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Abstract

We use a linear algebra interpretation of the action of Hecke operators on Drinfeld cusp forms to prove
that when the dimension of the C∞-vector space Sk,m(GL2(Fq[t])) is one, the Hecke operator Tt is injective
on Sk,m(GL2(Fq[t])) and Sk,m(Γ0(t)) is a direct sum of oldforms and newforms.
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1. Introduction

Let Sk(SL2(Z)) be the space of weight k cusp forms of level one. It is well known that
this space admits a basis of Hecke eigenforms, that is, normalised eigenfunctions for all
the Hecke operators Tn. The space Sk(Γ0(N)) still admits a basis of Hecke eigenforms,
but only for those Tn such that (n, N) = 1. To find a basis of eigenforms for all the
Tn, we have to focus on forms that are genuinely of level N and also to consider
the operator Up if p | N, as Atkin and Lehner realised [1]. More precisely, we have
to distinguish between oldforms, that is, forms coming from lower levels M | N, and
newforms, which are defined as the orthogonal complement of oldforms with respect
to the Petersson inner product (see [10, Ch. 5]).

The present paper mainly deals with a function field counterpart of the above
results. It comes after a series of papers [3, 4, 6, 13], in which we investigated:

(1) diagonalisability of Hecke operators;
(2) injectivity of Hecke operators;
(3) newforms and oldforms,

for the Drinfeld modular forms. Let Sk,m(GL2(Fq[t])), respectively Sk,m(Γ0(p)), be the
space of Drinfeld cusp forms of weight k, type m and level one, respectively level p,
where p = (P) is a prime ideal of O := Fq[t] and q a power of a fixed prime p ∈ Z (see
Section 2 for details of the definitions and notation appearing in this introduction).
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Denote by Tp and Up respectively the Hecke and Atkin–Lehner operators acting on
Sk,m(GL2(O)) and Sk,m(Γ0(p)).

One of the challenges in the positive characteristic setting comes from the lack
of a suitable analogue of the Petersson inner product. In [3, 4], we overcame this
using a combination of a combinatorial argument, that is, Teitelbaum interpretation
of cusp forms as harmonic cocycles (see [12]), and of twisted trace maps to describe
what we identify as newforms. The combinatorial method allowed us to describe
explicitly the matrix associated to the Up-operator acting on Sk,m(Γ0(p)), when p is
prime generated by a degree-one polynomial, and to formulate a series of conjectures,
supported by numerical search, on the distribution of slopes, that is, p-adic valuations
of eigenvalues of Up, as the weight varies. In [4], among other things, we gave the
following conjecture.

CONJECTURE 1.1 [4, Conjecture 1.1]. With the notation as above,

(1) Tp is injective;
(2) Sk,m(Γ0(p)) is the direct sum of oldforms Sold

k,m(Γ0(p)) and newforms Snew
k,m (Γ0(p)).

We provided some evidence: in particular,

(a) for the case deg(P) = 1 and dimC∞(Sk,m(GL2(O))) = 0, in [4, Section 5];
(b) for the case deg(P) = 1 and dimC∞(Sk,m(GL2(O))) = 1, in the (unpublished)

Section 3 of [5].

Recently, Dalal and Kumar [9, Theorem 4.6] provided a new proof for case (b): their
method is based on the analysis of the Fourier coefficients of the image of a generator
via the Hecke operator Tp and, hopefully, it is suitable for more generalisations. Since
there seems to be quite some interest in results of this type, we decided to present here
our original proof of this fact based on the linear algebra interpretation of the Hecke
operators Tp and Up and of the trace maps Tr and Tr′ [3, 4]. The proof is via direct
computation, exploiting the symmetries of the matrices representing these operators.
We believe that such symmetries are the key to improve the results but, to go further, we
probably need a deeper understanding of how they reflect on the action on oldforms,
that is, to find the counterpart for oldforms of the antidiagonal action on newforms
(see [4, Section 5.2]). The statement and an explicit example already appeared in [6,
Example 2.19].

The paper is organised as follows. In Section 2, we recall the objects we shall work
with: Drinfeld modular forms, Hecke operators, degeneracy and trace maps, which
will enable us to define oldforms and newforms despite the absence of an appropriate
inner product. In Section 3, we specialise at p = (t) and, as in [3], we associate explicit
matrices to all operators. In particular, we describe a matrix M (see (3.2)) that is
involved in the description of Ut and has many peculiar symmetries. After that, we
briefly deal with the diagonalisability of M and then prove our main results.

