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We investigate the existence and branching patterns of wave trains in the
mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU)
lattice. In contrast to FPU lattice, we have to solve coupled advance-delay
differential equations, which are reduced to a finite-dimensional bifurcation equation
with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction
and invariant theory. We establish a link between the MiM lattice and the
monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains
persist near µ = 0 in the nonresonance case and in the resonance case p : q where q
is not an integer multiple of p. Furthermore, we obtain the multiplicity of
bichromatic wave trains in p : q resonance where q is an integer multiple of p, based
on the singular theorem.
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1. Introduction

In the past two decades, there has been an explosion of interest in the study of
so-called granular crystals [15, 17], which consist of chains of elastically interaction
beads that are not only very experimentally accessible, but also extensively tunable
and controllable, as regard their materials, geometry, heterogeneity, etc. The most
representative example of such a system is the famous Fermi–Pasta–Ulam (FPU)
type described in detail in previous work [5]. Since the discovery of solitary waves
based on the remarkable observations of recurrence by Fermi, Paste and Ulam [5]
and Zabusky and Kruskal [25], more and more interest has been devoted to the
study of the dynamics of such lattice systems.
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More recently, variants of the standard granular system in which internal res-
onators are present in each of the lattice nodes have been proposed theoretically
and some of them have also been realized experimentally. In this paper, we consider
the mass-in-mass (MiM) variant of the FPU lattice: two one-dimensional interacting
sublattices of harmonically coupled beads and internal resonators. Assume that the
beads and the resonators have mass 1 and mass μ > 0, respectively. The equations
of motion for MiM lattices are given by

{
Üj = V ′(Uj+1 − Uj) − V ′(Uj − Uj−1) + κ(uj − Uj);
μüj = κ(Uj − uj),

(1.1)

where Uj is the displacement of the jth bead with respect to its equilibrium position,
uj is the displacement of the jth resonator, V is the potential of interaction between
beads and the positive constant κ measures the coupling between the beads and
their internal resonators.

System (1.1) can be viewed as a Hamiltonian dynamical system with the
symplectic structure:

dUj

dt
=

∂H

∂pj
,

dpj

dt
= − ∂H

∂Uj
;

duj

dt
=

∂H

∂qj
,

dqj

dt
= − ∂H

∂uj
;

and the Hamiltonian function

H =
∑
j∈Z

1
2
(p2

j +
1
μ

q2
j ) + V (Uj+1 − Uj) +

κ

2
(uj − Uj)2,

where pj(t) = U̇j and qj(t) = μu̇j . Throughout this paper, we assume that the
interaction potential V has a Taylor expansion of the form

V (z) =
1
2
z2 +

α

3!
z3 +

β

4!
z4 · · · .

We shall consider a wave train to (1.1) if it is a time-periodic solution and relative
periodic with respect to the maximal particle-shift symmetry. That is,

∃ T > 0, such that Uj(t) = Uj(t + T ) and uj(t) = uj(t + T );
∃ τ ∈ R, such that Uj+1(t) = Uj(t + τ) and uj+1(t) = uj(t + τ).

Such solutions have the form

Uj(t) = ϕ1(ωt − kj), uj(t) = ϕ2(ωt − kj), (1.2)

where ω = 1
T > 0, k = ωτ , and ϕ1, ϕ2 are one-periodic functions. Since the period

of waveform functions is normalized to 1, we choose the wavenumber k within the
interval [−1/2, 1/2]. Substituting of the ansatz (1.2) into (1.1), we obtain coupled
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advance-delay differential equations:{
ω2ϕ′′

1(s) = V ′(ϕ1(s − k) − ϕ1(s)) − V ′(ϕ1(s) − ϕ1(s + k)) + κ(ϕ2(s) − ϕ1(s));
μω2ϕ′′

2(s) = κ(ϕ1(s) − ϕ2(s)),
(1.3)

where s = ωt − kj.
The most common approach to study bifurcation problems in functional differ-

ential equations involves the computation of (normal forms of) reduced bifurcation
equations on centre manifolds. However, the ill-posedness of the initial value prob-
lem of (1.3) prevents us from the construction of its semigroup and invariant
manifolds as well. This drawback has long limited our understanding of the full
nonlinear system (1.3). Usually, variation methods and topological methods are
effective ways to investigate the existence of travelling waves in the lattice systems.
However, the concrete structural form of these solutions cannot be derived. This
brings many difficulties for us in the process of studying the multiplicity, stability
and bifurcation of the travelling waves in the relevant systems. It is meaningful for
us to obtain the concrete structural form of the travelling wave solutions.

Firstly, we consider the existence of wave trains in the linear MiM lattice for
which V (z) = 1

2z2. It is easy to check that for every ε > 0 and φ0 ∈ R/2πZ, the
functions {

Uj = εΓn,ω
κ,μ cos(2πnωt − 2πnkj + φ0),

uj = ε cos(2πnωt − 2πnkj + φ0)
(1.4)

are solutions to the linear MiM lattice, exactly if ω and k satisfy the dispersion
relation

π2ω2
( μ

Γn,ω
κ,μ

+ 1
)

= sin2(kπ),

where

Γn,ω
κ,μ =

κ − 4π2n2ω2μ

κ
for n ∈ Z>0.

The above wave trains are called monochromatic wave trains. It follows from a
Fourier transformation that all motions of the linear lattice are a superposition of
such monochromatic wave trains. Some of these superpositions are actually wave
trains themselves, for instance if there exists (p, q, ω, k) ∈ Z>0 × Z>0 × R>0 ×
(0, 1/2] such that ⎧⎪⎨

⎪⎩
π2p2ω2

( μ

Γp,ω
κ,μ

+ 1
)

= sin2(πpk),

π2q2ω2
( μ

Γq,ω
κ,μ

+ 1
)

= sin2(πqk),

where p �= q, then for every ε1 > 0, ε2 > 0 and φ1, φ2 ∈ R/2πZ, the functions{
Uj = ε1Γp,ω

κ,μ cos(2πpωt − 2πpkj + φ0) + ε2Γq,ω
κ,μ cos(2πqωt − 2πqkj + φ1),

uj = ε1 cos(2πpωt − 2πpkj + φ0) + ε2 cos(2πqωt − 2πqkj + φ1)

are wave train solutions to the linear lattice with temporal period T = qp
ω and

the spatial period τ = k
ω . We call these bichromatic wave trains. For convenience,
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solving

π2n2ω2
( μ

Γn,ω
κ,μ

+ 1
)

= sin2(πnk)

for ω yields ω = g+(k, n) or ω = g−(k, n), where

g±(k, n) =

√√√√[
(μ + 1)κ + 4μ sin2(nπk)

]±√
[(μ − 1)κ + 4μ sin2(nπk)]2 + 4μκ2

8π2n2μ
.

(1.5)

What we are concerned with in this paper is whether the monochromatic and
bichromatic wave trains of the linear MiM lattice continue to exist in the nonlinear
lattice. In contrast to monatomic chains, we need to assume two different waveform
functions for beads and resonators, respectively. Due to the presence of resonators,
there is the case where q is an integer multiple of p in p : q resonance, which does
not occur in the monatomic FPU lattice [10]. The results on the nonresonant case
and the resonant case p : q where q is not an integer multiple of p on the MiM
lattice are as follows.

