduced for the first time; see Kelvin (1887). Public domain.
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Figure 2 (continued)
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Thus, the Kelvin-wave formalism results in ingenious separation of variables
and allows us to solve a system of ODEs (2.11), rather than PDEs (2.8).
Typically, the equations in (2.11) are used to study the stability of the linear

flow. Such a flow is unstable whenever ‖a (t)‖ → ∞ for some choices of β0,a0;
see Bayly (1986), Lifschitz (1995), and Bayly et al. (1996). Moreover, it can
be shown that the same instabilities occur in general three-dimensional flows,
because locally they are equivalent to linear flows; see Lifschitz and Hameiri
(1991a), Friedlander and Vishik (1991), Lifschitz and Hameiri (1991b), and
Friedlander and Lipton-Lifschitz (2003).
Interestingly, Chandrasekhar (1961) pointed out that the superposition of the

linear flow (2.5) and the Kelvin wave (2.9), namely,

Ṽ (t,x) = L (t) x + v (t,x),
P̃ (t,x)
ρ
=
1
2
M (t) x · x+p (t,x)

ρ
, (2.13)

satisfies the nonlinear Euler equations (2.1) since the nonlinear term (v · ∇)v
vanishes identically due to incompressibility.3 Studying secondary instabilities
of flows with elliptic streamlines, that is, instabilities of Kelvin waves is an
important and intricate topic; see Fabijonas et al. (1997).
Viscosity does affect small perturbations of linear flows. For viscous incom-

pressible fluids, Kelvin waves are governed by the following equations:

∂v
∂t
+ (L (t) x·∇)v+L (t) v − ν∆v+∇

(
p
ρ

)
= 0,

∇ · v = 0. (2.14)

The viscous version of (2.11) has the following form; see Lifschitz (1991):

dr (t)
dt

− L (t) r (t) = 0, r (0) = r0,

dβ (t)
dt
+ L∗ (t) β (t) = 0, β (0) = β0,

da (t)
dt
+ L (t) a (t) − 2

L (t) a (t) · β (t)
β (t) · β (t) β (t) + ν |β (t)|2 a (t) = 0, a (0) = a0,

β0 · a0 = 0. (2.15)

It is shown in Section 6.5 that in the two-dimensional case, the Navier–Stokes
equations for small perturbations of linear flows are more or less identical to the
Fokker–Planck equations for harmonically bound articles, which is surprising.

3 Thus, even the greatest minds occasionally can be myopic – it took eighty years for fluid
dynamists to connect the dots and observe that (ṽ, p̃/ρ) solve the nonlinear Euler equations.
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Figure 3 Kelvin waves corresponding to two different orientations of the
initial wave vector β (0) and a (0). (a), (b) β(0) = (sin (π/4) ,0,cos (π/4)),

a (0) = (0, sin (π/4) ,0); (c), (d) β(0) = (sin (π/3) ,0,cos (π/3)),
a (0) = (0, sin (π/3) ,0). Other parameters are as follows: T = 100, ω = 1,
s = 0.5. In the first case, a (t) stays bounded, while a (t) explodes in the
second case. This explosion means that the underlying elliptic flow is

unstable. Author’s graphics.

The evolution of a typical Kelvin wave parameters triplet r (t), β (t), a (t)
is illustrated in Figure 3. The impact of viscosity is illustrated in Figure 4.
These figures show that depending on the initial orientation of the wave vec-
tor β (t), the amplitude a (t) can be either bounded or unbounded. For elliptic
flows, unbounded amplitudes are always present for specific orientations, so
all of them are unstable; see Bayly (1986), Bayly et al. (1996), Friedlander and
Lipton-Lifschitz (2003), and references therein.

3 Kolmogorov Stochastic Process
3.1 Background

The Kolmogorov equation studies the evolution of a particle in the phase space.
The particle’s position and velocity evolve in time due to the interplay between
the deterministic drift and stochastic force affecting only its velocity. Since
only the particle’s velocity is affected by the random force, the PDE describing
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Figure 4 Kelvin waves in the viscous fluid with viscosity ν = 0.07. Other
parameters and initial conditions are the same as in Figure 3. Viscosity

dampens the instability but, generally, does not suppress it entirely. Author’s
graphics.

the evolution of the t.p.d.f. in the phase space is degenerate. The Kolmogorov
equation is a particular case of the Klein–Kramers equation studied in
Section 4.
The significance of the Kolmogorov equation lies in its ability to model

the intricate balance between deterministic behavior and stochastic dynam-
ics, providing a basic framework for studying the evolution of systems in
phase space. It has important applications in various fields, including phys-
ics for understanding particle dynamics, finance for modeling asset prices, and
beyond. It demonstrates the profound interplay between stochastic processes
and differential equations.
The Kolmogorov equation is hypoelliptic; as such, it serves as a prototype

for a broad class of hypoelliptic PDEs. Although it does not meet the exact
criteria for ellipticity (due to the second-order derivatives not being present in
all directions of the phase space), the solutions to the equation are still smooth,
which is particularly important in the context of stochastic processes, where
hypoellipticity ensures that the probability density function remains smooth
and well-behaved, facilitating the analysis of the system’s dynamics over time.
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3.2 Summary of Kolmogorov’s Paper
In a remarkable (and remarkably concise) note, Kolmogorov considers a system
of particles in n-dimensional space with coordinates q1, . . . ,qn, and velocities
Ûq1, . . . , Ûqn, assuming the probability density function

g
(
t,q1, . . . ,qn, Ûq1, . . . , Ûqn, t′,q′1, . . . ,q′n, Ûq′1, . . . , Ûq′n

)
exists for some time t′ > t, and reveals (without any explanation) an analytical
expression for g in the one-dimensional case; see Kolmogoroff (1934).4 This
note is the third in a series of papers, the previous two being Kolmogoroff
(1931, 1933).
Kolmogorov makes the following natural assumptions:

E |∆qi − Ûqi∆t| = o (∆t), (3.1)

E (∆qi)2 = o (∆t), (3.2)

where ∆t = t′ − t. Equations (3.1) and (3.2) imply

E (∆qi) = Ûqi∆t + o (∆t), (3.3)

E
(
∆qi∆qj

)
≤

√
E (∆qi)2 E

(
∆qj

)2
= o (∆t). (3.4)

Furthermore, under very general assumptions, the following relationships hold:

E (∆Ûqi) = fi (t,q, Ûq)∆t + o (∆t), (3.5)

E (∆Ûqi)2 = kii (t,q, Ûq)∆t + o (∆t), (3.6)

E
(
∆Ûqi∆Ûqj

)
= kij (t,q, Ûq)∆t + o (∆t), (3.7)

where f and k are continuous functions. Equations (3.2), and (3.6) imply

E
(
∆Ûqi∆Ûqj

)
≤

√
E (∆Ûqi)2 E

(
∆Ûqj

)2
= o (∆t). (3.8)

Under some natural physical assumptions, it follows that g satisfies the follow-
ing differential equation of the Fokker–Planck type:

∂g
∂t′
= −

∑
Ûq′i
∂g
∂q′i

−
∑ ∂

∂ Ûq′i
{ fi (t,q, Ûq) g} +

∑∑ ∂2

∂ Ûq′i∂ Ûq′j
{k (t,q, Ûq) g}.

(3.9)

In the one-dimensional case, one has
∂g
∂t′
= −Ûq′ ∂g

∂q′
− ∂

∂ Ûq′ { f (t,q, Ûq) g} +
∂2

∂ Ûq′2
{k (t,q, Ûq) g}. (3.10)

These equations are known as ultra-parabolic Fokker–Plank–Kolmogorov
equations due to their degeneracy.

4 Kolmogorov published his seminal papers in German where his name appears under the
transliteration of Kolmogoroff, the spelling used in the original articles has been retained.
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When f and k are constants, (3.10) becomes

∂g
∂t′
= −Ûq′ ∂g

∂q′
− f

∂g
∂ Ûq′ + k

∂2g
∂ Ûq′2

. (3.11)

The corresponding fundamental solution of has the following form:

g =
2
√
3

πk 2 (t′ − t)2
exp

−
(Ûq′ − Ûq − f (t′ − t))2

4k (t′ − t) −
3
(
q′ − q − Ûq′+Ûq

2 (t′ − t)
)2

k3 (t′ − t)3

.
(3.12)

One can see that ∆Ûq is of the order (∆t)1/2. At the same time

∆q = Ûq∆t + O (∆t)3/2. (3.13)

One can prove that a similar relation holds for the general (3.9).
Kolmogorov’s original paper is shown in Figure 5.
Kolmogorov equations fascinated mathematicians for a long time and gen-

erated a great deal of research; see, for example, Weber (1951), Hörmander
(1967), Kuptsov (1972), Lanconelli et al. (2002), Pascucci (2005), Ivasishen
and Medynsky (2010), and Duong & Tran (2018), among others.
It is worth mentioning that physicists derived Equations (3.9) and (3.10) at

least a decade earlier than Kolmogorov; see Section 4.

3.3 Challenge and Response
Despite its undoubted brilliance, Kolmogorov’s original paper has several
issues.
First, Equations (3.9) and (3.10) are not the Fokker–Planck equations asso-

ciated with the process described by Equations (3.5)–(3.7), since they lack
the prefactor 1/2 in front of the diffusion terms. The corrected multivariate
equation has the form

∂g
∂t′
= −

∑
Ûq′i

∂

∂q′i
g −

∑ ∂

∂ Ûq′i
{ fi (t,q, Ûq) g}

+
1
2

∑∑ ∂2

∂ Ûq′i∂ Ûq′j
{{k (t,q, Ûq) g}}, (3.14)

while the corresponding one-dimensional equation has the form

∂g
∂t′
= −Ûq′ ∂

∂q′
g − ∂

∂ Ûq′ { f (t,q, Ûq) g} +
1
2
∂2

∂ Ûq′2
{{k (t,q, Ûq) g}}. (3.15)

Alternatively, Equations (3.6) and (3.7) can be altered as follows:

E (∆Ûqi)2 = 2kii (t,q, Ûq)∆t + o (∆t), (3.16)
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Figure 5 Kolmogorov’s original paper, presented here for the inquisitive
reader to enjoy; see Kolmogoroff (1934). Reproduced by kind permission of

the Editors of Annals of Mathematics.

E
(
∆Ûqi∆Ûqj

)
= 2kij (t,q, Ûq)∆t + o (∆t). (3.17)

In the following discussion, the Fokker–Planck equation is updated.
Second, g given by (3.12) does not solve (3.10). It also does not satisfy the

(implicit) initial condition

g (t,q, Ûq, t,q′, Ûq′) = δ (q′ − q) δ (Ûq′ − Ûq), (3.18)
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Figure 5 (continued)

where δ (.) is the Dirac δ-function. The fact that expression (3.12) does not
solve (3.10) can be verified by substitution. However, it is easier to verify
this statement via dimensional analysis. The dimensions of the corresponding
variables and coefficients are as follows:
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[t] = [t′] = T, [q] = [q′] = L, [Ûq] = [Ûq′] = L
T
, [g] = T

L2
, [ f ] = L

T 2 ,

[k] = L2

T 3 . (3.19)

It is easy to show that g is scale-invariant, so that

g
(
λ
2t,λ3q,λÛq,λ2t′,λ3q′,λÛq′; λ−1f,k

)
= λ−4g (t,q, Ûq, t′,q′, Ûq′; f,k). (3.20)

The original Kolmogorov formula contains two typos, making it dimensionally
incorrect since the term

3
(
q′ − q − Ûq′+Ûq

2 (t′ − t)
)2

k3 (t′ − t)3

in the exponent is not nondimensional, as it should be, and has dimension
T 6L−1, while the prefactor

2
√
3

πk 2 (t′ − t)2

has dimension T 4L−1, instead of the right dimension, TL−2.
Third, due to yet another typo, the solution given by (3.12) does not converge

to the initial condition in the limit t′ → t. Indeed, asymptotically, one has

g ∼ H
(
k3 (t′ − t)3

6
,q′ − q

)
H (2k (t′ − t) , Ûq′ − Ûq) → 4δ (q′ − q) δ (Ûq′ − Ûq),

(3.21)

where H (µ, ν) is the standard heat kernel:

H (µ, ν) =
exp

(
− ν2

2µ

)
√
2πµ

. (3.22)

However, not all is lost. Dimensional analysis shows that the correct solution
g (t,q, Ûq, t′,q′, Ûq′; f,k) of (3.10) has the following form:

g =
√
3

2πk (t′ − t)2
exp

−
(Ûq′ − Ûq − f (t′ − t))2

4k (t′ − t) −
3
(
q′ − q − Ûq′+Ûq

2 (t′ − t)
)2

k (t′ − t)3

,
(3.23)
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which is not far from Kolmogorov’s formula. Similarly, the correct solution of
(3.15) has the following form:

g =
√
3

πk (t′ − t)2
exp

−
(Ûq′ − Ûq − f (t′ − t))2

2k (t′ − t) −
6
(
q′ − q − Ûq′+Ûq

2 (t′ − t)
)2

k (t′ − t)3

.
(3.24)

3.4 Direct Verification
In order to avoid confusion, from now on, the notation is changed to make the
formulas easier to read. Specifically, it is assumed that x̄ represents the position
of a particle at time t̄ and x its position at time t, while ȳ represents its velocity
at time t̄, and y its velocity at time t, so that

(t,q, Ûq) → (t,x,y) , (t′,q′, Ûq′) →
(
t̄, x̄, ȳ

)
. (3.25)

One of our objectives is deriving the (corrected) Kolmogorov formula from
first principles using Kelvin waves. Subsequently, it is shown how to use it in
the financial mathematics context. The governing SDE can be written as

d x̂t = ŷtdt, x̂t = x,

dŷt = bdt + σdŴt, ŷt = y. (3.26)

The corresponding Fokker–Planck–Kolmogorov problem for the t.p.d.f.
ϖ

(
t,x,y, t̄, x̄, ȳ

)
has the form:

ϖ t̄
(
t,x,y, t̄, x̄, ȳ

)
− 1
2
σ2ϖȳȳ

(
t,x,y, t̄, x̄, ȳ

)
+ ȳϖx̄

(
t,x,y, t̄, x̄, ȳ

)
+ bϖȳ

(
t,x,y, t̄, x̄, ȳ

)
= 0, (3.27)

ϖ (t,x,y, t, x̄, ȳ) = δ (x̄ − x) δ ( ȳ − y).

The solution of (3.27) is as follows:

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

√
3

πσ2T 2 exp
(
−Φ

(
t,x,y, t̄, x̄, ȳ

) )
, (3.28)

where

Φ
(
t,x,y, t̄, x̄, ȳ

)
=

( ȳ − y − bT )2

2σ2T
+
6
(
x̄ − x − ( ȳ+y)T

2

)2
σ2T 3 =

A2

2
+ 6B2, (3.29)

and

A =
( ȳ − y − bT )

√
σ2T

, [A] = 1, B =

(
x̄ − x − ( ȳ+y)T

2

)
√
σ2T 3

, [B] = 1. (3.30)
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Here and in what follows, the following shorthand notation is used:

T = t̄ − t. (3.31)

Let us check that ϖ satisfies the Fokker–Planck equation and the initial
conditions. A simple calculation yields:

Φ t̄ = −
(
A2

2T
+

bA
√
σ2T

+
18B2

T
+
6 ( ȳ + y)B
√
σ2T 3

)
,

(3.32)
Φx̄ =

12B
√
σ2T 3

, Φȳ =
A − 6B
√
σ2T

, Φȳȳ =
4
σ2T

,

ϖ t̄
ϖ
= −2

T
− Φ t̄,

ϖx̄
ϖ
= −Φx̄,

ϖȳ

ϖ
= −Φȳ,

ϖȳȳ

ϖ
= −Φȳȳ + Φ

2
x̄, (3.33)

so that

ϖK
t̄ −

1
2
σ2ϖK

ȳȳ + ȳϖ
K
x̄ + bϖ

K
ȳ

=ϖK
(
−2
T
− Φ t̄ +

1
2
σ2

(
Φȳȳ − Φ2ȳ

)
− ȳΦx̄ − bΦȳ

)
=ϖK

(
−2
T
+
A2

2T
+

bA
√
σ2T

+
18B2

T
+
6 ( ȳ + y)B
√
σ2T 3

(3.34)

+
2
T
− (A − 6B)2

2T
− 12ȳB
√
σ2T 3

− b (A − 6B)
√
σ2T

)
= 0.

When T → 0, one has the following asymptotic expression:

ϖK (
t,x,y, t̄, x̄, ȳ

)
∼ H

(
σ2T 3

12
, x̄ − x

)
H

(
σ2T, ȳ − y

)
→ δ (x̄ − x) δ ( ȳ − y).

(3.35)

3.5 Solution via Kelvin Waves
Now, Kolmogorov’s formula is derived by using Kelvin waves (or an affine
ansatz), which requires solving the problem of the following form:

K t̄
(
t,x,y, t̄, x̄, ȳ,k, l

)
− 1
2
σ2Kȳȳ

(
t,x,y, t̄, x̄, ȳ,k, l

)
+ ȳKx̄

(
t,x,y, t̄, x̄, ȳ,k, l

)
+ bKȳ

(
t,x,y, t̄, x̄, ȳ,k, l

)
= 0, (3.36)

K (t, x̄, ȳ, t,x,y,k, l) = exp (ik (x̄ − x) + il ( ȳ − y)).

Here

[k] = 1
L
, [l] = T

L
, [K] = 1. (3.37)
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By using the well-known results concerning the inverse Fourier transform of
the δ-function, one gets the following expression for the t.p.d.f.ϖ

(
t,x,y, t̄, x̄, ȳ

)
:

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
K

(
t,x,y, t̄, x̄, ȳ,k, l

)
dkdl. (3.38)

To calculate K, one can use the affine ansatz and represent it in the following
form:

K
(
t,x,y, t̄, x̄, ȳ,k, l

)
= exp

(
Ψ

(
t,x,y, t̄, x̄, ȳ,k, l

) )
, (3.39)

where

Ψ
(
t,x,y, t̄, x̄, ȳ,k, l

)
= α

(
t, t̄

)
+ ik (x̄ − x) + iγ

(
t, t̄

)
ȳ − ily. (3.40)

and
K t̄
K = Ψ t̄ =

(
α t̄

(
t, t̄

)
+ iγ t̄

(
t, t̄

)
ȳ
)
,

Kx̄
K = Ψx̄ = ik,

(3.41)Kȳ

K = Ψȳ = iγ
(
t, t̄

)
,

Kȳȳ

K = Ψ2ȳ = −γ2
(
t, t̄

)
.

Accordingly,

α t̄
(
t, t̄

)
+
1
2
σ2γ2

(
t, t̄

)
+ iγ t̄

(
t, t̄

)
ȳ + ikȳ + ibγ

(
t, t̄

)
= 0,

α (t, t) = 0, γ (t, t) = l, (3.42)

so that

α t̄
(
t, t̄

)
+
1
2
σ2γ2

(
t, t̄

)
+ ibγ

(
t, t̄

)
= 0, α (t, t) = 0,

γ t̄
(
t, t̄

)
+ k = 0, γ (t, t) = l. (3.43)

Straightforward calculation shows that:

γ
(
t, t̄

)
= −kT + l,

α
(
t, t̄

)
= −1

2
σ2

(
k 2T 3

3
− klT2 + l2T

)
− ib

(
−kT

2

2
+ lT

)
. (3.44)

Equations (3.38), (3.39), (3.40) and (3.44) yield

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1
2
σ2

(
k 2T 3

3
− klT2 + l2T

)
(3.45)

+ ik
(
x̄ − x − ȳT +

bT2

2

)
+ il ( ȳ − y − bT )

)
dkdl.
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It is clear that ϖ
(
t,x,y, t̄, x̄, ȳ

)
can be viewed as the characteristic function

of the Gaussian density in the (k, l) space, evaluated at the point (x̄ − x − ȳT
+ bT2

2 , ȳ − y − bT
)
:

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

(det (C))1/2
2π

∫ ∞

−∞

∫ ∞

−∞
G (T,k, l) (3.46)

× exp
(
ik

(
x̄ − x − ȳT +

bT2

2

)
+ il ( ȳ − y − bT )

)
dkdl,

where

G (T,k, l) = 1
2π (det (C))1/2

exp
(
−1
2

(
k
l

)
· C−1 (T )

(
k
l

))
, (3.47)

and

C (T ) =
©«

12
σ2T 3

6
σ2T 2

6
σ2T 2

4
σ2T

ª®®®¬,
(3.48)

det (C (T )) = 12
σ4T 4 .

As before, · denotes the scalar product. Accordingly,

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

√
3

πσ2T 2 exp
(
−Ω

(
t,x,y, t̄, x̄, ȳ

) )
, (3.49)

where

Ω
(
t,x,y, t̄, x̄, ȳ

)
=

=
1
2

(
x̄ − x − ȳT + bT2

2
ȳ − y − bT

)
· C

(
x̄ − x − ȳT + bT2

2
ȳ − y − bT

)
(3.50)

=
6
(
x̄ − x − ȳT + bT2

2

)2
σ2T 3 +

6
(
x̄ − x − ȳT + bT2

2

)
( ȳ − y − bT )

σ2T 2

+
2 ( ȳ − y − bT )2

σ2T

=
A2

2
+ 6B2 = Φ

(
t̄, x̄, ȳ ,x,y

)
,

as expected. This calculation completes the derivation of the corrected Kol-
mogorov formula.
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Note that the t.p.d.f. ϖ is a bivariate Gaussian distribution. Completing the
square, one can write

Φ =
( ȳ − y − bT )2

2σ2T
+
6
(
x̄ − x − ( ȳ+y)T

2

)2
σ2T 3

=
6

σ2T 3 (x̄ − p)2 − 6
σ2T 2 (x̄ − p) ( ȳ − q) + 2

σ2T
( ȳ − q)2 , (3.51)

and represent ϖ the form:

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

exp
(
− 1
2(1−ρ2)

(
(̄x−p)2
σ2
x

− 2ρ(̄x−p)( ȳ−q)
σxσy

+
( ȳ−q)2
σ2
y

))
2πσxσy

√
1 − ρ2

, (3.52)

where

σx =

√
σ2T 3

3
, σy =

√
σ2T, ρ =

√
3
2
,

p = x + yT +
bT2

2
, q = y + bT. (3.53)

Equation (3.28) can be derived by using the Hankel transform. Since

σ−2
C
−1 (T ) =

(
T 3

3 −T 2

2

−T 2

2 T

)
=

©«
T 3/2

2 −T 1/2

2

−T 3/2

2
√
3

√
3T 1/2

2

ª®¬
∗ ©«

T 3/2

2 −T 1/2

2

−T 3/2

2
√
3

√
3T 1/2

2

ª®¬,
(3.54)

one can introduce(
k̄
l̄

)
=

©«
T 3/2

2 −T 1/2

2

−T 3/2

2
√
3

√
3T 1/2

2

ª®¬
(
k
l

)
,

(3.55)(
k
l

)
=

(
3T −3/2 √

3T −3/2

T −1/2 √
3T −1/2

) (
k̄
l̄

)
,

and rewrite (3.46) as follows:

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

√
3

2π2T 2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1
2
σ2

(
k̄ 2 + l̄2

)
+ i

(
k̄
l̄

)
·
(

3T −3/2 T −1/2
√
3T −3/2 √

3T −1/2

) (
x̄ − x − ȳT + bT2

2
ȳ − y − bT

))
d k̄d l̄

=

√
3

2π2T 2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1
2
σ2

(
k̄ 2 + l̄2

)
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+ ik̄
3
(
x̄ − x − ȳT + bT2

2

)
+ ( ȳ − y − bT )T

T 3/2

+ īl

√
3
(
x̄ − x − ȳT + bT2

2

)
+
√
3 ( ȳ − y − bT )T

T 3/2

ª®®¬ d k̄d l̄. (3.56)

Thus, ϖ
(
t,x,y, t̄, x̄, ȳ

)
is the Fourier transform of a radially symmetric function

of
(
k̄, l̄

)∗
. Accordingly, it can be calculated via the Hankel transform of the

function exp
(
−σ2r̄2/2

)
:

ϖ
(
t,x,y, t̄, x̄, ȳ

)
=

√
3

πT 2H0

[
e−

σ2 r̄2
2

]
(̄s) =

√
3

πσ2T 2 e
− s̄2
2σ2 , (3.57)

where

r̄2 = k̄ 2 + l̄2,

s̄2 =
4
(
3
(
x̄ − x − ȳT + bT2

2

)2
+ 3

(
x̄ − x − ȳT + bT2

2

)
( ȳ − y − bT )T + ( ȳ−y−bT )2 T 2

)
T 3 .

(3.58)

See, for example, Piessens (2000). As expected, the corresponding expression
coincides with the one given by (3.52).

3.6 Solution via Coordinate Transform
This section briefly considers the method of coordinate transformations, reduc-
ing the original Fokker–Planck equation for the Kolmogorov problem to a
Fokker–Planck equation with spatially independent coefficients. To this end,
the following ansatz is used:

(x̃, ỹ) =
(
x̄ −

(
t̄ − t

)
ȳ, ȳ

)
. (3.59)

This choice is explained inmore detail in Section 6. Straightforward calculation
yields

∂

∂ t̄
=
∂

∂ t̄
− ỹ

∂

∂x̃
,

∂

∂x̄
=

∂

∂x̃
,

∂

∂y
= −

(
t̄ − t

) ∂

∂x̃
+
∂

∂ỹ
, (3.60)

so that (3.27) becomes(
∂

∂ t̄
− ỹ

∂

∂x̃

)
ϖ

(
t,x,y, t̄, x̃, ỹ

)
− 1
2
σ2

(
−

(
t̄ − t

) ∂

∂x̃
+
∂

∂ỹ

)2
ϖ

(
t,x,y, t̄, x̃, ỹ

)
+ ỹϖx̃

(
t,x,y, t̄, x̃, ỹ

)
+ b

(
−

(
t̄ − t

) ∂

∂x̃
+
∂

∂ỹ

)
ϖ

(
t,x,y, t̄, x̃, ỹ

)
= 0,

ϖ (t,x,y, t, x̃, ỹ) = δ (x̃ − x) δ ( ỹ − y). (3.61)
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Further calculations show that coefficients of the preceding equation are
spatially independent:

∂

∂ t̄
ϖ

(
t,x,y, t̄, x̃, ỹ

)
− 1
2
σ2

(
−

(
t̄ − t

) ∂

∂x̃
+
∂

∂ỹ

)2
ϖ

(
t,x,y, t̄, x̃, ỹ

)
+ b

(
−

(
t̄ − t

) ∂

∂x̃
+
∂

∂ỹ

)
ϖ

(
t,x,y, t̄, x̃, ỹ

)
= 0, (3.62)

ϖ (t,x,y, t, x̃, ỹ) = δ (x̃ − x) δ ( ỹ − y).

Accordingly, one can use the classical Fourier transform and represent the
solution of (3.62) in the form

ϖ
(
t,x,y, t̄, x̃, ỹ

)
=

1
(2π)2

∫ ∞

−∞

∫ ∞

−∞
exp

(
−1
2
σ2

(
k 2T 3

3
− klT2 + l2T

)
(3.63)

+ ik
(
x̃ − x +

bT2

2

)
+ il ( ỹ − y − bT )

)
dkdl,

similar to (3.45). Thus, ϖ has the form given by (3.52) with (x̄, ȳ) replaced by
(x̃, ỹ). The exact form is recovered once (x̃, ỹ) are expressed in terms of (x̄, ȳ) by
virtue of (3.59).

3.7 A Representative Example
A typical solution of the Kolmogorov equation is illustrated in Figure 6. This
figure clearly shows that there is a good agreement between a Monte Carlo
simulation of the stochastic process (x̂t, ŷt) given by the equations in (3.26) and
the corrected Kolmogorov formula (3.24).

4 Klein–Kramers Stochastic Process
4.1 Background

The Klein–Kramers equation plays a vital role in statistical physics by offering
a detailed mathematical framework for studying the dynamics of particles in a
viscous, random medium. Specifically, it describes the evolution of the t.p.d.f.
of a particle’s momentum and position in the phase plane, accounting for deter-
ministic forces arising from potential and stochastic thermal forces arising from
random collisions with the medium’s molecules. This equation is particularly
important for studying nonequilibrium systems, which cannot be analyzed via
traditional equilibrium statistical mechanics tools. By incorporating frictional
forces, which tend to dampen the motion of particles, potential forces, which
push them deterministically, and random thermal forces, which inject random-
ness into the system, the Klein–Kramers equation bridges the gap between
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Figure 6 A thousand trajectories of a typical Kolmogorov process.
Parameters are as follows: T = 5, dt = 0.01, f = 0.2, σ = 0.8. (a) x (t), (b)

y (t), (c) (x̄ (T ) , ȳ (T )), (d) contour lines of ϖ (0,0,0,T, x̃, ỹ). Author’s graphics.

microscopic laws of motion and the macroscopic observable phenomena, such
as diffusion, thermal conductivity, and viscosity. Moreover, the Klein–Kramers
equation serves as a foundation for exploring more complex phenomena in
nonequilibrium statistical mechanics, including the study of transition state the-
ory in macrokinetics of chemical reactions, the behavior of particles in external
fields, and the exploration of noise-induced transitions and stochastic resonance
in physical and biological systems. It also arises in financial engineering, for
instance, in pricing volatility and variance swaps.