THEOREM 1.2. Assume dimC∞ Sk,m(GL2(O)) = 1. Then
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(1) Tt is injective (see Theorem 3.1);
(2) Sk,m(Γ0(t)) = Sold

k,m(Γ0(t)) ⊕ Snew
k,m (Γ0(t)) (see Theorem 3.2).

2. Setting and notation

Let K be the global function field Fq(t), where q is a power of a fixed prime p ∈ Z.
Fix the prime 1/t at ∞ and denote by O := Fq[t] its ring of integers (that is, the ring
of functions regular outside∞). Let K∞ = Fq((1/t)) be the completion of K at 1/t and
denote by C∞ the completion of an algebraic closure of K∞.

2.1. Drinfeld modular forms. We work on the Drinfeld upper half-plane, the set
Ω := P1(C∞) − P1(K∞) together with a structure of rigid analytic space (see [11]). The
group GL2(K∞) acts on Ω via Möbius transformations ( a b

c d )(z) = (az + b)/(cz + d).
Let Γ be an arithmetic subgroup of GL2(O): Γ has finitely many cusps, represented by
Γ\P1(K). For γ = ( a b

c d ) ∈ GL2(K∞), k, m ∈ Z and ϕ : Ω→ C∞, we define

(ϕ |k,mγ)(z) := ϕ(γz)(det γ)m(cz + d)−k.

DEFINITION 2.1. A rigid analytic function ϕ : Ω→ C∞ is called a Drinfeld modular
function of weight k and type m ∈ Z/o(Γ)Z for Γ if

(ϕ |k,mγ)(z) = ϕ(z) for all γ ∈ Γ,

where o(Γ) is the number of scalar matrices in Γ. A Drinfeld modular function ϕ of
weight k � 0 and type m for Γ is called a Drinfeld modular form if ϕ is holomorphic at
all cusps and it is called a cusp form if it vanishes at all cusps. The space of Drinfeld
modular forms of weight k and type m for Γ will be denoted by Mk,m(Γ). The subspace
of cuspidal modular forms is denoted by Sk,m(Γ).

This definition coincides with [7, Definition 5.1]. Other authors require the function
to be meromorphic (in the sense of rigid analysis, see for example, [8, Definition 1.4])
and would call our functions weakly modular.

Let p = (P) ⊂ O be a prime with P irreducible of degree one. We shall work only
with the arithmetic subgroup Γ0(p) of upper triangular matrices modulo p and the
spaces Sk,m(GL2(O)) and Sk,m(Γ0(p)) which we call respectively cusp forms of level
one and of level p. Note that in both cases, o(Γ) = q − 1. To have nontrivial forms, the
weight and type must satisfy k ≡ 2m (mod q − 1).

2.2. Hecke operators. We have the Hecke operators:

Tp(ϕ)(z) := Pk−m
(
ϕ |k,m

(
P 0
0 1

) )
(z) + Pk−m

∑
Q∈Fq

(
ϕ |k,m

(
1 Q
0 P

) )
(z), on Sk,m(GL2(O));

Up(ϕ)(z) := Pk−m
∑
Q∈Fq

(
ϕ |k,m

(
1 Q
0 P

) )
(z), on Sk,m(Γ0(p)).
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2.3. Newforms and oldforms. As already mentioned in the introduction, in the
positive characteristic setting, we do not have an analogue of the Petersson inner
product; therefore, we need a different approach. In [4, Section 3], we defined oldforms
and newforms of level t. The definition has been generalised in [6, 13], but Dalal and
Kumar in [9, Section 4.3] pointed out the existence of a twisted Eisenstein form both
new and old (for our definition) when the level is pq (q another prime different from p).
Since we shall only work with levels one and p, we can still rely on our original
definition, which we now recall.

We have an injective map

(δ1, δp) : Sk,m(GL2(O))2 −→ Sk,m(Γ0(p))

(δ1, δp)(ϕ,ψ) = ϕ(z) +
(
ψ |k,m

(
P 0
0 1

) )
(z) = ϕ(z) + Pmψ(Pz).

DEFINITION 2.2. The space of oldforms of level p, denoted by Sold
k,m(Γ0(p)), is the

subspace of Sk,m(Γ0(p)) generated by Im(δ1, δp).

