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SUMMARY

The introduction of a centralized system for recording cattle movements in the UK has provided

a framework for network-based models for disease spread. However, there are many types of

non-reportable contacts between farms which may play a role in disease spread. The lack of real

pathogen data with which to test network models makes it difficult to assess whether reported

data adequately captures the risk-potential network between farms and improves the accuracy

of disease forecasts. A novel multi-disciplinary approach is described whereby network-based

models, built upon reported cattle movements and non-reportable local contacts between study

farms, are parameterized using field data on bovine Staphylococcus aureus strains. Reported cattle

movements were found to play a role in strain spread between farms, but other contacts via farm

visitors were also correlated with strain distribution, suggesting that parameterizing contact

networks using cattle-tracing data alone may not adequately capture the disease dynamics.

Key words : Bovine Staphylococcus aureus, cattle movements, marker pathogen, MLST,

network analysis.

INTRODUCTION

The mechanisms and risk factors involved in the

transmission of pathogens from one livestock farm to

another are poorly understood. The infectious process

is complex and apart from host, pathogen and en-

vironmental factors, successful transmission of an

infectious organism among hosts depends on effective

contact between infectious and susceptible individuals

within a population.

Between-farm contacts may occur via movement

of animals, which are considered to be a critical

factor in the spread of infectious diseases within farm

populations [1]. In the UK, sheep and cattle move-

ments played an important role in the dissemination

of the foot-and-mouth virus over long distances

during the early stages of the epidemic in 2001 [1]. In

this country, the mandatory reporting of animal

movements has provided researchers with an invalu-

able source of contact data, in particular of cattle

movements between holdings, for which data at the

individual animal level have been available since 2001

[2]. Animal movement data have been incorporated

into mathematical models using different approaches

to investigate the spread of diseases such as foot-and-

mouth disease [3, 4], tuberculosis [5] and scrapie [4].

Network analysis has become popular in recent

years for the study of risk-potential networks (i.e.

networks where links between nodes can transmit

infection provided that there is a pathogen within

the network [6]) using data derived from livestock
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movements [7–11]. One of the advantages of the

network approach, over more traditional modelling

methods such as homogenous mixing modelling, is

that the relationships (e.g. animal movements) between

individual farms are taken into account, enabling

the characterization and analysis of the underlying

contact structure of the population, and its effect on

the spread of infectious diseases [10]. However, the

effective use of this approach to predict transmission

events depends on whether recorded animal move-

ment data adequately capture the structure of the

risk-potential network for disease spread between

farms, and therefore whether these data are sufficient

to parameterize predictive network-based models.

Apart from reported animal movements, other

inter-farm contacts via visitors or collection com-

panies, which are not compulsorily reported by farmers,

may contribute to the transmission of pathogens from

one holding to another. Networks constructed from

farm-to-farm relationship data other than reported

animal movements have been considered previously.

Brennan et al. [12] concluded that there is consider-

able variation in the types of contacts occurring on

cattle farms. Green et al. [13] showed that a large

proportion of bovine tuberculosis infections on farms

(75%) within high-risk areas in the UK is likely to be

due to factors other than cattle movements. Ortiz-

Pelaez & Pfeiffer [14] considered multiple risk factors

(e.g. cattle movements, environmental factors and

farming systems) to classify Welsh farms based on

their risk for presence of disease. There has been

relatively little work to describe or evaluate the effect

of different types of contacts between farms on disease

transmission. More realistic risk-potential networks

might consider these non-reportable contacts and

analyse the effect of these relationships on disease

spread using observed pathogen data.

The lack of real pathogen data with which to test

models for disease spread has restricted our under-

standing of the disease dynamics in the context of a

network of contacts. Testing model performance with

data from outbreak situations presents limitations.

A ban on livestock movements in the UK is one of the

first control measures enacted to contain notifiable

infectious diseases when a diagnosis is confirmed. The

behaviour of farmers changes during the course of an

outbreak due to increased risk perception. This often

leads to stricter on-farm bio-security measures and

a reduction in risk-taking behaviour [15]. A spatio-

temporal study of a non-notifiable infectious patho-

gen overcomes these limitations.