4.2 Langevin Equation
Start with the Langevin equation for particles moving in a potential field and
impacted by random forces; see Langevin (1908). This section uses the standard
notation, rather that the original notation used in Chandresekhar (1943). Hope-
fully, the diligent reader will not be easily confused. The stochastic Langevin
equation describes the evolution of systems under the influence of determinis-
tic forces and random fluctuations. Because of its versatility, it is widely used
in physics and other disciplines to model the dynamics of particles subjected
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to systematic forces derived from potential energy and random forces repre-
senting thermal fluctuations. This equation describes a particle experiencing
frictional resistance proportional to its velocity (a deterministic component)
and random kicks from the surrounding molecules (a stochastic component
capturing the essence of Brownian motion). The Langevin equation thus pro-
vides a robust framework for studying the behavior of systems subject to noise,
enabling insights into phenomena such as diffusion, thermal equilibrium, and
the statistical properties of microscopic systems.
Consider an underdamped Brownian particle. In contrast to the standard

Brownian motion, which is overdamped, it is assumed that the frictions are
finite, so that one must treat the particle’s velocity as an independent degree of
freedom. Hence, the particle’s state is described by a pair (x,y), where x and y
are its position and velocity, respectively. Consider a d-dimensional space, with
d = 1 and d = 3 of particular interest, and write the corresponding Langevin
equations in the following form:

dx̂t
dt
= ŷt, x̂t = x,

(4.1)

dŷt
dt
= −κŷt−

∇V (x̂t)
m

+

√
2κkBT
m

d Ŵt
dt

, ŷt = y,

where Ŵt is a standard d-dimensional Wiener process. Here m is the particle
mass, κ is the friction coefficient, kB is the Boltzmann constant, T is the temper-
ature, V (x) is the external potential, and d Ŵt/dt is a d-dimensional Gaussian
white noise. Below, the ratio κkBT/m is denoted as a.
Of course, one can rewrite the equations of (4.1) as a system of stochastic

differential equations (SDEs):

dx̂t = ŷtdt, x̂t = x, (4.2)

dŷt = −κŷtdt−
∇V (x̂t)

m
dt +

√
2ad Ŵt, ŷt = y.

For a 1-dimensional particle, (4.2) becomes:

dx̂t = ŷtdt, x̂t = x, (4.3)

dŷt = −κŷtdt−
Vx (x̂t)
m

dt +
√
2adŴt, ŷt = y.

It is clear that the Kolmogorov equation (3.11) is a special case of (4.3) with
κ = 0, V (x) = mfx, k = a.
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4.3 Klein–Kramers Equation
Fokker, Planck, and their numerous followers derived and studied the forward
parabolic equation for the t.p.d.f. ϖ

(
t,x,y, t̄, x̄, ȳ

)
associated with a stochastic

process. For the stochastic process governed by SDEs (4.2), the corresponding
equation, called the Klein–Kramers equation, has the following form:

ϖ t̄ − aϖȳȳ + ȳϖx̄ −
((
κȳ + ∇V (x̄)

m

)
ϖ

)
ȳ
= 0,

(4.4)

ϖ (t,x,y, t, x̄, ȳ) = δ (x̄ − x) δ (ȳ − y).

The backward parabolic Kolmogorov equation can be written as follows:

ϖt + aϖyy + yϖx −
(
κy + ∇V (x)

m

)
ϖy = 0,

(4.5)

ϖ
(
t̄,x,y, t̄, x̄, ȳ

)
= δ (x̄ − x) δ (ȳ − y).

Details are given in Fokker (1914), Planck (1917), Klein (1921), Chapman
(1928), Kolmogoroff (1931, 1933, 1934), Kramers (1940), Chandresekhar
(1943), Risken (1989), andHänggi et al. (1990), as well as amultitude of subse-
quent sources. For fascinating historical details, see Ebeling et al. (2008). The
Klein–Kramers equation (occasionally called Klein–Kramers–Chandrasekhar
equation) describes the dynamics of a particle’s probability distribution in
phase space (position and momentum) for systems subjected to friction and
random forces, typically at the mesoscopic scale. The Klein–Kramers equation
provides a comprehensive framework formodeling and understanding complex
systems far from equilibrium, linking microscopic physics with macroscopic
observables. Accordingly, it is used in various fields, such as materials sci-
ence, chemistry, and astrophysics, to predict the evolution of systems over time,
accounting for both deterministic dynamics and the effects of randomness.

4.4 Chandrasekhar’s Solutions
In a well-known survey article, Chandresekhar (1943) described elegant solu-
tions of (4.4) for a free particle and a harmonically bound particle, which
he derived by using ingenious changes of coordinates. For a free particle,
Chandresekhar (1943) writes the corresponding Klein–Kramers equation as
follows:

ϖ t̄ − aϖȳȳ + ȳϖx̄ − κȳϖȳ − κϖ = 0, (4.6)

ϖ (t,x,y, t, x̄,̄y) = δ (x̄ − x) δ ( ȳ − y).
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By using ingenious coordinate transforms, he shows that

ϖ =
1

2π
(
FG − H 2)1/2 exp

(
−

(
FR2 − 2HRS + GS2

)
2
(
FG − H 2) )

, (4.7)

where

R = ȳ − e−κTy,

S = (x̄ − x) −
(
1 − e−κT

)
κ

y,

F =
a
κ3

(
−3 + 4e−κT − e−2κT + 2κT

)
, (4.8)

G =
a
κ

(
1 − e−2κT

)
,

H =
a
κ2

(
1 − e−κT

)2
.

Here the original Chandrasekhar’s notation is slightly changed to make the
exposition more internally consistent.
Since it is assumed that stochastic drivers are uncorrelated, the t.p.d.f. ϖ (3)

can be presented as a product of three 1-dimensional t.p.d.f. ϖ(1):

ϖ (3) = ϖ (1)
1 ϖ

(1)
2 ϖ

(1)
3

=
1

8π3
(
FG − H 2)3/2 exp

©«−
(
F |R |2 − 2HR · S + G |S|2

)
2
(
FG − H 2) ª®®¬, (4.9)

where |R |2 =
(
ȳ1 − e−κTy1

)2
+

(
ȳ2 − e−κTy2

)2
+

(
ȳ3 − e−κTy3

)2, and so on.
Chandrasekhar generalized (4.7) to the case of harmonically bound particles.

We shall revisit Chandrasekhar’s formulas for free and bound particles later.
While Chandresekhar (1943) stopped at (4.7), for practical applications, it is
more useful to represent the exponent as an explicit quadratic form of x̄ and ȳ,
which is done in Section 6.5.

5 Transition Probability Densities for Stochastic Processes
5.1 Motivation

The problems considered in Sections 3 and 4 are used in what follows to
develop a general theory. For that, one needs to know some foundational
information about stochastic processes discussed in this section. Stochastic
processes play a crucial role across various scientific disciplines, which is fun-
damental for modeling systems influenced by randomness and uncertainty.
These processes are pivotal in fields ranging from physics and chemistry to
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biology, economics, and financial engineering. They help to understand phe-
nomena where outcomes are not deterministic but probabilistic, capturing the
dynamics of complex systems over time. The analysis of stochastic processes
enables scientists and engineers to predict behavior, assess risks, and make
informed decisions based on the likelihood of future events.
The backward Kolmogorov and forward Fokker–Planck equations offer a

mathematical description of how systems evolve under the influence of stochas-
tic factors. This capability to model the t.p.d.fs of diverse processes underlines
the equations’ fundamental importance in scientific research and practical
applications across disciplines.
The Kolmogorov and Fokker–Planck equations are adjoint partial differ-

ential equations that describe how the probability density of a system’s state
evolves in time. The Kolmogorov equation focuses on calculating the expected
value at a given time of random outcomes, which become known sometime in
the future. Conversely, the Fokker–Planck equation is concerned with the evo-
lution of the conditional probability density function of a process’s state at a
future time, given its current state.
The Kolmogorov and Fokker–Planck equations are applied in physics and

chemistry to study the random motion of particles in fluids, the statistical
behavior of thermodynamic systems, and the kinetics of chemical reactions.
In biology, these equations model population dynamics, genetic variation, and
the spread of diseases, among other processes, providing insights into how ran-
domness affects biological phenomena. In financial engineering, they are used
to model the evolution of asset prices, interest rates, and other economic indica-
tors, underpinning the valuation of derivatives and the management of financial
risks.

5.2 Backward and Forward Equations
Start with a jump-diffusion process driven by the SDE of the form

dẑt = b (t, ẑt) dt + σ (t, ẑt) dŴt + υd Π̂t (t, ẑt) , ẑt = z, (5.1)

with smooth coefficients b,σ. This process is driven by the standard Wiener
process Ŵt and the Poisson process Π̂t (t, z) with intensity λ (t, z) such that

E {dΠt (t, z)| ẑt = z} = λ (t, z) dt, (5.2)

while υ is drawn from a distribution with density ϕ (υ, t, z), which (in general)
is (t, z)-dependent.
More generally, it is possible to consider the so-called general compound

or marked Poisson processes, such that υ = υ (t, z,q), where υ is monotonic
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in z, and q is a random mark variable drawn from a distribution with density
ϕ (q, t, z), which (in general) is (t, z)-dependent. However, since this Element
is interested in a particular class of stochastic processes, solvable via Kelvin
waves ansatz this generalization is not particularly useful.
It is well-known that for suitable test functions ũ (z) the expectation

u (t, z) = E { ũ (̂z t̄)| ẑt = z} (5.3)

solves the following integro-differential backward Kolmogorov problem:

ut (t, z) + a (t, z) uzz (t, z) + b (t, z) uz (t, z)

+ λ (t, z)
∞∫

−∞

u (t, z + υ) ϕ (υ, t, z) dυ − λ (t, z) u (t, z) = 0, (5.4)

u
(
t̄, z

)
= ũ (z),

where

a (t, z) = 1
2
σ2 (t, z). (5.5)

In particular, the t.p.d.f. ϖ
(
t, z, t̄, z̄

)
such that

Pr ob { z̄ < ẑ t̄ < z̄ + d z̄| ẑt = z} = ϖ
(
t, z, t̄, z̄

)
d z̄, (5.6)

solves the following backward Kolmogorov problem:

ϖt (t, z) + a (t, z)ϖzz (t, z) + b (t, z)ϖz (t, z) −

+ λ (t, z)
∞∫

−∞

ϖ (t, z + υ) ϕ (υ, t, z) dυ − λ (t, z)ϖ (t, z) = 0, (5.7)

ϖ
(
t̄, z, t̄, z̄

)
= δ (z − z̄).

It is possible to derive a forward problem for ϖ
(
t, z, t̄, z̄

)
, which ϖ satisfies

as a function of
(
t̄, z̄

)
, which is called Fokker–Planck or forward Kolmogorov

problem. This problem has the following form:

ϖ t̄
(
t̄, z̄

)
−

(
a
(
t̄, z̄

)
ϖ

(
t̄, z̄

) )
z̄̄z +

(
b
(
t̄, z̄

)
ϖ

(
t̄, z̄

) )
z̄

−
∞∫

−∞

λ
(
t̄, z̄ − υ

)
ϖ

(
t̄, z̄ − υ

)
ϕ

(
t̄, z̄ − υ,υ

)
dυ + λ

(
t̄, z̄

)
ϖ

(
t̄, z̄

)
= 0,

(5.8)

ϖ (t, z, t, z̄) = δ (̄z − z).

One can generalize backward Kolmogorov and forward Fokker–Planck equa-
tion to the multidimensional case. The underlying nz-dimensional process ẑt =[
ẑi,t

]
, i = 1, . . . ,nz, has the form
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dẑt = b (t, ẑt) dt + Σ (t, ẑt) d Ŵt + υd Π̂t (t,zt), (5.9)

where Ŵt =
[
Ŵj,t

]
is an nW-dimensional Wiener process, j= 1, . . . ,nW,

and Π̂ =
[
Π̂k,t

]
is an nΠ-dimensional state-dependent Poisson process,

k= 1, . . . ,nΠ with intensity λ. The corresponding state-dependent coefficients
are as follows:

b (t,z) = [bi (t,z)] , i = 1, . . . ,nz,

Σ (t,z) =
[
Σij (t,z)

]
, i = 1, . . . ,nz, j = 1, . . . ,nW,

λ (t,z) = [λi (t,z)] , i = 1, . . . ,nΠ, (5.10)

υ = [υik] , i = 1, . . . ,nz, k = 1, . . . ,nΠ,

while υk are drawn from distributions with densities ϕk (υ, t,z), which (in gen-
eral) are (t,z)-dependent. Explicitly, the equations in (5.9) can be written as
follows:

dẑi,t = bi (t, ẑt) dt + Σij (t, ẑt) dŴj,t + υikd Π̂k (t, ẑt). (5.11)

The backward and forward equations for the t.p.d.f.ϖ can bewritten as follows:

ϖt (t,z) + aij (t,z)ϖzizj (t,z) + bi (t,z)ϖzi (t,z)

+ λk (t,z)
∞∫

−∞

ϖ (t,z + υk) ϕk (υk, t, z) dυk − Λ (t,z)ϖ (t,z) = 0, (5.12)

ϖ
(
t̄,z, t̄, z̄

)
= δ (z − z̄),

A (t,z) = (aii′ (t,z)) =
1
2
Σ (t, z)Σ∗ (t,z) = 1

2
σij (t,z)σi′j (t,z),

Λ (t,z) =
nΠ∑
k=1
λk (t,z). (5.13)

For the generic terminal condition ũ (z), the corresponding backward problem
has the following form:

ut (t,z) + aij (t,z) uzizj (t,z) + bi (t, z) uzi (t,z)

+ λk (t,z)
∞∫

−∞

u (t,z + υk) ϕk (υk, t,z) dυk − Λ (t,z) u (t,z) = 0, (5.14)

u
(
t̄,z

)
= ũ (z),

The forward equations for the t.p.d.f. ϖ can be written as follows:

ϖ t̄
(
t̄, z̄

)
−

(
aij

(
t̄, z̄

)
ϖ

(
t̄, z̄

) )
z̄i z̄j +

(
bi

(
t̄, z̄

)
ϖ

(
t̄, z̄

) )
z̄i

−
∞∫

−∞

λk
(
t̄, z̄ − υk

)
ϖ

(
t̄, z̄ − υk

)
ϕk

(
υk, t̄, z̄ − υk

)
dυk + Λ

(
t̄, z̄

)
ϖ

(
t̄, z̄

)
= 0,
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ϖ (t,z, t, z̄) = δ (z̄ − z). (5.15)

Further details can be found in Bharucha-Reid (1960), Feller (1971), Gihman
and Skorohod (1972), Arnold (1974), and Hanson (2007), among others.
Although, depending on the actual problem at hand, it might be preferable

to work with either the backward or the forward problem, experience suggests
that in the context of mathematical finance the backward problem is easier to
deal with, not least because they are meaningful for the generic terminal value
ũ (̄z).
Since the preceding definitions are very general, it is necessary to be more

specific in defining the class of problems which can be solved by using Kelvin
waves. Consider processes such that

A (t,z) = A0 (t) + ziAi (t) , b (t,z) = b0 (t) + zibi (t), (5.16)

λ (t,z) = λ0 (t) + ziλi (t) , ϕ (υ, t,z) = ϕ (υ, t),

so that the corresponding backward Kolmogorov problem has the form

ut (t,z) +
(
a0ij (t) + zlalij (t)

)
uzizj (t,z) +

(
b0i (t) + zlbli (t)

)
uzi (t,z)

+
(
λ
0
k (t) + zlλ

l
k (t)

) ∞∫
−∞

u (t,z + υk) ϕk (υk, t) dυk
(5.17)

−
(
Λ
0 (t) + zlΛl (t)

)
u (t,z) = 0,

u
(
t̄,z

)
= ũ (z).

Symbolically, (5.17) can be written as follows:

ut (t,z) + L(0) [u] (t,z) +
nz∑
l=1

zlL(l) [u] (t,z) = 0,
(5.18)

u
(
t̄,z

)
= ũ (z),

where L(0), L(l) are spatially homogeneous operators, with coefficients
depending only on time (at most):

L(0) [u] (t,z) = a0ij (t) uzizj (t,z) + b0i (t) uzi (t,z)

+ λ0k (t)
∞∫

−∞

u (t,z + υk) ϕk (υk, t) dυk − Λ0 (t) u (t,z),
(5.19)

L(l) [u] (t,z) = alij (t) uzizj (t,z) + bli (t) uzi (t,z)

+ λlk (t)
∞∫

−∞

u (t,z + υk) ϕk (υk, t) dυk − Λl (t) u (t,z).
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For the t.p.d.f. ϖ, one has

ϖt (t,z) + L(0)ϖ (t,z) +
nz∑
l=1

zlL(l) [u] u (t,z) = 0,
(5.20)

ϖ
(
t̄,z, t̄, z̄

)
= δ (z − z̄).

Moreover, to cover interesting and important cases, such as anomalous diffu-
sions and the like, generalize (5.18) and consider pseudo-differential operators
L( l̄ ), l̄ = 0, . . . ,nz. Recall that a translationally invariant pseudo-differential
operator L is defined as follows:

L [u] (z) = 1
(2π)nz

∞∫
−∞

∞∫
−∞

L (m) u (z′) eim(z−z′)dz′dm, (5.21)

where L (m) is called the symbol of a pseudo-differential operator; see, for
example, Cordes (1995) andWong (2014). It is clear that all diffusion operators
belong to this category, and so do jump-diffusion operators. The symbol of the
operator L( l̄ ) (t)

L( l̄ ) (t,m) = −a( l̄ )ij (t)mimj + ib
( l̄ )
i (t)mi + λ

( l̄ )
k (t)ψk (t,m) − Λ( l̄ ) (t),

(5.22)

where ψk (m) is the characteristic function of ϕk (υ):

ψk (t,m) =
∞∫

−∞

eimυkϕk (t, υk) dυk. (5.23)

While frequently studied in the pure and applied mathematical context, in
the financial engineering context pseudo-differential operators are seldom
discussed; see, however, Jacob and Schilling (2001).
By definition, Fourier and Kelvin modes are eigenfunctions of the operators

L(0), L(l). Accordingly, when all L(l) = 0, one can solve the corresponding
backward problem via the standard Fourier modes F given by (1.1):

u (t,z) = 1
(2π)nz

∞∫
−∞

∞∫
−∞

ũ (z′) eα(t,t̄,m)+im(z−z′)dz′dm, (5.24)

where

αt
(
t, t̄,m

)
+ L(0) (t,m) = 0, α

(
t̄, t̄,m

)
= 0, (5.25)

so that

α
(
t, t̄,m

)
=

t̄∫
t

L(0) (s,m) ds. (5.26)
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However, in general, one needs to use Kelvin modes K, given by (1.2):

u (t,z) = 1
(2π)nz

∞∫
−∞

∞∫
−∞

ũ (z′) eα(t,t̄,m)+iδ(t,t̄,m)z−imz′dz′dm, (5.27)

where

αt
(
t, t̄,m

)
+ L(0) (t,δ (

t, t̄,m
) )
= 0, α

(
t̄, t̄,m

)
= 0, (5.28)

δl,t
(
t, t̄,m

)
+ L(l) (t,δ (

t, t̄,m
) )
= 0, δ

(
t̄, t̄,m

)
= m.

Of course, finding explicit solutions of ODEs (5.28) is possible only in excep-
tional cases, some of which are discussed below. However, it is always possible
to solve them numerically, which is much easier than trying to solve the
corresponding PDEs directly.
As mentioned earlier, three archetypal stochastic processes are arithmetic

Wiener processes (or Brownian motions), Ornstein-Uhlenbeck (OU) and Feller
processes; see Uhlenbeck and Ornstein (1930), Chandresekhar (1943), and
Feller (1951, 1952). These processes are described by the following SDEs:

dŷt = χdt + εdŴt, ŷt = y, (5.29)

dŷt = (χ − κŷt) dt + εdŴt, ŷt = y, (5.30)

dŷt = (χ − κŷt) dt + ε
√
ŷtdŴt, ŷt = y, (5.31)

respectively. It is clear that the corresponding L(0),L(1) are:

L(0) [u] = 1
2
ε2uyy + χuy, L(1) [u] = 0, (5.32)

L(0) [u] = 1
2
ε2uyy + χuy, L(1) [u] = −κuy, (5.33)

L(0) [u] = χuy, L(1) [u] = 1
2
ε2uyy − κuy. (5.34)

There are important differences among these processes. For an arithmetic
Brownian motion, the operator L(0) is a second-order differential operator,
while L(1) is zero, and the process is defined on the whole axis. For an OU
process the operator L(0) is a second-order differential operator, while L(1) is
a first-order operator; accordingly, this process is defined on the entire axis.
In contrast, for a Feller process L(0) is a first-order differential operator, while
L(1) is a second-order operator; hence, the process is only defined on a positive
semiaxis.5

5 A Feller process might or might not be able to reach zero, which depends on the magnitude of
the ratio 2χ/ε2.
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5.3 Augmentation Procedure
While covering a lot of useful applications, OU and Feller processes are not
sufficient to study all the practically important problems. Hence, one needs
to enrich them via the so-called augmentation procedure; see Lipton (2001).
The underlying idea is straightforward. Given a stochastic process, say, an
arithmetic Brownian motion, or an OU process, one can expand it by intro-
ducing additional stochastic variables depending on the original process. For
example, an augmented Brownian motion (5.29) becomes a one-dimensional
Kolmogorov process:

dx̂t = ŷtdt, x̂t = x, (5.35)

dŷt = χdt + εdŴt, ŷt = y.

Similarly, one can augment OU and Feller processes as follows:

dx̂t = ŷtdt, xt = x, (5.36)

dŷt = (χ − κŷt) dt + εdŴt, yt = y,

dx̂t = ŷtdt, xt = x, (5.37)

dŷt = (χ − κŷt) dt + ε
√
ŷtdŴt, yt = y,

respectively. Of course, many other possibilities are practically important. In
what follows, the Element analyzes several practically relevant and mathemat-
ically interesting augmented stochastic processes.

5.4 Reduction Procedure
Stochastic processes, which are not inherently affine, can often be transformed
into an affine form through appropriate modifications. While some transforma-
tions are readily apparent, others demand significant effort and inspiration to
identify, as highlighted by Carr et al. (2002) and referenced works.
Consider the geometric Brownian motion, the cornerstone of mathematical

finance and other disciplines. The associated stochastic process is not affine
and is described by

dX̂t = µ (t) X̂tdt + ν (t) X̂tdŴt, X̂t = X. (5.38)

Applying a logarithmic transformation,

X̂t → x̂t = ln
(
X̂t

)
, (5.39)

converts it into an arithmetic Brownian motion, which is affine:

dx̂t =
(
µ (t) − 1

2
ν2 (t)

)
dt + ν (t) dŴt, x̂t = x = ln (X ). (5.40)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
50

31
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009503129


Hydrodynamics of Markets 41

This example illustrates that, with some ingenuity, even nonaffine processes
like the geometric Brownian motion can be adapted for use with the existing
analytical frameworks.
Another helpful example is transforming the Rayleigh process into the Feller

process. Recall that the Rayleigh process describes a stochastic process on the
positive semiaxis. We write this process as follows:

dσ̂t =
(
A
σ̂t

− Bσ̂t
)
dt + CdŴt, σ̂t = σ, (5.41)

whereA,B,C > 0. Define v̂t = σ̂2
t ; then, according to Ito’s lemma, the dynamics

of the process v̂t have the following form:

dv̂t =
(
2A + C2 − 2Bv̂t

)
dt + 2C

√
v̂tdŴt, v̂t = v = σ2. (5.42)

In financial applications considered in Section 8, the pair σ, v represents the
volatility and variance of a price process.

6 Gaussian Stochastic Processes
6.1 Regular Gaussian Processes

Consider the governing system of SDEs, which might or might not be degen-
erate, and write the governing system of SDEs as follows:

dẑt = (b +Bẑt) dt + Σd Ŵt, ẑt = z, (6.1)

where ẑt,b are (M × 1) vectors, and B and Σ are (M ×M ) matrices. Below, it
is assumed that the corresponding coefficients are time-dependent.
The Fokker–Plank equation has the following form:

ϖ t̄
(
t,z, t̄, z̄

)
−

∑∑
Aϖz̄z̄

(
t,z, t̄, z̄

)
+ (b +Bz̄) ·ϖz̄

(
t,z, t̄, z̄

)
+ bϖ

(
t,z, t̄, z̄

)
= 0, (6.2)

ϖ (t,z, t, z̄) = δ (z̄ − z),

where, in agreement with the general (5.13),A is proportional to the covariance
matrix,

A = (amm′) = 1
2
ΣΣ∗ =

1
2
σmkσm′k, b = Tr (B) = bmm. (6.3)

Recall that Einstein’s summation rule is used throughout the Element. Explic-
itly,

∂ t̄ϖ − amm′∂ z̄m∂ z̄m′ϖ + (bm + bmm′ z̄m′) ∂ z̄mϖ + bϖ = 0, (6.4)

ϖ (t,z, t, z̄) = δ (z̄ − z).
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The general Kolmogorov-type SDE, solvable via the Kelvin (or affine) ansatz,
can be written in the following form:

dx̂t =
(
b(x) +B(xx)x̂t +B(xy)ŷt

)
dt, x̂t = x, (6.5)

dŷt =
(
b( y) +B( yx)x̂t +B( yy)ŷt

)
dt + Σ( yy)d Ŵ( y)

t , yt = y,

where x̂t and b(x) are (K × 1) column vectors, ŷt and b( y) are (L × 1) col-
umn vectors, B(xx), B(xy), B( yx), B( yy), and Σ( yy) are (K × K), (K × L), (L × K),
(L × L), and (L × L) matrices, respectively. In what follows, it is assumed that
the corresponding coefficients are time-dependent. As usual, Ŵt is a standard
L-dimensional Brownian motion.
More compactly, one can write the system of SDEs as follows:

dẑt =
(
b(z) +B(zz)ẑt

)
dt +

(
0

Σ( yy)d Ŵ( y)
t

)
, ẑt =

(
x
y

)
, (6.6)

where

ẑt =
(

x̂t
ŷt

)
, b(z) =

(
b(x)

b( y)

)
, B(zz) =

(
B(xx) B(xy)

B( yx) B( yy)

)
, (6.7)

so that ẑt and b(z) are (M × 1) column vectors, and B(zz) is a (M ×M) matrix,
with M = K + L. In addition, define a scalar b(z) = Tr

(
B(zz)

)
= Tr

(
B(xx)

)
+

Tr
(
B( yx)

)
.

The corresponding Fokker–Plank problem has the following form:

ϖ t̄
(
t,z, t̄, z̄

)
−

∑∑
Aϖyy

(
t,z, t̄, z̄

)
+

(
b(z) +B(z)z̄

)
·ϖz̄

(
t,z, t̄, z̄

)
+ b(z)ϖ

(
t,z, t̄, z̄

)
= 0, (6.8)

ϖ (t,z, t, z̄) = δ (x − x) δ (y − y),

where A has the following form:

A = (all′) =
1
2
σl̄lσl′̄l =

1
2
Σ( yy)Σ( yy)∗. (6.9)

Explicitly,

∂ t̄ϖ − all′∂ z̄K+l∂ z̄K+l′ϖ +
(
b(z)m + b

(zz)
mm′ z̄m′

)
∂ z̄mϖ + b

(z)ϖ = 0, (6.10)

6.1.1 Solution via Kelvin Waves

By using the Kelvin-inspired ansatz, one can represent ϖ in the following
form:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
50

31
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009503129


Hydrodynamics of Markets 43

ϖ
(
t,z, t̄, z̄

)
=

1
(2π)M

∫ ∞

−∞
. . .

∫ ∞

−∞
K

(
t,z, t̄, z̄,m

)
dm,

K
(
t,z, t̄, z̄,m

)
= exp

(
Ψ

(
t,z, t̄, z̄,m

) )
, (6.11)

Ψ
(
t,z, t̄, z̄,m

)
= α

(
t, t̄

)
+ iδ

(
t, t̄

)
· z̄ − im · z,

where m is an (M × 1) column vector, δ is an (M × 1) column vector, and

α (t, t) = 0, δ (t, t) = m. (6.12)

Accordingly:

K t̄
K = Ψ t̄ =

(
α t̄

(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄

)
,

(6.13)
Kz̄
K = Ψz̄ = iδ

(
t, t̄

)
,

Kz̄z̄
K = Ψ2z̄ = −δ

(
t, t̄

)
δ∗

(
t, t̄

)
.

The coupled equations for α, δ have the following form:

α t̄
(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄ + δ

(
t, t̄

)
· Aδ

(
t, t̄

)
+ iδ

(
t, t̄

)
· (b +Bz̄) + b = 0,

(6.14)

so that

α t̄
(
t, t̄

)
+ δ

(
t, t̄

)
· Aδ

(
t, t̄

)
+ iδ

(
t, t̄

)
· b + b = 0, α (t, t) = 0, (6.15)

δ t̄
(
t, t̄

)
+B∗δ

(
t, t̄

)
= 0, δ (t, t) = m. (6.16)

Let L
(
t, t̄

)
be the fundamental solution of the homogeneous system of ODEs

(6.16), namely, the matrix such that

∂ t̄L
(
t, t̄

)
+B∗ (

t̄
)
L

(
t, t̄

)
= 0, L (t, t) = I. (6.17)

The solution of (6.16) has the following form:

δ
(
t, t̄

)
= L

(
t, t̄

)
m. (6.18)

Thus,

α
(
t, t̄

)
= −1

2
m · C−1

(
t, t̄

)
m − im · d

(
t, t̄

)
− ς

(
t, t̄

)
, (6.19)

where C−1 is an M ×M positive-definite matrix of the following form:

C
−1 (

t, t̄
)
= 2

∫ t̄

t
L
∗ (t, s)A (s)L (t, s) ds, (6.20)

while d is an (M × 1) column vector,

d
(
t, t̄

)
=

∫ t̄

t
L
∗ (t, s)b (s) ds, (6.21)
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and ς is a scalar,

ς
(
t, t̄

)
=

∫ t̄

t
b (s) ds. (6.22)

Accordingly,

Ψ
(
t, t̄, z̄,m

)
= −1

2
m · C−1

(
t, t̄

)
m + im ·

(
L
∗ (
t, t̄

)
z̄−d

(
t, t̄

)
−z

)
− ς

(
t, t̄

)
.

(6.23)

Thus,

ϖ
(
t,z, t̄, z̄

)
=

det
(
C

(
t, t̄

) )1/2 exp
(
−ς

(
t, t̄

) )
(2π)M/2 (6.24)

×
∫ ∞

−∞
. . .

∫ ∞

−∞
G

(
t, t̄,m

)
exp

(
im ·

(
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

) )
dm,

where G
(
t, t̄,m

)
is the density of a multivariate Gaussian distribution in the m-

space. It is clear thatϖ
(
t,z, t̄, z̄

)
is proportional to the characteristic function of

G evaluated at the point
(
L∗

(
t, t̄

)
z̄ − d

(
t, t̄

)
− z

)
, so that

ϖ
(
t,z, t̄, z̄

)
=

det
(
C

(
t, t̄

) )1/2 exp
(
−ς

(
t, t̄

) )
(2π)M/2 (6.25)

× exp
(
−1
2

(
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

)
·C

(
t, t̄

) (
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

) )
.