We recall that R = {Id, ( 0 −1
1 Q ) : Q ∈ Fq} is a system of coset representatives for

Γ0(p)\GL2(O).

DEFINITION 2.3. We have the following maps defined on Sk,m(Γ0(p)):

• the Fricke involution, which preserves the space Sk,m(Γ0(p)), represented by the
matrix γp := ( 0 −1

P 0 ) and defined by ϕFr = (ϕ |k,mγp);
• the trace map, defined by

Tr : Sk,m(Γ0(p))→ Sk,m(GL2(O))

ϕ 	→
∑
γ∈R

(ϕ |k,mγ)(z);

• the twisted trace map, defined by

Tr′ : Sk,m(Γ0(p))→ Sk,m(GL2(O))

ϕ 	→ Tr(ϕFr).

DEFINITION 2.4. The space of newforms of level p is Snew
k,m (Γ0(p)) = Ker(Tr) ∩ Ker(Tr′).

The following important criterion is [6, Theorem 2.8 and Corollary 2.10].

THEOREM 2.5. We have a direct sum decomposition Sk,m(Γ0(p)) = Sold
k,m(Γ0(p)) ⊕

Snew
k,m (Γ0(p)) if and only if the mapD := Id − Pk−2m(Tr′)2 is bijective. Moreover,

Ker(D) = {δ1ϕ : ϕ ∈ Sk,m(GL2(O)), Tpϕ = ±Pk/2ϕ}.

3. Main results

For the level t (actually for any prime of degree one), we computed the matrix
associated to the operator Ut acting on Sk,m(Γ0(t)) (using Teitelbaum’s interpretation
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with harmonic cocycles in [3, Section 4] and [4, Sections 3 and 4]). For the
convenience of the reader, we recall the matrices involved in our computations.

To have Sk,m(Γ0(t)) � 0, we need k ≡ 2m (mod q − 1), and hence there exists
a unique d ∈ N such that k = 2m + (d − 1)(q − 1). For notational reasons, we put
j + 1 ≡ m (mod q − 1) with 0 � j � q − 2: the letters j and d provide the type m and
the dimension of the matrix U associated to the action of Ut on Sk,m(Γ0(t)). The crucial
ingredient is the following matrix. For even d = 2n, put

T :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1 m1,2 · · · m1,n (−1) j+1m1,n · · · (−1) j+1m1,2 (−1) j+1m1,1

m2,1 m2,2 · · · m2,n (−1) j+1m2,n · · · (−1) j+1m2,2 (−1) j+1m2,1
...

...
...

...
...

...
mn,1 mn,2 · · · mn,n (−1) j+1mn,n · · · (−1) j+1mn,2 (−1) j+1mn,1

mn+1,1 mn+1,2 · · · 0 0 · · · (−1) j+1mn+1,2 (−1) j+1mn+1,1
...

... . .
. ...

...
. . .

...
...

m2n−1,1 0 · · · 0 0 · · · 0 (−1) j+1m2n−1,1

0 0 · · · 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(The reason to denote it by T will become apparent shortly.) For odd d = 2n − 1, one
just needs to modify the indices and add the central nth column

(m1,n, . . . , mn−1,n, 0, . . . , 0).

The entries of T are the binomial coefficients in Fp,

ma,b =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−

[(
j + (d − a)(q − 1)
j + (d − b)(q − 1)

)
+ (−1) j+1

(
j + (d − a)(q − 1)
j + (b − 1)(q − 1)

)]
if a � b,

(−1) j
(

j + (d − a)(q − 1)
j + (a − 1)(q − 1)

)
if a = b.

(3.1)

Let A be the antidiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 (−1) j+1

. .
.

(−1) j+1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Then A2 = I (the identity matrix of dimension d) and the main symmetry of T can be
expressed as TA = T . This is clear for even d. For odd d and even j, note that the central
column is identically 0 by (3.1), while for odd j, one is simply multiplying the central
column by one. Finally, let

M := T − A. (3.2)

We list here the matrices associated to the maps involved in our computations.
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• The action of Ut on Sk,m(Γ0(t)) is described by

U = MD := M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ts1 0

. . .
0 tsd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where for 1 � i � d, we put si = j + 1 + (i − 1)(q − 1) (so that si + sd+1−i = k for
1 � i � d/2 or 1 � i � (d + 1)/2 accordingly as d is even or odd).

• The matrix for the Fricke involution Fr(t) is

tm−kF = tm−k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 (−t)sd

. .
.