In this study, bovine mastitis has been chosen as an

exemplar of infectious disease. Specifically, we have

selected Staphylococcus aureus strain types, isolated

from bulk milk samples, as markers for pathogen

spread between dairy farms. Mastitis is one of the

most common and economically important diseases

in dairy cattle in the UK [16], with S. aureus being the

third most common pathogen causing clinical mastitis

and the second most common major pathogen

causing subclinical mastitis after Streptococcus uberis

[17, 18]. Although the prevalence of S. aureus within

herds can be relatively low (f5% of mastitis cases)

[17–19], the percentage of farms affected by this

pathogen can be large (83%) [17]. Once S. aureus

infection is established on a farm, it can be difficult

to eliminate because of its poor response to anti-

biotics and the potential for emergence of antibiotic-

resistant strains [20]. Transmission of S. aureus from

infected to susceptible quarters is generally assumed

to occur during the milking process, with infected

cows’ quarters considered to be the primary reservoir

of S. aureus [21]. Subclinical and chronic forms of

infection predominate [16]. Subclinical cases represent

a herd health burden as they are difficult to identify

due to the absence of clinical signs and also provide a

source of infection for the rest of the herd.

In this paper, we present a novel multi-disciplinary

approach, where field data collection on pathogen

dynamics, questionnaire data and nationally recorded

cattle movement data are combined to investigate the

use of network-based models as tools to predict dis-

ease spread within livestock populations. The charac-

teristics of the risk-potential networks linking the

study dairy farms via reported cattle movements and

non-reportable local contacts are described. A meth-

od to compare the relative exposure of newly infected

and persistently susceptible farms to the pathogen via

risk-potential links from other farms is proposed.

METHODS

Network components and analysis

Experimental and network data were collected from

44 dairy farms located in Somerset (UK) over a

5-month period from May 2007 to October 2007.

Nodes were defined to be the study farms, and edges

to be any relationship between a given pair of farms

which could potentially result in the transmission of a

S. aureus strain from one farm to another. Attribute

(i.e. presence or absence of each strain) and network
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data for each relationship were imported into

UCINET version 6.2 (Analytic Technologies ; http://

www.analytictech.com) for analysis. Network graphs

were created and visualized using NetDraw version

2.081 (Analytic Technologies). The quadratic assign-

ment procedure (QAP) correlation function was used

to test the association between each pair of observed

networks [12].

Node attributes

Data on the observed S. aureus strain distributions

within the study population at two time-points, t1
(May 2007) and t2 (October 2007), were obtained

from the analysis of bulk milk samples collected from

each study farm. A protocol to capture the S. aureus

strain profile within a farm using milk collected from

the bulk tank was developed [22]. The protocol com-

bined the use of two well-established typing tech-

niques, random amplified polymorphic DNA (RAPD)

assay [23] and multi-locus sequence typing (MLST)

[24], to maximize the chance of identifying all S.

aureus strains present on a farm, while minimizing

sample collection and processing time and cost, to

enable a greater number of farms to be included in the

study. Phenotypic identification [25] and species con-

firmation by polymerase chain reaction (PCR) [26] of

S. aureus isolates from milk samples were performed

according to standard procedures. Two millilitres of

each bulk milk sample were cultured, and up to 15

confirmed S. aureus colonies per sample were selected

for RAPD typing. One isolate of each RAPD type

was then selected for MLST [22]. The most prevalent

sequence (strain) types (ST) (ST151, ST1074, ST425)

identified within the study population are included in

this analysis (Fig. 1).