Thus, ϖ can be represented in the form:

ϖ
(
t,z, t̄, z̄

)
= N

(
r
(
t, t̄

)
,H

(
t, t̄

) )
, (6.26)

where

H
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1
C
−1 (

t, t̄
)
L
−1 (

t, t̄
)
, (6.27)

r
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1 (
d

(
t, t̄

)
+ z

)
.

These results are applicable to the general Kolmogorov-type SDE solvable via
the Kelvin (or affine) ansatz, which have the form (6.5). By using the same
Kelvin ansatz as before, one can represent ϖ in the form (6.11):

ϖ
(
t,z, t̄, z̄

)
=

1
(2π)M

∫ ∞

−∞
. . .

∫ ∞

−∞
K

(
t,z, t̄, z̄,m

)
dm,

K
(
t,z, t̄, z̄,m

)
= exp

(
Ψ

(
t,z, t̄, z̄,m

) )
, (6.28)

Ψ
(
t,z, t̄, z̄,m

)
= α

(
t, t̄

)
+ iδ

(
t, t̄

)
· z̄ − im · z,
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wherem is an (M × 1) column vector,m = (k, l)∗, k is a (K × 1) column vector,
l is an (L × 1) column vector, δ is an (M × 1) column vector, δ = (β, γ)∗, β is
a (K × 1) column vector, γ is an (L × 1) column vector, and

α (t, t) = 0, δ (t, t) = (β (t, t) , γ (t, t))∗ = m = (k, l)∗ . (6.29)

As before:
Kt
K = Ψt =

(
α t̄

(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄

)
,

Kx
K = Ψx = iβ

(
t, t̄

)
,

(6.30)
Ky

K = Ψy = iγ
(
t, t̄

)
,

Kyy

K = Ψ2y = −γ
(
t, t̄

)
γ∗

(
t, t̄

)
.

The equations for α,δ have the following form:

α t̄
(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄+γ

(
t, t̄

)
· Aγ

(
t, t̄

)
+iδ

(
t, t̄

)
·
(
b(z)+B(zz)z̄

)
+b(z) = 0.

(6.31)

Accordingly,

α t̄
(
t, t̄

)
+ γ

(
t, t̄

)
· Aγ

(
t, t̄

)
+ iδ

(
t, t̄

)
· b(z) + b(z) = 0, α (t, t) = 0, (6.32)

δ t̄
(
t, t̄

)
+B(zz)∗δ

(
t, t̄

)
= 0, δ (t, t) = m = (k, l)∗ . (6.33)

Let L
(
t, t̄

)
be the fundamental solution of the homogeneous system of ODEs

(6.33), namely, the matrix such that

∂ t̄L
(
t, t̄

)
+B(zz)∗ (

t̄
)
L

(
t, t̄

)
= 0, L (t, t) = I, (6.34)

where I is the identity matrix. The well-known Liouville’s formula yields

det
(
L

(
t, t̄

) )
= exp

(
−

∫ t̄

t
b(z) (s) ds

)
. (6.35)

The solution of (6.32) is

δ
(
t, t̄

)
= L

(
t, t̄

)
m. (6.36)

It is convenient to write L
(
t, t̄

)
in the block form:

L
(
t, t̄

)
=

(
L(xx)

(
t, t̄

)
L(xy)

(
t, t̄

)
L( yx)

(
t, t̄

)
L( yy)

(
t, t̄

) )
. (6.37)

It follows from (6.33) that

α
(
t, t̄

)
= −1

2
m · C−1

(
t, t̄

)
m − im · d(z) (t, t̄ ) − ς (

t, t̄
)
, (6.38)

where C−1 is an M × M positive-definite matrix split into four blocks of the
form:
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C
−1 (

t, t̄
)

= 2

( ∫ t̄
t L

( yx)∗ (t, s)A (s)L( yx) (t, s) ds
∫ t̄
t L

( yx)∗ (t, s)A (s)L( yy) (t, s) ds∫ t̄
t L

( yy)∗ (t, s)A (s)L( yx) (t, s) ds
∫ t̄
t L

( yy)∗ (t, s)A (s)L( yy) (t, s) ds

)
,

(6.39)

while d(z) =
(
d(x),d( y)

)∗
, d(x) and d( y) are (M × 1) and (N × 1) column vectors,

and ς is a scalar:

d(z) (t, t̄ ) = ∫ t̄

t
L
∗ (t, s)b(z) (s) ds, (6.40)

ς
(
t, t̄

)
=

∫ t̄

t
b(z) (s) ds. (6.41)

Accordingly,

Ψ
(
t,z, t̄, z̄,m

)
= −1

2
m · C−1

(
t, t̄

)
m + iL

(
t, t̄

)
m · z̄ − im ·

(
d(z) (t, t̄ ) + z

)
− ς

(
t, t̄

)
(6.42)

= −1
2

m · C−1
(
t, t̄

)
m + im ·

(
L
∗ (
t, t̄

)
z̄ − d(z) (t, t̄ ) − z

)
− ς

(
t, t̄

)
.

Thus,

ϖ
(
t,z, t̄, z̄

)
=

det (C)1/2 exp
(
−ς

(
t, t̄

) )
(2π)M/2

∫ ∞

−∞
. . .

∫ ∞

−∞
G

(
t, t̄,m

)
(6.43)

× exp
(
im ·

(
L
∗ (
t, t̄

)
z̄ − d(z) (t, t̄ ) −z

))
dm,

where G
(
t, t̄,m

)
is the density of a multivariate Gaussian distribution in the m-

space. It is clear thatϖ
(
t,z, t̄, z̄

)
is proportional to the characteristic function of

G evaluated at the point
(
L∗

(
t, t̄

)
z̄ − d(z) (t, t̄ ) −z

)
, so that

ϖ
(
t,z, t̄, z̄

)
=

det (C)1/2 exp
(
−ς

(
t, t̄

) )
(2π)M/2

× exp
(
−1
2

(
L
∗ (
t, t̄

)
z̄ − d(z) (t, t̄ ) − z

)
· C

(
L
∗ (
t, t̄

)
z̄ − d(z) (t, t̄ ) − z

))
.

(6.44)

By using (6.35), one can rewrite (6.44) in the standard Gaussian form:

ϖ
(
t,z, t̄, z̄

)
= N

(
r
(
t, t̄

)
,H

(
t, t̄

) )
, (6.45)
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where the covariance matrix H and the mean r are as follows:

H
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1
C
−1 (

t, t̄
)
L
−1 (

t, t̄
)
, (6.46)

r
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1 (
d(z) (t, t̄ ) + z

)
.

6.1.2 Solution via Coordinate Transform

Consider the Fokker–Planck problem (6.4). Introduce new variables:(
t̄, z̄

)
→

(
t̄, z̃

)
=

(
t̄,R

(
t̄
)
z̄
)
, z̃m = rmm′

(
t̄
)
z̄m′, rmm′ (0) = δmm′ . (6.47)

Then

∂ t̄ = ∂ t̄ + ∂ t̄rmm′ z̄m′ ∂̃zm, ∂ z̄m = rm′m∂̃zm′ . (6.48)

The transformed Fokker–Planck problem becomes

∂ t̄ϖ̃ − amm′rnmrn′m′ ∂̃zn ∂̃zn′ ϖ̃ + ((bmm′ z̄m′ + bm) rnm + ∂ t̄rnm′ z̄m′) ∂̃znϖ̃
+ bϖ̃ = 0,

ϖ̃ (t,z, t, z̃) = δ (z̃ − z). (6.49)

To simplify the drift term, it is required that

∂ t̄rmm′
(
t, t̄

)
+ bnm′

(
t, t̄

)
rmn

(
t, t̄

)
= 0, rmm′ (t, t) = δnm′ . (6.50)

In matrix notation:

∂ t̄R
(
t, t̄

)
+ R

(
t, t̄

)
B (t) = 0, R (t, t) = I. (6.51)

Thus, R = L∗, rmm′ = lm′m, where L is given by (6.34). It is easy to see that ϖ̃
satisfies the Fokker–Planck problem of the following form:

∂ t̄ϖ̃ − ãnn′
(
t, t̄

)
∂̃zn ∂̃zn′ ϖ̃ + b̃n

(
t, t̄

)
∂̃znϖ̃ + b

(
t, t̄

)
ϖ̃ = 0,

(6.52)

ϖ̃ (t,z, t, z̃) = δ (z̃ − z),

with

ãnn′
(
t, t̄

)
= lmn

(
t, t̄

)
amm′

(
t, t̄

)
lm′n′

(
t, t̄

)
,

(6.53)

b̃n
(
t̄
)
= lm′n

(
t, t̄

)
bm′

(
t̄
)
.

In matrix notation:

Ã = L∗
(
t, t̄

)
A

(
t, t̄

)
L

(
t, t̄

)
, b̃ = L∗

(
t, t̄

)
b. (6.54)
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Accordingly,

ϖ̃
(
t,z, t̄, z̃

)
= exp

(
−

∫ t̄

t
b (s) ds

)
N

(
z̃| z +

∫ t̄

t
b̃n (s) ds,

∫ t̄

t
C̃ (s) ds

)
.

(6.55)

Reverting back to the original variables,
(
t̄, z̃

)
→

(
t̄, z̄

)
, one recovers (6.45), as

expected.

6.2 Killed Gaussian Processes
Consider a process governed by a system of SDEs (6.1), which is killed with
intensity c̄ linearly depending on z̄, namely,

c̄ = c + c · z̄, (6.56)

where c is a scalar, and c(z) is an (M × 1) column vector. Thus, c̄ is the inten-
sity at which the process goes into a “killed” state at some random time. The
Fokker–Planck equation for a killed process has the following form:

ϖ t̄
(
t,z, t̄, z̄

)
−

∑∑
Aϖz̄z̄

(
t,z, t̄, z̄

)
+ (b +Bz̄) ·ϖz̄

(
t,z, t̄, z̄

)
+ (b + c + c · z̄)ϖ

(
t,z, t̄, z̄

)
= 0, (6.57)

ϖ (t, z̄, t,z) = δ (z̄ − z).

Explicitly,

ϖ t̄ − amm′ϖz̄m z̄m′ + (bm + bmm′ z̄m′)ϖz̄m + (b + c + cmz̄m)ϖ = 0, (6.58)

ϖ (t, z̄, t,z) = δ (z̄ − z).

This problem can be solved by the same technique as before.

6.2.1 Solution via Kelvin Waves

The familiar Kelvin ansatz yields

α t̄
(
t, t̄

)
+ δ

(
t, t̄

)
· Aδ

(
t, t̄

)
+ iδ

(
t, t̄

)
· b + b + c = 0, α (t, t) = 0, (6.59)

δ t̄
(
t, t̄

)
+B∗δ

(
t, t̄

)
− ic = 0, δ (t, t) = m. (6.60)

Let L
(
t, t̄

)
be the fundamental solution of the homogeneous system of ODEs

(6.60), namely, the matrix such that

∂ t̄L
(
t, t̄

)
+B∗ (

t̄
)
L

(
t, t̄

)
= 0, L (t, t) = I, (6.61)
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The solution of (6.60) has the following form:

δ
(
t, t̄

)
= L

(
t, t̄

)
m + iL

(
t, t̄

) ∫ t̄

t
L
−1 (t, s) c (s) ds ≡ L

(
t, t̄

) (
m + ie

(
t, t̄

) )
,

e
(
t, t̄

)
=

∫ t̄

t
L
−1 (t, s) c (s) ds. (6.62)

Thus,

α = −1
2

m · C−1m − im · d − ς, (6.63)

where C−1 is an M ×M positive-definite matrix of the form:

C
−1 (

t, t̄
)
= 2

∫ t̄

t
L
∗ (t, s)A (s)L (t, s) ds, (6.64)

while d is an (M × 1) column vector,

d
(
t, t̄

)
=

∫ t̄

t
L
∗ (t, s) (b (s) + A (s)L (t, s) e (s)) ds, (6.65)

and ς = ς0 + ς1 is a scalar,

ς0
(
t, t̄

)
=

∫ t̄

t
b (s) ds,

ς1
(
t, t̄

)
=

∫ t̄

t

(
c (s) − 1

2
e (t, s) · L∗ (t, s)A (s)L (t, s) e (s)

− e (t, s) · L∗ (t, s)b (s)
)
ds. (6.66)

Accordingly,

Ψ
(
t, t̄, z̄,m

)
= − 1

2
m · C−1

(
t, t̄

)
m + im ·

(
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

)
(6.67)

− L
(
t, t̄

)
e
(
t, t̄

)
· z̄ − ς

(
t, t̄

)
.

Thus,

ϖ
(
t,z, t̄, z̄

)
=

det
(
C

(
t, t̄

) )1/2 exp
(
−L

(
t, t̄

)
e
(
t, t̄

)
· z̄ − ς0

(
t, t̄

)
− ς1

(
t, t̄

) )
(2π)M/2

(6.68)

×
∫ ∞

−∞
. . .

∫ ∞

−∞
G

(
t, t̄,m

)
exp

(
im ·

(
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

) )
dm,

where G
(
t, t̄,m

)
is the density of a multivariate Gaussian distribution in the m-

space. It is clear thatϖ
(
t,z, t̄, z̄

)
is proportional to the characteristic function of

G evaluated at the point
(
L∗

(
t, t̄

)
z̄ − d

(
t, t̄

)
− z

)
, so that
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ϖ
(
t,z, t̄, z̄

)
=

det
(
C

(
t, t̄

) )1/2 exp
(
−L

(
t, t̄

)
e
(
t, t̄

)
· z̄ − ς0

(
t, t̄

)
− ς1

(
t, t̄

) )
(2π)M/2

(6.69)

× exp
(
−1
2

(
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

)
·C

(
t, t̄

) (
L
∗ (
t, t̄

)
z̄ − d

(
t, t̄

)
− z

) )
.

It is often convenient to rewrite (6.69) as follows:

ϖ
(
t,z, t̄, z̄

)
= Q

(
t, t̄, z̄

)
N

(
q

(
t, t̄

)
,H

(
t, t̄

) )
, (6.70)

where

H
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1
C
−1 (

t, t̄
)
L
−1 (

t, t̄
)
,

q
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1 (
d

(
t, t̄

)
+ z

)
, (6.71)

Q
(
t, t̄, z̄

)
= exp

(
−L

(
t, t̄

)
e
(
t, t̄

)
· z̄ − ς1

(
t, t̄

) )
.

As could be expected, the probability ϖ is no longer conserved due to a
prefactor Q, reflecting the fact that the process is killed with intensity c̄.
It is worth noting that Q depends on z̄ but does not depend on z. Completing

the square, one can represent ϖ in the form:

ϖ
(
t,z, t̄, z̄

)
= R

(
t,z, t̄

)
N

(
r
(
t, t̄

)
,H

(
t, t̄

) )
, (6.72)

where

r
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1 (
d

(
t, t̄

)
+ z−C−1

(
t, t̄

)
e
(
t, t̄

) )
= q

(
t, t̄

)
− H

(
t, t̄

)
L

(
t, t̄

)
e
(
t, t̄

)
,

R
(
t,z, t̄

)
= exp

(
−e

(
t, t̄

)
·
(
d

(
t, t̄

)
+z

)
+
1
2

e
(
t, t̄

)
·C−1

(
t, t̄

)
e
(
t, t̄

)
−ς1

(
t, t̄

))
.

(6.73)

It is clear that R depends on z but does not depend on z̄. Accordingly, (6.72) is
easier to use than (6.70) when future expectations are calculated.
The same formulas can be derived via the method of coordinate transforms.

Details are left to the interested reader.

6.3 Example: Kolmogorov Process
Extend the Kolmogorov formula to the case when b and σ are functions of
time, b (t) and σ (t). The corresponding SDE has the following form:

dx̂t = ŷtdt, x̂t = x,
(6.74)

dŷt = b (t) dt + σ (t) dŴt, ŷt = y.
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Accordingly, (6.34) can be written as follows:

L
′ (t, t̄ ) + (

0 0
1 0

)
L

(
t, t̄

)
= 0, L (t, t) =

(
1 0
0 1

)
, (6.75)

so that

L
(
t, t̄

)
=

(
1 0
−T 1

)
, L−1

(
t, t̄

)
=

(
1 0
T 1

)
. (6.76)

Once L
(
t, t̄

)
is known, one can compute C−1

(
t, t̄

)
, d(z) (t, t̄ ) , ς (

t, t̄
)
:

C
−1 (

t, t̄
)
=

(
ψ2

(
t, t̄

)
−ψ1

(
t, t̄

)
−ψ1

(
t, t̄

)
ψ0

(
t, t̄

) )
,

d (z) (t, t̄ ) = (
d (x) (t, t̄ )
d ( y) (t, t̄ )

)
=

(
−ϕ1

(
t, t̄

)
ϕ0

(
t, t̄

) )
, (6.77)

ς
(
t, t̄

)
= 0,

where

ϕi
(
t, t̄

)
=

∫ t̄

t
(s − t)i b (s) ds, ψi

(
t, t̄

)
=

∫ t̄

t
(s − t)i σ2 (s) ds. (6.78)

Next, the covariance matrix H
(
t, t̄

)
, and the mean r

(
t, t̄

)
are calculated as

follows:

H
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1
C
−1 (

t, t̄
)
L
−1 (

t, t̄
)

=

(
1 T
0 1

) (
ψ2

(
t, t̄

)
−ψ1

(
t, t̄

)
−ψ1

(
t, t̄

)
ψ0

(
t, t̄

) ) (
1 0
T 1

)
(6.79)

=

(
ψ0

(
t, t̄

)
T 2 − 2ψ1

(
t, t̄

)
T + ψ2

(
t, t̄

)
ψ0

(
t, t̄

)
T − ψ1

(
t, t̄

)
ψ0

(
t, t̄

)
T − ψ1

(
t, t̄

)
ψ0

(
t, t̄

) )
,

r
(
t, t̄

)
=

(
−ϕ1

(
t, t̄

)
+ x +

(
ϕ0

(
t, t̄

)
+ y

)
T

ϕ0
(
t, t̄

)
+ y

)
. (6.80)

Accordingly, ϖ
(
t,x,y, t̄, x̄, ȳ

)
is a bivariate Gaussian distribution of the form

(6.26), with

σ2
x
(
t, t̄

)
= ψ0

(
t, t̄

)
T 2 − 2ψ1

(
t, t̄

)
T + ψ2

(
t, t̄

)
, σ2

y = ψ0
(
t, t̄

)
,

ρ
(
t, t̄

)
=

(
ψ0

(
t, t̄

)
T − ψ1

(
t, t̄

) )√
ψ0

(
t, t̄

) (
ψ0

(
t, t̄

)
T 2 − 2ψ1

(
t, t̄

)
T + ψ2

(
t, t̄

) ) , (6.81)

p
(
t, t̄

)
= −ϕ1

(
t, t̄

)
+ x +

(
ϕ0

(
t, t̄

)
+ y

)
T, q

(
t, t̄

)
= ϕ0

(
t, t̄

)
+ y.
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It is left to the interested reader to verify that (6.81) coincides with (3.52) when
σ and b are constant. Therefore, the classical Kolmogorov solution can be
extended to the case of time-dependent parameters.

6.4 Example: OU Process
6.4.1 OU Process

It is worth deriving the well-known t.p.d.f. for the OU process using Kel-
vin waves for benchmarking purposes. The following SDE governs the OU
process:

dŷt = (χ (t) − κ (t) ŷt) dt + ε (t) dŴt, ȳt = y. (6.82)

Equivalently,

dŷt = κ (t) (θ (t) − ŷt) dt + ε (t) dŴt, ȳt = y, (6.83)

where θ (t) = χ (t) /κ (t).
The corresponding Fokker–Planck problem has the following form:

ϖ t̄
(
t,y, t̄, ȳ

)
− 1
2
ε2ϖȳȳ

(
t,y, t̄, ȳ

)
+

(
χ

(
t̄
)
− κ

(
t̄
)
ȳ
)
ϖȳ

(
t,y, t̄, ȳ

)
− κ

(
t̄
)
ϖ

(
t,y, t̄, ȳ

)
= 0,

ϖ
(
t,y, t̄, ȳ

)
= δ ( ȳ − y). (6.84)

The associated function K
(
t,y, t̄, ȳ, l

)
has the following form:

K = exp
(
α

(
t, t̄

)
+ iγ

(
t, t̄

)
ȳ − ily

)
, (6.85)

so that

α t̄
(
t, t̄

)
+
1
2
ε2

(
t̄
)
γ2

(
t, t̄

)
+ iχ

(
t̄
)
γ

(
t, t̄

)
− κ

(
t̄
)
= 0, α (t, t) = 0,

(6.86)

γ t̄
(
t, t̄

)
− κ

(
t̄
)
γ

(
t, t̄

)
= 0, γ (t, t) = l.

Thus,

γ
(
t, t̄

)
= eη(t,t̄ )l, (6.87)

α
(
t, t̄

)
= −1

2
ψ0

(
t, t̄

)
l2 −

(∫ t̄

t
eη(t,s) χ (s) ds

)
il + η

(
t, t̄

)
.

where

η
(
t, t̄

)
=

t̄∫
t

κ (s) ds, (6.88)
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ψ0
(
t, t̄

)
=

t̄∫
t

e2η(t,s)ε2 (s) ds. (6.89)

Since the same quantities will appear regularly throughout the Element, it is
convenient to introduce the following notation:

Aκ

(
t, t̄

)
= e−η(t,t̄ ), Bκ

(
t, t̄

)
=

∫ t̄

t
e−η(t,s)ds, B̄κ

(
t, t̄

)
=

∫ t̄

t
e−η(s,t̄ )ds,

A−κ
(
t, t̄

)
= eη(t,t̄ ), B−κ

(
t, t̄

)
=

∫ t̄

t
eη(t,s)ds, B̄−κ

(
t, t̄

)
=

∫ t̄

t
eη(s,t̄ )ds,

(6.90)

In particular, for constant κ, one has

Aκ

(
t, t̄

)
= e−κT = Aκ (T ) , A−κ

(
t, t̄

)
= eκT = A−κ (T ),

Bκ

(
t, t̄

)
= B̄κ

(
t, t̄

)
=
1 − e−κT

κ
= Bκ (T ) = B̄κ (T ), (6.91)

B−κ
(
t, t̄

)
= B̄−κ

(
t, t̄

)
=
eκT − 1
κ

= B−κ (T ) = B̄−κ (T ),

and

A0
(
t, t̄

)
= 1, B0

(
t, t̄

)
= B̄0

(
t, t̄

)
= T. (6.92)

In this notation, ψ0 can be written as follows:

ψ0
(
t, t̄

)
=

t̄∫
t

A−2κ (t, s) ε2 (s) ds. (6.93)

Thus, the following well-known expression is obtained:

ϖ
(
t,y, t̄, ȳ

)
=

1
2π

∫ ∞

−∞
exp

(
−
ψ0

(
t, t̄

)
l2

2
+

(
eη(t,t̄ )ȳ−

∫ t̄

t
eη(t,s) χ (s) ds−y

)
il+η

(
t, t̄

))
dl

=
A−κ

(
t, t̄

)√
2πψ0

(
t, t̄

) exp
©«−

(
A−κ

(
t, t̄

)
ȳ −

∫ t̄
t A−κ (t, s) χ (s) ds − y

)2
2ψ0

(
t, t̄

) ª®®¬
=

1√
2πψ̂0

(
t, t̄

) exp
©«−

(
ȳ −

∫ t̄
t Aκ (t, s) χ (s) ds − Aκ

(
t, t̄

)
y
)2

2ψ̂0
(
t, t̄

) ª®®¬, (6.94)

where

ψ̂0
(
t, t̄

)
= A2κ

(
t, t̄

)
ψ0

(
t, t̄

)
=

t̄∫
t

A2κ
(
s, t̄

)
ε2 (s) ds. (6.95)
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For further discussion, see the original paper by Uhlenbeck and Ornstein
(1930), as well as Chandresekhar (1943), Risken (1989), and references therein.
For time-independent parameters, (6.94) has the form:

ϖ
(
t,y, t̄, ȳ

)
=

1√
2πΣ2

(
t, t̄

) exp
(
−( ȳ − θ − Aκ (T ) ( y − θ))2

2Σ2
(
t, t̄

) )
, (6.96)

with

Σ
2 (
t, t̄

)
=
ε2

(
1 − e−2κT

)
2κ

= ε2B2κ (T ). (6.97)

6.4.2 Gaussian Augmented OU Process

This subsection considers an augmented one-dimensional OU process of the
form:

dx̂t = ŷtdt, x̂t = x, (6.98)

dŷt = (χ (t) − κ (t) ŷt) dt + ε (t) dŴt, ŷt = y.

To align the analysis with the existing body of work, switch from the general
notation, used above, to a specific one customarily used for the OU process.
Here and in what follows, the word “augmentation” means that one expands
the original process by incorporating its integral or other path-dependent char-
acteristics, such as running maximum or minimum as part of the process; see
Section 5. The augmentation is a very useful tool. In particular, in financial
engineering it is used for handling large classes of path-dependent options;
details can be found in Lipton (2001), chapter 13.
For an OU process, (6.34) can be written as follows:

L t̄
(
t, t̄

)
+

(
0 0
1 −κ

(
t̄
) )
L

(
t, t̄

)
= 0, L (t, t) =

(
1 0
0 1

)
, (6.99)

so that

L
(
t, t̄

)
=

(
1 0

−B̄−κ
(
t, t̄

)
A−κ

(
t, t̄

) )
, L−1

(
t, t̄

)
=

(
1 0

Bκ

(
t, t̄

)
Aκ

(
t, t̄

) )
.

(6.100)

Now, one can compute C−1
(
t, t̄

)
, d(z) (t, t̄ ) , and ς (

t, t̄
)
:

C
−1 (

t, t̄
)
=

(
ψ2

(
t, t̄

)
−ψ1

(
t, t̄

)
−ψ1

(
t, t̄

)
ψ0

(
t, t̄

) )
, (6.101)
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where

ψ0
(
t, t̄

)
=

t̄∫
t

A2
−κ (t, s) ε2 (s) ds,

ψ1
(
t, t̄

)
= −

t̄∫
t

B̄−κ (t, s)A−κ (t, s) ε2 (s) ds, (6.102)

ψ2
(
t, t̄

)
=

t̄∫
t

B̄2
−κ (t, s) ε2 (s) ds.

d(z) (t, t̄ ) = (
d ( x) (t, t̄ )
d ( y) (t, t̄ )

)
=

©«
−

∫ t̄
t B̄−κ (t, s) χ (s) ds∫ t̄

t A−κ (t, s) χ (s) ds,
ª®¬, (6.103)

ς
(
t, t̄

)
= −η

(
t, t̄

)
. (6.104)

Next, one can calculate the covariance matrix H
(
t, t̄

)
, and mean vector r

(
t, t̄

)
as follows:

H
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1
C
−1 (

t, t̄
)
L
−1 (

t, t̄
)

=

(
1 Bκ

(
t, t̄

)
0 Aκ

(
t, t̄

) ) (
ψ2

(
t, t̄

)
−ψ1

(
t, t̄

)
−ψ1

(
t, t̄

)
ψ0

(
t, t̄

) ) (
1 0

Bκ

(
t, t̄

)
Aκ

(
t, t̄

) )
=

(
h0

(
t, t̄

)
h1

(
t, t̄

)
h1

(
t, t̄

)
h2

(
t, t̄

) )
, (6.105)

r
(
t, t̄

)
=

(
L
∗ (
t, t̄

) )−1 (
d(z) (t, t̄ ) + (

x
y

))
=

(
p
(
t, t̄

)
q
(
t, t̄

) )
. (6.106)

Here

h0
(
t, t̄

)
= ψ0 B2

κ

(
t, t̄

)
− 2ψ1 Bκ

(
t, t̄

)
+ ψ2,

h1
(
t, t̄

)
=

(
ψ0 Bκ

(
t, t̄

)
− ψ1

)
Aκ

(
t, t̄

)
, (6.107)

h2
(
t, t̄

)
= ψ0A2

κ

(
t, t̄

)
,

p
(
t, t̄

)
= −

∫ t̄

t
B̄−κ (t, s) χ (s) ds + x + Bκ

(
t, t̄

) (∫ t̄

t
A−κ (t, s) χ (s) ds + y

)
,

q
(
t, t̄

)
= Aκ

(
t, t̄

) (∫ t̄

t
A−κ (t, s) χ (s) ds + y

)
. (6.108)

Thus,ϖ
(
t,x,y, t̄, x̄, ȳ

)
is a bivariate Gaussian distribution of the form (6.26) with

the covariance matrixH, given by (6.105) centered at the point r = (p,q)∗ given
by (6.106). Explicitly, one has
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σ2
x
(
t, t̄

)
= h0

(
t, t̄

)
, σ2

y
(
t, t̄

)
= h2

(
t, t̄

)
, ρ

(
t, t̄

)
=

h1
(
t, t̄

)√
h0

(
t, t̄

)
h2

(
t, t̄

) .
(6.109)

When χ, κ, θ, ε are constant, the preceding formulas become significantly
simpler. Namely,

L (T ) =
(

1 0
−B−κ (T ) A−κ (T )

)
, L−1 (T ) =

(
1 0

Bκ (T ) Aκ (T )

)
,

(6.110)

C
−1 (T ) =

(
ε2

κ2
(B0 (T ) − 2B−κ (T ) + B−2κ (T )) − ε2

2 B−κ (T )
− ε2

2 B−κ (T ) ε2B−2κ (T )

)
, (6.111)

d(z) (T ) =
(
(T − B−κ (T )) θ

B−κ (T ) χ

)
, (6.112)

ς (T ) = −κT, (6.113)

H (T ) =
(

ε2

κ2
(B0 (T ) − 2Bκ (T ) + B2κ (T )) ε2

2 Bκ (T )
ε2

2 Bκ (T ) ε2B2κ (T )

)
, (6.114)

r (T ) =
(
x + θT − Bκ (T ) (θ − y)
θ − Aκ (T ) (θ − y)

)
. (6.115)

Thus, when coefficients are constant, ϖ
(
t,x,y, t̄, x̄, ȳ

)
is a bivariate Gaussian

distribution of the form (6.26) with the covariance matrix H, given by (6.114)
and the mean vector r = (p,q)∗ given by (6.115).
Calculate the marginal distribution of x̄, denoted by ϖ(x) (t,y, t̄, x̄) , which

is used on several occasions in what follows. It is well known that marginal
distributions of a multivariate Gaussian distribution are also Gaussian, so that

ϖ(x) (t,y, t̄, x̄) = 1√
2πh0

(
t, t̄

) exp
( (
x̄ − p

(
t, t̄

) )2
2h0

(
t, t̄

) )
, (6.116)

where h0 is given by the equations in (6.114). At the same time, the density of
marginal distribution for ȳ has the form

ϖ( y) (t,y, t̄, ȳ) = 1√
2πh2

(
t, t̄

) exp
( (

ȳ − q
(
t, t̄

) )2
2h2

(
t, t̄

) )
, (6.117)

where h2 is given by the equations in (6.114), which is the familiar density of
the OU process derived in the previous section.
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6.5 Example: Diffusion of Free and Harmonically Bound Particles
The preceding results can be used to revisit the motion of free and harmonically
bound particles considered in Section 3.
To describe a free particle, it is assumed that χ = 0. Equation (6.114) does

not change, while (6.115) can be simplified as follows:(
p (T )
q (T )

)
=

(
x + Bκ (T ) y

Aκ (T ) y

)
. (6.118)

It is clear that Equations (4.7), (4.8) and (6.114), (6.118) are in agreement. A
typical free particle behavior is illustrated in Figure 7.
Analysis of a harmonically bound particle requires additional efforts. In the

case in question, (6.34) can be written as follows:

L
′ (t, t̄ ) + (

0 −ω2

1 −κ

)
L

(
t, t̄

)
= 0, L (t, t) =

(
1 0
0 1

)
. (6.119)
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Figure 7 A thousand trajectories of a typical free particle. Parameters are as
follows: T = 5, dt = 0.01, κ = 0.8, σ = 1.0. (a) x (t), (b) y (t), (c)

(x̄ (T ) , ȳ (T )), (d) contour lines of ϖ (0,0,0,T, x̃, ỹ). Author’s graphics.
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The corresponding characteristic equation and its solutions are as follows:

λ
2 − κλ + ω2 = 0, (6.120)

λ± = µ ± ζ,
(6.121)

µ =
κ

2
, ζ =

√
κ2 − 4ω2

2
.