(−t)s1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = tm−k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 (−1) j+1tsd

. .
.

(−1) j+1ts1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Note that F2 = tkI and AF = D.
• Direct computation (see [3, Section 3.3]) provides the equation

Tr(ϕ) = ϕ + t−mUt(ϕFr). (3.3)

Its immediate translation in matrix form is

I + t−mMD(tm−kF) = I + t−kMAF2 = I +MA

= A2 + (T − A)A = (A + T − A)A = TA = T .

• The matrix for the twisted trace follows directly:

T ′ = tm−kTF =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tm−k(M + A)F = tm−k(MF + D)
tm−kTAF = tm−kTD
tm−kTAF = tm−k(I +MA)F = tm−k(F +MD).

• Finally, since the trace acts trivially on Im(δ1), it is easy to see that Ker(Tr − Id) =
Im(δ1), that is, in terms of matrices, Im(δ1) = Ker(T − I) = Ker(MA).

3.1. Diagonalisability of M. As seen above, the matrices M and T satisfy a
number of equations. We mention a few more, leading to the diagonalisability of M
(unfortunately not equivalent to the diagonalisability of U = MD, which is included in
[4, Conjecture 1.1] and is related to the conjectures treated in this paper), but we shall
not pursue this topic further here.

(i) Like all trace maps T2 = T and T is diagonalisable. This obviously leads to d2

equations in the entries mi,j which are still difficult to handle for a generic d.
(ii) Let v = Mw ∈ Im(M). Then Tv = TMw = T(T − A)w = (T2 − TA)w = 0, that is,

Im(M) ⊆ Ker(T). Conversely, let v ∈ Ker(T). Then, writing v = −Aw, we get 0 =
Tv = −TAw = −Tw, that is, w ∈ Ker(T) as well. Therefore, Mw = (T − A)w =
−Aw = v ∈ Im(M). Hence, Im(M) = Ker(T).
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(iii) Finally,

M3 = (T − A)3 = (T2 − AT − TA + I)(T − A)

= (−AT + I)(T − A) = −AT2 + T + ATA − A
= T − A = M.

Therefore, for any p � 2, the matrix M is diagonalisable and we can write

v = 1
2 (M2v + v) + 1

2 (M2v − v) + (v −M2v) := v1 + v−1 + v0,

where each vα is in the M-eigenspace of the eigenvalue α ∈ {0, 1,−1}. This reflects the
results of [2], where we found examples of nondiagonalisability of Ut in characteristic
two, due to the presence of inseparable eigenvalues associated to newforms.

3.2. Injectivity of Tt. In [4], we proved some special cases of Conjecture 1.1
building on the analogue of Theorem 3.2 and on the above matrices/formulae (which
are not available for deg P � 2). In particular, in [4, Theorem 5.5], we proved that when
dimC∞(Sk,m(GL2(O)) = 0, that is, there are no oldforms, the matrix M is antidiagonal
and the conjectures hold. We shall now approach the case dimC∞(Sk,m(GL2(O)) = 1.
This will include many more cases since, for example, dimC∞(Sk,0(GL2(O)) = 1 if
and only if q � d < 2q − 1, by [9, Proposition 4.3] (compare with the bounds of [4,
Theorems 5.8, 5.9, 5.12 and 5.14]).

THEOREM 3.1. Assume dimC∞ Im(δ1) = 1. Then Tt is injective.

PROOF. Observe that, by [6, Proposition 2.5], Ker(Tt) = Ker(MA) ∩ Ker(MDMD).
Thanks to our assumption on the dimension of Im(δ1) = Ker(MA) and because the
entries of MA are in Fp, we have dimC∞(Ker(MA) ∩ Ker(MDMD)) � 1 and we can fix
a generator a = (a1, . . . , ad) ∈ Fd

p. To avoid adding the transpose symbol to the several
indices we shall need in the computations, with a little abuse of notation, we shall
write a both for the row vector and for its transpose, the context will clarify which one
we are using. Our goal is to prove a = 0.