Theorem 1.1 Monochromatic wave trains. Let n∗ ∈ Z>0. When ω∗ > 0 and k∗ ∈
[−1/2, 1/2] are such that ω∗ = g±(k∗, n∗), but ω∗ �= g±(k∗, n) for all n ∈ Z>0 \
{n∗}. Then the nonlinear MiM lattice (1.1) supports a one-parameter family of
solutions of form (1.2) which can be parameterized by the small amplitude ε of uj

in the linear MiM lattice. This family of solutions is unique up to a phase shift and
can be written as{

Uj = εΓn∗,ω∗
κ,μ cos(2πn∗ω(ε)t − 2πn∗k∗j + φ0) + O(ε2);

uj = ε cos(2πn∗ω(ε)t − 2πn∗k∗j + φ0) + O(ε2).
(1.6)

Here, φ0 ∈ R \ 2πZ is arbitrary. The function ε �→ ω(ε) satisfies ω(ε) → ω∗ as ε →
0. O(ε2) represents the wave trains of the form (1.2) with the amplitude order O(ε2).

Theorem 1.2 Bichromatic wave trains. Assume that p, q ∈ Z>0 with p < q,
and ω∗ > 0, k∗ ∈ [−1/2, 0)

⋃
(0, 1/2], satisfy ω∗ = g±(k∗, p) and ω∗ = g±(k∗, q),

but ω∗ �= g±(k∗, n) for all n ∈ Z>0 \ {p, q}. Furthermore, suppose that the
curves ω∗ = g±(k, p) and ω∗ = g±(k, q) intersect transversely at (k∗, ω∗) and
sin(pπk∗) sin(qπk∗) �= 0. Define p̃ = p/ gcd(p, q) and q̃ = q/ gcd(p, q), and gcd(p, q)
is the greatest common divisor of p and q. In the case where p̃ > 1, the nonlinear
MiM lattice (1.1) supports two-parameter family of solutions of form (1.2) which
can be parameterized by the small amplitudes (ε1, ε2) of uj in the linear MiM lattice.
This family of solutions is unique up to a phase shift and can be written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Uj = ε1Γp,ω∗
κ,μ cos(2πpω±(ε)t − 2πpk±(ε)j + p̃φ0)

+ ε2Γq,ω∗
κ,μ cos(2πqω±(ε)t − 2πqk±(ε)j + q̃φ0 + σ±) + O(‖ε‖2);

uj = ε1 cos(2πpω±(ε)t − 2πpk±(ε)j + p̃φ0)

+ ε2 cos(2πqω±(ε)t − 2πqk±(ε)j + q̃φ0 + σ±) + O(‖ε‖2).

(1.7)
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Here φ0 ∈ R \ 2πZ is arbitrary and σ+ = π
2p̃ , σ− = − π

2p̃ if p̃ + q̃ is odd, whereas
σ+ = 0, σ− = π

p̃ if p̃ + q̃ is even. The functions ω±(ε), k±(ε) are analytic and satisfy
ω±(ε) → ω∗, k±(ε) → k∗ as ε = (ε1, ε2) → 0. O(‖ε‖2) represents the wave trains of
form (1.2) with the amplitude order O(‖ε‖2).

It is important to observe that not every bichromatic wave trains persist in
the nonlinear MiM lattice. Note that by setting ε1 = 0 or ε2 = 0, the wave trains
actually belong to the monochromatic wave trains.

Now we consider the resonator limit μ → 0. The MiM lattice (1.1) can be reduced
to

Üj = V ′(Uj+1 − Uj) − V ′(Uj − Uj−1) (1.8)

in the limit of μ → 0. System (1.8) is a monatomic FPU lattice with interaction
potential V . Similarly, the travelling wave equations (1.3) can be also reduced to

ω2ϕ′′
1 = V ′(ϕ1(s − k) − ϕ1(s)) − V ′(ϕ1(s) − ϕ1(s + k)), (1.9)

as μ → 0, where ϕ1 = ϕ2. It follows that the internal resonators are fixed at the
centre of their hosting beads, and they have exactly the same profile functions.
System (1.9) is exactly the travelling wave equations of the monatomic FPU lattice
(1.8). A lot of research has addressed the existence of different sorts of solutions to
(1.8), depending on how the potential V is chosen, e.g. [2, 6, 7, 10, 13, 18, 19].

We should mention that the existence of monochromatic and bichromatic wave
trains was discussed for monatomic FPU lattices in [10]. It takes little insight to
figure out that wave trains of (1.1) shadow wave trains of (1.8) when μ is small.
Indeed, as μ → 0, then Γn,ω

κ,μ → 1 and the dispersion relation could be rewritten as

ω = ± sin(nkπ)
nπ

,

which is exactly the same as that for monatomic FPU lattices in [10]. Meanwhile,
it is found that wave trains in theorems 1.1 and 1.2 are exactly the same as that
for monatomic FPU lattices, see theorems 1–2 in [10]. Namely, these two kinds
of wave trains with small amplitude persist near μ = 0 under the nondegeneracy
conditions.

This result should not come as a surprise. Actually, there are some recent articles
on the small resonator limit for the MiM lattice. Kevrekidis et al. [16] showed that
for the Hertzian potential V (x) = x

5/2
+ , there exists a countable number of choices

for μ, converging to zero, for which the MiM lattice admits spatially localized trav-
elling wave solutions. Faver et al. [4] extended this work and proved the existence of
the same solution of MiM lattice with more general potentials in two distinguished
limits, that is, μ → 0 and κ → ∞. Furthermore, Faver [3] proved the existence
of nonlocal solitary waves, called nanopterons, which converge at infinity to very
small-amplitude periodic waves, excluding a countable collection of μ. Notice that
the results mentioned so far concern the travelling waves including solitary waves
and nanopterons. In the recent paper [11], Hadadifard et al. provided quantita-
tive analysis of the fact that the small resonator lattice (1.1) is well-approximated
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by the limiting FPU system (1.8) under suitable initial conditions. We would
like to point out that this result addresses the small resonator limit for the
Cauchy problem.

We also mention that the small mass ratio limit for diatomic FPU lattice has
been considered in the context of the existence of wave trains [1, 14], whose works
were based on the ideas of the so-called anti-continuum limit. Recently, Pelinovsky
and Schneider [20] studied a diatomic FPU lattice in the small mass ratio limit and
proved a approximation theorem. However, their ideas are exactly different from
the anti-continuum limit.

Is it possible to obtain some new results when discussing the MiM lattice in con-
trast to monatomic FPU lattice? The answer is yes. By using the singular theorem
[8], we show that there may be 0,1,2 or 3 branches of bichromatic wave trains with
small amplitude in the resonant case p : q where q is an integer multiple of p. This
paper is a continuation of [10, 26, 27] on the existence of periodic travelling waves
in Hamiltonian lattices.

This paper is arranged as follows. In § 2, following the frame works of [10, 26], we
show how a wave train ansatz for the MiM lattice leads to coupled advance-delay
equations, which is reduced to a finite-dimensional bifurcation equation with certain
symmetries by Lyapunov–Schmidt reduction. In § 3, we give the proofs of theorem
1.1 by means of invariant theory and singularity theory. In § 4, we distinguish two
cases to investigate the existence of the bichromatic wave trains: In the case where
p̃ > 1, we employ invariant theory to show that at some branching points, a generic
nonlinearity selects exactly two-parameter families of mixed-mode wave trains; in
the case where p̃ = 1, we use singularity theory to solve the reduced equations and
determine solutions of small amplitude.