Introduce

E0 (T ) = eµT = eκT/2, E± (T ) = e±ζT. (6.122)

It is left to the reader to check that

L =
E0√

κ2 − 4ω2

(
− (λ−E+ − λ+E−) ω2 (E+ − E−)
− (E+ − E−) (λ+E+ − λ−E−)

)
, (6.123)

L
−1 =

E−1
0√

κ2 − 4ω2

(
(λ+E+ − λ−E−) −ω2 (E+ − E−)
(E+ − E−) − (λ−E+ − λ+E−)

)
, (6.124)

detL =
(
detL−1

)−1
=E2

0 = eκT, (6.125)

Accordingly,

ϖ
(
t,z, t̄, z̄

)
= N

(
r
(
t, t̄

)
,H

(
t, t̄

) )
, (6.126)

with

H = (L∗)−1 C−1L−1, (6.127)

r = (L∗)−1 z.

Here,

C
−1 =

(
ψ2 −ψ1
−ψ1 ψ0

)
, (6.128)

where

ψ0 =
ε2(

κ2 − 4ω2) ∫ t̄

t

(
λ+eλ+(s−t) − λ−eλ−(s−t)

)2
ds

=
ε2

2κ
(
κ2 − 4ω2) (

E2
0

(
κλ+E2

+ − 4ω2 + κλ−E2
−

)
−

(
κ2 − 4ω2

))
,

ψ1 =
ε2(

κ2 − 4ω2) ∫ t̄

t

(
eλ+(s−t) − eλ−(s−t)

) (
λ+eλ+(s−t) − λ−eλ−(s−t)

)
ds

=
ε2

2
(
κ2 − 4ω2) E2

0 (E+ − E−)2 ,
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ψ2 =
ε2(

κ2 − 4ω2) ∫ t̄

t

(
eλ+(s−t) − eλ−(s−t)

)2
ds

=
ε2

2κω2 (
κ2 − 4ω2) (

E2
0

(
κλ−E2

+ − 4ω2 + κλ+E2
−

)
−

(
κ2 − 4ω2

))
.

(6.129)

Further,

H =
E−2
0(

κ2 − 4ω2) (
(λ+E+ − λ−E−) (E+ − E−)
−ω2 (E+ − E−) − (λ−E+ − λ+E−)

)
(6.130)

×
(
ψ2 −ψ1
−ψ1 ψ0

) (
(λ+E+ − λ−E−) −ω2 (E+ − E−)
(E+ − E−) − (λ−E+ − λ+E−)

)
.

Straightforward but tedious calculation yields

h0 =
ε2

2κω2

©«1 −
E−2
0

(
ω2 (E+ − E−)2 + (λ+E+ − λ−E−)2

)(
κ2 − 4ω2) ª®®¬,

h1 =
ε2

2
E−2
0 (E+ − E−)2(
κ2 − 4ω2) , (6.131)

h2 =
ε2

2κ
©«1 −

E−2
0

(
ω2 (E+ − E−)2 + (λ−E+ − λ+E−)2

)(
κ2 − 4ω2) ª®®¬.

In the limit ω2 → 0,

h0 =
ε2

κ2
(B0 − 2Bκ + B2κ) , h1 =

ε2

2
B2
κ, h2 = ε2B2κ, (6.132)

so that Equations (6.114) and (6.132) are in agreement.
Here

r =
(
p
q

)
=

©«
E−1
0 ((λ+E+−λ−E−)x+(E+−E−)y)√

κ2−4ω2

−E−1
0 (ω2(E+−E−)x+(λ−E+−λ+E−)y)√

κ2−4ω2

ª®¬. (6.133)

In the limit ω2 → 0,

r =
(
p
q

)
=

(
x + Bκ (T ) y

Aκ (T ) y

)
. (6.134)

Moreover, while it is easy to show that Chandrasekhar’s solution given in
Chandresekhar (1943) is in agreement with the solution given by (6.126), the
solution is more convenient from a practical standpoint, since it is explicitly
written as a Gaussian density in the (x̄, ȳ) space. A typical bounded particle
behavior is shown in Figure 8.
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Figure 8 A thousand trajectories of a harmonically bounded particle.
Parameters are as follows: T = 5, dt = 0.01, κ = 0.2, ω = 0.5, σ = 0.5. (a)

x (t), (b) y (t), (c) (x̄ (T ) , ȳ (T )), (d) contour lines of ϖ (0,0,0,T, x̃, ỹ). Author’s
graphics.

6.6 Example: Vorticity of Two-Dimensional Flows
Briefly return to the starting point and consider strictly two-dimensional flows;
see Friedlander and Lipton-Lifschitz (2003). Velocity fields of such flows have
the following form:

V
(
t̄, x̄1, x̄2

)
=

(
V1

(
t̄, x̄1, x̄2

)
,V2

(
t̄, x̄1, x̄2

) )
, (6.135)

v
(
t̄, x̄1, x̄2

)
=

(
v1

(
t̄, x̄1, x̄2

)
,v2

(
t̄, x̄1, x̄2

) )
.

By virtue of incompressibility, one can introduce the so-called stream functions
such that

V1 = − ∂Ψ
∂x̄2

, V2 =
∂Ψ

∂x̄1
, v1 = − ∂ψ

∂x̄2
, v2 =

∂ψ

∂x̄1
, (6.136)

and define the scalar vorticity as follows:

Ω = ∆Ψ, ω = ∆ψ. (6.137)

Contour lines of Ψ are called streamlines of the flow.
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By using the preceding definitions, the two-dimensional Navier–Stokes
equations can be written as equations for the stream and vorticity:

∂Ω

∂ t̄
− ∂Ψ

∂x̄2
∂Ω

∂x̄1
+
∂Ψ

∂x̄1
∂Ω

∂x̄2
− ν∆Ω = 0,

(6.138)

∆Ψ −Ω = 0.

Time-independent quadratic stream functions Ψ (x̄1, x̄2) generate exact equilib-
rium solutions of the equations in (6.138). Consider fields consisting of pure
strain and pure rotation. The corresponding Ψ have the following form:

Ψ (x̄1, x̄2) =
1
4

(
w

(
x̄21 + x̄

2
2

)
− 2sx̄1x̄2

)
, (6.139)

where w > s, to ensure that streamlines are elliptic rather than hyperbolic, so
that

V1 = − ∂Ψ
∂x̄2
=
1
2
(sx̄1 − wx̄2) , V2 =

∂Ψ

∂x̄1
=
1
2
(wx̄1 − sx̄2). (6.140)

Recall that these flows were introduced in Section 2, Equation (2.7).
Small perturbations ψ of the time-independent quadratic stream function Ψ

satisfy the following equations:

∂ω

∂ t̄
− ∂Ψ

∂x̄2
∂ω

∂x̄1
+
∂Ψ

∂x̄1
∂ω

∂x̄2
− ν∆ω = 0,

(6.141)

∆ψ − ω = 0.

It is helpful to study the first equation (6.141) in isolation, by writing it
explicitly as follows:

∂ω

∂ t̄
+
1
2
(sx̄1 − wx̄2)

∂ω

∂x̄1
+
1
2
(wx̄1 − sx̄2)

∂ω

∂x̄2
− ν∆ω = 0, (6.142)

and supplying it with the initial condition at time t:

ω (t, x̄1, x̄2) = δ (x̄1 − x1) δ (x̄2 − x2). (6.143)

Once the solution of Equations (6.142) and (6.143) is found, one can find ψ by
solving the corresponding Laplace equation.
Surprisingly, this equation is identical to the Fokker–Planck equation asso-

ciated with the following SDEs for ẑt = (x̂1t, x̂2t):

dẑt = Bẑtdt + Σd Ŵt, ẑt =
(
x1
x2

)
, (6.144)
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where

B =
1
2

(
s −w
w −s

)
, Σ =

√
2ν

(
1 0
0 1

)
. (6.145)

Thus, one can use Section 6.1 results. Equation (6.34) becomes

L
′ (t, t̄ ) + 1

2

(
s w
−w −s

)
L

(
t, t̄

)
= 0, L (t, t) =

(
1 0
0 1

)
. (6.146)

The corresponding characteristic equation has the following form:

λ
2 +

1
4

(
w2 − s2

)
= 0. (6.147)

Its solutions are

λ± = ±ζ, ζ =
i
√
w2 − s2
2

. (6.148)

Simple but tedious calculations, omitted for the sake of brevity, show that

L =

(
c1 − s

2 |ζ | s1 − w
2 |ζ | s1

w
2 |ζ | s1 c1 + s

2 |ζ | s1

)
, det (L) = 1

(6.149)

L
−1 =

(
c1 + s

2 |ζ | s1
w
2 |ζ | s1

− w
2 |ζ | s1 c1 − s

2 |ζ | s1

)
, det

(
L
−1

)
= 1,

where

c1
(
t, t̄

)
= cos (|ζ | T) , s1

(
t, t̄

)
= sin (|ζ | T). (6.150)

Next, (6.39) yields

C
−1 = 2ν

∫ t̄

t
L
∗ (t, s)L (t, s) ds =

(
ψ2 −ψ1
−ψ1 ψ0

)
, (6.151)

where

ψ0 = 2ν
∫ t̄

t

(
1 +

s
2 |ζ | s2 (t, s) +

s2

4 |ζ |2
(1 − c2 (t, s))

)
ds

= 2ν
((
1 +

s2

4 |ζ |2

)
T − s

4 |ζ |2
c2 −

s2

8 |ζ |3
s2

)
,

ψ1 = − νsw
2 |ζ |2

∫ t̄

t
(1 − c2 (t, s)) ds = − νsw

2 |ζ |2

(
T − 1

2 |ζ | s2
)
, (6.152)

ψ2 = 2ν
∫ t̄

t

(
1 − s

2 |ζ | s2 (t, s) +
s2

4 |ζ |2
(1 − c2 (t, s))

)
ds

= 2ν
((
1 +

s2

4 |ζ |2

)
T +

s
4 |ζ |2

c2 −
s2

8 |ζ |3
s2

)
,
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and

c2
(
t, t̄

)
= cos (2 |ζ | T) , s2

(
t, t̄

)
= sin (2 |ζ | T). (6.153)

Finally, Equations (6.26) and (6.27) yield:

ω
(
t,z, t̄, z̄

)
= N

(
r
(
t, t̄

)
,H

(
t, t̄

) )
. (6.154)

The corresponding covariance matrix H and mean r are as follows:

H =

(
h0 h1
h1 h2

)
, (6.155)

where

h0 =
©«

w2

8 |ζ |2
+

(
4 |ζ |2 − s2

)
8 |ζ |2

c2 +
s

2 |ζ | s2
ª®®¬ψ2

+
w
2 |ζ |

(
s

2 |ζ | (1 − c2) + s2
)
ψ1 +

w2

8 |ζ |2
(1 − c2)ψ0,

h1 =
w
4 |ζ |

(
s

2 |ζ | (1 − c2) + s2
)
ψ2

(6.156)

−
(
1 +

w2

4 |ζ |2
(1 − c2)

)
ψ1 +

w
4 |ζ |

(
s

2 |ζ | (1 − c2) − s2
)
ψ0,

h2 =
w2

8 |ζ |2
(1 − c2)ψ2 +

w
2 |ζ |

(
s

2 |ζ | (1 − c2) − s2
)
ψ1

+
©«

w2

8 |ζ |2
+

(
4 |ζ |2 − s2

)
8 |ζ |2

c2 −
s

2 |ζ | s2
ª®®¬ψ0,

and

r =
(
r1
r2

)
=

©«
(
c1 + s

2 |ζ | s1
)
x1 − w

2 |ζ | s1x2
w
2 |ζ | s1x1 +

(
c1 − s

2 |ζ | s1
)
x2

ª®¬. (6.157)

The equations in (6.156) are symmetric, namely h0 → h2 when (a,b) →
(−a,−b) and (ψ0,ψ2) → (ψ2,ψ0). The second of the equations in (6.138), which
is a static Poisson equation, allows us to find ψ, since ω is known. Its analytical
solution is not easy to derive and is not presented here due to lack of space.
However, the special case of purely rotational flow, s = 0, can be done easily;
see (6.165).
It is interesting to note that

Ψ (r1, r2) = Ψ (x1,x2), (6.158)
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so that the location of the Gaussian distribution ω moves along streamlines of
the flow defined by the stream function Ψ.
When the flow is purely rotational, so that s = 0, the preceding formulas

considerably simplify. Specifically, one has the following:

ψ0 = 2νT, ψ1 = 0, ψ2 = 2νT,

h0 = 2νT, ψ1 = 0, h2 = 2νT, (6.159)

r1 = c1x1 − s1x2, r2 = s1x1 + c1x2,

so that

ω
(
t,x1,x2, t̄, x̄1, x̄2

)
(6.160)

=
1

4πνT
exp

(
−(x̄1 − c1x1 + s1x2)2 + (x̄2 − s1x1 − c1x2)2

4νT

)
.

The stream function ψ can be calculated directly by solving the corresponding
Poisson equation.6 To start, notice that both ω and ψ are rotational symmetric
around the point (x1,x2). Thus, ω and ψ have the following form:

ω = ω (R) = 1
4πνT

exp
(
−R

2

2

)
, ψ = ψ (R), (6.161)

where

R2 =
(x̄1 − c1x1 + s1x2)2 + (x̄2 − s1x1 − c1x2)2

2νT
. (6.162)

Then ψ (R) solves a radially symmetric Poisson equation of the following form:

1
R
(RψR (R))R =

1
2π

exp
(
−R

2

2

)
. (6.163)

Thus,

RψR (R) = − 1
2π

exp
(
−R

2

2

)
+ C, (6.164)

where C is an arbitrary constant. Next,

ψ (R) = 1
2π

(
ln (R) + 1

2
E1

(
R2

2

))
, (6.165)

where the choice of C guarantees that ψ has the right behavior when R → 0
and R → ∞. Here E1 (η) is the exponential integral of the following form:

E1 (η) =
∞∫

η

e−η′

η′
dη′. (6.166)

6 We are grateful to Andrey Itkin for pointing this out.
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7 Non-Gaussian Stochastic Processes
7.1 Regular Non-Gaussian Processes

In many situations, it is useful to consider processes governed by more general
SDEs of the following form:

dẑt = (b (t) +B (t) ẑt) dt

+ Σ (t)
(
diag

(
d(0) (t) +D (t) ẑt

))1/2
d Ŵ(z)

t , (7.1)

ẑt = z.

Here, in addition to the functions b (t),B (t) introduced in the previous section,
define an (M × 1) column vector d(0), and an (M ×M)matrixD. It is convenient
to introduce auxiliary vectors d(i) equal to the ith column of D.
Since the corresponding (M ×M) covariance matrix A has the form:

A =
1
2
Σ

(
diag

(
d(0) (t) +D (t) zt

))1/2 (
Σ

(
diag

(
d(0) (t) +D (t) zt

))1/2)∗
,

(7.2)

it linearly depends on z:

A =
1
2
Σ

(
diag

(
d(0) +Dz

))
Σ∗ =

1
2
A
(0) +

1
2
A
(m)zm, (7.3)

where

A
(0) =

1
2
Σdiag

(
d(0)

)
Σ
∗, A(i) =

1
2
Σdiag

(
d(i)

)
Σ
∗. (7.4)

In contrast to the Gaussian case, the equations in (7.2) have to be defined in the
domain D such that

D =
{
z| d(0) +Dz ≥ 0

}
, (7.5)

rather than in the whole space. In financial engineering, covariance matrices of
the form (7.2) were introduced by Dai and Singleton (2000), and discussed by
Duffie et al. (2003), Filipovic (2009), and many others.
The corresponding Fokker–Plank problem has the following form:

ϖ t̄
(
t,z, t̄, z̄

)
−

∑∑ (
A
0 + z̄mA(m)

)
ϖz̄z̄

(
t,z, t̄, z̄

)
+

(
b̂ +Bz̄

)
·ϖz̄

(
t,z, t̄, z̄

)
+ bϖ

(
t,z, t̄, z̄

)
= 0, (7.6)

ϖ (t,z, t, z̄) = δ (z̄ − z),

where

b̂m = bm−
(
2a(m)mm + a

(m′)
mm′ + a(m

′)
m′m

)
, (no summation over m),

(7.7)

b = Tr (B).
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Equation (6.11) expressingϖ in terms ofK holds. The equations for α,δ have
the following form:

α t̄
(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄ + δ

(
t, t̄

)
· Aδ

(
t, t̄

)
+ iδ

(
t, t̄

)
·
(
b̂ +Bz̄

)
+ b = 0,

(7.8)

or, more explicitly,

α t̄
(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄ + δ

(
t, t̄

)
· A(0)δ

(
t, t̄

)
+ δ

(
t, t̄

)
· A(k)δ

(
t, t̄

)
z̄k (7.9)

+ iδ
(
t, t̄

)
·
(
b̂ +Bz̄

)
+ b = 0.

Thus, the system of ODEs for α,δ can be written as follows:

α t̄
(
t, t̄

)
+δ

(
t, t̄

)
·A(0)

(
t, t̄

)
δ
(
t, t̄

)
+iδ

(
t, t̄

)
·b̂

(
t, t̄

)
+b

(
t, t̄

)
= 0, α (t, t) = 0,

iδ′i
(
t, t̄

)
+ δ

(
t, t̄

)
· A(i)δ

(
t, t̄

)
+ iBijδj

(
t, t̄

)
= 0, δi (t, t) = mi. (7.10)

In the case in question, the equation for δ is no longer linear. Instead, δ satisfies
the so-called matrix Riccati equation. Such equations are important for several
applications, such as optimal control. Solving a matrix Riccati equation is quite
hard, so it is more an art than a science; some of the results in this direction
are reported here. However, in the one-dimensional case, the corresponding
Riccati equation can be converted into the second-order ODE, and then solved
explicitly when the coefficients A, b, b are time-independent.
In case of an augmented process, one must consider an SDE of the following

form:

dx̂t =
(
b(x) (t) +B(xx) (t) x̂t +B(xy) (t) ŷt

)
dt,

dŷt =
(
b( y) (t) +B( yx) (t) x̂t +B( yy) (t) ŷt

)
dt

(7.11)

+ Σ( yy) (t)
(
diag

(
d(0) (t) +D (t) ẑt

))1/2
d Ŵ( y)

t ,

x̂t = x, ŷt = y,

or, more compactly,

dẑt = (b (t) +B (t) ẑt) dt +
©«

0

Σ( yy) (t)
(
diag

(
d(0) (t) +D (t) ẑt

))1/2
d Ŵ( y)

t

ª®¬,
ẑt = z =

(
x
y

)
. (7.12)

Here b(x), b( y), b =
(
b(x),b( y)

)∗
, d(0) are column vectors, andB(xx),B(xy),B( yx),

B( yy), B, and D are matrices of appropriate dimensions.
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The equations for α, δ = (β,γ) have the following form:

α t̄
(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄ + γ

(
t, t̄

)
· Aγ

(
t, t̄

)
+ iδ

(
t, t̄

)
·
(
b̂ +Bz̄

)
+ b = 0,

(7.13)

or, more explicitly,

α t̄
(
t, t̄

)
+ iδ t̄

(
t, t̄

)
· z̄ + γ

(
t, t̄

)
· A(0)γ

(
t, t̄

)
+ γ

(
t, t̄

)
· A(k)γ

(
t, t̄

)
z̄k

+ iδ
(
t, t̄

)
·
(
b(z) +B(zz)z̄

)
+ b = 0. (7.14)

Thus, the system of ODEs for α,δ can be written as follows:

α t̄
(
t, t̄

)
+ γ

(
t, t̄

)
· A(0)

(
t, t̄

)
γ

(
t, t̄

)
+ iδ

(
t, t̄

)
· b̂(z) (t, t̄ ) + b (

t, t̄
)
= 0,

α (t, t) = 0,

iδi,t̄
(
t, t̄

)
+ γ

(
t, t̄

)
· A(i)γ

(
t, t̄

)
+ iB(zz)

ij δj
(
t, t̄

)
= 0, δi (t, t) = mi. (7.15)

7.2 Killed Non-Gaussian Processes
The non-Gaussian governing SDE has the following form:

dẑt = (b +Bẑt) dt + Σ
(
diag

(
d(0) +Dẑt

))1/2
d Ŵt, (7.16)

where ẑt, b, d(0) are (M × 1) vectors, and Σ, B, D are the (M ×M) matrices
defined previously. As before, the correlation matrix Σ can be a full-rank (non-
degenerate) matrix. Once again, it is assumed that the process is killed with
intensity c̄ linearly depending on z, namely,

c̄ = c + c · z, (7.17)

where c is a scalar, and c(z) is an (M × 1) column vector.
The corresponding Fokker–Plank problem has the following form:

ϖ t̄
(
t,z, t̄, z̄

)
−

∑∑ (
A
0 + z̄iAi

)
ϖz̄z̄

(
t,z, t̄, z̄

)
+

(
b̂ +Bz̄

)
·ϖz̄

(
t,z, t̄, z̄

)
+ (b + c + c · z̄)ϖ

(
t,z, t̄, z̄

)
= 0, (7.18)

ϖ (t,z, t, z̄) = δ (z̄ − z).

The equations for α,δ generalize the equations in (7.10). They can be written
in the following form:

α t̄
(
t, t̄

)
+ δ

(
t, t̄

)
· A(0)

(
t, t̄

)
δ

(
t, t̄

)
+ iδ

(
t, t̄

)
· b

(
t, t̄

)
+ b

(
t, t̄

)
+ c

(
t, t̄

)
= 0,

α (t, t) = 0,
iδ′i

(
t, t̄

)
+ δ

(
t, t̄

)
· A(i)δ

(
t, t̄

)
+ iBijδj

(
t, t̄

)
+ ci = 0, δi (t, t) = mi. (7.19)
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As in the case without killing, finding an analytical solution to a multidi-
mensional Riccati equation is generally impossible. However, in the time-
independent one-dimensional case, it can be done. Solution becomes partic-
ularly simple in the special case when A(0) = 0. The most important case is the
killed one-dimensional Feller process, used, for example, to price bonds in the
Cox–IngersolI–Ross (CIR) model; see Section 8.

7.3 Example: Anomalous Kolmogorov Process
Anomalous diffusion is a phenomenon in which the random motion of parti-
cles or molecules deviates from the classical Brownian motion and, as a result,
exhibits non-Gaussian probability distributions, such as power-law or exponen-
tial tails. One can distinguish between subdiffusions (slower spreading) and
superdiffusions (faster spreading). Anomalous diffusion often involves long-
range correlations in particle motion, meaning that the movement of a particle
at a one-time step depends on its previous positions over longer time scales.
Anomalous diffusion frequently displays scale-invariant properties, meaning
that the statistical properties of motion remain the same across different time
or spatial scales. Anomalous diffusion has applications in physics, chemistry,
financial engineering, biology, and geophysics.
Fractional Brownian motion (fBm) is used to model anomalous diffusion

because it possesses several relevant characteristics. In particular, it exhibits
longmemory, which means that the process’s future values are influenced by its
past values over long time scales. Additionally, fBm can produce non-Gaussian
behavior while preserving scale-invariance. By adjusting the Hurst exponent
and other parameters, fBm can be tailored to model different anomalous
diffusions, including both subdiffusions and superdiffusions.
This section studies a fractional Kolmogorov equation of the following form:

ϖ t̄
(
t,x,y, t̄, x̄, ȳ

)
+ a

(
− ∂2

∂ȳ2

)ν
ϖ

(
t,x,y, t̄, x̄, ȳ

)
+ ȳϖx̄

(
t,x,y, t̄, x̄, ȳ

)
+ bϖȳ

(
t,x,y, t̄, x̄, ȳ

)
= 0, (7.20)

ϖ (t, x̄, ȳ, t,x,y) = δ (x̄ − x) δ ( ȳ − y),

where 0 < ν < 1. The pseudo-differential operator
(
− ∂2

/
∂ȳ2

)ν is defined as
follows:(

− ∂2

∂ȳ2

)ν
ϖ = F −1

(
|l|2ν F (ϖ)

)
. (7.21)

Here F and F −1 denote the direct and inverse Fourier transforms, respectively.
Despite its complexity, problem (7.20) can be solved by using Kelvin waves.
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For particular solutions of the form (3.38), (3.39), and (3.40), the corresponding
characteristic equations are

α t̄
(
t, t̄

)
+ a |γ |2ν

(
t, t̄

)
+ iγ t̄

(
t, t̄

)
ȳ + ikȳ + ibγ

(
t, t̄

)
= 0, (7.22)

α (t, t) = 0, γ (t, t) = l,

so that

α t̄
(
t, t̄

)
+ a |γ |2ν

(
t, t̄

)
+ ibγ

(
t, t̄

)
= 0, α (t, t) = 0, (7.23)

γ t̄
(
t, t̄

)
+ k = 0, γ (t, t) = l,

γ
(
t, t̄

)
= −kT + l, (7.24)

α
(
t, t̄

)
= −a

t̄∫
t

|−k (s − t) + l|2ν ds − ib
(
−kT

2

2
+ lT

)
.

Thus,

Ψ =α + ik (x̄ − x) + iγȳ − ily

= − a
t̄∫

t

|−k (s − t) + l|2ν ds (7.25)

+ ik
(
x̄ − x − ȳT +

bT2

2

)
+ il ( ȳ − y − bT ).

Now, assume that ν = 1/2. The key is to calculate the integral

I =
t̄∫

t

|−k (s − t) + l|2ν ds =
T∫

0

|−ks + l| ds, (7.26)

for different values of (k, l). Depending on (k, l), this integral can be calculated
as follows:

I1 =
l/k∫
0

(−ks + l) ds +
T∫

l/k

(ks − l) ds = kT2

2
− lT +

l2

k
, 0 ≤ k < ∞,

0 ≤ l ≤ kT,

I2 = −kT
2

2
+ lT, 0 ≤ k < ∞, kT ≤ l < ∞,

I3 = −kT
2

2
+ lT, −∞ < k ≤ 0, 0 ≤ l < ∞,

I4 =
l/k∫
0

(ks − l) ds +
T∫

l/k

(−ks + l) ds = −kT
2

2
+ lT − l2

k
, −∞ < k ≤ 0,

kT ≤ l ≤ 0,
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I5 =
kT2

2
− lT, −∞ < k ≤ 0, −∞ < l ≤ kT,

I6 =
kT2

2
− lT, 0 ≤ k < ∞, −∞ < l ≤ 0. (7.27)

Thus,

(2π)2 J1 =
∞∫
0

kT∫
0

exp
(
−a

(
kT2

2
− lT +

l2

k

)
+ ikaT2ζ + ilaTη

)
dkdl

= T
1∫

0

∞∫
0

exp ((−p + iq) k) kdχdk = −T
1∫

0

∂

∂p
©«

∞∫
0

exp ((−p + iq) k) dkª®¬ dχ
= T

1∫
0

dχ
(p − iq)2

=
1

a2T 3

T∫
0

dχ
((χ − f+) (χ − f−))2

, (7.28)

where (ζ, η) are nondimensional variables:

ζ =
x̄ − x − ȳT + bT2

2
aT2

, η =
ȳ − y − bT

aT
, (7.29)

l = Tχk, p (χ) = aT2
(
1
2
− χ + χ2

)
> 0, q (χ) = aT2 (ζ + χη), (7.30)

and f± are roots of the quadratic equation

χ2 − (1 + iη) χ +
(
1
2
− iζ

)
= 0. (7.31)

One can check that

f± =
(1 + iη) ±

√
(1 + iη)2 − 2 + 4iζ
2

=
(1 + iη) ± i

√
D

2
,

(7.32)

f+f− =
1
2
− iζ, f+ + f− = 1 + iη, f+ − f− = i

√
D,

with

D = 1 + η2 − 4iζ − 2iη. (7.33)

The roots f± are never equal, since D does not vanish when ζ, η are real.
Thus, one has

(2π)2 J1 =
1

a2T 3

1∫
0

dχ
((χ − f+) (χ − f−))2

=
1

a2T 3 ( f+ − f−)2

1∫
0

(
1

χ − f+
− 1
χ − f−

)2
dχ
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= − 1
a2T 3 ( f+ − f−)2

(((
1

1 − f+
+
1
f+

)
+

(
1

1 − f−
+
1
f−

))
+

2
( f+ − f−)

ln
(
f− (1 − f+)
f+ (1 − f−)

))
=

1
a2T 3D

(
4 (D + 2iζ + iη)

(1 − 2iζ) (1 − 2iζ − 2iη) −
2i
√
D

ln
(
2ζ + η −

√
D

2ζ + η +
√
D

))
.