We prove the case of even dimension d = 2n; for odd d, the argument is exactly the
same. The vector a satisfies the following equations coming from MAa = 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m1,1 − 1)a1 + m1,2a2 + · · · + m1,nan + (−1) j+1m1,nan+1 + · · · + (−1) j+1m1,1a2n = 0
m2,1a1 + (m2,2 − 1)a2 + · · · + m2,nan + (−1) j+1m2,nan+1 + · · · + (−1) j+1m2,1a2n = 0
...
mn,1a1 + mn,2a2 + · · · + (mn,n − 1)an + (−1) j+1mn,nan+1 + · · · + (−1) j+1mn,1a2n = 0
mn+1,1a1 + mn+1,2a2 + · · · + mn+1,n−1an−1 − an+1 + · · · + (−1) j+1mn+1,1a2n = 0
...
m2n−1,1a1 − a2n−1 + (−1) j+1m2n−1,1a2n = 0
−a2n = 0.

(3.4)
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Now put p(t) := MDa ∈ Fp[t]2n, with coordinates pi(t). Then (with a2n = 0), p(t) is
equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1a1ts1 + · · · + m1,nantsn + (−1) j+1m1,nan+1tsn+1 + · · · + (−1) j+1m1,2a2n−1ts2n−1

m2,1a1ts1 + · · · + m2,nantsn + (−1) j+1m2,nan+1tsn+1 + · · · + (−1) j+1(m2,2 − 1)a2n−1ts2n−1

...
mn,1a1ts1 + · · · + +(−1) j+1(mn,n − 1)an+1tsn+1 + · · · + (−1) j+1mn,2a2n−1ts2n−1

mn+1,1a1ts1 + · · · + (−1)jantsn + mn+1,n−1an+2tsn+2 + · · · + (−1) j+1mn+1,2a2n−1ts2n−1

...
m2n−1,1a1ts1 + (−1) ja2ts2

(−1) ja1ts1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.5)

Since MDp(t) = 0, we also have the equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1,1ts1 p1(t) + · · · + m1,ntsn pn(t) + (−1) j+1m1,ntsn+1 pn+1(t) + · · · + (−1) j+1(m1,1 − 1)ts2n p2n(t) = 0
m2,1ts1 p1(t) + · · · + m2,ntsn pn(t) + (−1) j+1m2,ntsn+1 pn+1(t) + · · · + (−1) j+1m2,1ts2n p2n(t) = 0
...
mn,1ts1 p1(t) + · · · + mn,ntsn pn(t) + (−1) j+1(mn,n − 1)tsn+1 pn+1(t) + · · · + (−1) j+1mn,1ts2n p2n(t) = 0
...
m2n−1,1ts1 p1(t) + (−1) jts2 p2(t) + (−1) j+1m2n−1,1ts2n p2n(t) = 0
(−1)jts1 p1(t) = 0.

(3.6)

Note that in (3.6), we have polynomials in Fp[t]. From now on, we shall use the identity
principle for polynomials to solve the equations in the ai. From the last row in (3.6),
we get p1(t) = 0, and comparing with (3.5) and recalling the si are distinct,

m1,1a1 = m1,2a2 = · · · = m1,nan = m1,nan+1 = · · · = m1,2a2n−1 = 0.

Substituting in the first and second-last equations in (3.4), we obtain

a1 = a2n−1 = 0,

which also means that p2n(t) = 0. We can rewrite (3.4), (3.5) and (3.6) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m2,2 − 1)a2 + · · · + m2,nan + (−1) j+1m2,nan+1 + · · · + (−1) j+1m2,3a2n−2 = 0
...
mn,2a2 + · · · + (mn,n − 1)an + (−1) j+1mn,nan+1 + · · · + (−1) j+1mn,3a2n−2 = 0
mn+1,2a2 + · · · + mn+1,n−1an−1 − an+1 + · · · + (−1) j+1mn+1,3a2n−2 = 0
...
m2n−2,2a2 − a2n−2 = 0
a1 = a2n−1 = a2n = 0,

(3.7)
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p(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
m2,2a2ts2 + · · · + m2,nantsn + (−1) j+1m2,nan+1tsn+1 + · · · + (−1) j+1m2,3a2n−2ts2n−2

...
mn,2a2ts2 + · · · + mn,nantsn + (−1) j+1(mn,n − 1)an+1tsn+1 + · · · + (−1) j+1mn,3a2n−2ts2n−2

mn+1,2a2ts2 + · · · + (−1)jantsn + mn+1,n−1an+2tsn+2 + · · · + (−1) j+1mn+1,3a2n−2ts2n−2