Risk-potential linkages

Reported cattle movement data at the individual

animal level were provided by the Department for

Environment, Food and Rural Affairs (Defra, UK)

via the Rapid Analysis and Detection of Animal-

related Risks database (RADAR). Two cattle move-

ment networks were extracted, with and without

livestock markets as common source locations, to test

the impact of the assumption that the risk of trans-

mission of S. aureus strains between animals from

different sources while they are in a market is negli-

gible. These networks were built using the individual

movement histories of all the animals present on the

study farms during the study period. A link was

assumed when either (i) a study farm purchased cattle

which at some point in their lifetime had been on

another study farm (type I link), or (ii) two or more

study farms purchased cattle which had at some point

(not necessarily the same time period) been on a

common location (source location) outside the study

population (type II link). These animals may have

acquired the same S. aureus strain type(s) on that

common location, and subsequently acted as a source

of infection for the rest of the animals on the

destination farms. Any of these contacts may have

occurred prior to the study period. However, these

contacts could still explain the occurrence of a new

strain on a study farm at t2 as S. aureus can be
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Fig. 1. Staphylococcus aureus MLST sequence types (ST) identified on the 44 study farms sampled in May 2007 (&) and
October 2007 ( ).

Contact networks and disease spread 1865

https://doi.org/10.1017/S0950268811000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811000070


intermittently shed by infected quarters [27]. The

relationship between the in-degree of the study farms

(i.e. the number of edges onto study farms from

common source locations) and the presence/absence

of specific S. aureus strains during the study period

was tested using a Mann–Whitney test.

Two-mode networks were created, for which one

mode was a set of nodes (study farms) and the other

mode was a set of events (source locations). These

two-mode networks were transformed to one-mode

networks for the study farms using the ‘affiliations’

function in UCINET v. 6.2 to obtain the number of

source locations in common to both study farm i and

study farm j. The matrices were dichotomized: a value

of 0 if there was no link between a pair of study farms,

and a value of 1 if there was one or more links be-

tween two study farms. The total number of animals

moved was not considered in this analysis.

Non-reportable local contacts among the study

farms were collected via questionnaire. These links

comprised of relationships between the study farms

via on-farm visitors (relief milkers, companies

servicing milking equipment, milk hauliers, milk

companies, veterinary practices, foot trimmers, feed

consultants, semen supply companies and waste col-

lectors) ; same group of farms (i.e. farms under the

same management, sharing agricultural equipment,

grazing land and/or field boundaries) ; and location

of prepartum heifers [i.e. heifers kept on other study

farm(s) or on a shared location with other study

farm(s) prior to calving]. Two-mode networks were

constructed, for which one mode was the set of nodes

(study farms) and the other mode was a set of events

(e.g. veterinary practices). An affiliation matrix was

created containing all the relationship variables, with

each row representing a study farm and each column

a specific relation. From the matrix, one-mode un-

directed adjacency networks were created for each

relationship.

Model development

To test the hypothesis that the transmission of

S. aureus strain types within the study population can

be explained by the observed contacts between the

study farms, theoretical random-generated networks

were constructed. The random networks contained

the same number of nodes and edges as the observed

networks, but with the edges randomly permuted

between the nodes. A total of 1000 replicates for each

random network were simulated using R software

[28]. The node state was fixed for all networks using

the observed S. aureus strain data.

The node (farm) state for a given strain was defined

according to whether or not that strain was detected

in the bulk milk. The state at t2 incorporates infor-

mation on the state at t1 to distinguish between farms

that were newly infected and those that were infected

at t1 (Table 1).

The modelling unit was a dyad. The potential dyads

were [S PS], [S R], [S NI], [S PI], [I PS], [I R], [I NI],

[I PI] (see Table 1 for definition of abbreviations). In

order to assess the relationship between the network

structure and the observed distribution of a given

strain, we compared the mean exposure to infection of

newly infected farms (NI) and persistently susceptible

farms (PS). We defined exposure (Eij) for each study

farm at t2 as the in-degree of edges from farms

that were infected at t1. The exposure for farm j is

Si=1,ilj
n Eij, where n is the number of study farms, and

Eij=1 if there is an edge from i to j, and i was infected

at t1 ; otherwise Eij=0.

The mean exposure to infection of NI farms (ENI) is

given by:

ENI=

Pn
j=1

Pn
i=1, ilj Eijdj

Pn
j=1 dj

, (1)

where dj=1 if farm j is NI at t2 ; otherwise dj=0. Thus,

Sj=1
n dj is the number of NI farms at t2.