2. Lyapunov–Schimdt reduction

In this section, we shall work in the Hilbert spaces of l times Sobolev differentiable
and 1-periodic functions for ϕ1, ϕ2 with average 0,

H l
0 :=

{
ϕ : R/Z → R, ϕ(s) =

∑
n∈Z

ϕne2πins

∣∣∣∣
‖ϕ‖2

l :=
∑
n∈Z

(1 + n2)l|ϕn|2 < ∞, ϕ0 = 0

}
.

Let X l = H l
0 × H l

0 × H l−1
0 × H l−1

0 , then system (1.3) can be viewed as an operator
equation and one may search for u = (u1, u2, u3, u4) ∈ X l which are zeros of the
map F = (F1, F2, F3, F4) :

F1(u, ω, k) = ωu′
1 − u3;

F2(u, ω, k) = ω
√

μu′
2 − u4;

F3(u, ω, k) = ωu′
3 + V ′(u1(s) − u1(s + k)) − V ′(u1(s − k) − u1(s)) + κ(u1 − u2);

F4(u, ω, k) = ω
√

μu′
4 + κ(u2 − u1). (2.1)
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In order to describe the geometric properties of the operator F , we introduce the
actions of the time-shift operator Rφ ∈ S

1 and the reversibility operator 
 ∈ Z
2 on

X l as follows:

(Rφu)(s) = u(s + φ), (
u)(s) = (−u1(−s),−u2(−s), u3(−s), u4(−s)).

Then we have the following properties.

Proposition 2.1.

(i) The operator F is reversible S
1-equivariant. Namely,

F ◦ Rφ = Rφ ◦ F, F ◦ 
 = −
 ◦ F.

(ii) F is Hamiltonian with respect to the weak symplectic form Ω: X l−1 × X l → R

defined by

Ω(u, v) =
2∑

j=1

∫
R/Z

[
uj+2(s)vj(s) − vj+2(s)uj(s)

]
ds,

for all u = (u1, u2, u3, u4) ∈ X l−1, v = (v1, v2, v3, v4) ∈ X l, and the Hamil-
tonian function H̃ : X l → R is defined by

H̃(u, ω, k) =
∫

R/Z

(
ωu1(s)u′

3(s) + ω
√

μu2(s)u′
4(s) +

1
2
u2

3(s) +
1
2
u2

4(s)

+ V (u1(s) − u1(s + k)) +
κ

2
(u2(s) − u1(s))2

)
ds.

Namely, Ω(F (u, ω, k), ·) = H̃u(u, ω, k). Furthermore, H̃ is invariant under
both Rφ and 
.

We shall try to solve F (u, w, k) = 0 for u ∈ X l and parameters (ω, k) ∈
R

+ × [− 1
2 , 1

2 ]. The derivative L = (L1, L2, L3, L4) of F with respect to u =
(u1, u2, u3, u4) evaluated at (0, w∗, k∗) is given by

L1(u, ω∗, k∗) = ω∗u′
1 − u3;

L2(u, ω∗, k∗) = ω∗√μu′
2 − u4;

L3(u, ω∗, k∗) = ω∗u′
3 + (2u1(s) − u1(s + k∗) − u1(s − k∗)) + κ(u1 − u2);

L4(u, ω∗, k∗) = ω∗√μu′
4 + κ(u2 − u1). (2.2)

Note that X l is the direct sum over n ∈ Z�=0 of the finite-dimensional subspaces

Πn = spanC{s �→ (e2πins, 0, 0, 0), s �→ (0, e2πins, 0, 0), s

�→ (0, 0, e2πins, 0), s �→ (0, 0, 0, e2πins)}.
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It is easy to check that these subspaces are invariant for L. Then the matrix of L
restricted on Πn is

An =

⎡
⎢⎢⎢⎣

2πinω∗ 0 −1 0
0 2πinω∗√μ 0 −1

4 sin2(πnk∗) + κ −κ 2πinω∗ 0
−κ κ 0 2πinω∗√μ

⎤
⎥⎥⎥⎦ .

The characteristic polynomial of the matrix An is

f(λ) = [(λ − 2πniω∗)2 + 4 sin2(nπk∗) + κ][(λ − 2πniω∗√μ)2 + κ] − κ2.

The eigenvalues of An can be zero if and only if f(0) = 0, and the kernel of An can
be at most one-dimensional. In fact, if f(0) = 0 and f ′(0) = 0, then

(−4π2n2ω∗2μ + κ)2 +
√

μκ2 = 0,

Since μ > 0, κ > 0, a contradiction. Note that f(0) = 0 is equivalent to

π2n2ω∗2
( μ

Γn,ω∗
κ,μ

+ 1
)

= sin2(πnk∗), (2.3)

which is also equivalent to ω∗ = g±(k∗, n). Then the kernel of L, denoted by K, is
given by

K := spanC

{
s �→ (Γn,ω∗

κ,μ , 1, 2πiω∗nΓn,ω∗
κ,μ , 2πiω∗n

√
μ)e2πins |

n ∈ Z�=0 and ω∗ = g±(k∗, n)
}

.

We shall below apply the Lyapunov–Schmidt reduction to obtain a finite-
dimensional bifurcation equation. To begin with, define an inner product on
X l−1 × X l−2 by

〈u, v〉 =
∫

R/Z

u(s)vT (s) ds for (u, v) ∈ X l−1 × X l−2,

then the adjoint operator L∗ of L with respect to the inner product is given by

(L∗u)1(s) = −ω∗u′
1 + (2u3(s) − u3(s + k∗) − u3(s − k∗)) + κ(u3 − u4);

(L∗u)2(s) = −ω∗√μu′
2 + κ(u4 − u3);

(L∗u)3(s) = −ω∗u′
3 − u1;

(L∗u)4(s) = −ω∗√μu′
4 − u2

for u = (u1, u2, u3, u4) ∈ X l−1. In fact, one can check that

〈u,Lv〉 = 〈L∗u, v〉
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by integration by parts and a substitution of variables. It follows that the kernel
K∗ of L∗ is given by

K∗ := spanC

{
s �→ (2πiω∗nΓn,ω∗

κ,μ , 2πiω∗n
√

μ,−Γn,ω∗
κ,μ ,−1)e2πins |

n ∈ Z�=0 and ω∗ = g±(k∗, n)
}

.

Then we can define the formal images of L∗ and L respectively:

M∗ := spanC

{
s �→ (e2πims, 0, 0, 0), s �→ (0, e2πims, 0, 0), s �→ (0, 0, e2πims, 0),

s �→ (0, 0, 0, e2πims), s �→ (2πinω∗, 0, 1, 0)e2πins,

s �→ (0, 2πinω∗√μ, 0, 1)e2πins, s �→ (1,−Γn,ω∗
κ,μ , 0, 0)e2πins |

m,n ∈ Z, ω∗ = g±(k∗, n) and ω∗ �= g±(k∗,m)
}⋂

X l,

and

M := spanC

{
s �→ (e2πims, 0, 0, 0), s �→ (0, e2πims, 0, 0), s �→ (0, 0, e2πims, 0),

s �→ (0, 0, 0, e2πims), s �→ (−1, 0, 2πiω∗n, 0)e2πins,

s �→ (0,−1, 0, 2πiω∗n
√

μ)e2πins, (0, 0, 1,−Γn,ω∗
κ,μ )e2πins |

m,n ∈ Z, ω∗ = g±(k∗, n) and ω∗ �= g±(k∗,m)
}⋂

X l−1.