...
(−1) ja2ts2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.8)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1,2ts2 p2(t) + · · · + m1,ntsn pn(t) + (−1) j+1m1,ntsn+1 pn+1(t) + · · · (−1) j+1m1,2ts2n−1 p2n−1(t) = 0
m2,2ts2 p2(t) + · · · + m2,ntsn pn(t) + (−1) j+1m2,ntsn+1 pn+1(t) + · · · + (−1) j+1(m2,2 − 1)ts2n−1 p2n−1(t) = 0
...
mn,2ts2 p2(t) + · · · + mn,ntsn pn(t) + (−1) j+1(mn,n − 1)tsn+1 pn+1(t) + · · · + (−1) j+1mn,2ts2n−1 p2n−1(t) = 0
...
(−1) jts2 p2(t) = 0
p1(t) = p2n(t) = 0.

(3.9)

We repeat the same argument starting now from the second-last equation in (3.9),
which yields p2(t) = 0. This means

m2,2a2 = · · · = m2,nan = m2,nan+1 = · · · = m2,3a2n−2 = 0,

which, substituted in the first equation of (3.7), gives a2 = 0. From the second-last
equations in (3.7) and (3.8), a2n−2 = 0 and p2n−1(t) = 0 as well. Iterating the process,
we see that the specular symmetries between MD ((−1) j on the antidiagonal) and MA
(−1 on the diagonal) and the positions of the mi,i − 1 lead to a = 0. �

3.3. Direct sum. We use the criterion of Theorem 2.5 to show that Ker(D) = 0.
Note that ϕ ∈ Ker(D) yields ϕ − tk−2m(Tr′)2(ϕ) = 0, that is, ϕ = tk−2m(Tr′)2(ϕ) ∈
Sk,m(GL2(O)); and hence ϕ is old and, in particular, belongs to Im(δ1) = Ker(MA).
So we write ϕ = δ1ψ and, by [3, (3.2)], Ut(δ1ψ) = δ1Ttψ − tk−mδtψ is old as well.
Moreover,

t2m−kδ1ψ = (Tr′)2(δ1ψ) = (Tr′)(Tr′(δ1ψ))

= Tr′((δ1ψ)Fr + tm−kUt(δ1ψ)) (use the twisted version of (3.3))

= Tr(((δ1ψ)Fr)Fr) + tm−kTr′(Ut(δ1ψ))

= t2m−kTr(δ1ψ) + tm−kTr′(Ut(δ1ψ))

= t2m−kδ1ψ + tm−kTr′(Ut(δ1ψ)),
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that is, Tr′(Ut(δ1ψ)) = 0. We can similarly prove that Tr(Ut(δ1ψ)) = 0 (that is, Ut(δ1ψ)
is old and new), but the equations coming from MA and T ′U will be enough for our
purposes.

THEOREM 3.2. If dimC∞ Im(δ1) = 1, then Sk,m(Γ0(t)) = Sold
k,m(Γ0(t)) ⊕ Snew

k,m (Γ0(t)).

PROOF. Take a ∈ Fd
p satisfying MAa = 0 and representing an element η = δ1ϕ ∈

Ker(D), so that, as seen above, TF(MDa) = 0. We prove that these two relations yield
a = 0, so that Ker(D) = 0 andD is invertible. As before, we only treat the case of even
d = 2n.

The equation MAa = 0 gives again the system (3.4) (in particular, a2n = 0). Writing
p(t) = MDa as in (3.5), from TF(MDa) = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1,1ts1 p1(t) + · · · + m1,ntsn pn(t) + m1,n(−t)sn+1 pn+1(t) + · · · + m1,1(−t)s2n p2n(t) = 0
m2,1ts1 p1(t) + · · · + m2,ntsn pn(t) + m2,n(−t)sn+1 pn+1(t) + · · · + m2,1(−t)s2n p2n(t) = 0
...
mn,1ts1 p1(t) + · · · + mn,ntsn pn(t) + mn,n(−t)sn+1 pn+1(t) + · · · + mn,1(−t)s2n p2n(t) = 0
mn+1,1ts1 p1(t) + · · · + mn+1,1(−t)s2n p2n(t) = 0
...
m2n−2,1ts1 p1(t) + m2n−2,2ts2 p2(t) + m2n−2,2(−t)s2n−1 p2n−1(t) + m2n−2,1(−t)s2n p2n(t)=0
m2n−1,1ts1 p1(t) + m2n−1,1(−t)s2n p2n(t) = 0.