Table 1. Definition of node (study farm) state for a given strain type at each sampling point

First milk collection point (t1) Second milk collection point (t2)

Strain present

in bulk milk? Node state

Strain present

in bulk milk? Node state

No Susceptible (S) No Persistently susceptible (PS)
Yes Infected (I) No Recovered (R)

No Susceptible (S) Yes Newly infected (NI)
Yes Infected (I) Yes Persistently infected (PI)

Note the node state at t2 depends on the state at t1. The terms susceptible, infected and recovered are used as per convention
established in the mathematical biology literature to represent the states of the nodes.
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Similarly, the mean exposure to infection of PS

farms (EPS) is :

EPS=

Pn
j=1

Pn
i=1, ilj EijcjPn
j=1 cj

, (2)

where cj=1 if farm j is PS at t2 ; otherwise cj=0. Thus,

Sj=1
n cj is the number of PS farms at t2.

This approach estimates the ‘amount ’ of infection

that farms are potentially exposed to from other farms

within the study group (exposure). If a strain is

transmitted from observed contacts, it would be ex-

pected that the study farms that are newly infected

at t2, were exposed to more infection than those

that remained susceptible (i.e. ENI>EPS). In addition,

NI study farms at t2 would be expected to be more

exposed to infection in the observed than in the

random networks. Similarly, the PS study farms at t2
should be exposed to the same or less infection in the

observed than in the random networks (Fig. 2).

Spatial analysis

The Cuzick & Edwards k-nearest neighbour test [29]

was used to determine whether there was any evidence

of spatial clustering of the S. aureus isolates within the

study population.

RESULTS

Characteristics of the risk-potential networks linking

the study farms

The cattle tracing system data contained 31 reported

batch movements (type I links), of which 28 were

direct movements between the study farms. Two of

these occurred during the study period and ten oc-

curred <5 months before the start of the study. The

dichotomized network consisted of five components

(i.e. subgroups of farms which are connected to one

another but disconnected from other subgroups

within the network), which contained 2, 2, 2, 3 and

7 farms, respectively. A larger number of type II links

were identified (512 including markets and 242 ex-

cluding markets), with >80% of study farms linked

via common cattle source locations outside the study

population.

Ten two-mode networks were constructed from

the non-reportable local contacts. Data on holdings

within the same group of farms was excluded as only

two farms were identified within this category. A

median of eight companies or farming-related visitors

per study farm (range 5–15) were identified. We found

that the same milk haulier collected milk for more

than one milk company, and several milk hauliers

worked for the same milk company. Thus, it is im-

portant to distinguish between milk hauliers and milk

companies when considering their role on disease

spread. The networks of the non-reportable contacts

varied according to whether a few companies visited a

large number of farms or a large number of com-

panies visited fewer study farms. The semen supply

network was represented by a single connected com-

ponent where each node can be reached from any

other node within the network. Other networks were

more disconnected (milk hauliers and veterinarians),

and some networks were highly fragmented (foot

trimmer network) (Fig. 3).

Significant correlations were found between

cattle movements and other relationships identified

from questionnaires completed by the study farms:

foot trimmers (P=0.006), relief milkers (P=0.01),

prepartum heifer location (P=0.01), veterinarians

(P=0.04), and companies servicing milking equip-

ment (P=0.05). The density (r) of the networks

for relief milkers (r=0.003) and prepartum heifer

location (r=0.002) were, however, much lower

than that of the cattle movement network (r=0.13).

Holdings using the same veterinary practice were

more likely to use the same foot trimmer (P<0.001)

and relief milkers (P=0.03). Other networks were

also significantly correlated, including the milk com-

pany and the milk haulier networks (P<0.0001),

and the milk company and feed consultant network

(P=0.007).

Modelling real pathogen data within dynamic

networks

The reported cattle movement network, excluding

livestock markets as source locations, appeared to

play a role on the transmission of ST151 and ST1074

(Fig. 2a, b). Incorporating livestock markets did

not change the result (Fig. 4). For both ST151 and

ST1074,<0.1% of the simulations on the exposure to

newly infected farms were equal or greater than the

observed value, suggesting that there is an association

between import of cattle and the occurrence of ST151

and ST1074 on a farm. We found no evidence of

association between cattle movements and the strain

distribution of ST425 within the study population.