By the previous construction, it is found that K⊥M∗ and K∗⊥M with respect to
the inner product. Therefore, we have

Lemma 2.2. The orthogonal direct sum decompositions hold:

X l−1 = K∗ ⊕M, X l = K ⊕M∗.

Furthermore, K∗ and M are S
1 ⊕ Z2-invariant subspaces of X l−1, and K and M∗

are S
1 ⊕ Z2-invariant subspaces of X l.

Remark 2.3.

(i) In fact, K and K∗ are symplectic spaces, M and M∗ are weak symplectic
spaces. Furthermore, K ⊥Ω M and K∗ ⊥Ω M∗.

(ii) The operator L : X l → X l−1 is Fredholm with index zero. L |M∗ : M∗ → M
is invertible and has a bounded inverse.

We now perform a Lyapunov–Schmidt reduction as follows. At first, let P and
I − P denote the projection operators from X l−1 onto M and K∗, respectively.
Obviously, P and I − P are S

1 ⊕ Z2-equivariant. Thus, F (u, ω, k) = 0 is equivalent
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to the following system:

PF (u, ω, k) = 0, (I − P )F (u, ω, k) = 0. (2.4)

For each u ∈ X l, there is a unique decomposition such that u = ξ + η, where ξ ∈ K
and η ∈ M∗. Thus, the first equation of (2.4) can be rewritten as

G(ξ, η, ω, k) � PF (ξ + η, ω, k) = 0.

Notice that G(0, 0, ω∗, k∗) = PF (0, ω∗, k∗) = 0 and Gξ(0, 0, ω∗, k∗) = L. Apply-
ing the implicit function theorem, we obtain a continuously differentiable S

1 ⊕
Z2-equivariant map η : K × R

2 → M∗ such that η(0, ω∗, k∗) = 0 and

PF (ξ + η(ξ, ω, k), ω, k) ≡ 0. (2.5)

Substituting η = η(ξ, ω, k) into the second equation of (2.4) gives

B(ξ, ω, k) � (I − P )F (ξ + η(ξ, ω, k), ω, k) = 0. (2.6)

Thus, we reduce the original bifurcation problem to the problem of finding zeros of
the map B : K × R

2 → K∗. We refer to B as the bifurcation map of system (2.2).
It follows from the reversible S

1-equivariance of F and the S
1 ⊕ Z2-equivariance of

W that the bifurcation map B is also reversible S
1-equivariant. Furthermore,

B(0, ω∗, k∗) = 0, Bξ(0, ω∗, k∗) = 0.

Therefore, we have the following result.

Theorem 2.4. There exists a S
1 ⊕ Z2-invariant neighbourhood U of (0, ω∗, k∗) ∈

K × R
2 such that each solution to B(ξ, ω, k) = 0 in U one-to-one corresponds to

some solution to F (u, ω, k) = 0 defined in (2.1).

Proposition 2.5. The bifurcation map B(·, ω, k) : K → K∗ is the Hamiltonian
vector field of h(·, ω, k), which is defined by

h(ξ, ω, k) := H̃(ξ + η(ξ, ω, k), ω, k),

that is, Ω|K×K∗(B(ξ, ω, k), ·) = hξ(ξ, ω, k). Furthermore, h is invariant under both
Rφ and 
.

The proofs of theorem 2.4 and proposition 2.5 are similar to that in [10] and
hence are omitted.

3. Families of monochromatic wave trains

In this section we study the existence of nonresonant Lyapunov families of
monochromatic wave trains in the MiM lattice. The range of g±(k, n) in (1.5)
consists of two disjoint frequency bands. We distinguish between optical modes
(corresponding to the dashed line in figure 1) and acoustic modes (corresponding to
the solid line in figure 1). Assume that k∗ and ω∗ solve the equation ω∗ = g±(k∗, n)
for exactly one pair n = ±n∗ ∈ Z�=0. Then both K and K∗ are two-dimensional.
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Figure 1. The dispersion curves ω = g±(k, n) for n = 1, 2, 3, 4, 5, where μ = 0.5, κ = 2.
ω = g−(k, n) (respectively, ω = g+(k, n)) is shown in solid (respectively,

dashed) curve.

Theorem 3.1. Let k∗ ∈ [−1/2, 1/2] and ω∗ > 0 be such that ω∗ = g±(k∗, n∗),
but ω∗ �= g±(k∗, n) for all n ∈ Z>0 \ {n∗}. Then for every ε � 0 close enough to
0 and every φ0 ∈ R/2πZ there is a unique analytic function ω = ω(ε) such that
hx(xn∗ , x−n∗ , ω(ε), k∗) = 0 for every small xn∗ = ε

2eiφ0 and limε→0 ω(ε) = ω∗.

Proof. It follows from the S
1 ⊕ Z2-invariant of h that it is a smooth function

of ω, k and the invariant a = xn∗x−n∗ . Thus the reduced bifurcation equations
hx(xn∗ , x−n∗ , ω, k) = 0 imply xn∗ ∂h

∂a = x−n∗ ∂h
∂a = 0. So it is true that ∂h

∂a = 0
except when xn∗ = x−n∗ = 0.

In the following, we Taylor expand h near (xn∗ , x−n∗ , ω∗, k∗) = (0, 0, ω∗, k∗).
For this purpose, we shall for u ∈ X l = K ⊕M∗ write

(u1, u2, u3, u4) =
∑

n∈Z �=0

xn(Γn,ω∗
κ,μ , 1, 2πinω∗Γn,ω∗

κ,μ , 2πinω∗√μ)e2πins

+ y1,n(2πinω∗, 0, 1, 0)e2πins

+ y2,n(0, 2πinω∗√μ, 0, 1)e2πins

+ y3,n(1,−Γn,ω∗
κ,μ , 0, 0)e2πins. (3.1)

Note that the variables x±n∗ are used to describe the elements of K while the
others describe the elements of M∗. And h is obtained from H̃ by viewing in
H̃ the dependent variables xn(n �= ±n∗) and yi,n as functions of the indepen-
dent variables x±n∗ , ω, k for K × R

2. These functions are defined by the equation
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PF (u(xn∗ , x−n∗ , ω, k), ω, k) = 0. Differentiation of this equation gives that xn =
O(‖(xn∗ , x−n∗ , ω − ω∗, k − k∗)‖2) for n �= ±n∗ and yi,n = O(‖(xn∗ , x−n∗ , ω −
ω∗, k − k∗)‖2) for all n. In terms of the variables xn, yi,n(i = 1, 2, 3), ω and k,
the Hamiltonian function H̃ reads

H̃(u,w, k) = H̃2(u,w, k) + O(‖u‖3)

=
∫

R/Z

(
ωu1(s)u′

3(s) + ω
√

μu2(s)u′
4(s) +

1
2
u2

3(s) +
1
2
u2

4(s)

+
1
2
(u1(s) − u1(s + k))2 +

κ

2
(u2(s) − u1(s))2

)
ds + O(‖u‖3)

=
∑

n∈Z �=0

[
4(Γn,ω∗

κ,μ )2 sin2(πnk) + 4π2ω∗2n2((Γn,ω∗
κ,μ )2 + 2μ − Γn,ω∗

κ,μ μ)

− 8π2n2((Γn,ω∗
κ,μ )2 + μ)ω∗ω

]
xnx−n + O(‖(xn∗ , x−n∗)‖3)

+ O(‖(xn∗ , x−n∗ , ω∗ − ω, k∗ − k)‖4). (3.2)

Then we have

h(xn∗ , x−n∗ , ω, k∗) = −8π2n∗2((Γn∗,ω∗
κ,μ )2 + μ)ω∗(ω − ω∗)xn∗x−n∗

+ O(‖(xn∗ , x−n∗)‖3) + O(‖(xn∗ , x−n∗ , ω∗ − ω)‖4).