(3.10)

In the last equation of (3.10), the term of highest degree is m2n−1,1(−t)s2n (−1)ja1ts1 =

−m2n−1,1a1tk (note that p1(t) has degree at most s2n−1 because a2n = 0); therefore,
m2n−1,1a1 = 0 and the second-last equation in (3.4) tells us that a2n−1 = 0. Now, (3.4)
and (3.5) turn into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m1,1 − 1)a1 + m1,2a2 + · · · + m1,nan + (−1) j+1m1,nan+1 + · · · + (−1) j+1m1,3a2n−2=0
m2,1a1 + (m2,2 − 1)a2 + · · · + m2,nan + (−1) j+1m2,nan+1 + · · · + (−1) j+1m2,3a2n−2=0
...
mn,1a1 + mn,2a2 + · · · + (mn,n − 1)an + (−1) j+1mn,nan+1 + · · · + (−1) j+1mn,3a2n−2=0
mn+1,1a1 + mn+1,2a2 + · · · + mn+1,n−1an−1 − an+1 + · · · + (−1) j+1mn+1,3a2n−2 = 0
...
m2n−2,1a1 + m2n−2,2a2 − a2n−2 = 0
m2n−1,1a1 = 0
a2n−1 = a2n = 0

(3.11)
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and

p(t)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1a1ts1 + · · · + m1,nantsn + (−1) j+1m1,nan+1tsn+1 + · · · + (−1) j+1m1,3a2n−2ts2n−2

m2,1a1ts1 + · · · + m2,nantsn + (−1) j+1m2,nan+1tsn+1 + · · · + (−1) j+1m2,3a2n−2ts2n−2

...
mn,1a1ts1 + · · · + mn,nantsn + (−1) j+1(mn,n − 1)an+1tsn+1 + · · · + (−1) j+1mn,3a2n−2ts2n−2

mn+1,1a1ts1 + · · · + (−1)jantsn + mn+1,n−1an+2tsn+2 + · · · + (−1) j+1mn+1,3a2n−2ts2n−2

...
(−1) ja2ts2

(−1) ja1ts1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the second-last equation in (3.10):

m2n−2,1ts1 p1(t) + m2n−2,2ts2 p2(t) + m2n−2,2(−t)s2n−1 p2n−1(t) + m2n−2,1(−t)s2n p2n(t) = 0.

The term with the highest possible degree s1 + s2n = s2 + s2n−1 = k is

m2n−2,2(−t)s2n−1 (−1)ja2ts2 + m2n−2,1(−t)s2n (−1)ja1ts1 = −(m2n−2,2a2 + m2n−2,1a1)tk,

and hence m2n−2,1a1 + m2n−2,2a2 = 0. Looking at the system (3.11), we obtain
a2n−2 = 0; and hence the degree of pi(t) is bounded by s2n−3 for all i.

The proof goes on in the same way. It may be less evident than the one for
Theorem 3.1 (where the ai vanished in pairs), but looking always at the terms of degree
k of the (2n − i)th equation of (3.10) and substituting in (3.11), we are able to prove that
a2n−i = 0 and, as an immediate consequence from (3.5), that all the pi(t) have degree
at most s2n−i−1. For example, midway through the proof we get

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
...

an
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and p(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1,1a1ts1 + · · · + m1,nantsn

...
mn,1a1ts1 + · · · + mn,nantsn

mn+1,1a1ts1 + · · · + (−1)jantsn

mn+2,1a1ts1 + · · · + (−1)jan−1tsn−1

...
(−1)ja1ts1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, what remains of (3.4) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m1,1 − 1)a1 + m1,2a2 + · · · + m1,nan = 0
m2,1a1 + (m2,2 − 1)a2 + · · · + m2,nan = 0
...
mn,1a1 + mn,2a2 + · · · + (mn,n − 1)an = 0
an+1 = · · · = a2n = 0.

(3.12)

Finally, we observe that the nth equation of (3.10) is

mn,1ts1 p1(t) + · · · + mn,ntsn pn(t) + mn,n(−t)sn+1 pn+1(t) + · · · + mn,1(−t)s2n p2n(t) = 0.
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As before, the term of degree k must have coefficient 0 and it appears only in the final
terms starting from mn,n(−t)sn+1 pn+1(t). So we get

mn,nan + mn,n−1an−1 + · · · + mn,1a1 = 0

and, by (3.12), an = 0 as well. Iterating we get a = 0 and so our claim. �
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