The study farms with the highest in-degree were more

likely to be infected by ST151 (P=0.12) and ST1074

(P=0.04), but not by ST425 (P=0.42).
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Two risk-potential networks, built using non-

reportable local contacts between the study farms,

were also found to be associated to certain strain

distributions: feed consultant network vs. ST151,

and the veterinarian network vs. ST425. The observed

mean exposures to infection of ST151 and ST425

EPS

EPS

EPS

ENI

ENI

ENI

ENI > EPS

ENI > EPS

ENI < EPS

Obs ENI > Sim ENI

Obs ENI > Sim ENI

Obs ENI = Sim ENI

O
bs

 E
P

S
 �

 S
im

 E
P

S
O

bs
 E

P
S

 =
 S

im
 E

P
S

O
bs

 E
P

S
 =

 S
im

 E
P

S

x=y
1:1

x=y
1:1

x=y
1:1

Mean exposure to infection of NI farms

M
ea

n 
ex

po
su

re
 to

 in
fe

ct
io

n 
of

 P
S

 fa
rm

s

Mean exposure to infection of NI farms

Mean exposure to infection of NI farms

M
ea

n 
ex

po
su

re
 to

 in
fe

ct
io

n 
of

 P
S

 fa
rm

s
M

ea
n 

ex
po

su
re

 to
 in

fe
ct

io
n 

of
 P

S
 fa

rm
s

6

5

4

3

2

1

0

0

14

13

12

11

10

9

8

7
7 8 9 10 11 12 13 14

0 1 2 3 4

1

2

3

4

0 1 2 3 4 5 6

(a)

(b)

(c)

Fig. 2. Examples of model outputs : observed contact networks vs. random networks (1000 replicates). In the left column, a

schematic diagram of the model output is given. Obs, observed value (black arrow) ; Sim, simulated values range (grey bar).
In the right column, the mean exposure to infection of persistently susceptible (PS) farms vs. newly infected (NI) farms for a
subset of the models (excluding markets as source locations) and strain types tested are given. The random simulations are

coloured in grey, the median of the simulations is represented as a black square, and the value calculated for the observed
contact network as a black circle. (a) The state of the study farms at t2 can be explained by the observed contact network:
cattle movement network and ST151. (b) The state of the study farms at t2 can be explained by the observed contact network:
cattle movement network and ST1074. (c) There is no relationship between the network structure and the strain distribution,

and the observed network is not better at predicting strain spread than random networks : milk haulier network and ST151.
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newly infected farms within these networks were

>90% of the simulations in both cases. For the other

local contacts reported by the study farms, the ob-

served networks were no better at predicting the strain

distribution than the random simulations (e.g. milk

haulier network vs. ST151) (Fig. 2c).

The transmission of the most prevalent S. aureus

strains between farms was not linked to spatial

proximity

There was no evidence of spatial clustering of cases

(i.e. presence of a specific strain on a farm) in the

(a) (b)

(c) (d )

Fig. 3. Two-mode networks for (a) semen supply companies, (b) milk hauliers, (c) veterinarians, and (d) foot trimmers. The

black squares represent the events and the circles the study farms. Colours of study farms represent the infectious states at
time-point 2 for ST151: white is persistently susceptible ; light grey is recovered; grey is newly infected ; black is persistently
infected.
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Fig. 4. Model outputs : observed cattle movement network (including markets) vs. random networks (1000 replicates). The
random simulations are coloured grey, the median of the simulations is represented as a black square, and the value calcu-
lated for the observed contact network as a black circle. (a) Cattle movement network and ST151. (b) Cattle movement

network and ST1074.
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study population at any time-point for any of the

sequence types tested, apart from a small cluster

detected for ST425 in October (Fig. 5) for which the

test statistic Tk was above the 95th percentile of the

random simulation for values of k<5.

DISCUSSION

This study has established the value of incorporating

multiple sets of contact data for dairy farms besides

cattle movements as a backbone for network analysis ;

illustrates the importance of using real-pathogen data

to parameterize models for disease spread; and has

shown the feasibility of this approach for future

larger-scale studies investigating disease transmission

within a network of contacts.