Therefore, we see that ∂2h
∂ω∂a

∣∣∣
a=0,ω=ω∗

�= 0. By means of the implicit function

theorem, we can for every small positive value of a = ε2

4 , find an ω = ω(ε) such
that hx( ε

2eiφ0 , ω(ε), k∗) = 0. �

It follows from u ∈ K that

(u1(s), u2(s), u3(s), u4(s))

= xn∗(Γn∗,ω∗
κ,μ , 1, 2πiω∗n∗Γn∗,ω∗

κ,μ , 2πiω∗n∗√μ)e2πin∗s

+ x−n∗(Γn∗,ω∗
κ,μ , 1,−2πiω∗n∗Γn∗,ω∗

κ,μ ,−2πiω∗n∗√μ)e−2πin∗s,

then the solutions are exactly of the form given in theorem 1.1. In summary, for
every fixed k∗ there exists a one-parameter family of wave trains with amplitude ε.

4. Bichromatic wave trains

In figure 1, we can clearly see that several dispersion curves intersect transversally.
For example, the curve ω = g+(k, 2) (the blue dashed line) and the curve ω =
g−(k, 1) (the black solid line) intersect at some point (ω∗, k∗) and no other curves
pass through this point. This is the 1:2 resonance. We can also find other resonant
situations such as 1 : 3, 2 : 3 and 2 : 5 resonances and so on.

Throughout this section, we always assume that

(H) There exist two distinct integers p < q ∈ Z>0 and parameters ω∗ > 0 and k∗ ∈
[−1/2, 1/2] such that ω∗ = g±(k∗, p) and ω∗ = g±(k∗, q), but ω∗ �= g±(k∗, n)
for all n ∈ Z>0 \ {p, q}.
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Under assumption (H), both K and K∗ are four-dimensional. Let gcd(p, q) be
the greatest common divisor of p and q, and define

p̃ =
p

gcd(p, q)
and q̃ =

q

gcd(p, q)
.

The invariance of h under the action of the time shift operator Rα implies that h
must be a smooth function of ω, k and the invariants

a := xpx−p, b := xqx−q, c := i(xq̃
−px

p̃
q − xq̃

px
p̃
−q), d := (xq̃

−px
p̃
q + xq̃

px
p̃
−q).

Clearly, a, b, c, d are all real when xp = x−p and xq = x−q, i.e. (u1, u2, u3, u4) is
real-valued. In addition, the invariants have the following relation

c2 + d2 = aq̃bp̃, (4.1)

and 
 acts on them as follows


 : a �→ a, b �→ b, c �→ (−1)p+q+1c, d �→ (−1)p+qd.

In fact, h is either a smooth function of (a, b, c, ω, k) if p + q is odd, or a smooth
function of (a, b, d, ω, k) if p + q is even. Set

C =
{

c, p + q is odd;
d, p + q is even.

Then h can be considered as a function of (a, b, C, ω, k). For convenience, we
rewrite the potential function as

V (z) =
1
2
z2 +

α

3!
z3 + · · · + γ

(p̃ + q̃ − 1)!
zp̃+q̃−1 +

δ

(p̃ + q̃)!
zp̃+q̃ + · · · ,

where γ = dp̃+q̃−1V
dzp̃+q̃−1 (0) and δ = dp̃+q̃V

dzp̃+q̃ (0). Let

Hς1ς2ς3ς4 =

⎡
⎢⎢⎣

∂2h

∂ς1∂ς3

∂2h

∂ς2∂ς3
∂2h

∂ς1∂ς4

∂2h

∂ς2∂ς4

⎤
⎥⎥⎦

(a,b,C,ω,k)=(0,0,0,ω∗,k∗)

for ς1, ς2, ς3, ς4 ∈ {a, b, ω, k}.
Theorem 4.1. Under assumption (H), function h has the following properties:

(i) The matrix

Ha,b,ω,k =

⎡
⎢⎢⎣

∂2h

∂a∂ω

∂2h

∂b∂ω
∂2h

∂a∂k

∂2h

∂b∂k

⎤
⎥⎥⎦

(a,b,C,ω,k)=(0,0,0,ω∗,k∗)

(4.2)

is invertible if and only if the curves ω = g±(k, p) and ω = g±(k, q) intersect
transversely at (k∗, ω∗).

https://doi.org/10.1017/prm.2023.130 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.130


14 L. Zhang and S. Guo

(ii) if sin(pπk∗) sin(qπk∗) �= 0, then ∂h
∂C (0, 0, 0, ω∗, k∗) is a function of (γ, α, β, · · · , δ).

In fact, this function is of the form ∂h
∂C (0, 0, 0, ω∗, k∗) = g(γ, α, β, · · · ) + ςδ,

where ς is a nonzero constant and g is some smooth function.

Proof. (i) Firstly, we expand (u1, u2, u3, u4) ∈ X l = K ⊕M∗ similarly to formula
(3.1). Then the variables {zp, z−p, zq, z−q} are used to describe the elements of
K while the others describe the elements of M∗. Recall that xn (n �= ±p, ±q)
and yi,n can all be viewed as functions of the six independent coordinates
xn (n = ±p, ±q), ω, k satisfying xn = O(‖(xp, x−p, xq, x−q, ω∗ − ω, k∗ − k)‖2)
for n �= ±p, ±q and yi,n = O(‖(xp, x−p, xq, x−q, ω∗ − ω, k∗ − k)‖2) for all n and
i ∈ {1, 2, 3}. Then one obtains from (3.2) that

h(xp, x−p, xq, x−q, ω, k)

=
[
4(Γp,ω∗)2 sin2(πpk)

κ,μ + 4π2ω∗2p2((Γp,ω∗
κ,μ )2 + 2μ − Γp,ω∗

κ,μ μ)

− 8π2p2((Γp,ω∗
κ,μ )2 + μ)ω∗ω

]
xpx−p

+
[
4(Γq,ω∗)2 sin2(πqk)

κ,μ + 4π2ω∗2q2((Γq,ω∗
κ,μ )2 + 2μ − Γq,ω∗

κ,μ μ)

− 8π2q2((Γq,ω∗
κ,μ )2 + μ)ω∗ω

]
xqx−q

+ O(‖(xp, x−p, xq, x−q‖3) + O(‖(xp, x−p, xq, x−q, ω
∗ − ω, k∗ − k)‖4).

It follows that the determinant of matrix (4.2) is nonzero exactly when the
derivatives of k �→ g±(k, p) and k �→ g±(k, q) at k∗ are different.