(7.34)

By symmetry,

J4 (ζ, η) = J1 (−ζ,−η) = J1 (ζ, η). (7.35)

Next,

(2π)2 J2 =
∞∫
0

∞∫
kT

exp
(
−a

(
−kT

2

2
+ lT

)
+ ikaT2ζ + ilaTη

)
dkdl

=
1

aT (1 − iη)

∞∫
0

exp
(
−kaT

2

2
+ ikaT2 (ζ + η)

)
dk (7.36)

=
1

a2T 3 ((1 − iη))
(
1
2 − i (ζ + η)

) .
Similarly, it is easy to show that

(2π)2 J3 =
0∫

−∞

∞∫
0

exp
(
−a

(
−kT

2

2
+ lT

)
+ ikaT2ζ + ilaTη

)
dkdl

(7.37)

=
1

a2T 3 (1 − iη)
(
1
2 + iζ

) ,
while, by symmetry, one gets

J5 (ζ, η) =
1

(2π)2 a2T 3 (1 + iη)
(
1
2 + i (ζ + η)

) = J2 (ζ, η),

(7.38)

J6 (ζ, η) =
1

(2π)2 a2T 3 (1 + iη)
(
1
2 − iζ

) = J3 (ζ, η),
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so that

ϖ =
1

π2a2T 3

©«
1(

1 + η2
) ©«

(1 − 2η (ζ + η))(
1 + 4 (ζ + η)2

) + (1 + 2ηζ )(
1 + 4ζ2

) ª®®¬ (7.39)

+Re


1
D

©«
2 (D + 2iζ + iη)(
D − (2ζ + η)2

) − i
√
D

ln
(
2ζ + η −

√
D

2ζ + η +
√
D

)ª®®¬

ª®®¬,

and

ϖ (x̄, ȳ) d x̄d ȳ = 1
π2a2

©«
1(

1 + η2
) ©«

(1 − 2η (ζ + η))(
1 + 4 (ζ + η)2

) + (1 + 2ηζ)(
1 + 4ζ2

) ª®®¬ (7.40)

+Re


1
D

©«
2 (D + 2iζ + iη)(
D − (2ζ + η)2

) − i
√
D

ln
(
2ζ + η −

√
D

2ζ + η +
√
D

)ª®®¬

ª®®¬ dζdη

≡ ϖ (ζ, η) dζdη,

which shows that, as expected, in the nondimensional variables there is no
explicit dependence on T.7

A typical anomalous Kolmogorov process is depicted in Figure 9. The differ-
ence between the anomalous diffusion shown in Figure 9 and the pure diffusion
shown in Figure 6 is clear.

7 In a special case a = 1, b = 0, ξ = 0, θ = 0, He et al. (2021) attempted to solve the problem
considered previously. However, the authors made a severe error in transitioning from (2.2)
to (2.3). In contrast to Kolmogorov’s minor error, their error cannot be repaired. Dimensional
analysis shows that the proposed solution is completely incorrect. In our notation, it has the
following form:

ϖ (x̄, ȳ) d x̄d ȳ = 72
√
3

π3T 6
(
1 + 4

(
ȳ2
4T +

3(̄x+ȳT/2)2
T 3

))7/2 d x̄d ȳ.
Introducing rescaled variables, ζ = x̄T −3/2, η = ȳT −1/2, we get

ϖ (ζ , η) dζdη = 72
√
3

π3T 4
(
1 + 4

(
η2
4 + 3

(
ζ +

η
2
)2))7/2 dζdη.

This expression explicitly depends on T, which is impossible, since its integral must be equal
to unity.
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Figure 9 Contour lines of ϖ (0,0,0,T, x̃, ỹ) for an anomalous Kolmogorov
process with T = 1.5, a = 2.5, b = 1.5. Author’s graphics.

It is worth comparing Equations (7.39) and (3.28). To this end, rewrite Φ
given by (3.29) in the following form:

Φ =
( ȳ − y − bT )2

2aT
+
6
(
x̄ − x − ( ȳ+y)T

2

)2
aT3

=
η2

2
+
3 (2ζ + η)2

2
, (7.41)

where ζ, η are nondimensional variables of the form:

ζ =
x̄ − x − ȳT + bT2

2√
aT3

, η =
ȳ − y − bT

√
aT

, (7.42)

and a is the diffusion coefficient; its dimension is [a] = L2/T 3. Thus,

ϖ =

√
3

πaT2
exp

(
−η

2 + 3 (2ζ + η)2
2

)
, (7.43)

and

ϖ (x̄, ȳ) d x̄d ȳ =
√
3

πa
exp

(
−η

2 + 3 (2ζ + η)2
2

)
dζdη ≡ ϖ (ζ, η) dζdη.

(7.44)
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Comparing Equations (7.39) and (7.43), one can see that the scaling of ϖ and
its asymptotic behavior at infinity is completely different.

7.4 Example: Feller Process
7.4.1 Feller Process

Feller Process with Constant Parameters For benchmarking purposes,
it is useful to start with deriving the well-known t.p.d.f. for the Feller process
with constant coefficients; see Feller (1951, 1952):

d ŷt = (χ − κŷt) dt + ε
√
ŷtd Ẑt, ŷt = y. (7.45)

Initially, the process with time-independent parameters is considered; the time-
dependent case is analyzed later in this section.
To start with, it is assumed that

2χ
ε2

− 1 ≡ ϑ > 0. (7.46)

This condition guarantees that the process ŷt does not hit zero, which is one of
the main reasons to use the Feller process in practice; it is relaxed shortly.
The corresponding Fokker–Planck problem has the form:

ϖ t̄ −
1
2
ε2 ( ȳϖ)ȳȳ + ((χ − κȳ)ϖ)ȳ = 0,

(7.47)

ϖ (t,y, t, ȳ) = δ ( ȳ − y).

This equation can be written as a conservation law:

ϖ t̄ + F̄y = 0, (7.48)

ϖ (t,y, t, ȳ) = δ ( ȳ − y),

where the probability flux F is given by

F = −1
2
ε2 ( ȳϖ)ȳ + (χ − κȳ)ϖ. (7.49)

However, experience suggests that solving the backward Kolmogorov prob-
lem is more expedient. It can be formulated as follows:

ϖt +
1
2
ε2yϖyy + (χ − κy)ϖy = 0,

(7.50)

ϖ
(
t̄,y, t̄, ȳ

)
= δ ( y − ȳ).

The associated Kelvin wave function K
(
t,y, t̄, ȳ, l

)
has the following form:

K = exp
(
α

(
t, t̄

)
+ iγ

(
t, t̄

)
y − ilȳ

)
, (7.51)
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where α,γ solve the following system of backward ODEs:

αt
(
t, t̄

)
+ χiγ

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0, (7.52)

iγ t̄
(
t, t̄

)
− 1
2
ε2γ2

(
t, t̄

)
− κiγ

(
t, t̄

)
= 0, γ

(
t̄, t̄

)
= l.

Thus, γ solves a nonlinear Riccati equation, which can be linearized via the
standard substitution

γ
(
t, t̄

)
= −

2iΩ′ (t, t̄ )
ε2Ω

(
t, t̄

) . (7.53)

As a result, one gets the following equations:

Ωtt
(
t, t̄

)
− κΩt

(
t, t̄

)
= 0, Ω

(
t̄, t̄

)
= 1, Ω′ ( t̄, t̄ ) = iε2l

2
, (7.54)

αt
(
t, t̄

)
+
2χ
ε2

(
ln

(
Ω

(
t, t̄

) ) )
t = 0, α

(
t̄, t̄

)
= 0. (7.55)

Accordingly,

Ω
(
t, t̄

)
= 1 − ε2

2
Bκ (T ) il, (7.56)

Ω
′ (t, t̄ ) = ε2

2
Aκ (T ) il, (7.57)

γ
(
t, t̄

)
=

Aκ (T ) l(
1 − ε2

2 Bκ (T ) il
) , (7.58)

α
(
t, t̄

)
= − (ϑ + 1) ln

(
1 − ε2

2
Bκ (T ) il

)
, (7.59)

and

K = exp
©«− (ϑ + 1) ln

(
1 − ε2

2
Bκ (T ) il

)
+

©«
ε2

2 Aκ (T )(
1 − ε2

2 Bκ (T ) il
) y − ȳ

ª®®¬ il
ª®®¬.

(7.60)

To analyze the problem further, it is helpful to define

M =
2

ε2Bκ (T )
, (7.61)

introduce a new variable, l → l̂:

l̂ =
l
2M

, l = 2Ml̂, (7.62)
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and rescale K, Kdl → K̂d l̂:

K̂ = 2M exp (−M (Y + ȳ)) (7.63)

× exp
(
− (ϑ + 1) ln

(
1 − 2îl

)
+M

(
Y

1 − 2îl
+ ȳ

(
1 − 2îl

)))
,

whereM appears due to the change of variables, and

Y = e−κTy. (7.64)

Finally,

ϖ
(
t,y, t̄, ȳ

)
=
M
π
e−M( ȳ+Y)

∫ ∞

−∞
e−(ϑ+1) ln

(
1−2îl

)
+M

(
Y

1−2îl
+ȳ

(
1−2îl

))
d l̂. (7.65)

Equation (7.65) allows us to understand the true meaning of condition (7.46).
When this condition is satisfied, the corresponding integral converges abso-
lutely when l̂ → ±∞. A well-known formula yields

ϖ(ϑ) (t,y, t̄, ȳ) = Me−M( ȳ+Y)
(
ȳ
Y

)ϑ/2
Iϑ

(
2M

√
ȳY

)
. (7.66)

See, for example, Lipton (2001) and references therein. The probability flux F
has the form

F (ϑ) (t,y, t̄, ȳ) = −1
2
ε2

(
ȳϖ(ϑ) (t,y, t̄, ȳ) )

ȳ
+ (χ − κȳ)ϖ(ϑ) (t,y, t̄, ȳ)

(7.67)

= −1
2
ε2MYϖ(ϑ+1) (t,y, t̄, ȳ) + (

1
2
ε2 − κ

M

)
M ȳϖ(ϑ) (t,y, t̄, ȳ) .

It is important to note that the density ϖ ( ȳ) integrates to one:∫ ∞

0
ϖ

(
t,y, t̄, ȳ

)
d ȳ =

∫ ∞

0
e−u−v

( v
u

)ϑ/2
Iϑ

(
2
√
uv

)
dv = 1, (7.68)

where u = MY, v = M ȳ. This fact is used in the following discussion.
Using the asymptotic expansion of the modified Bessel function, one can

show that ϖ(ϑ) and F vanish on the boundary, since

ϖ(ϑ) (t,y, t̄, ȳ) = Me−MY

Γ (ϑ + 1) (M ȳ)ϑ (1 + O ( ȳ)),

F (ϑ) (t,y, t̄, ȳ) = (
ε2

2

(
1 − MY

(ϑ + 1)

)
− κ

M

)
Me−MY (M ȳ)(ϑ+1)

Γ (ϑ + 1) (1 + O ( ȳ)).

(7.69)

Now assume that condition (7.46) is violated, so that −1 < ϑ < 0. In this
case, the integral in (7.65) is no longer absolutely convergent, so one needs to
regularize it. There are two ways of regularizing the corresponding integral:
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(I) integration by parts, (II) change of variables. Not surprisingly, they produce
different results.
Start with integration by parts and write

Intϑ ≡ 1
π

∫ ∞

−∞
e−(ϑ+1) ln

(
1−2îl

)
+ MY
1−2îl d ©«e

M ȳ
(
1−2îl

)
−2iM ȳ

ª®¬
=
1
π

(ϑ + 1)
M ȳ

∫ ∞

−∞
e−(ϑ+2) ln

(
1−2îl

)
+M

(
Y

1−2îl
+ȳ

(
1−2îl

))
d̂l (7.70)

+
1
π

Y
ȳ

∫ ∞

−∞
e−(ϑ+3) ln

(
1−2îl

)
+M

(
Y

1−2îl
+ȳ

(
1−2îl

))
d l̂,

where the integrals are absolutely convergent. Thus, (7.66) yields

Intϑ =
(
ȳ
Y

) ϑ
2

(
2 (ϑ + 1)

Z
Iϑ+1 (Z) + Iϑ+2 (Z)

)
=

(
ȳ
Y

) ϑ
2

Iϑ (Z), (7.71)

where Z = 2M
√
ȳY, and a well-known recurrent relation for themodified Bessel

functions is used; Abramowitz and Stegun (1964), Eq. 9.6.26. Thus, Equations
(7.66) and (7.67) hold for −1 < ϑ < 0:

ϖ(ϑ,I) = ϖ(ϑ), F (ϑ,I) = F (ϑ). (7.72)

It is important to note thatϖ(ϑ,I) ( ȳ → 0) → ∞when ϑ < 0 (the corresponding
singularity is integrable), while ϖ(ϑ) is bounded at ȳ = 0, when ϑ > 0. While
the t.p.d.f. itself blows up at the natural boundary ȳ = 0, the probability flux
F (ϑ,I) vanishes on the boundary, so that the total probability of staying on the
positive semiaxis is conserved.
Now, use change of variables to regularize Intϑ . Specifically, introduce l̃,

such that

1 − 2îl =
1

1 − 2ĩl
, (7.73)

and formally write Intϑ as follows:

Intϑ =
1
π

∫ ∞

−∞
e
−(−ϑ+1) ln(1−2ĩl)+MY(1−2ĩl)+ M ȳ

(1−2ĩl) d̃l
(7.74)

=

(
Y
ȳ

)− ϑ
2

I−ϑ
(
2M

√
ȳY

)
=

(
ȳ
Y

) ϑ
2

I−ϑ
(
2M

√
ȳY

)
.

Accordingly,

ϖ(ϑ,II) (t,y, t̄, ȳ) = Me−M( ȳ+Y)
(
ȳ
Y

) ϑ
2

I−ϑ
(
2M

√
ȳY

)
. (7.75)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
50

31
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009503129


78 Quantitative Finance

A straightforward calculation yields

F (ϑ,II) (t,y, t̄, ȳ) =Me−M( ȳ+Y)
(
ȳ
Y

)ϑ/2 (
−1
2
ε2M

√
ȳYI−ϑ+1

(
2M

√
ȳY

)
+

(
1
2
ε2ϑ +

(
1
2
ε2 − κ

M

)
M ȳ

)
I−ϑ

(
2M

√
ȳY

))
. (7.76)

It is easy to see that both ϖ(ϑ,II) and F (ϑ,II) are bounded at ȳ = 0:

ϖ(ϑ,II) (t,y, t̄, ȳ) = Me−MY

Γ (−ϑ + 1) (MY)ϑ
(1 + O ( ȳ)),

(7.77)

F (ϑ,II) (t,y, t̄, ȳ) = ε2ϑMe−MY

2Γ (−ϑ + 1) (MY)ϑ
(1 + O ( ȳ)).

Since there is a probability flux across the natural boundary ȳ = 0, the total
probability on the positive semiaxis [0,∞) is less than one.
Representative t.p.d.fs for Feller processes with different values of ϑ are

illustrated in Figure 10.

Feller Process with Time-Dependent Parameters Surprisingly, study-
ing the Feller process with time-dependent coefficients is viewed as a difficult
problem, which remains an active area of research; see, for example, Masoliver
(2016), Giorno and Nobile (2021), and references therein. However, using Kel-
vin wave formalism allows one to find an expression for the t.p.d.f. in a very
natural way.
For the process with time-dependent parameters, the problem of interest has

the form:

ϖt +
1
2
ε2 (t) yϖyy + (χ (t) − κ (t) y)ϖy = 0,

(7.78)

ϖ
(
t̄,y

)
= δ ( y − ȳ).

Here it is assumed that the following regularity condition is satisfied:

ϑ (t) = 2χ (t)
ε2 (t)

− 1 > 0. (7.79)

This condition guarantees that the corresponding integrals converge at infinity.
As usual, ϖ can be written as a superposition of Kelvin waves of the form

K = exp
(
α

(
t, t̄

)
+ iγ

(
t, t̄

)
y − ilȳ

)
, (7.80)

where α,γ solve the following system of backward ODEs:

αt
(
t, t̄

)
+ χ

(
t, t̄

)
iγ

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0, (7.81)

iγ t̄
(
t, t̄

)
− 1
2
ε2 (t) γ2

(
t, t̄

)
− κ (t) iγ

(
t, t̄

)
= 0, γ

(
t̄, t̄

)
= l.
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Figure 10 T.p.d.fs for three Feller processes with different parameters and
regularity conditions. (a) χ = 0.1, κ = 1.2, ε = 0.2, y0 = 0.15, t̄max = 3; (b),
(c) χ = 0.1, κ = 1.2, ε = 0.6, y0 = 0.15, t̄max = 3. For the first and second
processes, the probability of ȳ ≥ 0 is equal to one. For the third process, this
probability, shown as a function of time in (d), is less than one. Author’s

graphics.

Introducing Ω
(
t, t̄

)
, such that

γ
(
t, t̄

)
= −

2iΩ′ (t, t̄ )
ε2 (t)Ω

(
t, t̄

) , (7.82)

one gets the following second-order equation for Ω
(
t, t̄

)
:

Ωtt
(
t, t̄

)
−

(
κ + 2 ln (ε)′

)
Ωt

(
t, t̄

)
= 0, Ω

(
t̄, t̄

)
= 1, Ω′ ( t̄, t̄) = ε2

(
t̄
)

2
il.

(7.83)

Solving this equation, one gets

Ω
(
t, t̄

)
= 1 − ε2 (t)

2
B̄κ

(
t, t̄

)
il,

(7.84)

Ωt
(
t, t̄

)
=
ε2 (t)
2

(
Aκ

(
t, t̄

)
− 2ε′ (t)

ε (t) B̄κ

(
t, t̄

) )
il.
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Accordingly,

γ
(
t, t̄

)
=

(
Aκ

(
t, t̄

)
− 2ε′(t)

ε(t) B̄κ

(
t, t̄

) )
l(

1 − ε2(t)
2 B̄κ

(
t, t̄

)
il
) , (7.85)

α
(
t, t̄

)
= − 2χ (t)

ε2 (t)
ln

(
1 − ε2 (t)

2
B̄κ

(
t, t̄

)
il
)

(7.86)

−
t̄∫

t

(
2χ (s)
ε2 (s)

) ′
ln

(
1 − ε2 (s)

2
B̄κ

(
s, t̄

)
il
)
ds.

Thus, the Kelvin wave becomes

K = exp
(
−2χ (t)
ε2 (t)

ln
(
1 − ε2 (t)

2
B̄κ

(
t, t̄

)
il
)

−
t̄∫

t

(
2χ (s)
ε2 (s)

) ′
ln

(
1 − ε2 (s)

2
B̄κ

(
s, t̄

)
il
)
ds

+
©«
(
Aκ

(
t, t̄

)
− 2ε′(t)

ε(t) B̄κ

(
t, t̄

) )(
1 − ε2(t)

2 B̄κ

(
t, t̄

)
il
) y − ȳ

ª®®¬ il
ª®®¬. (7.87)

By analogy with (7.61), (7.62), and (7.63), define

M
(
t, t̄

)
=

2
ε2 (t) �Bκ

(
t, t̄

) , l̂ =
l

2M
(
t, t̄

) , l = 2M
(
t, t̄

)
l̂ (7.88)

and represent K̂ as follows:

K̂
(
t,y, t̄, ȳ, l̂

)
= 2M exp

(
−M

(
t, t̄

)
(Y + ȳ)

)
exp

(
−2χ (t)
ε2 (t)

ln
(
1 − 2îl

)
−

t̄∫
t

(
2χ (s)
ε2 (s)

) ′
ln

(
1 −

M
(
t, t̄

)
M

(
s, t̄

) 2îl) ds +M (
t, t̄

) ©«
Y(

1−2îl
) +ȳ (

1−2îl
)ª®®¬

ª®®¬,
(7.89)

where

Y =
(
Aκ

(
t, t̄

)
− 4ε′ (t)
ε3 (t)M

(
t, t̄

) ) y. (7.90)

Finally,

ϖ
(
t,y, t̄, ȳ

)
=

1
2π

∞∫
−∞

K̂
(
t,y, t̄, ȳ, l̂

)
d l̂. (7.91)
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Therefore, finding ϖ
(
t,y, t̄, ȳ

)
is reduced to solving some very simple ODEs

and calculating a one-dimensional integral, which is theoretically appealing
and numerically efficient.

Feller Process with Jumps Consider a jump-diffusion process ŷt with
constant coefficients governed by the following equation:

d ŷt = (χ − κŷt) dt + ε
√
ŷtd Ẑt + Jd Π̂t, ŷt = y, (7.92)

where Ẑt is a standardWiener process, and Π̂t is a Poisson process with intensity
λ. To preserve tractability, it is assumed that jumps are positive and expo-
nentially distributed with parameter ϕ; for additional insights, see Lipton and
Shelton (2012).
The backward Kolmogorov problem can be written as

ϖt +
1
2
ε2yϖyy + (χ − κy)ϖy + λ

(
ϕ

∫ ∞

0
ϖ(t,y + J)e−ϕJdJ −ϖ(t,y)

)
= 0,

ϖ
(
t̄,y, t̄, ȳ

)
= δ ( y − ȳ). (7.93)

The corresponding Kelvin wave has the familiar form:

K
(
t,y, t̄, ȳ, l

)
= exp

{
α

(
t, t̄

)
+ iγ

(
t, t̄

)
y − ilȳ

}
, (7.94)

where α,γ satisfy the following system of ODEs:

αt
(
t, t̄

)
+ χiγ

(
t, t̄

)
+
λiγ

(
t, t̄

)
ϕ − iγ

(
t, t̄

) , α
(
t̄, t̄

)
= 0,

(7.95)

iγ t̄
(
t, t̄

)
− 1
2
ε2γ2

(
t, t̄

)
− κiγ

(
t, t̄

)
= 0, γ(t̄, t̄) = l.

The expression for γ is given by (7.58), while α can be split as follows:

α
(
t, t̄

)
= α0

(
t, t̄

)
+ λα1

(
t, t̄

)
. (7.96)

In this setting, α0 has the familiar form:

α0
(
t, t̄

)
= −(ϑ + 1) ln

(
1 − ε2

2
B̄κ (T ) il

)
, (7.97)

while α1 can be represented as follows:

α1
(
t, t̄

)
=

t̄∫
t

Aκ

(
t̄ − s

)
il

ϕ −
(
ϕε2

2 B̄κ

(
t̄ − s

)
+ Aκ

(
t̄ − s

) )
il
ds

=
1(

κ − ϕε2

2

) ln
©«
ϕ −

(
ϕε2

2 B̄κ (T ) + Aκ (T )
)
il

ϕ − il
ª®®¬. (7.98)
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Thus, jumps do profoundly affect the dynamics of the underlying stochastic
process.

7.4.2 Augmented Feller Process, I

This section studies the joint dynamics of a Feller process ŷt and its integral x̂t.
The corresponding combined process is described by the following equations:

d x̂t = ŷtdt, x̂t = x,

dŷt = (χ − κŷt) dt + ε
√
ŷtdẐt, ŷt = y. (7.99)

Depending on the interpretation, these equations can describe the joint evo-
lution of a particle’s position and its velocity, the integral of variance and
variance, among other possibilities.
The forward Fokker–Planck has the following form:

ϖ t̄ −
1
2
ε2 ( ȳϖ)ȳȳ + ȳϖx̄ + ((χ − κȳ)ϖ)ȳ = 0, (7.100)

ϖ (t,x,y, t, x̄, ȳ) = δ (x̄ − x) δ ( ȳ − y),

while the backward Kolmogorov problem can be written as follows:

ϖt +
1
2
ε2yϖyy + yϖx + (χ − κy)ϖy = 0 (7.101)

ϖ
(
t̄,x,y, t̄, x̄, ȳ

)
= δ (x − x̄) δ ( y − ȳ).

In the following discussion the backward problem is considered, which allows
one to derive the desired formula more efficiently. The corresponding function
K has the following form:

K = exp
(
α

(
t, t̄

)
+ ik (x − x̄) + iγ

(
t, t̄

)
y − ilȳ

)
, (7.102)

where

αt
(
t, t̄

)
+ iχγ

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0, (7.103)

iγt
(
t, t̄

)
− 1
2
ε2γ2

(
t, t̄

)
− iκγ

(
t, t̄

)
+ ik = 0, γ

(
t̄, t̄

)
= l.

As before, one can linearize the Riccati equation for γ by using substitution
given by (7.53), withΩ

(
t, t̄

)
solving the second-order equation of the following

form:

Ωtt
(
t, t̄

)
− κΩt

(
t, t̄

)
+
iε2k
2
Ω

(
t, t̄

)
= 0, Ω

(
t̄, t̄

)
= 1, Ω′ ( t̄, t̄ ) = iε2l

2
.

(7.104)
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One can represent Ω
(
t, t̄

)
in the following form:

Ω
(
t, t̄

)
= ω+eλ+( t̄−t) + ω−eλ+( t̄−t), (7.105)

where λ± are solutions of the characteristic equation:

λ
2 + κλ +

iε2k
2
= 0, (7.106)

and ω± satisfy the following system of linear equations:

ω+ + ω− = 1, (7.107)

λ+ω+ + λ−ω− = − iε
2l
2
.

Thus,

λ± = µ ± ζ,

µ = − κ
2
, ζ =

√
κ2 − 2iε2k

2
, (7.108)

ω+ = −
(
2λ− + iε2l

)
4ζ

, ω− =

(
2λ+ + iε2l

)
4ζ

. (7.109)

It is useful to note that

λ+λ− = µ
2 − ζ2 = iε2k

2
. (7.110)

For the sake of brevity, notation (6.122) is used:

Ω
(
t, t̄

)
=

E0
(
−

(
2λ− + iε2l

)
E+ +

(
2λ+ + iε2l

)
E−

)
4ζ

, (7.111)

Ωt
(
t, t̄

)
=

E0
(
λ+

(
2λ− + iε2l

)
E+ − λ−

(
2λ+ + iε2l

)
E−

)
4ζ

, (7.112)

γ =
2i

(
λ+

(
2λ− + iε2l

)
E+ − λ−

(
2λ+ + iε2l

)
E−

)
ε2

( (
2λ− + iε2l

)
E+ −

(
2λ+ + iε2l

)
E−

) , (7.113)

α =
χκT
ε2

− (ϑ + 1) ln
(
−

(
2λ− + iε2l

)
E+ +

(
2λ+ + iε2l

)
E−

4ζ

)
.

(7.114)

Accordingly, K can be written in the following form:

K = exp
(
χκT
ε2
+ ik (x − x̄)

− (ϑ + 1) ln
(
2 (−λ−E+ + λ+E−) − iε2l (E+ − E−)

4ζ

)
(7.115)

+
2
(
2λ+λ− (E+ − E−) + iε2l (λ+E+ − λ−E−)

)
ε2

(
2 (−λ−E+ + λ+E−) − iε2l (E+ − E−)

) y − ilȳ

)
.
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Define a new variable l̂, such that

l̂=
l
2M

, l = 2Ml̂, (7.116)

where

M =
2 (−λ−E+ + λ+E−)
ε2 (E+ − E−)

. (7.117)

Rescaled K̂ can be factorized as follows:

K̂ = K̂1K̂2, (7.118)

where

K̂1 = exp
(
χκT
ε2
+ ik (x − x̄) − (ϑ + 1) ln

(
−λ−E+ + λ+E−

2ζ

)
+

2λ+λ− (E+ − E−)
ε2 (−λ−E+ + λ+E−)

y
)
,

(7.119)

K̂2 = 2M exp (−M (Y + ȳ))

× exp
(
− (ϑ + 1) ln

(
1 − 2îl

)
+M

(
Y

1 − 2îl
+ ȳ

(
1 − 2îl

)))
,

with

Y =
4ζ2

(−λ−E+ + λ+E−)2
y. (7.120)

Integration with respect to l̂ can be done analytically:

M
π

∫ ∞

−∞
K̂2d̂l = Me−M( ȳ+Y)

(
ȳ
Y

) ϑ
2

Iϑ
(
2M

√
ȳY

)
, (7.121)

which allows one to calculate ϖ via a single inverse Fourier transform:

ϖ =
1
2π

∫ ∞

−∞
exp

(
χκT
ε2
+ ik (x − x̄) − (ϑ + 1) ln

(
−λ−E+ + λ+E−

2ζ

)
(7.122)

+
2λ+λ− (E+ − E−)
ε2 (−λ−E+ + λ+E−)

y
)
Me−M( ȳ+Y)

(
ȳ
Y

) ϑ
2

Iϑ
(
2M

√
ȳY

)
dk.

A typical t.p.d.f. for a degenerate augmented Feller process is illustrated in
Figure 11.
Since the integral over ȳ is equal to one, one can represent the marginal

distribution of x̄ in the following form:

ϖ(x) (t,x,y, t̄, x̄) = 1
2π

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
eik(x−x̄)dk, (7.123)
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Figure 11 A thousand trajectories of a representative t.p.d.f. for the
degenerate augmented Feller process. Parameters are T = 3, dt = 0.01,

χ = 0.1, κ = 1.2, ε = 0.2, x = 0; y0 = 0.15. (a) x (t), (b) y (t), (c) (x̄ (T ) , ȳ (T )),
(d) contour lines of ϖ (0,0.15,0,T, x̃, ỹ). Author’s graphics.

where

𝟋
(
t,y, t̄,k

)
= exp

(
χκT
ε2

− (ϑ + 1) ln
(
−λ−E+ + λ+E−

2ζ

)
+

2λ+λ− (E+ − E−)
ε2 (−λ−E+ + λ+E−)

y
)
, (7.124)

with µ, ζ given by the equations in (7.106). It is easy to check that
ϖ(x) (t,x,y, t̄, x̄) integrates to one:∫ ∞

−∞
ϖ(x) (t,x,y, t̄, x̄) d x̄ = 1

2π

∫ ∞

−∞

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
exp (ik (x − x̄)) dkd x̄

=

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
δ (k) dk = 𝟋

(
t,y, t̄,0

)
= exp

(
χκT
ε2

− 2χ
ε2

κT
2

)
= 1.