An essential element for efficient transmission of

pathogens between cattle herds is the exposure of

susceptible to infected animals. This exposure can

arise from direct or indirect contact resulting from
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green line=95th percentile of the random values ; solid blue line=observed values ; dashed blue line=5th percentile of the
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cattle movements, contact with people, or use of

shared resources. It seems unlikely that any effective

control measures to limit the spread of disease can be

implemented without some understanding of the

underlying contact structure. The farms in this study

were not spatially proximate, although they were in

the same geographical region (county), and yet a large

number of links between them were identified. These

links included not only reported cattle movements but

also non-reportable contacts, which may constitute

important routes of transmission for some pathogens.

The presence of S. aureus in bulk milk was ident-

ified in a large proportion of study farms (82%).

A diversity of strain types was observed within the

study population, and changes over the study period

indicated a dynamic process. The most prevalent

S. aureus strain was ST151, which was isolated from

the bulk milk of >50% of the farms at both time-

points. ST151 is a representative subtype of one of the

most important S. aureus bovine-associated clones

(ET3), to which a large number of cases of bovine

mastitis worldwide have been attributed [30]. ST1074

and ST425 have previously been isolated from milk

samples collected from infected quarters [22].

The number of type I links (i.e. when cattle present

on a farm during the study period had been purchased

from another study farm) connecting the study farms

was relatively small, and were not identified as an

important source of a new S. aureus strain type on a

farm in this study. This is not surprising as the study

farms were linked to a large number of farms outside

the study population. Over 80% of the study farms

were connected via type II links (i.e. when cattle

present on two or more study farms during the study

period had been sourced from the same holding

located outside the study population). Access to

RADAR data enabled the identification of these

source locations completing the network of contacts

for the study population. We included as indirect

links animals purchased from the same source

location at different time-points. These are valid links

due to the characteristics of S. aureus infections.

S. aureus has been shown to persist for over 10 years

on farm if left untreated [31].

The role of markets in disease transmission depends

on the specific disease and its transmissibility, as

well as the nature of the contact between groups of

animals from different origins permitted by the market

[32]. Transmission of S. aureus is generally assumed to

occur from infected to susceptible animals during the

milking process [21]. All livestock have to be moved

from a market within 48 h after arrival and the animal

areas have to be cleaned and disinfected after each

trading day to minimize disease spread [9]. It is

therefore unlikely that S. aureus is transmitted be-

tween cattle from different farms atmarkets. Including

connections at markets in the risk-potential network

did not affect the overall results, suggesting that the

livestock markets do not play a significant role in the

transmission of S. aureus strains between livestock.

However,a largerscale study is requiredtoconfirmthis.

In addition to reported cattle movements, multiple

non-reportable local contacts between the study farms

were identified. These contacts displayed different

network structures for the study population, from a

highly connected network to more fragmented struc-

tures. The identification of connected and discon-

nected components within a network is important in

terms of disease transmission. Infection introduced in

a node within the larger connected component would

have a different effect on the spread of disease

throughout the network than if the node infected is

part of a disconnected component [10]. Others have

also reported that these types of contacts can be

numerous, with social visits representing a large

number of the links, and 25% of the visitors having

contact with animals [33]. Brennan et al. [12] found

similar network patterns to the ones reported here.

A study investigating risk factors associated with the

introduction of the bovine herpesvirus 1 on Dutch

cattle farms [34] showed that farms with visitors in the

barn and temporary workers, such as relief milkers,

were more likely to be positive for presence of the

virus than those without these visitors.

The use of cattle movement data alone is unlikely to

capture the complete dynamics of infectious diseases,

and could lead to an underestimation of the potential

for disease spread, especially of the likely degree of

local spread. As determined by the QAP correlation

function, the cattle movement network was associated

with some non-reportable networks for the study

farms but not with others, such as the feed consultant

network. Some of these non-reportable contacts could

therefore explain localized spread of disease among

holdings even when animal movements have been

banned.