(ii) In this part, we set ω = ω∗ and k = k∗ and obtain the implicit equations
for the dependent variables xn(n �= ±p, ±q) and yi,n in terms of the independent
variables x±p, x±q. It suffices to prove the theorem under the assumption that
V (z) = 1

2z2 + δ
(p̃+q̃)!z

p̃+q̃. Equating all inner products of F (U, ω∗, k∗) with basis
vectors for M to zero yields that for n �= ±p, ±q,

0 = −(4π2n2ω∗2 + 1)y1,n + 2πinω∗y3,n;

0 = −(4π2n2ω∗2μ + 1)y2,n − 2πinω∗√μΓn,ω∗
κ,μ y3,n;

δDn = [−4π2n2ω∗2Γn,ω∗
κ,μ + 4Γn,ω∗

κ,μ sin2(πnk∗) + κ(Γn,ω∗
κ,μ − 1)]xn

+ 2πinω∗(1 + 4 sin2(πnk∗) + κ)y1,n − 2πinω∗√μκy2,n

+ [4 sin2(πnk∗) + κ(1 + Γn,ω∗
κ,μ )]y3,n;

0 = [−4π2n2ω∗2μ + κ(1 − Γn,ω∗
κ,μ )]xn − 2πinω∗κy1,n + 2πinω∗√μ(κ + 1)y2,n

− κ(1 + Γn,ω∗
κ,μ )y3,n,

and for n = ±p, ±q,

2πinω∗δDn = [4π2n2ω∗2(2 + 4 sin2(πnk∗) + κ) + 1]y1,n − 4π2n2ω∗2√μκy2,n

− 2πinω∗[1 + 4 sin2(πnk∗) + κ(1 + Γn,ω∗
κ,μ )]y3,n;
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0 = −4π2n2ω∗2√μκy1,n + [4π2n2ω∗2μ(κ + 2) + 1]y2,n

+ 2πinω∗√μ(Γn,ω∗
κ,μ + κ(1 + Γn,ω∗

κ,μ ))y3,n;−δDn

= 2πinω∗(1 + 4 sin2(πnk∗) + κ(1 + Γn,ω∗
κ,μ ))y1,n

− 2πinω∗√μ(κ + Γn,ω∗
κ,μ (κ + 1))y2,n

+ [4 sin2(πnk∗) + κ(1 + Γn,ω∗
κ,μ )2]y3,n,

where

Dn =
2

(p̃ + q̃ − 1)!

∑
m ∈ Z

p̃+q̃−1∑p̃+q̃−1
j=1 mj = n

(
Re

p̃+q̃−1∏
j=1

(1 − e2πimjk∗
)
)

×
p̃+q̃−1∏

j=1

(
Γmj ,ω∗

κ,μ xmj
+ 2πinω∗y1,mj

+ y3,mj

)
, (4.3)

when p̃ + q̃ is even, and

Dn =
2

(p̃ + q̃ − 1)!

∑
m ∈ Z

p̃+q̃−1∑p̃+q̃−1
j=1 mj = n

(
Im

p̃+q̃−1∏
j=1

(1 − e2πimjk∗
)
)

×
p̃+q̃−1∏

j=1

(
Γmj ,ω∗

κ,μ xmj
+ 2πinω∗y1,mj

+ y3,mj

)
, (4.4)

when p̃ + q̃ is odd and m = (m1, m2, · · · , mp̃+q̃−1). It follows from these equations
that for all n, m ∈ Z and i ∈ {1, 2, 3},

∂yi,n

∂xm
(0, ω∗, k∗) = 0,

∂xn

∂xm
(0, ω∗, k∗) = δn

m,

where δn
m is the Kronecker delta. Hence, Dn = O(‖(xp, x−p, xq, x−q)‖p̃+q̃−1). Then

xn = O(‖(xp, x−p, xq, x−q)‖p̃+q̃−1) for n �= {±p, ±q} and yi,n = O(‖(xp, x−p, xq,
x−q)‖p̃+q̃−1) for all n and i ∈ {1, 2, 3}. Now we again compute the reduced
Hamiltonian function h(·, ω∗, k∗):

h(xp, x−p, xq, x−q, ω
∗, k∗)

=
∑

n∈Z>0

[−4π2n2ω∗2Γn,ω∗
κ,μ (Γn,ω∗

κ,μ + μ) + 4(Γn,ω∗
κ,μ )2 sin2(πnk∗)

]
xnx−n

+
∑

n∈Z �=0

2πinω∗[4π2n2ω∗2Γn,ω∗
κ,μ − 4Γn,ω∗

κ,μ sin2(πnk∗) − κ(Γn,ω∗
κ,μ − 1)

]
xny1,−n

+
∑

n∈Z �=0

2πinω∗√μ
[
4π2n2ω∗2μ + κ(Γn,ω∗

κ,μ − 1)
]
xny2,−n
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+
∑

n∈Z �=0

[−4π2n2ω∗2(Γn,ω∗
κ,μ + μ) + 4Γn,ω∗

κ,μ sin2(πnk∗)
]
xny3,−n

+
δ

(p̃ + q̃)!

∑
m ∈ Z

p̃+q̃∑p̃+q̃
j=1 mj = 0

p̃+q̃∏
j=1

(1 − e2πimjk∗
)

× (Γmj ,ω∗
κ,μ xmj

+ 2πimjω
∗y1,mj

+ y3,mj
)

+ O(‖(xp, x−p, xq, x−q)‖2(p̃+q̃−1))

=
δ

(p̃ + q̃)!

∑
m ∈ {±p,±q}p̃+q̃∑p̃+q̃

j=1 mj = 0

p̃+q̃∏
j=1

(1 − e2πimjk∗
)Γmj ,ω∗

κ,μ xmj

+ O(‖(xp, x−p, xq, x−q)‖2(p̃+q̃−1))

= g(a, b) ± δ
2p̃+q̃

p̃!q̃!
sinq̃(pπk∗) sinp̃(qπk∗)(Γp,ω∗

κ,μ )q̃(Γq,ω∗
κ,μ )p̃C

+ O(‖(xp, x−p, xq, x−q)‖2(p̃+q̃−1)).

The function g(a, b) appears only when p̃ + q̃ is even, and the plus or minus sign
depends on the exact values of p̃ and q̃. We have here used the fact that when∑l

j=1 mj = 0, then

l∏
j=1

(1 − e2πimjk∗
) = (−2i)l

l∏
j=1

sin(mjπk∗).

Note that n satisfying

π2n2ω∗
(

μ

Γn,ω∗
κ,μ

+ 1
)

= sin2(πnk∗)

has the property Γn,ω∗
κ,μ �= 0. Hence,

ς = ±2p̃+q̃

p̃!q̃!
sinq̃(pπk∗) sinp̃(qπk∗)(Γp,ω∗

κ,μ )q̃(Γq,ω∗
κ,μ )p̃ �= 0.

if sin(pπk∗) sin(qπk∗) �= 0. This completes the proof. �

Note that p̃ � 1 from figure 1. Then we distinguish two cases: p̃ > 1 and p̃ = 1.

4.1. Case 1: p̃ > 1

In this case, we have the following result.

Theorem 4.2 Resonant wave trains. In addition to assumption (H) and p̃ > 1.
Assume that the curves ω∗ = g±(k, p) and ω∗ = g±(k, q) intersect transversely
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at (k∗, ω∗) and sin(pπk∗) sin(qπk∗) �= 0. Then there are unique analytic functions
ω± = ω±(ε) and k± = k±(ε) satisfying

lim
‖ε‖→0

ω±(ε) = ω∗, lim
‖ε‖→0

k±(ε) = k∗

such that the local solution set to the bifurcation equation dxh(xp, x−p, xq, x−q,
ω, k) = 0 is given by

xp =
ε1

2
eip̃φ0 , xq =

ε2

2
ei(q̃φ0+η±), ω = ω±(ε), k = k±(ε),

for 0 < ε1, ε2 < ε small enough, and φ0 ∈ R/2πZ, η+ = π
2p̃ , η− = − π

2p̃ if p̃ + q̃ is
odd, whereas η+ = 0, η− = π

p̃ if p̃ + q̃ is even.