(7.125)

The expected value of x̄ has the following form:

X =
∫ ∞

−∞
ϖ(x) (t,x,y, t̄, x̄) x̄d x̄ = x +

∫ ∞

−∞
ϖ(x) (t,x,y, t̄, x̄) (x̄ − x) d x̄

= x +
1
2π

∫ ∞

−∞

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
exp (ik (x̄ − x)) (x̄ − x) dkd x̄
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= x + lim
ϵ→0

(
d
dϵ

(
1
2π

∫ ∞

−∞

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
exp ((ik + ϵ) (x̄ − x)) dkd x̄

))
= x + lim

ϵ→0

(
d
dϵ

(∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
δ (k − iϵ) dk

))
= x +

d
dϵ
𝟋

(
t,y, t̄, iϵ

) ����
ϵ=0

. (7.126)

A calculation left to the reader yields

X = x +
χ

κ
T − B̄κ (T )

( χ
κ
− y

)
, (7.127)

which agrees with (6.115).
It is worth noting that ϖ(x) ( t̄, x̄) has fat tails, since some of the exponential

moments of x̄ have finite-time explosions; see Andersen and Piterbarg (2007),
Friz and Keller-Ressel (2010), and references therein.8 Specifically, one needs
to analyze if Ip

(
t, t̄

)
of the following form:

Ip
(
t, t̄

)
=

∫ ∞

−∞
ϖ(x) (t,x,y, t̄, x̄) e px̄d x̄

=
e px

2π

∫ ∞

−∞

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
exp (ik (x − x̄) − p (x − x̄)) dkd x̄ (7.128)

= e px
∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
δ (ik − p) dk = e px𝟋

(
t,y, t̄,−ip

)
,

blows up for some finite t̄ > t. Indeed,

𝟋
(
t,y, t̄,−ip

)
= exp

(
χκT
ε2

− (ϑ + 1) ln
(
−λ−E+ + λ+E−

2ζ

)
+

2λ+λ− (E+ − E−)
ε2 (−λ−E+ + λ+E−)

y
)
,

(7.129)

8 Of course, it is not surprising that such explosions exist since Riccati equations are well-known
to have solutions exploding in finite time. Consider the following Riccati initial-value problem

f ′ + af 2 + bf + c = 0, f (τ) = d,

and assume that b2 − 4ac < 0. The solution of this initial-value problem has the form

f (τ, t) = − |ζ |
a

tan
(
|ζ | (t − τ) − arctan

(
2ad + b
2 |ζ |

))
− b
2a

,

where |ζ | =
√
4ac − b2

/
2. The corresponding blow-up time t∗ has the form

t∗ = τ +
π

2 |ζ | +
1
|ζ | arctan

(
2ad + b
2 |ζ |

)
.
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where

λ± = µ ± ζ,

µ = − κ
2
, ζ =

√
κ2 − 2ε2p

2
, (7.130)

λ+λ− =
ε2p
2
.

Thus, when ζ > 0 is real:

Ip =
(

2ζ
−µ sinh (|ζ | T) + ζ cosh (|ζ | T)

) (ϑ+1)
exp

(
χκT
ε2
+ px +

p sinh (ζT)
(−µ sinh (|ζ | T) + ζ cosh (|ζ | T))y

)
, (7.131)

and, when ζ = i |ζ | is imaginary:

Ip =
(

|ζ |
−µ sin (|ζ | T) + |ζ | cos (|ζ | T)

) (ϑ+1)
exp

(
χκT
ε2
+ px +

p sin (|ζ | T)
(−µ sin (|ζ | T) + |ζ | cos (|ζ | T))y

)
. (7.132)

For p ∈ [−∞, p̂], ζ is real, and for p ∈ [p̂,∞], it is imaginary. Here

p̂ =
κ2

2ε2
> 0. (7.133)

There is no blowup when ζ is real. When ζ is imaginary, the blowup time t∗ is
the smallest positive root of the equation

κ sin
(√

2ε2p − κ2 (t∗ − t)
)
+

√
2ε2p − κ2 cos

(√
2ε2p − κ2 (t∗ − t)

)
= 0,

(7.134)

t∗ = t +
π − arctan

(√
2ε2p−κ2

κ

)
√
2ε2p − κ2

. (7.135)

It is clear that I−1 does not blow up. This fact in used in the next section.
The marginal distribution of ȳ, ϖ( y) ( t̄, ȳ) is the standard Feller distribution

given by (7.66).

7.4.3 Augmented Feller Process, II

This section studies the joint dynamics of an arithmetic Brownian x̂t whose
stochastic variance is driven by a Feller process ŷt, and considers the following
system of affine SDEs:
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dx̂t =
√
ŷtdŴt, x̂t = x, (7.136)

dŷt = (χ − κŷt) dt + ε
√
ŷtdẐt, ŷt = y.

Studying such a process is very helpful for finding option prices and solving
other important problems in the financial engineering context.
The associated forward Fokker–Planck problem can be written as follows:

ϖ t̄ −
1
2
ȳϖx̄x̄ − ρε ( ȳϖ)x̄ȳ −

1
2
ε2 ( ȳϖ)ȳȳ + ((χ − κȳ)ϖ)ȳ = 0,

(7.137)

ϖ (t,x,y, t, x̄, ȳ) = δ (x̄ − x) δ ( ȳ − y),

while the backward Kolmogorov problem has the following form:

ϖt +
1
2
yϖxx + ρεyϖxy +

1
2
ε2yϖyy + (χ − κy)ϖy = 0,

(7.138)

ϖ
(
t̄,x,y, t̄, x̄, ȳ

)
= δ (x − x̄) δ ( y − ȳ).

As before, concentrate on problem (7.138).
The Kelvin function K has the form (7.102). The governing ODEs for α,γ

are as follows:

αt
(
t, t̄

)
+ iχγ

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0, (7.139)

iγt
(
t, t̄

)
− 1
2
ε2γ2

(
t, t̄

)
− (κ − iρεk) iγ

(
t, t̄

)
− 1
2
k 2 = 0, γ

(
t̄, t̄

)
= l.

Formulas (7.111)–(7.114) hold; however, the corresponding characteristic
equation is

λ
2 + (κ − iρεk) λ − ε2

4
k 2 = 0, (7.140)

so that

λ± = µ ± ζ,

µ = −1
2
(κ − iρεk) , ζ =

1
2

√
ε2 ρ̄2k 2 − 2iρεκk + κ2, (7.141)

λ+λ− = µ
2 − ζ2 = −ε

2

4
k 2,

where ρ̄2 = 1 − ρ2. Subsequent calculations are very similar to the ones
performed in the previous subsection, so they are omitted for brevity. The
final expressions for ϖ and ϖ(x) are given by Equations (7.122), (7.123), and
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Figure 12 A thousand trajectories of a representative nondegenerate
augmented Feller process. Parameters are T = 3, dt = 0.01, χ = 0.2, κ = 2.0,
ε = 0.2, ρ = −0.5, x = 0, y0 = 0.15. (a) x (t), (b) y (t), (c) (x̄ (T ) , ȳ (T )), (d)

contour lines of ϖ (0,0.15,0,T, x̃, ỹ). Author’s graphics.

(7.124), with µ, ζ given by the equations in (7.141). These expressions are sim-
ilar to the formulas originally derived by Lipton as part of his analysis of the
Heston stochastic volatility model; see Lipton (2001).9

A typical t.p.d.f. for a nondegenerate augmented Feller process is shown in
Figure 12.
As before, ϖ(x) (t,x,y, t̄, x̄) has fat tails. Consider Ip (

t, t̄
)
given by (7.128).

The corresponding λ± have the following form:

λ± = µ ± ζ,

µ = −1
2
(κ − ρεp) , ζ =

1
2

√
−ε2 ρ̄2p2 − 2ρεκp + κ2, (7.142)

λ+λ− = µ
2 − ζ2 = ε2

4
p2.

9 Despite the fact that these formulas were originally derived by Lipton (2001), they are
frequently mistakenly attributed to Dragulescu and Yakovenko (2002).
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Thus, when ζ > 0 is real,

Ip =
(

ζ

−µ sinh (ζT) + ζ cosh (ζT)

) (ϑ+1)
exp

(
2χµT
ε2
+ px +

p (p − 1) sinh (ζT)
2 (−µ sinh (ζT) + ζ cosh (ζT))y

)
, (7.143)

and when ζ = i |ζ | is imaginary,

Ip =
(

|ζ |
−µ sin (|ζ | T) + |ζ | cos (|ζ | T)

) (ϑ+1)
exp

(
2χµT
ε2
+ px +

p (p − 1) sin (|ζ | T)
2 (−µ sin (|ζ | T) + |ζ | cos (|ζ | T))y

)
. (7.144)

One needs to determine when ζ becomes imaginary. The corresponding quad-
ratic equation has the form:

ρ̄2ε2p2 + 2ρεκp − κ2 = 0, (7.145)

its roots are as follows:

p± =
−ρεκ ±

√
ρ2ε2κ2 + ρ̄2ε2κ2

ρ̄2ε2
=

(−ρ ± 1) κ
ρ̄2ε

, (7.146)

so that

p+ > 1, p− < 1. (7.147)

For p ∈ [p−,p+], ζ is real, for p < [p−,p+], it is imaginary. There is no blowup
when ζ is real. When ζ is imaginary, the blowup time t∗ is the smallest positive
root of the equation

− µ sin (|ζ | (t∗ − t)) + |ζ | cos (|ζ | (t∗ − t)) = 0, (7.148)

t∗ =


t +

arctan
(
|ζ |
|µ |

)
|ζ | , µ > 0,

t +
π−arctan

(
|ζ |
|µ |

)
|ζ | , µ < 0.

(7.149)

7.5 Example: Path-Dependent Process
Let ŷt be a stochastic process and x̂t be its moving average. Then

x̂t = κ
∫ t

−∞
e−κ(t−s)ŷsds. (7.150)

A simple calculation yields

dx̂t = κ (ŷt − x̂t) dt. (7.151)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
50

31
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009503129


Hydrodynamics of Markets 91

The process ŷt is path-dependent, because its volatility σ̂t depends on its
moving average x̂t:

σ̂t =
√
a0 + a1 (ŷt − x̂t), (7.152)

where a0 > 0, a1 < 0, in order to capture the effect of leverage. Thus, one can
write the governing degenerate system of SDEs as follows:

dx̂t = κ (ŷt − x̂t) dt, x̂t = x, (7.153)

dŷt =
√
a0 + a1 (ŷt − x̂t)dŴt, ŷt = y.

The Fokker–Planck and Kolmogorov problems are

ϖ t̄ −
1
2
((a0 + a1 ( ȳ − x̄))ϖ)ȳȳ + (κ ( ȳ − x̄)ϖ)x̄ = 0,

(7.154)

ϖ (t,x,y, t, x̄, ȳ) = δ (x̄ − x) δ ( ȳ − y),

ϖt +
1
2
(a0 + a1 ( y − x))ϖyy + κ ( y − x)ϖx = 0,

(7.155)

ϖ
(
t̄,x,y, t̄, x̄, ȳ

)
= δ (x − x̄) δ ( y − ȳ),

respectively.
A representative Kelvin mode has the following form:

K = exp
(
α

(
t, t̄

)
+ iβ

(
t, t̄

)
x − ikx̄ + iγ

(
t, t̄

)
y − ilȳ

)
. (7.156)

The system of backward ODEs for α,γ, β is as follows:

αt
(
t, t̄

)
− a0

2
γ2

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0,

iβt
(
t, t̄

)
+
a1
2
γ2

(
t, t̄

)
− iκβ

(
t, t̄

)
= 0, β

(
t̄, t̄

)
= k, (7.157)

iγt
(
t, t̄

)
− a1

2
γ2

(
t, t̄

)
+ iκβ

(
t, t̄

)
= 0, γ

(
t̄, t̄

)
= l.

The equations in (7.157) are matrix Riccati equations, as opposed to the sca-
lar Riccati equations considered earlier. In general, such equations are very
difficult to solve. However, the case under consideration is one of the rela-
tively rare instances when a matrix Riccati equation can be solved explicitly.
Start with an observation:

γt
(
t, t̄

)
+ βt

(
t, t̄

)
= 0, (7.158)

so that

β
(
t, t̄

)
= −γ

(
t, t̄

)
+ k + l. (7.159)
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Accordingly,

iγt
(
t, t̄

)
− a1

2
γ2

(
t, t̄

)
− iκγ

(
t, t̄

)
+ iκ (k + l) = 0, γ

(
t̄, t̄

)
= l. (7.160)

One can use Equations (7.111)–(7.113) with (β,k) replaced by (γ, l), and

λ
2 + κλ +

ia1κ (k + l)
2

= 0, (7.161)

so that

λ± = µ ± ζ, (7.162)

µ = − κ
2
, ζ =

√
κ2 − 2ia1κ (k + l)

2
.

Equation (7.159) yields

β
(
t, t̄

)
=
2iΩ′ (t, t̄ )
a1Ω

(
t, t̄

) + k + l, (7.163)

and

γ2
(
t, t̄

)
=
2i
a1

(
γt

(
t, t̄

)
+ κβ

(
t, t̄

) )
=
2i
a1

(
γt

(
t, t̄

)
− κγ

(
t, t̄

)
+ κ (κ + k)

)
. (7.164)

Thus,

αt
(
t, t̄

)
=
ia0
a1

(
γt

(
t, t̄

)
− κγ

(
t, t̄

)
+ κ (k + l)

)
, α

(
t̄, t̄

)
= 0. (7.165)

Accordingly,

α
(
t, t̄

)
=
ia0
a1

(
γ

(
t, t̄

)
− l

)
− 2a0κ

a21
ln

(
Ω

(
t, t̄

) )
+
a0κT
a1

i (k + l). (7.166)

Finally,

K = exp
(
α + iβ

(
t, t̄

)
x − ikx̄ + iγ

(
t, t̄

)
y − ilȳ

)
= exp

(
−2a0κ

a21
ln

(
Ω

(
t, t̄

) )
+ iγ

(
t, t̄

) (
y − x +

a0
a1

)
(7.167)

+ il
(
x − ȳ +

a0
a1

(κT − 1)
)
+ ik

(
x − x̄ +

a0κT
a1

))
.

To make sure that σ̂t given by (7.152) and the integrand (7.167) are well
defined, it is assumed that

a0 + a1 ( y − x) > 0, a0 + a1 ( ȳ − x̄) > 0. (7.168)
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7.6 Example: OU-Like Process
This section considers several instances when an OU-inspired process becomes
non-Gaussian. This can happen for a variety of reasons, such as effects of
anomalous diffusion, the presence of jumps, effects of augmentation, and the
likes.

7.6.1 Anomalous OU Process

This section considers a mean-reverting process driven by a non-Gaussian
anomalous diffusion. For brevity, it is assumed that coefficients are time-
independent. The fractional forward Fokker–Planck and backward Kol-
mogorov problems can be written as follows:

ϖ t̄ + a
(
− ∂2

∂ȳ2

)1/2
ϖ + ((χ − κȳ)ϖ)ȳ = 0,

(7.169)

ϖ (t,y, t, ȳ) = δ ( ȳ − y),

ϖt − a
(
− ∂2

∂y2

)1/2
ϖ + (χ − κy)ϖy = 0,

(7.170)

ϖ
(
t̄,y, t̄, ȳ

)
= δ ( y − ȳ),

respectively. Here a > 0 is the anomalous diffusion coefficient.
As before, one can use Kelvin waves to solve (7.170) by choosing a partic-

ular solution of the form (7.51). The corresponding (α,γ) satisfy the following
ODEs:

αt
(
t, t̄

)
− a

��γ (
t, t̄

) �� + iχγ (
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0, (7.171)

γt
(
t, t̄

)
− κγ

(
t, t̄

)
= 0, γ

(
t̄, t̄

)
= l,

so that

α
(
t, t̄

)
= −B̄κ (T ) (a |l| − iχl), (7.172)

γ
(
t, t̄

)
= e−κTl.

Accordingly,

ϖ
(
t,y, t̄, ȳ

)
=

1
2π

∞∫
−∞

exp
(
−B̄κ (T ) a |l| +

(
B̄κ (T ) χ + e−κTy − ȳ

)
il
)
dl

=
1
π

B̄κ (T ) a((
B̄κ (T ) a

)2
+

(
e−κT

(
y − χ

κ

)
−

(
ȳ − χ

κ

) )2) . (7.173)
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Thus, in sharp contrast to the classical OU process, which is described by
a Gaussian distribution, the fractional OU process is described by a Cauchy
distribution. This distribution has fat tails and no first and second moments.

7.6.2 Non-Gaussian Augmented OU Process, I

On occasion, problems seemingly not of the type given by (7.11) can be cast
in the proper form via a suitable trick. Consider, for example, the following
system of SDEs:

dx̂t = ŷ2t dt, x̂t = x, (7.174)

dŷt = (χ − κŷt) dt + εdẐt, ŷt = y.

Superficially, it does not belong to the class of processes studied earlier. How-
ever, by introducing new variables z1 = x, z2 = y2, z3 = y, one can augment
the equations in (7.127) as follows:

dẑ1,t = ẑ2,tdt, ẑ1,t = x ≡ z1,

dẑ2,t =
(
ε2 − 2κẑ2,t + 2χẑ3,t

)
+ 2εẑ3,tdẐt, ẑ2,t = y2 ≡ z2, (7.175)

dẑ3,t =
(
χ − κẑ3,t

)
dt + εdẐt, ẑ3,t = z3 ≡ y.

These equations are “almost” in the suitable form. The only snag is that one
cannot claim that ẑ3,t =

√
ẑ2,t since ẑ3,t is not always positive.

The corresponding Fokker–Planck andKolmogorov problems can be written
as follows:

ϖ t̄ − 2ε2 (̄z2ϖ)̄z2 z̄2 − 2ε2 (̄z3ϖ)̄z2 z̄3 −
1
2
ε2ϖz̄3 z̄3

+ z̄2ϖz̄1 +
((
ε2 − 2κz̄2 + 2χz̄3

)
ϖ

)
z̄2
+ ((χ − κz̄3)ϖ)̄z3 = 0, (7.176)

ϖ
(
t,x,y2,y, t, z̄1, z̄2, z̄3

)
= δ (̄z1 − x) δ

(
z̄2 − y2

)
δ (̄z3 − y),

ϖt + 2ε2z2ϖz2z2 + 2ε
2z3ϖz2z3 +

1
2
ε2ϖz3z3

+ z2ϖz1 +
(
ε2 − 2κz2 + 2χz3

)
ϖz2 + (χ − κz3)ϖz3 = 0, (7.177)

ϖ
(
t̄, z1, z2, z3, t̄, z̄1, z̄23, z̄3

)
= δ (z1 − z̄1) δ

(
z2 − z̄23

)
δ (z3 − z̄3).

As usual, K has the form:

K
(
t, t̄,z,m

)
= exp

(
α

(
t, t̄

)
+ im1 (z1 − z̄1) + iδ2

(
t, t̄

)
z2 − im2z̄23 + iδ3

(
t, t̄

)
z3 − im3z̄3

)
.

(7.178)
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The corresponding set of ODEs for α, δ2, δ3 is as follows:

αt
(
t, t̄

)
− ε2

2
δ23

(
t, t̄

)
+ iε2δ2

(
t, t̄

)
+ iχδ3

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0,

iδ′2
(
t, t̄

)
− 2ε2δ22

(
t, t̄

)
− 2iκδ2

(
t, t̄

)
+ im1 = 0, δ2

(
t̄, t̄

)
= m2,

iδ′3
(
t, t̄

)
− 2ε2δ2

(
t, t̄

)
δ3

(
t, t̄

)
+ 2iχδ2v − iκδ3

(
t, t̄

)
= 0, δ3

(
t̄, t̄

)
= m3.

(7.179)

These are matrix Riccati equations.
Once again, the corresponding matrix Riccati equation can be solved explic-

itly. Since the second equation is separable and hence can be viewed as a scalar
Riccati equation, one can start with a familiar ansatz and use Equations (7.111)–
(7.113) with (γ, l) replaced by (δ2,m2), and the corresponding characteristic
equation is as follows:

λ
2 + 2κλ + 2iε2m1 = 0, (7.180)

and its solutions have the familiar form:

λ± = µ ± ζ, (7.181)

µ = −κ, ζ =
√
κ2 − 2iε2m1.

To linearize the equations in (7.179) as a whole, use the following ansatz:

Ω = E0 (ω+E+ + ω−E−) ,

α = −1
2

ln (Ω) + E0 (a0 + a+E+ + a−E−)
Ω

+ g
(
t̄ − t

)
,

δ2 =
E0 (b+E+ + b−E−)

Ω
, δ3 =

E0 (c0 + c+E+ + c−E−)
Ω

, (7.182)

where a0, a±, b0, b±, and g are constants to be determined. This ansatz is useful
since terms proportional to ∼ E0,E+,E− balance each other, which allows us
to find the coefficients explicitly. Initial conditions complete the picture. The
actual calculation is omitted for brevity. The result is as follows:

ω± = ∓
(
λ∓ + 2iε2m2

)
2ζ

, b± =
iλ±ω±
2ε2

,

c± = ± iχλ±ω±
ε2ζ

, c0 = m3 − c+ − c−, g =
χ2λ+λ−
2ε2ζ2

, (7.183)

a0 = − iκ χc0
ζ2

, a± = −ω±a0 ∓
(
ε2c20
4ζ
+
χ2κ2ω+ω−
ε2ζ3

)
,

where λ± are given by the equations in (7.181). These expressions can be
substituted in the function K to obtain the corresponding t.p.d.f.
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7.6.3 Non-Gaussian Augmented OU Process, II

This section studies an affine process of the following form:

dx̂t = ŷtdŴt, x̂t = x, (7.184)

dŷt = (χ − κŷt) dt + εdẐt, ŷt = y.

The killed process is studied in Section 8 in the context of the Stein–Stein
model.
Precisely as before, one can introduce the new variables z1 = x, z2 = y2,

z3 = y, and expand the equations in (7.184) as follows:

dẑ1,t = ẑ3,tdŴt, ẑ1,t = x ≡ z1,

dẑ2,t =
(
ε2 − 2κẑ2,t + 2χẑ3,t

)
+ 2εẑ3,tdẐt, ẑ2,t = y2 ≡ z2, (7.185)

dẑ3,t =
(
χ − κẑ3,t

)
dt + εdẐt, ẑ3,t = z3 ≡ y.

It is clear that the equations in (7.185) are affine.
The corresponding Fokker–Planck andKolmogorov problems can be written

as follows:

ϖ t̄ −
1
2
z̄2ϖz̄1 z̄1 − 2ρε (̄z2ϖ)̄z1 z̄2 − ρε (̄z3ϖ)̄z1 z̄3

− 2ε2 (̄z2ϖ)̄z2 z̄2 − 2ε2 (̄z3ϖ)̄z2 z̄3 −
1
2
ε2ϖz̄3 z̄3

(7.186)

+
((
ε2 − 2κz̄2 + 2χz̄3

)
ϖ

)
z̄2
+ ((χ − κz̄3)ϖ)̄z3 = 0,

ϖ
(
t,x,y2,y, t, z̄1, z̄2, z̄3

)
= δ (̄z1 − x) δ

(
z̄2 − y2

)
δ (̄z3 − y),

ϖt +
1
2
z2ϖz1z1 + 2ρεz2ϖz1z2 + ρεz3ϖz1z3

+ 2ε2z2ϖz2z2 + 2ε
2z3ϖz2z3 +

1
2
ε2ϖz3z3

(7.187)

+
(
ε2 − 2κz2 + 2χz3

)
ϖz2 + (χ − κz3)ϖz3 = 0,

ϖ
(
t̄, z1, z2, z3, t̄, z̄1, z̄23, z̄3

)
= δ (z1 − z̄1) δ

(
z2 − z̄23

)
δ (z3 − z̄3).

One can use K given by (7.178) and write the set of ODEs for α, δ2, δ3 as
follows:

αt
(
t, t̄

)
− ε2

2
δ23

(
t, t̄

)
+ iε2δ2

(
t, t̄

)
+ iχδ3

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0,

iδ′2
(
t, t̄

)
− 2ε2δ22

(
t, t̄

)
− 2i (κ − iρεm1) δ2

(
t, t̄

)
− 1
2
m2
1 = 0, δ2

(
t̄, t̄

)
= m2,

iδ′3
(
t, t̄

)
− 2ε2δ2

(
t, t̄

)
δ3

(
t, t̄

)
+ 2iχδ2

(
t, t̄

)
− i (κ − iρεm1) δ3

(
t, t̄

)
= 0,

δ3
(
t̄, t̄

)
= m3. (7.188)
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As before, this system can be linearized and solved analytically, which was
pointed out by Stein and Stein (1991), Schöbel and Zhu (1999). One can repeat
the result obtained in the previous section verbatim, except for (7.181). The
corresponding characteristic equation has the following form:
λ
2 + 2 (κ − iρεm1) λ − ε2m2

1 = 0, (7.189)

and its solutions can be written as follows:
λ± = µ ± ζ,

µ = − (κ − iρεm1) , ζ =
√
ρ̄2ε2m2

1 − 2iρεκm1 + κ2. (7.190)

The rest of the formal analysis is the same. But the asymptotic behavior of the
t.p.d.f. is, of course, different.

8 Pricing of Financial Instruments
8.1 Background

The formulas derived in Sections 6 and 7 can be used to solve numerous prob-
lems of financial engineering within a consistent framework based on Kelvin
waves. Here are some representative examples.
Payoffs of European options depend solely on the terminal value of S̄ = Ŝ t̄

of the underlying price at the option’s maturity. The most common European
options are calls and puts, but, on occasion, binary options and other types are
traded as well. Since the hedging and speculation needs of market participants
cannot be satisfied by European options alone, the whole industry emerged to
design, price, and hedge the so-called exotic options, with payoffs depending
on the entire price trajectory between inception and maturity.
Prices of the fundamental financial instruments, such as forwards and Euro-

pean calls and puts, depend on the underlying prices only at maturity. However,
the prices of many other instruments depend on the entire underlying price
history between the instrument’s inception and maturity. Typical examples
are barrier, American, Asian, lookback, and passport options; see, for exam-
ple, Lipton-Lifschitz (1999), Lipton (2001), and references therein. Moreover,
the prices of bonds also depend on the history of the interest rates and
credit spreads throughout their life. This section shows how to price some
path-dependent financial instruments using the methodology developed in the
previous sections.

8.2 The Underlying Processes
The original approach to modeling financial assets was developed by Bachelier,
who assumed that prices Ŝt of such instruments are governed by an arithmetic
Brownian motion; see Bachelier (1900):
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dŜt = rŜtdt + σ̂dŴt, Ŝt = S. (8.1)

Here, r is the risk-neutralized drift, σ̂ is the volatility, and Ŵt is a Wiener proc-
ess; r, σ̂ are dimensional quantities, [r] = T−1, [σ] = $T−1/2. The process
for Ŝt given by (8.1) is affine; in fact, it is an OU process with zero mean and
mean-repulsion instead of mean-reversion.
Subsequently, the academic community concluded that using a geometric

Brownian motion as a driver is more appropriate; see Boness (1964), Samuel-
son (1965), Black and Scholes (1973), andMerton (1973). At present, the basic
assumption is that the price Ŝt of an underlying financial instrument follows a
geometric Brownian motion process with constant coefficients:

dŜt
Ŝt
= rdt + σdŴt, Ŝt = S. (8.2)

Here, r is the risk-neutralized drift, and σ is the volatility. These are dimen-
sional quantities, [r] = T−1, [σ] = T−1/2.
The choice between using the Bachelier and the Black–Scholes models often

depends on the nature of the underlying asset and the market’s specific char-
acteristics. Since the Bachelier model assumes that the underlying asset prices
follow a normal distribution, it can be more appropriate for assets whose price
changes are additive and can theoretically go below zero, like interest rates,
some commodities, or certain types of bonds. Generally, the price movements
of the underlying asset are relatively small for short periods, so the Bache-
lier model provides a good description of these movements. The Bachelier
model is often used for pricing commodities, some interest-rate derivatives,
and studying the optimal execution. In markets with relatively low volatility,
the Bachelier model’s assumption of additive price movements can provide a
better fit for pricing and hedging derivatives than the multiplicative approach
of the Black–Scholes model.
It was realized, very soon after the seminal paper by Black and Scholes

(1973) was published, that in practice it provides a rather poor description of
reality. Hence, considerable efforts were dedicated to developing more ade-
quate models. Such models include the jump-diffusion, local volatility, path-
dependent volatility, stochastic volatility, local-stochastic volatility, rough
volatility, and culminate in the universal volatility model; see Merton (1976),
Stein and Stein (1991), Bick and Reisman (1993), Heston (1993), Derman and
Kani (1994), Dupire (1994), Rubinstein (1994), Hobson and Rogers (1998),
Jex et al. (1999), Lewis (2000), Lipton (2000, 2001), Boyarchenko and Lev-
endorsky (2002), Hagan et al. (2002), Lipton (2002), Bergomi (2015), Reghai
(2015), Gatheral et al. (2018), Gershon et al. (2022), and references therein.
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Replacing constant volatility for a geometric Brownian motion with stochas-
tic volatility driven by a Feller process results in the popular Heston model; see
Heston (1993). This model has numerous applications, particularly for pricing
equity and foreign exchange derivatives. The governing SDEs are as follows:

dŜt
Ŝt
= rdt +

√
v̂tdŴt, Ŝt = S,

(8.3)

dv̂t = (χ − κv̂t) dt + ε
√
v̂tdẐt, v̂t = ν,

where dŴtdẐt = ρdt. The logarithmic change of variables, given by (8.3),
yields the equations of (7.136).
Replacing constant volatility with stochastic volatility driven by an OU proc-

ess results in the (less popular) Stein–Stein model; see Schöbel and Zhu (1999);
Stein and Stein (1991). The corresponding SDEs have the form:

dŜt
Ŝt
= rdt + σ̂tdŴt, Ŝt = S,

(8.4)

dσ̂t = (χ − κσ̂t) dt + εdẐt, v̂t = ν,

Stein and Stein (1991) considered the special case of zero correlation, dŴtdẐt =
0, while Schöbel and Zhu (1999) studied the general case of arbitrary correla-
tion, dŴtdẐt = ρdt.
Now, it is shown how to use formulas derived in Sections 6 and 7 in the

context of financial engineering.