The description of the spatial pattern and the de-

tection of clusters of infection within a population can

aid the identification of localized environmental risk

factors, which may play a role in transmission events

[29]. The observed strain distributions for the most

prevalent strain suggested that the spatial spread of

Contact networks and disease spread 1871

https://doi.org/10.1017/S0950268811000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268811000070


S. aureus could not be explained by the nearest-

neighbour model based on spatial location. This was

confirmed by the Cuzick & Edwards k-nearest neigh-

bour test, which did not identify any clusters of cases.

It is concluded, based on the available data, that the

transmission of S. aureus strains at farm level is not

linked to spatial proximity. This was not surprising,

as the spread of S. aureus mainly occurs at or around

the time of milking. However, this conclusion must be

treated with caution since there were a large number

of dairy farms in the study region that did not

participate in the study. Larger scale studies would

provide additional evidence for the role of these risk

factors in farm-level transmission of S. aureus strains.

Visual comparison of the networks connecting

livestock farms is difficult due to the large number of

different types of links. More sophisticated methods

are therefore required to assess the role of different

relationships in pathogen spread. We developed a

stochastic model using a Monte-Carlo simulation to

compare the predictive value of the observed net-

works connecting the study farms with randomly

generated networks. The model was tested using field-

collected pathogen data. The reported cattle move-

ments linking the study farms were correlated with the

occurrence of certain strains of S. aureus. This dataset

also highlights the potential role of humans visiting

the farms in pathogen spread. A larger scale study

incorporating more farms and with repeated sampling

over a longer time period is required to explore this

further.

Previous studies have reported that human and

bovine S. aureus strains appear to be largely host-

adapted [35, 36]. However, humans and cattle on farm

have been found to share S. aureus strains [37], and

S. aureus predominantly associated with humans have

also been isolated from cattle [38]. Milkers’ hands [35]

and milking equipment, specifically teat liners [35, 36],

have been identified to play a role in the transmission

of S. aureus strains from cow to cow at milking.

S. aureus has been occasionally isolated from the en-

vironment of dairy farms [35] and from body sites and

mammary secretions of heifers prior to calving [39].

Theoretical random-generated networks have been

previously used to better understand the effect of

movements on disease spread. Kiss et al. [9] con-

structed random networks with the same number of

nodes as an observed sheep movement network but

randomly allocated the edges between the nodes. The

degree distribution of the farms was maintained in

order to investigate the impact of the network linking

pattern on the spread of disease. This approach en-

ables the effect of the total number of links a farm

has to be separated from ‘who are you linked to?’ to

untangle the importance of the precise network over

node in-degree. In this study we were only able to

sample from a small section of the complete network

over a relatively short time-frame. Thus, while

some nodes may have a small in-degree for this sub-

network, they may have had contacts with a large

number of farms which were not common source

locations in the study group. Further analysis of the

dataset could, however, consider a modified approach

for the generation of random networks as suggested

by Kiss et al. [9].

Due to the trading of cattle through markets, the

UK cattle movement network is highly connected.

The selection and sampling of a set of farms re-

presenting a complete trading network is not feasible,

especially for the study of non-notifiable diseases such

as bovine mastitis. Thus, the infectious state of only a

small subset of nodes can be captured, resulting in a

degree of uncertainty due to the unknown infectious

state of farms outside the study group. Even within

the study farms, there are other factors that add to the

variability, which is an intrinsic characteristic of this

type of study. The presence of S. aureus bacteria in

milk samples can pass undetected if the bacteria are

intermittently excreted by the infected quarters or if

the number of bacteria in the bulk milk is below the

threshold of detection for the diagnostic method.

The principles and analytical tools presented in this

paper can be employed in a larger scale study, under-

taken for a longer period of time, to investigate the

precise role of cattle movements and other farm re-

lationships in disease spread. Although the selection

of a particular model depends on the pathogen of

interest, the specific dynamics of infection and the

amount of quantitative data available [40], this

modelling framework offers enough flexibility to be

adapted to other infectious diseases with a different

epidemiology to that of S. aureus bovine mastitis.

Importantly, a simplification of the farming contact

structure without considering all the connections can

undermine our understanding of the transmission

events at the farm level, and result in a misuse of re-

sources in seeking to prevent disease spread.
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