The proof is based on the implicit function theorem, which is similar to that
theorem 7.2 in [10], and hence is omitted.

4.2. Case 2: p̃ = 1

In the case where p̃ = 1, we divide our analysis into three subcases: q̃ = 2, q̃ = 3
and q̃ � 4. Firstly, we shall treat the case that p̃ + q̃ is even. Note that xp = x−p,
xq = x−q, then equations dxh(xp, x−p, xq, x−q, ω, k) = 0 read

⎧⎪⎪⎨
⎪⎪⎩

xp
∂h

∂a
+ q̃

∂h

∂d
xp

q̃−1xq = 0,

xq
∂h

∂b
+

∂h

∂ d
xq̃

p = 0.

(4.5)

By applying S
1-action, we assume that xp = x1 > 0, where x1 ∈ R. Dividing by

x1 the first equation of (4.5), shows that the remaining periodic solutions may be
found by solving

∂h

∂a
+ q̃

∂h

∂ d
xq̃−2

1 xq = 0, (4.6)

xq
∂h

∂b
+

∂h

∂ d
xq̃

1 = 0. (4.7)

Separating the real and imaginary parts of equation (4.6) gives ∂h
∂d Im(xq) = 0. It

follows from theorem 4.1 that ∂h
∂d (0, 0, 0, ω∗, k∗) �= 0, then we have Im(xq) = 0. So

xq can be replaced by a real number x2. Then (4.6) and (4.7) can be rewritten as

∂h

∂a
+ q̃

∂h

∂ d
xq̃−2

1 x2 = 0,

x2
∂h

∂b
+

∂h

∂ d
xq̃

1 = 0.

In the case where p̃ + q̃ is odd, the analysis is completely similar,
except that Re(xq) = 0, and xq can be replaced by −ix2. Then equation
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dxh(xp, x−p, xq, x−q, ω, k) = 0 can be rewritten as

∂h

∂a
+ q̃

∂h

∂c
xq̃−2

1 x2 = 0,

x2
∂h

∂b
+

∂h

∂c
xq̃

1 = 0.

In summary, equation dxh(xp, x−p, xq, x−q, ω, k) = 0 can be reduced to

∂h

∂a
+ q̃

∂h

∂C
xq̃−2

1 x2 = 0, (4.8)

x2
∂h

∂b
+

∂h

∂C
xq̃

1 = 0, (4.9)

where C = c if p̃ + q̃ is odd and C = d if p̃ + q̃ is even. Since ∂2h
∂a∂ω (0, 0, 0, ω∗, k∗) �=

0, we can solve equation (4.8) for ω based on the implicit function theorem, and then
substitute this solution for ω into (4.9). Thus finding the desired families of periodic
solutions reduces to solving (4.9), where h is the function of x2

1, x2
2, xq̃

1x2, ω, k, and
ω = ω(x2

1, x2
2, xq̃−2

1 x2, k). Hence, (4.9) can be rewritten uniquely as

W (x1, x2, k) ≡ r(x2
1, x

2
2, k)x2 + s(x2

1, x
2
2, k)xq̃−2

1 = 0, (4.10)

where s(0, 0, k) = 0.
Next, we find solutions to (4.10) by using singularity theory to determine all small

amplitude solutions. For this purpose, we consider the following Taylor expansions
for r and s at (0, 0, k∗):

r(u, v, k) = a1u + b1v + · · · , s(u, v, k) = a2u + b2v + · · · ,

where u = x2
1, v = x2

2. The lowest coefficients of r and s with respect to u and v are
given as follows:

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
− ∂2h

∂a∂ω
(0, 0, 0, ω∗, k∗)

)−1

det(Habaω) q̃ � 3,

(
− ∂2h

∂a∂ω
(0, 0, 0, ω∗, k∗)

)−1 [
det(Habaω) + 2(

∂2h

∂C∂ω
· ∂h

∂C
)|(0,0,0,ω∗,k∗)

]
,

q̃ = 2.

b1 = −
(

∂2h

∂a∂ω
(0, 0, 0, ω∗, k∗)

)−1

det(Habbω),

a2 =
∂h

∂C
(0, 0, 0, ω∗, k∗),

b2 = −q̃

(
∂2h

∂a∂ω
(0, 0, 0, ω∗, k∗)

)−1 (
∂2h

∂b∂ω
· ∂h

∂C

)
|(0,0,0,ω∗,k∗).

The singularity theory has two main theorems that are used to determine the norm
form of W (x1, x2, k). The following preliminaries can be found in Chapter 3 in [9].
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Let Ex,λ denote the space of all functions g : R
2 → R that are defined and C∞ on

some neighbourhood of the origin. We shall identify any two functions in Ex,λ which
are equal as germs. Let T (g) be the ‘tangent space’ of a germ g, which we defined
formally as follows.

Definition 4.3. The tangent space to a germ g in Ex,λ consists of all germs of the
form

ag + bgx + cgλ,

where a, b ∈ Ex,λ and c ∈ Eλ.

The tangent space constant theorem states that if T (g + tp) = T (g) for all t ∈
[0, 1] and p ∈ Ex,λ, then g + tp is equivalent to g for all t ∈ [0, 1]. The universal
unfolding theorem states that if there exist k germs p1, · · · , pk ∈ Ex,λ such that

Ex,λ = T (g) ⊕ R{p1, · · · , pk}.
Then G(x, λ, α) = g +

∑k
j=1 αjpj is a universal unfolding of g. First, we allow a

more general system of coordinate changes:

(x1, x2) �→ (x1X1(u, v), x2X2(u, v) + xq̃−2
1 X3(u, v)),

where X2(0, 0) �= 0. This change of coordinates preserves the x2 axis. Meanwhile,
when q̃ = 2, we require that X3(0, 0) = 0, due to the fact that s(0, 0, 0) = 0. It
is not difficult to check that these transformations preserve the form of W and
hence can be thought of as operations on the pair (r(u, v), s(u, v)). In the context
of the theory developed in Golubitsky and Schaeffer [9], one finds that T (W ) is a
module of function pairs in (Eu,v, Mu,v), where Eu,v is the ring of germs of smooth,
real-valued functions in the variables u, v and Mu,v ⊂ Eu,v is the maximal ideal
generated by functions vanishing at the origin. Following the results in Theorems
18.1–18.3 in [8], this module has the following generators:

(i) when q̃ � 4, the generators are (r, s), (uq̃−2s, vr), (2uru, 2usu + (q̃ − 2)s),
(2vrv + r, 2vsv), (2uq̃−2sv, 2vrv + r).

(ii) when q̃ = 2, the generators are (r, s), (s, vr), (2uru, 2usu), (2vrv + r, 2vsv),
(2uvsv, 2uv2rv + uvr).

(iii) when q̃ = 3, the generators are (r, s), (us, vr), (2uru, 2usu + s), (2vrv +
r, 2vsv), (2usv, 2vrv + r), (2u2su + us, 2uvru).

Based on the tangent space constant theorem and the universal unfolding theorem,
we have

Lemma 4.4.