8.3 European Derivatives
8.3.1 Forwards, Calls, Puts, and Covered Calls

The most basic derivatives are forwards. Recall that a forward contract obli-
gates the buyer (seller) to buy (to sell) an underlying asset for an agreed price
at a specified future date. These contracts are not standardized and are traded
over-the-counter (OTC), not on exchanges. Typical underlying assets are com-
modities, currencies, and financial instruments. The choice of an asset depends
on the needs of the contracting parties. The price agreed upon in a forward con-
tract is called the forward price. This price is derived based on the spot price
of the underlying asset, adjusted for factors like time to maturity, interest rates,
and dividends. Forward contracts are primarily used for hedging price fluctu-
ations of the underlying asset or speculation. The payoff of a forward contract
with maturity t̄ and strike K has the following form:

U (F) (S̄,K)
= S̄ − K, (8.5)
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where the strike is chosen in such a way that today’s price of the forward
contract is equal to zero. This price can be found without knowing the actual
stochastic process Ŝ. The hedging argument shows that the only way to deliver
the price of a non-dividend-paying stock at maturity t̄ is to buy it outright at
inception t. Similarly, to deliver the strike K at time t̄, one has to buy a zero
coupon bond at time t. Let Zt,t̄ be the price of a bond paying unity at maturity
t̄. Then

Ft,t̄ ≡ K =
S

Zt,t̄
. (8.6)

In contrast to forwards, a European call option grants the holder the right, but
imposes no obligation, to buy an underlying asset at the option maturity for a
predetermined strike price. Similarly, a European put option grants the holder
the right to sell an underlying asset. Theoretically, buyers utilize calls and puts
to hedge future risks; however, they often buy options for speculative purposes.
American options can be exercised at any time of the buyer’s choice before the
option’s maturity. Bermudan options are exercisable at fixed times between
their inception and maturity. A call option is a contract between two parties – a
buyer and a seller. Typically, the buyer takes the long position on the underlying
(i.e., she expects that at maturity, the underlying price will exceed the strike
price) and does not hedge her position. On the other hand, the seller or writer
of the option (typically a bank) does hedge and, hence, maintains a market-
neutral position. The seller receives cash up-front but incurs potential liabilities
at option maturity if the option is exercised. In contrast, the buyer pays money
up front in exchange for the potential for future gains. For a put option, the
buyer takes a short position, while the seller is still market-neutral.
Payoffs of call and put options with maturity t̄ and strike K have the form

U (C) (S̄,K)
= max

{
S̄ − K,0

}
,

U (P) (S̄,K)
= max

{
K − S̄,0

}
, (8.7)

U (C,P) (S̄,K)
= max

{
ϕ

(
S̄ − K

)
,0

}
,

where ϕ = 1 for a call, and ϕ = −1 for a put. Put-call parity implies that their
difference is linear in S̄ and represents a forward contract:

U (C) (S̄,K)
− U (P) (S̄,K)

= S̄ − K. (8.8)

Several popular models, including Bachelier, Black–Scholes, Heston, and
Stein–Stein, are considered below. While the Bachelier model is not scale
invariant, all the other models are. A general driver for a scale-invariant model
can be written as follows:
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dŜt
Ŝt
= rdt + σtd Ŵt + υd Π̂t, Ŝt = S, (8.9)

where, potentially, the volatility σ̂t and the intensity λ̂t of the Poisson proc-
ess Π̂t are driven by SDEs of their own. For such models, it is convenient to
decompose call and put payoffs (8.43) into parts, which are easier to study via
Kevin waves; see Lipton (2001, 2002). To this end, introduce the covered call
with the payoff of the form

U (CC) (S̄,K)
= min

(
S̄,K

)
. (8.10)

The call and put payoffs can be decomposed as follows:

U (C) (S̄,K)
= S̄ − U (CC) (S̄,K)

, U (P) (S̄,K)
= K − U (CC) (S̄,K)

(8.11)

Thus, the call price is the difference between the forward price and the covered
call price, while the put price is the difference between the bond price and the
covered call price. In both cases, the covered call is the source of optionality.

8.3.2 Black–Scholes Model

For the standard log-normal process, the backward pricing problem for covered
calls can be written as follows:

Ut +
1
2
σ2S2USS + rUS − rU = 0,

(8.12)

U
(
t̄,S

)
= min {S,K}.

It is helpful to rewrite it by using forward rather than spot prices:

Ût +
1
2
σ2F2ÛFF = 0,

(8.13)

Û
(
t̄,F

)
= min {F,K},

where

F̂t,t̄ = er( t̄−t)Ŝt, Û (t,F) = er( t̄−t)U (t,S). (8.14)

Change of variables,

F̂t,t̄ → x̂t,t̄, F̂t,t̄ = Kex̂t, t̄, (8.15)

results in the following process for x̂t:

dx̂t,t̄ = −1
2
σ2dt + σdŴt, x̂t,t̄ = x = ln

(Ft,t̄
K

)
. (8.16)
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The t.p.d.f. for this process is Gaussian:

ϖ
(
t,x, t̄, x̄

)
=

1
√
2πσ2T

exp
(
−

(
x̄ − x + σ2/2T

)2
2σ2T

)
. (8.17)

Since the the nondimensional payoff of the covered call has the form

Ũ (CC) (x) = min {ex,1}, (8.18)

where Ũ = Û/K, one obtains the following expression for Ũ (CC):

Ũ (CC) (t,x) = exN
(
− x
σ
√
T
− σ

√
T

2

)
+N

(
x

σ
√
T
− σ

√
T

2

)
, (8.19)

where N (.) is the cumulative normal function.
By using (8.19), one can represent call and put prices as follows:

Û(C,P) (t,FT) = ϕ (FTN (ϕd+) − KN (ϕd−)), (8.20)

d± =
ln (FT/K)
σ
√
T

± σ
√
T

2
.

See Black (1976).
Returning to the original variables, write the classical Black and Scholes

(1973) closed-form formula for the time t prices of calls and puts in its original
form:

U (C,P) (t,S) = ϕ
(
SN (ϕd+) − e−rTKN (ϕd−)

)
,

(8.21)

d± =
ln

(
erTS/K

)
σ
√
T

± σ
√
T

2
.

Further transforming,

Ũ (CC) (t,x) = ex/2V (CC) (t,x), (8.22)

yields the following backward problem:

Vt
(CC) +

1
2
σ2Vxx

(CC) − 1
8
σ2V (CC) = 0,

(8.23)

V (CC) ( t̄,x) = e−|x |/2,

with symmetric “peakon” payoff, which is proportional to the Laplace distribu-
tion density. This transform removes the drift in the x direction at the expense
of adding killing with intensity σ2/8. Equation (8.19) implies

V (t,x) = ex/2N
(
− x
σ
√
T
− σ

√
T

2

)
+ e−x/2N

(
x

σ
√
T
− σ

√
T

2

)
. (8.24)
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The Fourier transform of the “peakon” payoff yields

∞∫
−∞

e−|x |/2−ikxdx =
1

k 2 + 1/4
. (8.25)

By using this formula, one can derive an alternative expression forU (C,P) based
on Kelvin waves; see Lipton (2002). It is clear that Kelvin waves associated
with the killed arithmetic Brownianmotion described by (8.16) are the standard
Fourier waves of the following form:

K (t,x,k) = e−(k 2+1/4)σ2T/2+ikx. (8.26)

Equations (8.25) and (8.26) yield the following alternative expression for the
price of covered calls given by (8.24):

V (CC) (t,x) = 1
2π

∞∫
−∞

e−(k 2+1/4)σ2T/2+ikx

k 2 + 1/4
dk. (8.27)

See Lipton (2002). Equation (8.27) is central for the subsequent developments.
For a single strike, this formula is less efficient than its classical counterpart;
however, for a set of strikes, it is faster, because all the prices can be computed
in one go, via the Fast Fourier Transform.
As one shall see shortly, these formulas help to handle affine pricing models

very naturally.

8.3.3 Heston Model

The transformed forward pricing problem for the Heston model with the
“peakon” payoff has the following form:

V (CC)
t +

1
2
y
(
V (CC)
xx + 2ρεV (CC)

xy + ε2V (CC)
yy

)
+ (χ − κ̂y)V (CC)

y − y
8
V (CC) = 0, (8.28)

V (CC) ( t̄,x,y) = e−|x |/2,

where κ̂ = κ − ρε/2. Thus, one is dealing with the killed stochastic process
given by the equations in (7.136). Adapting the corresponding equations to
accommodate the updated mean-reversion rate and the presence of the killing
term, one gets the following system of ODEs for the corresponding Kelvin
wave parameters:
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αt
(
t, t̄

)
+ iχγ

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0,

iγt
(
t, t̄

)
− 1
2
ε2γ2

(
t, t̄

)
− (κ̂ − iρεk) iγ

(
t, t̄

)
− 1
2

(
k 2+

1
4

)
= 0, γ

(
t̄, t̄

)
= 0.

(8.29)

Formulas (7.111)–(7.114) are still applicable. However, the corresponding
characteristic equation and its solution are:

λ
2 + (κ̂ − iρεk) λ − ε2

4

(
k 2 +

1
4

)
= 0, (8.30)

λ± = µ ± ζ,

µ = −(κ̂ − iρεk)
2

, ζ =

√
ρ̄2ε2k 2 − 2iρεk + κ̂2 + ε2/4

2
. (8.31)

It is convenient to write (α,γ) as follows:

α (T,k) = −2χ
ε2

(
(µ + ζ)T + ln

(
−µ + ζ + (µ + ζ) e−2ζT

2ζ

))
, (8.32)

γ (T,k) =
(
k 2 +

1
4

) i
(
1 − e−2ζT

)
2
(
−µ + ζ + (µ + ζ) e−2ζT

) ≡
(
k 2 +

1
4

)
iς (T,k).

(8.33)

Hence, the price of the “peakon” has the following form:

V (CC) (t,x,y) = 1
2π

∞∫
−∞

eα(T,k)−(k 2+1/4)ς(T,k)y+ikx
k 2 + 1/4

dk. (8.34)

Equation (8.34) is frequently called the Lewis–Lipton formula; see, for exam-
ple, Lewis (2000), Lipton (2000), Lewis (2001), Lipton (2001, 2002), Schmel-
zle (2010), Janek et al. (2011).
The implied volatility surface generated by a representative Heston model is

shown in Figure 13. Recall that the implied volatility Σ (T,K) is the volatility
one must substitute into the Black–Scholes formula to reproduce the market
price of a call (or put) option with maturity T and strike K. Thus, the deviation
of the volatility surface from the flat surface Σ (T,K) = Σ0 shows how far a
given market (or model) is from the idealized Black–Scholes framework.

8.3.4 Stein–Stein Model

The transformed forward pricing problem for the Stein–Stein model with the
“peakon” payoff has the following form:

V (CC)
t +

1
2
z2V (CC)

z1z1 + 2ρεz2V
(CC)
z1z2 + ρεz3V

(CC)
z1z3

+ 2ε2z2V (CC)
z2z2 + 2ε

2z3V (CC)
z2z3 +

1
2
ε2V (CC)

z3z3
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Figure 13 A representative implied volatility surface generated by the
Heston model. Parameters are the same as in Figure 12. Author’s graphics.

+
(
ε2 − 2κ̂z2 + 2χz3

)
V (CC)
z2 + (χ − κ̂z3)V (CC)

z3 − z2
8
V (CC) = 0, (8.35)

V (CC) ( t̄, z1, z2, z3) = e−|z1 |/2,

which corresponds to the killed stochastic process described by the equations in
(7.184). By incorporating the killing term, one gets the following set of ODEs
for the Kelvin wave parameters

αt
(
t, t̄

)
− ε2

2
δ23

(
t, t̄

)
+ iε2δ2

(
t, t̄

)
+ iχδ3

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0,

iδ′2
(
t, t̄

)
− 2ε2δ22

(
t, t̄

)
− 2i (κ̂ − iρεm1) δ2

(
t, t̄

)
− 1
2

(
m2
1 +

1
4

)
= 0, δ2

(
t̄, t̄

)
= 0,

iδ′3
(
t, t̄

)
− 2ε2δ2

(
t, t̄

)
δ3

(
t, t̄

)
+ 2iχδ2

(
t, t̄

)
− i (κ̂ − iρεm1) δ3

(
t, t̄

)
= 0, δ3

(
t̄, t̄

)
= 0. (8.36)

The corresponding solution has the form given by the equations in (7.182)
with

λ± = µ ± ζ,

µ = − (κ̂ − iρεm1) , ζ =
√
ρ̄2ε2m2

1 − 2iρεκm1 + κ2 + ε2/4,

ω± = ∓ λ∓
2ζ
, b± =

iλ±ω±
2ε2

, (8.37)
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c± = ± iχλ±ω±
ε2ζ

, c0 = −c+ − c−, g =
χ2λ+λ−
2ε2ζ2

,

a0 = − iκ χc0
ζ2

, a± = −ω±a0 ∓
(
ε2c20
4ζ
+
χ2κ2ω+ω−
ε2ζ3

)
.

The generic expression for the price of the “peakon” has the following form:

V (CC)
(
t, z1, z23, z3

)
=

1
2π

∞∫
−∞

eα(T,m1)+iδ2(T,m1)z23+iδ3(T,m1)z3+im1z1

m2
1 + 1/4

dm1. (8.38)

It is clear that this price is a function of t̄, z1, z3.

8.3.5 Path-Dependent Volatility Model

Hobson and Rogers (1998) initially proposed path-dependent volatility mod-
els; subsequently, they were studied by many authors; see Davis (2004), Di
Francesco and Pascucci (2004, 2005), Guyon (2014), and Lipton and Reghai
(2023), among others. They present a viable alternative to the more popular
local volatility models developed by Bick and Reisman (1993), Derman and
Kani (1994), Dupire (1994), and Rubinstein (1994).
The main advantage of path-dependent volatility models compared to their

local volatility brethren is that the former deal with volatility functions depend-
ing on a nondimensional argument, such as Ŝt/Ât, where Ŝt is the stock price,
and Ât is its average, say, σ = σ(Ŝt/Ât), while the latter use volatilities depend-
ing on a dimensional argument Ŝt, σ = σ(Ŝt), which is conceptually unsound
and results in model dynamics deviating from the one observed in the mar-
ket. The problem with path-dependent models is that building an analytically
tractable path-dependent model is exceedingly tricky, so gaining the necessary
intuition or benchmarking numerical solutions is complicated. However, this
section develops such a model using results derived in Section 7.3.
Here, an original path-dependent model with a semianalytical solution is pre-

sented for the first time. The dynamics is adapted from Section 7.3, Equation
(7.153) as follows:

Ât = exp
(
κ

∫ t

−∞
e−κ(t−t

′) ln Ŝt′dt′
)
, Ât = A,

(8.39)

dŜt
Ŝt
=

√√√
c0 + c1 ln

(
Ŝt
At

)
dŴt, Ŝt = S.

It is not necessary to describe in detail how Ŝ̃t, and, hence, Ẫt, behave when
t̃ < t, since it becomes unimportant provided that κT is sufficiently large. For
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instance, one can assume that Ŝ̃t ≡ A, when t̃ < t, then A = S. Additionally, it
is assumed that r = 0, so that spot and forward prices coincide, Ŝt = F̂t,t̄.
In logarithmic variables x̂t = ln

(
Ât

)
, ŷt = ln

(
Ŝt

)
, the equations in (8.39)

assume the form given by the equations in (7.153). Accordingly, the pricing
equation for the path-dependent model with the symmetric “peakon” payoff
can be written as follows:

V (CC)
t +

1
2
(a0 + a1 ( y − x))

(
V (CC)
yy − 1

4
V (CC)

)
+ κ ( y − x)V (CC)

x = 0,

V (CC) ( t̄,x,y) = e−| y |/2. (8.40)

The Kelvin wave parameters are governed by the equations of the following
form:

αt
(
t, t̄

)
− a0

2

(
γ2

(
t, t̄

)
+
1
4

)
= 0, α

(
t̄, t̄

)
= 0,

iβt
(
t, t̄

)
+
a1
2

(
γ2

(
t, t̄

)
+
1
4

)
− iκβ

(
t, t̄

)
= 0, β

(
t̄, t̄

)
= 0, (8.41)

iγt
(
t, t̄

)
− a1

2

(
γ2

(
t, t̄

)
+
1
4

)
+ iκβ

(
t, t̄

)
= 0, γ

(
t̄, t̄

)
= l.

8.3.6 Bachelier Model

In the Bachelier model, the corresponding discounted t.p.d.f. is given by a
modified (6.96):

ϖ
(
t,S, t̄, S̄

)
=

1√
2πΣ2

(
t, t̄

) exp
(
−

(
S̄ − FT

)2
2Σ2

(
t, t̄

) )
, (8.42)

where

Σ
2 (
t, t̄

)
=
σ̂2 (

e2rT − 1
)

2r
. (8.43)

By virtue of (8.7), one can price European calls and puts as follows:

V (t,FT) = e−rT
(
ϕ (FT − K)N

(
ϕ
FT − K
Σ (T )

)
+ Σ (T)n

(
FT − K
Σ (T )

))
, (8.44)

or, in spot terms:

V (t,S) = ϕ
(
S − e−rTK

)
N

(
ϕ
S − e−rTK
Σ̃ (T )

)
+ Σ̃ (T )n

(
S − e−rTK
Σ̃ (T)

)
, (8.45)

where

Σ̃
2 (T ) =

σ̂2 (
1 − e−2rT

)
2r

. (8.46)
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See Bachelier (1900), Schachermayer & Teichmann (2008), and Terakado
(2019) for further details.

8.4 Asian Options with Arithmetic and Geometric Averaging
The most basic path-dependent options are fixed strike Asian calls and puts,
whose payoff depends on the underlying value averaged between the inception
andmaturity. Such options are popular for commodity and energy trading and in
many other circumstances. The average Ât,t̄ on the interval

[
t, t̄

]
can be defined

in several ways. The simplest and, as a result, the most popular is an arithmetic
average:

Ât,t̄ =
1
T

t̄∫
t

Ŝsds. (8.47)

A less frequent, but technically easier to deal with, alternative is a geometric
average:

Ât,t̄ = exp
©«
1
T

t̄∫
t

ln
(
Ŝs

)
ds

ª®®¬. (8.48)

The payoff of an Asian option with maturity t̄ and fixed strike K is

U
(
Āt,t̄

)
= max

{
ϕ

(
Āt,t̄ − K

)
,0

}
, (8.49)

as before, ϕ = 1 for a call, and ϕ = −1 for a put. For the floating strike, the
payoff is

U
(
S̄ t̄, Āt,t̄

)
= max

{
ϕ

(
S̄ t̄ − kĀt,t̄

)
,0

}
, (8.50)

where the nondimensional parameter k is called weighting; typically, k = 1.
Start with the Bachelier model. Equations for pricing Asian Options with an

arithmetic average are as follows:

dÂt = Ŝtdt, Ât = 0, (8.51)

dŜt = rŜtdt + σdŴt, Ŝt = S.

Thus, (6.114) and (6.115) are applicable. All one needs is the marginal distri-
bution for Āt,t̄, which is Gaussian:

ϖ
(
Ā
)
∼ N

(
R,Σ2

)
, (8.52)

where

R = B−r (T ) S, Σ2 =
σ2

r
(B0 (T ) − 2B−r (T ) + B−2r (T )). (8.53)
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Consider the discounted payoff of the Asian call option (say):

U
(
t, Ā

)
=

(
Ā
T
− K

)
+

. (8.54)

The corresponding calculation is straightforward:

U (t,S) = e−rT
∞∫

TK

(
Ā
T − K

)
e−

(Ā−R)2
2Σ2

√
2πΣ2

d Ā

=
e−rTΣ
T

∞∫
(TK−R)
Σ

ηe−
η2
2

√
2π

dη − e−rT (TK − R)
T

∞∫
(TK−R)
Σ

e−
η2
2

√
2π

dη (8.55)

=
e−rTΣ
T

n
(
R − TK
Σ

)
− e−rT (TK − R)

T
N

(
R − TK
Σ

)
.

Analytical pricing of Asian options with arithmetic averaging for the Black–
Scholes model is notoriously tricky; see Geman and Eydeland (1995), Rogers
and Shi (1995), and Lipton (1999, 2001). At the same time, pricing Asian
options with geometric averaging can be done quickly; see Barrucci et al.
(2001), Lipton (2001), and Di Francesco and Pascucci (2005), and references
therein. Such options can be priced using formula (6.45) derived in Section 6.
An alternative approach based on the path integral method is discussed in
Devreese et al. (2010). Define

x̂t =
t∫
t

ŷsds, ŷt = ln
(
Ŝt

)
. (8.56)

Then

dx̂t = ŷtdt, x̂t = 0, (8.57)

dŷt =
(
r − σ2

2

)
dt + σdŴt, ŷt = ln

(
Ŝt

)
≡ y.

The value of the option can be written as follows:

U (t,S) = e−rT
ϕ∞∫
x∗

ϖ (x̄)
(
exp

(
x̄
T

)
− exp (lnK)

)
d x̄, (8.58)

where

x∗ = T lnK. (8.59)
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Since (8.57) is a special case of (6.74), one can use the equations in (6.81) to
obtain the marginal distribution for x̄, which is a Gaussian distribution of the
form:

ϖ (x̄) =
exp

(
− (̄x−p)2

2σ2
x

)
√
2πσ2

x
,

(8.60)

σ2
x =

σ2T 3

3
, p = ln (S)T + 1

2

(
r − σ2

2

)
T 2.

Thus,

U (t,S) = J1 (t,S) − J2 (t,S), (8.61)

where

J1 (t,S) = e−rT
ϕ∞∫
x∗

exp
(
− (̄x−p)2

2σ2
x
+ x̄

T

)
√
2πσ2

x
d x̄ = ϕe−

1
2

(
r+ σ2

6

)
TSN (ϕd+),

(8.62)

J2 (t,S) = e−rT
ϕ∞∫
x∗

exp
(
− (̄x−p)2

2σ2
x
+ ln (K)

)
√
2πσ2

x
d x̄ = ϕe−rTKN (ϕd−),

where

d± =
ln (S/K) + 1

2

(
r − σ2

6 ± σ2

3

)
T√

σ2T/3
. (8.63)

Finally, one obtains a well-known formula for the price of a fixed strike Asian
option with geometric averaging:

U (t,S) = ϕ
(
e−

1
2

(
r+ σ2

6

)
TSN (ϕd+) − e−rTKN (ϕd−)

)
. (8.64)

Of course, a similar formula holds when r,σ are time-dependent. The deriva-
tion, although very simple, seems to be new.

8.5 Volatility and Variance Swaps and Swaptions
8.5.1 Volatility Swaps and Swaptions

Recall that the Stein–Stein stochastic volatility model assumes that the volatil-
ity is driven by an OU process; see Stein and Stein (1991). One needs to find
Green’s function associated with the following augmented SDEs:
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dx̂t = ŷtdt, x̂t = 0, (8.65)

dŷt =
(
χ(Vol) − κ(Vol)ŷt

)
dt + ε(Vol)dŴt, ŷt = y(Vol),

or, equivalently,

dx̂t = ŷtdt, x̂t = 0, (8.66)

dŷt = κ(Vol)
(
θ(Vol) − ŷt

)
dt + ε(Vol)dŴt, ŷt = y(Vol),

which describe the evolution of the volatility σ̂t ≡ ŷt and its integral x̂t; the
equations of (8.65) are identical to the equations of (6.98).
It can be shown that the pair (x̄, ȳ) has the bivariate Gaussian distribu-

tion with the covariance matrix H given by (6.113), and mean (p,q) given by
(6.114):(

p
q

)
=

©«
Tθ(Vol) + B̄κ(Vol) (T )

(
y(Vol) − θ(Vol)

)
θ(Vol) + Aκ(Vol) (T )

(
y(Vol) − θ(Vol)

) ª®¬. (8.67)

Since the marginal distribution of x̂t given by (6.115) is Gaussian, the fair
strike of a volatility swap with maturity t is simply the expected value of
x̂t/T:

VolSwap = θ(Vol) +
(
y(Vol) − θ(Vol)

) B̄κ(Vol) (T )
T

. (8.68)

Here

[VolSwap] =
[
χ(Vol)

κ(Vol)

]
=

[
θ(Vol)

]
= [y] = 1

T 1/2 . (8.69)

Of course, one can calculate the expected value of x̂t/T via more straightfor-
ward means. To this end, (8.68) can be derived directly by taking expectations
of SDE (8.65). However, as we shall see in the following subsection, (6.115)
for the marginal distribution ϖ(x)

(
t,y(Vol), t̄, x̄

)
allows one to solve more inter-

esting problems, such as calculating prices of bonds and bond options; see the
discussion that follows.
Moreover, by using this equation, one can price volatility swaptions with

payoffs of the form:

U
(
t̄, x̄

)
= max {ϕ (x̄ − x∗) ,0}. (8.70)
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The price U
(
t,y(Vol)

)
becomes:

U
(
t,y(Vol)

)
= e−rTϕ

ϕ∞∫
x∗

(x̄ − x∗)ϖ(x)
(
t,y(Vol), t̄, x̄

)
d x̄

=
e−rTϕ√
2πh0

(
t, t̄

) ϕ∞∫
x∗

(x̄ − x∗) exp
(
(x̄ − p)2
2h0

)
d x̄ (8.71)

= e−rT
(
ϕ (p − x∗)N

(
ϕ
(p − x∗)
√
h0

)
+

√
h0n

(
(p − x∗)
√
h0

))
.

It is clear that formula (8.71) is a variant of the Bachelier formula (8.44).

8.5.2 Variance Swaps and Swaptions

In contrast to volatility, which, despite common misconceptions, can be nega-
tive, variance must be nonnegative since it is a square of a real-valued quantity.
Accordingly, the easiest way to model it is by using the augmented Feller
process with ϑ > 0; see (7.99).
Using (7.127), one can immediately obtain the following expression for the

fair value of a variance swap for the Feller process:

VarSwap = θ(Var) +
(
y(Var) − θ(Var)

) B̄κ(Var) (T )
T

, (8.72)

where θ(Var) = χ(Var)/κ(Var). Here

[VarSwap] =
[
θ(Var)

]
=

[
y(Var)

]
=
1
T
. (8.73)

While formulas (8.68) and (8.72) look the same but deal with the volatil-
ity and variance, respectively, the corresponding parameters have different
meanings.
Alternatively, one can use the degenerate augmented OU process, see the

equations of (7.174). Averaging away stochastic terms, one gets the following
formula for the fair price of the variance swap:

VarSwap =
(
θ(Vol)

)2
+

((
y(Vol)

)2
−

(
θ(Vol)

)2) B̄κ(Vol) (T )
T

. (8.74)

It is clear that Equations (8.72) and (8.74) provide different fair values for a
variance swap, although these values asymptotically agree. This fact reflects
the so-called model risk – by using different models, one gets different answers
to the same question.
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Equation (7.123) can be used to calculate the price of a variance swaption:

U
(
t,y(Var)

)
=

1
2π

ϕ∞∫
x∗

∞∫
−∞

ϕ (x̄ − x∗) 𝟋
(
t̄,k

)
eikx̄dkd x̄

=
1
2π

∞∫
−∞

𝟋
(
t̄,k

) ©«ϕ
ϕ∞∫
x∗

(x̄ − x∗) eikx̄d x̄ª®¬ dk (8.75)

=
1
2π

lim
ϵ→0

∞∫
−∞

𝟋
(
t̄,k

)
eikx

∗ ©«− ∂

∂ϵ

ϕ∞∫
x∗

e(ik−ϕϵ )̄xd x̄ª®¬
=

1
2π

lim
ϵ→0

∞∫
−∞

𝟋
(
t̄,k

)
eikx∗

(ik − ϕϵ)2
dk,

where 𝟋
(
t̄,k

)
is given by (7.124).

8.6 Automated Market Makers
Variance and volatility swaps had long occupied a specific niche within the
financial product landscape. Recently, they experienced an unexpected surge
in interest due to the influence of cryptocurrency trading. These swaps have
proven effective in hedging impermanent loss, a phenomenon generated by
automated market makers; see Lipton and Hardjono (2021), Lipton and Trec-
cani (2021), Lipton and Sepp (2022), Cartea et al. (2023), Fukasawa et. al
(2023), and others. This section closely follows Lipton and Hardjono (2021).
Let us consider a smart contract (SC), called an automated market maker

(AMM) designed to facilitate exchanges of two tokens, TN1 and TN2. The ana-
lytical formula for the price of the second token in terms of the first defines the
nature of the contract. AMMs have gained significant traction in recent years.
Initially, anyone can participate as a market maker and liquidity provider by
depositing TN1 and TN2 simultaneously and in the correct ratio into the col-
lateral pool. Subsequently, participants can withdraw one token from the pool
by delivering the other token according to the rules established by the under-
lying SC. While AMMs excel in facilitating stablecoin swaps, they can easily
accommodate the exchange of various tokens, such as swapping a stablecoin,
say USDT, for ethereum (ETH).
The actual exchange rate is determined by rules that rely on prior agree-

ment. The available options are the constant sum, constant product, andmixture
rules. Sources including Angeris et al. (2019), Egorov (2019), Zhang et al.
(2018), Lipton and Hardjono (2021), Lipton and Sepp (2022), and references
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therein offer detailed coverage of AMMs and comprehensive insights into their
mechanisms.
Assuming that initially tokens TN1, TN2 are equal in value, one can define a

constant sum AMM:

X + Y = Σ0, X0 = Y0 = N, Σ0 = 2N. (8.76)

Here X,Y are the quantities of TN1, TN2 in the pool. Equation (8.76) yields

Y = Σ0 − X,
����dYdX ���� = 1. (8.77)

As per (8.77), the pool reaches depletion at X = Σ0, as it becomes advanta-
geous for an arbitrageur to increase X from N to 2N when TN2 surpasses TN1

in value. The marginal price of TN2 relative to TN1, as expressed in the second
equation (8.77), remains consistent and equal to one. A constant price is opti-
mal for a constant sum AMM, particularly when dealing with stablecoins like
TN1 and TN2, whose prices fluctuate mildly around their equilibrium values.
Depleting the pool is rational in scenarios where transaction fees are nonex-
istent, even with a minimal deviation from equilibrium. However, under more
realistic conditions with nonzero transaction fees, arbitrage becomes profitable
only if the deviation surpasses a certain threshold.
The constant product rule defines more intricate and, importantly, practical

AMMs:

XY = Π0, X0 = Y0 = N, Π0 = N2. (8.78)

It is clear that

Y =
Π0

X
,

����dYdX ���� = Π0X 2 . (8.79)

Consequently, an arbitrageur is unable to deplete such a pool, allowing it to
persist indefinitely. In this scenario, it becomes evident that the price of TN2

relative to TN1 is no longer steady; instead, it rises (or falls) as X decreases (or
increases).
To make liquidity provision more attractive to potential market makers, one

can generalize the constant sum and constant product rules. Expressions (8.76)
and (8.78) representing these rules can be formulated as follows:(

Σ

Σ0
− 1

)
= 0, X0 = Y0 = N, Σ0 = 2N,(

Π0

Π
− 1

)
= 0, X0 = Y0 = N, Π0 = N2. (8.80)
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where Σ = X+ Y, Π = XY are the current sum and product, respectively. These
rules can be combined as follows:(

Π0

Π
− 1

)
+ α

(
Σ

Σ0
− 1

)
= 0,

X0 = Y0 = N, Σ0 = 2N, Π0 = N2. (8.81)

Here, α > 0 is an adaptive parameter, characterizing the transition from the
constant product to the constant sum rule. The product Π is in the denominator
to avoid the possibility of exhausting the entire pool and ensuring that

Y (X ) →
X→0

∞, X (Y) →
Y→0

∞. (8.82)

Certainly, when AMM liquidity providers are exposed to arbitragers, they face
potential losses stemming from a decline in collateral value below its buy-and-
hold threshold. In financial terms, an AMM liquidity provider is an option seller
experiencing negative convexity, so that they must impose transaction fees to
offset these losses. The losses incurred by AMMs are (somewhat misleadingly)
termed “impermanent” because they tend to vanish under the assumption of
mean reversion. However, the validity of the mean-reversion assumption in
real-world scenarios can vary. Introducing variables x and y where X = Nx and
Y = Ny, one can express the constant sum rule described by Equations (8.76)
and (8.77) as follows:

x + y = 2, x0 = y0 = 1, (8.83)

y (x) = 2 − x,
����dydx ���� = 1. (8.84)

In terms of x and y, the constant product rule given by Equations (8.78) and
(8.79) can be written in the following form:

xy = 1, x0 = y0 = 1, (8.85)

y (x) = 1
x
,

����dydx ���� = 1
x2
. (8.86)

Finally, the mixed-rule equations of (8.81) written in terms of x and y become(
1
xy

− 1
)
+ α

( x + y
2

− 1
)
= 0, x0 = y0 = 1. (8.87)
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Straightforward algebra yields

yα =
1
2α

(
− (2 (1 − α) + αx) +

(
(2 (1 − α) + αx)2 + 8α

x

)1/2)
,

dyα
dx
=
1
2

©«−1 +
2 (1 − α) + αx − 4/ x2(

(2 (1 − α) + αx)2 + 8α
x

)1/2 ª®®¬, (8.88)

d2yα
dx2

=
1
2

©«
α + 8/ x3(

(2 (1 − α) + αx)2 + 8α
x

)1/2 −
α

(
2 (1 − α) + αx − 4/ x2

)(
(2 (1 − α) + αx)2 + 8α

x

)3/2 ª®®¬.
Assume that the external exchange price S of TN2 expressed in terms of TN1

moves away from its equilibrium value S0 = 1. Let S > 1. For the constant sum
contract, an arbitrageur can choose a number x, 1 < x ≤ 2, and deliver (x − 1)
of TN1 tokens to the pool in exchange for getting (x − 1) of TN2 tokens. The
profit or loss (P&L) is given by

Ω (x) = (S − 1) (x − 1). (8.89)

Since Ω is a linear function of x, it is rational to exhaust the entire pool by
choosing the following optimal values (x∗,y∗,Ω∗):

x∗ = 2, y∗ = 0, Ω∗ = (S − 1). (8.90)

Similarly, when S < 1:

x∗ = 0, y∗ = 2, Ω∗ = − (S − 1). (8.91)

The arbitraged portfolio’s value is π∗ (S), where

π∗ (S) =
{

2, S ≥ 1,
2S, S < 1.

, (8.92)

while the buy-and-hold portfolio’s value is (S + 1). The difference ω has the
form

ω = (S + 1) − π∗ (S) = |S − 1| . (8.93)

In the DeFi parlance, ω is termed as impermanent loss. However, this descrip-
tion can be misleading as the loss can swiftly become permanent when Smoves
away from its assumed “equilibrium” value of one. The percentage loss in the
actual portfolio compared to the buy-and-hold portfolio is structured as follows:

λ = 1 − |S − 1|
S + 1

. (8.94)
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A similar calculation can be performed for the constant product contract. When
S deviates from one, an arbitrageur can choose a number x > 1 and deliver
(x − 1) tokens TN1 to the pool, while taking (1 − y) tokens TN2 from the pool,
where y = 1/x. The P&L has the form:

Ω (x) =
(
S
(
1 − 1

x

)
− (x − 1)

)
. (8.95)

The optimality condition has the form

Ω
′ (x) =

(
S
x2

− 1
)
= 0, (8.96)

so that the corresponding optimal values (x∗,y∗,Ω∗) are

x∗ =
√
S, y∗ =

1
√
S
, Ω∗ =

(√
S − 1

)2
. (8.97)

Hence, a constant product collateral pool remains inexhaustible. Throughout
each phase, the ideal quantities of TN1 and TN2 maintained in the portfolio are
both

√
S. As both tokens’ values within the portfolio must equate, the suggested

optimal value of TN2 in terms of TN1 is S∗ = x∗/y∗ = S. The value of the
arbitrage-driven portfolio stands at π∗ = 2

√
S, whereas the value of the buy-

and-hold portfolio amounts to (S + 1). The difference is given by

ω = (S + 1) − 2
√
S =

(√
S − 1

)2
. (8.98)

The corresponding percentage loss is

λ = 1 − 2
√
S

(S + 1) =

(√
S − 1

)2
(S + 1) . (8.99)

For the mixed-rule AMM, the arbitrageur’s profit for S > 1 has the form

Ω (x) = (S (1 − yα (x)) − (x − 1)), (8.100)

with the optimum achieved at x∗α,y∗α,Ω∗
α of the form

y′α
(
x∗α

)
= −1

S
, y∗α = yα

(
x∗α

)
, Ω∗

α =
(
S
(
1 − y∗α

)
−

(
x∗α − 1

) )
, (8.101)

with the optimal x∗α via the Newton–Raphson method starting with a suitable
x(0)α :

x(n+1)α = x(n)α −
y′α

(
x(n)α

)
+ 1

S

y′′α
(
x(n)α

) . (8.102)
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Figure 14 The constant sum, constant product, and mixed-rule curves, along
with the relative prices of TN2 in terms of TN1 and the associated

impermanent losses; α = 10. Author’s graphics.

Here y′α, y′′α are given by the equations of (8.88). Due to quadratic convergence
of the Newton–Raphson method, ten iterations provide machine accuracy, so
that one can set x∗α = x(10)α . The value of the arbitraged portfolio is

π∗ = x∗α + Syα
(
x∗α

)
. (8.103)

Figure 14 shows the constant sum, constant product, and mixed-rule curves,
along with the relative prices of TN2 in terms of TN1 and the associated imper-
manent losses. It demonstrates that deviations from the tokens’ equilibrium
values result in losses for the market maker. Impermanent loss is relatively
minor for the constant product rule, moderate for the mixed rule, and notably
high for the constant sum rule. Even when the price S sways by a factor of five
from its equilibrium, the impermanent loss within the constant product rule
remains manageable, especially compared to the mixed rule.
One can use variance swaps to hedge impermanent loss. For brevity, con-

sider the constant product rule. The corresponding impermanent loss, shown
in Figure 14, is given by (8.98). It can be viewed as a payoff of a nonstandard
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European option. The hedging approach is straightforward – one approximates
this payoff with payoffs of options, which can be priced explicitly. Specifically,
one can use two such options: the log and entropy contracts. The corresponding
payoffs are as follows:

U LC (S) = cLC (S − 1 − ln (S)), (8.104)

UEC (S) = cEC (S ln (S) − (S − 1)). (8.105)

The prefactors cLC, cEC are chosen in such a way that the value of the imper-
manent loss (8.98) and the hypothetical payoffs (8.104) and (8.105) agree at
the point S = 1 up to the third derivative, so that

cLC = cEC =
1
2
. (8.106)

Assuming that S is driven by the geometric Brownian motion with stochastic
volatility, one can find the value of the log and entropy contracts at time t at the
point S = 1, by solving the following problems:

Ut +
1
2
v
(
S2USS + 2ερSUSv + ε

2Uvv

)
+ (χ − κv)Uv = 0, (8.107)

supplied with terminal conditions of the form

U LC (
t̄,S,v

)
= (S − 1 − ln (S)), (8.108)

and

UEC (
t̄,S,v

)
= (S ln (S) − (S − 1)), (8.109)

respectively.
The corresponding solutions are well-known and easy to find. One can

present U LC (t,S) as follows:

U LC (
t,S,v, t̄

)
= ΦLC (

t,v, t̄
)
+ (S − 1 − ln (S)), (8.110)

where

Φ
LC
t +

1
2
v
(
1 + ε2ΦLC

vv

)
+ (χ − κv)ΦLC

v = 0,
(8.111)

Φ
LC (

t̄,v, t̄
)
= 0.

Accordingly,

Φ
LC (

t,v, t̄
)
= αLC

(
t, t̄

)
+ βLC

(
t, t̄

)
v, (8.112)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
50

31
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009503129


120 Quantitative Finance

where

αLCt
(
t, t̄

)
+ χβLC

(
t, t̄

)
= 0, αLC

(
t̄, t̄

)
= 0,

βLCt
(
t, t̄

)
− κβLC

(
t, t̄

)
+
1
2
= 0, βLC

(
t̄, t̄

)
= 0. (8.113)

Thus,

αLC
(
t, t̄

)
=

χ

2κ

(
T − B̄κ (T )

)
,

βLC
(
t, t̄

)
=

B̄κ (T)
2

, (8.114)

so that

U LC (
t,S,v, t̄

)
=
1
2

(
χT
κ
+

(
v − χ

2κ

)
B̄κ (T)

)
+ (S − 1 − ln (S)). (8.115)

It is clear that U LC (
t,1,v, t̄

)
is in agreement with (8.72).

One can calculate UEC (t,S,v) in a similar fashion by representing it in the
form:

UEC (
t,S,v, t̄

)
= ΦEC (

t,v, t̄
)
S + (S ln (S) − (S − 1)), (8.116)

where, once the common factor S is omitted,

Φ
EC
t +

1
2
v
(
1 + 2ερΦEC

v + ε
2
Φ
EC
vv

)
+ (χ − κv)ΦEC

v = 0,

Φ
LC (

t̄,v, t̄
)
= 0. (8.117)

As before,

Φ
EC (

t,v, t̄
)
= αEC

(
t, t̄

)
+ βEC

(
t, t̄

)
v, (8.118)

where

αECt
(
t, t̄

)
+ χβEC

(
t, t̄

)
= 0, αEC

(
t̄, t̄

)
= 0,

βECt
(
t, t̄

)
− (κ − ερ) βEC

(
t, t̄

)
+
1
2
= 0, βEC

(
t̄, t̄

)
= 0. (8.119)

Thus,

αEC
(
t, t̄

)
=

χ

2 (κ − ερ)
(
T − B̄κ−ερ (T )

)
,

(8.120)

βEC
(
t, t̄

)
=

B̄κ−ερ (T )
2

,

UEC (
t,S,v, t̄

)
=
1
2

(
χT
κ1
+

(
v − χ

2κ1

)
B̄κ1 (T )

)
S + (S ln (S) − (S − 1)).

(8.121)
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where κ1 = κ − ερ. Equations (8.115) and (8.121) allow us to estimate the
amount a liquidity provider needs to collect to cover the expected impermanent
loss.
However, it turns out (which comes as a surprise, at least to the present

author) that one can solve the pricing problem (8.107) with the exact termi-
nal condition (8.98) explicitly, since the impermanent loss does not have any
optionality and is a linear combination of the so-called power contracts with
payoffs of the form S,

√
S,1.10

Thus, by using an appropriate Kelvin wave, one can solve the problem
(8.107) with the power terminal condition:

U (ν) (S) = Sν . (8.122)

Of course, for ν = 0,1, the solution is trivial; for other values of ν, additional
efforts are needed. To be concrete, it is assumed that 0 < ν < 1; for other values
of ν, the solution can blow up in finite time. The price of the power contract
with the payoff Sν (evenwhen the interest rate r , 0) is given by aKelvin wave:

V
(
t,S, t̄

)
= eα(t,t̄ )+β(t,t̄ )vSν, (8.123)

where α (t) , β (t) solve the following system of ODEs:

αt
(
t, t̄

)
+ χβ

(
t, t̄

)
= 0, α

(
t̄, t̄

)
= 0, (8.124)

βt
(
t, t̄

)
+
ε2

2
β2

(
t, t̄

)
− (κ − νρε) β

(
t, t̄

)
+
ν (ν − 1)

2
= 0, β

(
t̄, t̄

)
= 0,

which has an explicit solution given by Equations (7.111)–(7.114) with

λ
2
± + (κ − νρε) λ± +

ε2ν (ν − 1)
4

= 0, (8.125)

λ± = µ ± ζ,

µ = −(κ − νρε)
2

, ζ =

√
(κ − νρε)2 − ε2ν (ν − 1)

2
. (8.126)

Thus, both µ and ζ are real. Accordingly, one can represent α and β as follows:

α (T ) = −2χ
ε2

(
−(κ − νρε)T

2
+ ln

(
ζ cosh (T ) − µ sinh (T )

ζ

))
,

(8.127)

β (T ) = ν (ν − 1) (sinh (T ))
2 (ζ cosh (T ) − µ sinh (T )) .

The exact impermanent loss and its approximations are shown in Figure 15.
This figure shows that max

(
U LC,UEC) strictly dominates the exact solution

10 This fact is true even for nonzero interest rates.
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Figure 15 The exact impermanent loss and its approximations via log and
enthropy contracts. The corresponding parameters are T = 3, dt = 0.01,

χ = 0.2, κ = 2.0, ε = 0.2, ρ = −0.5, v = 0.15. Author’s graphics.

UEX, but, as time of liquidity provision grows, the corresponding upper bound
becomes inaccurate.
The calculation of the mixed-rule impermanent loss and its approximations

is left to the reader as a difficult exercise.
In P&L modeling for AMMs, the primary aim is to ensure that the liquid-

ity provider makes a profit or, at least, does not incur a loss. This profit stems
from transaction fees charged by the pool, which must exceed the imperma-
nent loss caused by collateral value dropping below its buy-and-hold threshold.
These fees must exceed the impermanent loss. An arbitrageur needs to add
more tokens to the pool than the rule dictates to account for transaction fees.
In the presence of nonzero transaction costs, the actual composition of the pool
is time- and path-dependent. Given the stochastic nature of the log price, the
analysis of P&L can only be conducted probabilistically through Monte Carlo
simulations; see Lipton and Hardjono (2021) and Lipton and Sepp (2022). For
the parameter selection used by these authors, automated liquidity provision is
profitable on average. This profitability arises because the AMM accumulates
more tokens by the process’s conclusion than initially possessed.
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8.7 Bonds and Bond Options
8.7.1 Background

We now use the machinery developed in Sections 6 and 7 for pricing bonds and
bond options in some popular fixed-income models, including Vasicek–Hull–
White and Cox–Ingersoll–Ross.

8.7.2 Vasicek Model

One can use formulas derived in the previous subsection to price bonds and
bond options in the popular Vasicek and Hull–White models; see Hull and
White (1990); Vasicek (1977). Recall that Vasicek postulated the following
dynamics for the short interest rate ŷt:

dŷt = (χ − κŷt) dt + εdŴt, ŷt = y, (8.128)

or, alternatively,

dŷt = κ (θ − ŷt) dt + εdŴt, ŷt = y, (8.129)

where κθ = χ.
At time t, the price of a bondmaturing at time t̄, which is denoted by Z

(
t,y, t̄

)
,

boils down to solving the following classical backward problem:

Zt
(
t,y, t̄

)
+ (χ − κy) Zy

(
t,y, t̄

)
+
1
2
ε2Zyy

(
t,y, t̄

)
− yZ

(
t,y, t̄

)
= 0,

(8.130)

Z
(
t̄,y, t̄

)
= 1.

The standard affine ansatz yields

Z
(
t,y, t̄

)
= exp (C − Bκy)

C =
(
θ − ε2

2κ2

)
(Bκ − T) − ε2

4κ
B2
κ (8.131)

= (Bκ − T) θ + h0
2
,

where h0 is given by (6.114).
One can use formulae derived in the previous section to come up with an

alternative derivation. Introduce x̂t =
∫ t
t ŷsds. The distribution of (x̂t, ŷt) is given

by (6.45) with the covariance matrixH, given by (6.114) and the expected value
r given by (6.115). Accordingly, the price of a bond can be written as follows:
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Z
(
t,y, t̄

)
= E

{
e−x̄

}
=

1
√
2πh0

∞∫
−∞

e−x̄−
(̄x−p)2
2h0 d x̄

(8.132)

= e−p+
h0
2 = exp (C (T ) − Bκ (T ) y),

so that Equations (8.131) and (8.132) are in agreement.
Knowing the joint Gaussian distribution for (x̂t, ŷt), one can price an option

on zero coupon bond maturing at time t̆ > t, t̆− t = T̆. The payoff of a European
option with strike K has the form:

U
(
t̄, ȳ

)
= max

{
ϕ

(
exp

(
C

(
T̆
)
− Bκ

(
T̆
)
ȳ
)
− exp (lnK)

)
,0

}
. (8.133)

At maturity t̄, the payoff is independent of x̄; however, at inception it does
depend on the realized value of x̄. By using Equations (6.45), (6.114), and
(6.115), one can write U (t,y) (recall that here x = 0) as follows:

U (t,y) = J1 (t,y) − J2 (t,y), (8.134)

where

J1 (t,y) =
1

2π det (H)1/2

∞∫
−∞

y∗∫
−ϕ∞

exp
(
−Λ (x̄, ȳ) − x̄ + C

(
T̆
)
− Bκ

(
T̆
)
ȳ
)
d x̄d ȳ,

(8.135)

J2 (t,y) =
1

2π det (H)1/2

∞∫
−∞

y∗∫
−ϕ∞

exp (−Λ (x̄, ȳ) − x̄ + lnK) d x̄d ȳ, (8.136)

Λ (x̄, ȳ) =

(
h2 (x̄ − p)2 − 2h1 (x̄ − p) ( ȳ − q) + h0 ( ȳ − q)2

)
2 det (H) , (8.137)

with hi given by (6.114), det (H) = h0h2 − h21. Here y∗ is defined as follows:

y∗ =
C

(
T̆
)
− lnK

Bκ

(
T̆
) . (8.138)

First, consider J1. Completing the square, one gets

− Λ (x̄, ȳ) − x̄ + C
(
T̆
)
− Bκ

(
T̆
)
ȳ

= −

(
h2

(
(x̄ − p) − Ξ( y)√

h2

)2
− Ξ2 ( ȳ) + h0 ( ȳ − q)2

)
2 det (H)

− Bκ

(
T̆
)
( ȳ − q) − p + C

(
T̆
)
− Bκ

(
T̆
)
q, (8.139)
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where

Ξ ( ȳ) = (h1 ( ȳ − q) − det (H))
√
h2

. (8.140)

Integrating over x̄, one obtains the following expression for J1:

J1 (t,y) =
e−p+C(T̆)−Bκ (T̆)q

√
2πh2

y∗∫
−ϕ∞

exp
©«−

(
−Ξ2 ( ȳ)+h0 ( ȳ − q)2 +2 det (H)Bκ

(
T̆
)
( ȳ−q)

)
2det (H)

ª®®¬ d ȳ.
(8.141)

Completing the square one more time, one gets:

−
−Ξ2 + h0 ( ȳ − q)2 + 2det (H)Bκ

(
T̆
)
( ȳ − q)

2det (H) (8.142)

= −

(
ȳ − q + h1 + Bκ

(
T̆
)
h2

)2
2h2

+
h0
2
+ Bκ

(
T̆
)
h1 +

B2
κ

(
T̆
)
h2

2
,

so that

J1 (t,y)

=
e−p+C(T̆)−Bκ (T̆)q+ h0

2 +Bκ (T̆)h1+ B2κ (T̆)h2
2√

2πh2 (t, t)
y∗∫

−ϕ∞

exp
©«−

(
ȳ − q + h1 + Bκ

(
T̆
)
h2

)2
2h2

ª®®¬ d ȳ
= ϕe−p+C(T̆)−Bκ (T̆)q+ h0

2 +Bκ (T̆)h1+ B2κ (T̆)h2
2 N

©«
ϕ

(
y∗ − q + h1 + Bκ

(
T̆
)
h2

)
√
h2

ª®®¬.
(8.143)

It is easy to see that Z
(
t,y, t̆

)
is given by (8.143) with ϕ = 1 and y∗ = ∞, so

that

Z
(
t,y, t̆

)
= e−p+C(T̆)−Bκ (T̆)q+ h0

2 +Bκ (T̆)h1+ B2κ (T̆)h2
2 . (8.144)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/9

78
10

09
50

31
29

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/9781009503129


126 Quantitative Finance

Thus,

J1 (t,y) = ϕZ
(
t,y, t̆

)
N

©«
ϕ

(
C

(
T̆
)
− lnK − Bκ

(
T̆
)
q + Bκ

(
T̆
)
h1 + B2

κ

(
T̆
)
h2

)
√
h2Bκ

(
T̆
) ª®®¬. (8.145)

Direct verification of (8.143) is left to the reader as a useful exercise. By using
this equation, it is easy but tedious to show that

J1 (t,y) = ϕZ
(
t,y, t̆

)
N (ϕd+), (8.146)

d+ =
ln

(
Z(t,y,̆t)

Z(t,y,t̄ )K

)
Σ

(
t, t̄, t̆

) +
Σ

(
t, t̄, t̆

)
2

,

where

Σ
(
t, t̄, t̆

)
=

√
h2Bκ

(
T̆
)
. (8.147)

Second, consider J2, proceed in the same way as before, and represent J2 (t,y)
in the following form:

J2 (t,y) = ϕZ
(
t,y, t̄

)
N (ϕd−),

(8.148)

d− =
ln

(
Z(t,y,̆t)

Z(t,y,t̄ )K

)
Σ

(
t, t̄, t̆

) −
Σ

(
t, t̄, t̆

)
2

.

Finally, one arrives at the following familiar expression for the bond option
price:

U (t,y) = ϕ
(
Z

(
t,y, t̆

)
N (ϕd+) − Z

(
t,y, t̄

)
KN (ϕd−)

)
. (8.149)

8.7.3 CIR Model

The CIRmodel postulates that the short rate follows the Feller process; see Cox
et al. (1985). Accordingly, the bond price can be calculated by using (7.123)
with x = 0, and k = −i:

Z
(
t,y, t̄

)
=

∫ ∞

−∞
ϖ(x) (t,y, t̄, x̄) e−x̄d x̄

(8.150)

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
𝟋

(
t,y, t̄,k

)
e(ik−1)̄xdkd x̄ = 𝟋

(
t,y, t̄,−i

)
,

where

𝟋
(
t,y, t̄,−i

)
= exp

(
2χµT
ε2

− 2χ
ε2

ln
(
−λ−E+ + λ+E−

2ζ

)
+
2λ+λ− (E+ − E−) y
ε2 (−λ−E+ + λ+E−)

)
,

(8.151)
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with

λ± = µ ± ζ, (8.152)

µ = − κ
2
, ζ =

√
κ2 + 2ε2

2
.

Thus,

Z
(
t,y, t̄

)
= eC̃−B̃y, (8.153)

where

C̃ = χκT
ε2

− 2χ
ε2

ln
(
−λ−E+ + λ+E−

2ζ

)
,

(8.154)

B̃ = (E+ − E−)
(−λ−E+ + λ+E−)

,

which coincides with the standard expressions given by Cox et al. (1985).

8.8 European Options with Stochastic Interest Rates
This section shows how to price equity options with stochastic interest rates.
While the formulation of this problem may appear straightforward, its solution
proves to be tedious. It is assumed that interest rate is governed by the Ornstein–
Uhlenbeck–Vasicek processes.

dŷt = (χ − κŷt) dt + εdẐt, ŷt = y, (8.155)

where Ẑt is the standard Wiener processes. The risk-neutral evolution of the
foreign exchange is governed by the following equation:

dŜt
Ŝt
= ŷtdt + σdŴt, Ŝt = S, (8.156)

or, equivalently,

dx̂t =
(
ŷt −

1
2
σ2

)
dt + σdŴt, x̂t = x, (8.157)

where x̂ = ln
(
Ŝ/K

)
. In general, dẐt and dŴt are correlated, so that dẐtdŴt =

ρdt.
Consider the familiar backward Kolmogorov problem for European calls and

puts:
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Ut +
1
2
ε2Urr + ρεσUrx +

1
2
σ2Uxx

+ (χ − κr)Uy +

(
y − 1

2
σ2

)
Ux − rU = 0, (8.158)

U
(
t̄,y,x

)
= K (ϕ (ex − 1))+ .

As usual, start with the change of the dependent variable:

U = KB1V. (8.159)

where B = exp (α1 − β1y) is the domestic bond price, given by (8.131), so that

Bt +
1
2
ε2Brr + (χ − κr)By − rB = 0. (8.160)

Hence,

Vt +
1
2
ε2Vrr + ρεσVrx +

1
2
σ2Vxx

+

(
x − 1

2
ε2β1 − κr

)
Vy +

(
y − 1

2
σ2 − ρεσβ1

)
Vx = 0, (8.161)

V
(
t̄,y,x

)
= (ϕ (ex − 1))+ .

Now, change independent variables (t,y,x) → (t, η1, η2), where

η1 = y, η2 = −α1 + β1y + x. (8.162)

Thus,

∂

∂t
=
∂

∂t
+

(
−α′

1 + β
′
1η1

) ∂

∂η2
,

(8.163)
∂

∂y
=

∂

∂η1
+ β1

∂

∂η2
,

∂

∂x
=

∂

∂η2
.

so that

Vt +
(
−α′

1 + β
′
1η1

)
Vη2

+
1
2
ε2

(
Vη1η1+2β1Vη1η2+β

2
1Vη2η2

)
+ρεσ

(
Vη1η2 + β1Vη2η2

)
+
1
2
σ2Vη2η2

+

(
χ − 1

2
ε2β1 − κη1

) (
Vη1 + β1Vη2

)
+

(
η1 −

1
2
σ2 − ρεσβ1

)
Vη2 = 0,

V
(
t̄, η1, η2

)
= (ϕ (eη2 − 1))+ . (8.164)

Assume that V (t, η1, η2) only depends on t, η2, V (t, η1, η2) = V (t, η2), which is
consistent with the terminal condition. Thus,
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Vt +

(
1
2
ε2β21 + ρεσβ1 +

1
2
σ2

)
Vη2η2

+

(
−α′

1 + β
′
1η1 +

(
b1 −

1
2
ε2β1 − κη1

)
β1 −

1
2
σ2 − ρεσβ1 + η1

)
Vη2=0

V
(
t̄, η1, η2, η2

)
= (ϕ (eη2 − 1))+ . (8.165)

But

α′
1 − β′1η1 +

1
2
ε2β21 − (χ − κη1) β1 − η1 = 0, (8.166)

so that

Vt +

(
1
2
ε2β21 + ρεσβ1 +

1
2
σ2

) (
Vη2η2 − Vη2

)
= 0,

(8.167)

V
(
t̄, η1, η2

)
= (ϕ (eη2 − 1))+ .

This is the classical Black–Scholes problem with time-dependent volatility:

Vt +
1
2
Σ
2 (
Vη2η2 − Vη2

)
= 0,

V
(
t̄, η2

)
= (ϕ (eη2 − 1))+ ,

(8.168)

where

Σ
2 = ε2B2

κ + 2ρεσBκ + σ
2. (8.169)

Thus, the price is

U = B1U (C,P) ©«B2SB1 ;T,K,

√∫
Σ2ds
T

ª®¬, (8.170)

where U (C,P) are given by (8.20).
A similar technique can be used for the Heston model and the Stein–Stein

model with stochastic interest rates. However, there is one significant difference
between these two models - the former model works only when volatility and
rate innovations are uncorrelated, while the latter model can handle arbitrary
correlations.

9 Conclusions
Due to the space constraints, the discussion must be concluded here. It is
left to the reader to explore further the application of mathematical tools and
techniques based on Kelvin waves in financial engineering. Three particularly
compelling problems are
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• the pricing and risk management of credit derivatives;
• the exploration of mean-reverting trading strategies, such as pairs trading;
• the examination of affine jump-diffusion and pseudo-differential processes.

References such as Lipton and Shelton (2012), Lipton and Lopez de Prado
(2020), and others provide additional insights into these problems.
This Element has established a unified methodology for determining t.p.d.fs

and expectations for affine processes through integral representations based
on Kelvin waves. This approach has bridged various disciplines, uncovering
profound connections between hydrodynamics, molecular physics, stochas-
tic processes, and financial engineering. Both degenerate problems, which
possess more independent variables than sources of uncertainty, and their
nondegenerate counterparts are covered, showcasing the versatility of the
method.
A surprising link is established between the Langevin equation for under-

damped Brownian motion and the vorticity equation for two-dimensional flows
in viscous incompressible fluids. Utilizing Kelvin wave expansions, the book
solves several relevant financial problems, including the deriving convenient
formulas for t.p.d.fs and expectations for processes with stochastic volatility,
developing an analytically solvable model for path-dependent volatility, pric-
ing of Asian options with geometric averaging, and pricing bonds and bond
options by augmenting the short-rate process with its integral process.
The methodology introduced in this book can address a wide spectrum of

complex problems, significantly enhancing the comprehension and modeling
of stochastic systems across diverse fields.
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