(i) Assume that q̃ � 4. If a1, b1, a2, b2 and a1b2 − 3b1a2 are nonzero. Then the
bifurcation equation W = 0 is equivalent to the normal form

x2
1x2 + εx3

2 + kx2 + xq̃
1 = 0, (4.11)

where ε = ±1.
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(ii) Assume that q̃ = 3. If b1 and χ � (2b3
2 − 9a1b1b2 + 27b2

1a2) are nonzero, then
W = 0 is equivalent to the normal form

x3
1 + mx2

1x2 + x3
2 + kx2 = 0, (4.12)

where

m = 3sgn(χ)
3a1b1 − b2

2

χ2/3

is a modal parameter.

(iii) Assume that q̃ = 2. If a2, b2 are nonzero, then W = 0 is equivalent to the
normal form

εx2
1 + x2

2 + kx2 = 0, (4.13)

where ε = ±1.

Remark 4.5. Note that when q̃ = 2 and q̃ � 4, the codimension of T (W ) is one,
and the unfolding parameter is k; when q̃ = 3, the codimension of T (W ) is two, one
is the modal parameter m and the other is k. The detailed proof of lemma 4.4 is
given in § 18 in [8] and hence omitted here.

Now we consider the solutions that may be derived from the normal forms in the
previous lemma. For the case q̃ � 4, equation (4.11) yields the pictures in figures 2
and 3. In the case where q̃ = 3, the pictures of equation (4.12) are similar to figure
2 for all m ∈ R. In the case where q̃ = 2, equation (4.13) is graphed in figures 4
and 5.

Theorem 4.6. In addition to conditions (H), assume that q̃ � 4 and a1, b1, a2, b2

and a1b2 − 3b1a2 are nonzero.

(i) Equation (4.11) with ε = 1 and k < 0 has three distinct zeros when x1 varies
in some sufficiently small right neighbourhood of 0. Thus, system (1.1) may
have three distinct branches of periodic solutions of form (1.7) as (ω, k) varies
in some sufficiently small neighbourhood of (ω∗, k∗).

(ii) Equation (4.11) with ε = 1 and k � 0 has only one zero. Thus, system (1.1)
may have only one branch of periodic solution of form (1.7) as (ω, k) varies
in some sufficiently small neighbourhood of (ω∗, k∗).

(iii) Equation (4.11) with ε = −1 and k < 0 has only one zero when x1 varies
in some sufficiently small right neighbourhood of 0. Thus, system (1.1) may
have one branch of periodic solutions of form (1.7) as (ω, k) varies in some
sufficiently small neighbourhood of (ω∗, k∗).

(iv) Equation (4.11) with ε = −1 and k � 0 has three distinct zeros. Thus, system
(1.1) may have three distinct branches of periodic solutions of form (1.7) as
(ω, k) varies in some sufficiently small neighbourhood of (ω∗, k∗).
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Figure 5. Equation εx2 + y2 + ky = 0 with ε = 1.

In the case where q̃ = 3, the bifurcation pictures are essentially the same to those
in the case where q̃ � 4 and ε = 1. Thus, the results are similar and hence is omitted.

Theorem 4.7. Under assumptions (H), assume that q̃ = 2 and a2, b2 are
nonzero.

(i) Equation (4.13) with ε = 1 and k �= 0 has two zeros when x1 varies in some
sufficiently small right neighbourhood of 0. This means that system (1.1) may
have two branches of periodic solutions of form (1.7) as (ω, k) varies in some
sufficiently small neighbourhood of (ω∗, k∗).

(ii) Equation (4.13) with ε = −1 has two distinct zeros when x1 varies in a suffi-
ciently small right neighbourhood of 0. Thus, system (1.1) may have two distinct
branches of periodic solutions of form (1.7) as (ω, k) varies in some sufficiently
small neighbourhood of (ω∗, k∗).

We remark that the change of the sign of k may affect the number of branches of
solutions for the norm forms in the case where q̃ � 4. This means that the number
of branches of bichromatic wave trains may change as k goes across k∗ for system
(1.1) under the assumptions of theorem 4.6. However, the bichromatic wave trains
in theorem 1.2 are always unique up to a phase shift as k goes across k∗.

5. Discussion

By means of Lyapunov–Schmidt reduction and singularity theory, we obtain the
small-amplitude solutions near equilibria in nonresonance and p : q resonance,
respectively. In particular, the monochromatic and bichromatic wave trains per-
sist near μ = 0 in the nonresonance case and the resonance case p : q where q is not
an integer multiple of p. Namely, the wave trains of the MiM lattice shadows that

https://doi.org/10.1017/prm.2023.130 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.130


Branching patterns of wave trains in mass-in-mass lattices 25

of the corresponding monatomic FPU lattice under the nondegeneracy conditions.
In addition, we show the multiplicity of bichromatic wave trains in the resonance
case p : q, where q is an integer multiple of p.

Notice that k must be nonzero in the resonance case. In other words, when k∗ = 0
and ω∗ > 0, system (1.1) only admits the monochromatic wave trains of form (1.6).
Moreover, system (1.1) also has the following solution:

{
Uj(t) = −μy(t) + νj,
uj(t) = y(t) + νj,

(5.1)

where y(t) is a periodic function and ν ∈ R. Substituting of (5.1) into (1.1), we
obtain the following equation for y(t):

ÿ(t) + κ

(
1
μ

+ 1
)

y(t) = 0. (5.2)

Notice that the parameter ν do not enter in (5.2) because (1.1) is invariant under
the transformation

Uj(t) → Uj(t) + νj, uj(t) → uj(t) + νj.

Since κ > 0, μ > 0, equation (5.2) has the general solutions:

y(t) = c1 cos

√
κ

(
1
μ

+ 1
)

t + c2 sin

√
κ

(
1
μ

+ 1
)

t

for any c1, c2 ∈ R. It is easy to see that solution (5.1) belongs to solutions (1.4)
with k = 0. Therefore, the nonlinear MiM lattice (1.1) sustains binary oscillations
of arbitrarily large amplitudes.

Now, we conclude this paper with some remarks. Note that the discussions in
the resonance case p : q where q is not an integer multiple of p in § 4 need the non-
degeneracy condition (i) in theorem 4.1. If the nondegeneracy condition (i) does
not hold, that is, the curves ω = g±(k, p) and ω = g±(k, q) are tangent to each
other at the point (k∗, ω∗), then it becomes more complicated and challenging
to study the existence and multiplicity of bichromatic wave trains. Furthermore,
there may be three distinct integers p < q < r and ω∗ > 0 and k∗ ∈ (0, 1/2] such
that ω∗ = g±(k∗, p), ω∗ = g±(k∗, q), ω∗ = g±(k∗, r) and ω∗ �= g±(k∗, n) for all
n ∈ Z>0 \ {p, q, r}. Then the kernel K becomes six-dimensional. It would be more
interesting to investigate the existence and multiplicity of trichomatic wave trains.

For diatomic chains and MiM lattice, generic solitary waves are expected to be
nonlocal, and the existence of such solutions has been proved only for certain asymp-
totic limits, summarized in [24]. However, numerical and asymptotic results suggest
that for a countable collection of antiresonance values of the system’s parameter,
there are genuine solitary waves. There are a lot of research on wave trains and soli-
tary waves of monatomic FPU chains ([6, 7, 12, 18, 19, 23]) and diatomic chains
([21, 22]) with variational approaches. We expect that the variational approaches
can also be extended to deal with the MiM lattice.
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