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The diffusiophoresis of charged hydrophobic nanoparticles (NPs) governed by an imposed
ionic concentration gradient is analysed. The main objective is to elucidate the impact
of the laterally mobile adsorbed surface ions at the interface on the propulsion of the
hydrophobic NPs in diffusiophoresis. In addition, the dielectric polarization due to the
difference in dielectric constant between the NPs and the suspension medium is also
considered. The mobile surface ions create a friction as well as an electric force at the
hydrophobic surface, which leads to a modification of the slip velocity condition and
the slip length. We obtain an exact numerical solution of the governing electrokinetic
equations in their full form by adopting a control volume formulation. The numerical
model is supplemented by analytical solutions derived based on the Debye–Hückel
linearization. We find that the lateral mobility of the surface ions obstruct the coions to
diffuse from the higher concentration side to the lower concentration side, which results
in a repulsive force to the particle leading to the occurrence of a negative mobility.
Based on the numerical results and analytical solutions, we have shown that for a fully
mobile surface charge, the diffusiophoresis of a hydrophobic NP is identical to the
diffusiophoresis of a liquid droplet whose viscosity is related to the slip length of the
hydrophobic particle. We establish that the dielectric polarization enhances the velocity of
a hydrophobic particle, which has potential applications in the practical context.

Key words: microscale transport, microfluidics

1. Introduction

Diffusiophoresis is an important electrokinetic phenomenon that describes the transport
of colloidal entities in a solution of electrolytes or non-electrolytes under the influence
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of an imposed concentration gradient. Diffusiophoresis has drawn wide interest due to
its relevance in numerous processes such as colloid separation enabled by CO2-induced
diffusiophoresis (Shimokusu et al. 2019), colloid stratification during drying (Sear &
Warren 2017), oil recovery (Yang, Shin & Stone 2018), detection and healing of bone
fracture (Yadav et al. 2013), separation and purification (Meisen et al. 1971; Carstens
& Martin 1982), surface adhesion and coating (Korotkova & Deryagin 1991), DNA
sequencing (Shin et al. 2017) as well as to drive catalytic nano- and micromotors (Sen
et al. 2009). Diffusiophoresis can transport colloids in a dead-end pore and produce no
Joule heating due to net zero current through the suspension medium. These are more
suitable in translocation and characterizing living cells as compared with electrophoresis
or pressure-driven flows (Lee 2019).

The diffusiophoresis induced by an imposed concentration gradient in an electrolyte
is more complicated than that of the non-electrolyte medium. The charged colloid
induces an electric double layer (EDL), which deforms under the influence of
the applied concentration field and, in turn, creates the double layer polarization
(DLP). Diffusiophoresis is a combination of two distinct electrokinetic effects, namely,
chemiphoresis and induced electrophoresis (Prieve et al. 1984; Prieve & Roman 1987).
The former effect arises due to the DLP, which, in turn, leads to an induced local electric
field. The electrophoresis part is solely induced by the diffusion field arising due to the
difference in the diffusion coefficient of ionic species present in the electrolyte. In general,
the electrophoresis and chemiphoresis effects cannot be separated as the diffusion field
influences the DLP as well as the DLP effect modifies the local electric field. Based on
a thin EDL consideration, Prieve et al. (1984) has provided a mathematical expression
for the electrophoresis and chemiphoresis parts valid for a lower range of surface charge
density.

Over the years, several studies have been made on diffusiophoresis under a finite Debye
layer consideration (Hsu, Hsu & Chen 2009; Fang & Lee 2015; Lee 2019; Ohshima 2022).
Based on theoretical analysis (Hsu et al. 2009; Fang & Lee 2015) the mobility reversal at a
higher ζ -potential due to the occurrence of the type-II double layer polarization (DLP-II)
is demonstrated. At a higher ζ -potential, the stronger electrostatic force created by the
surface ions prevents the diffusion of coions across the Debye layer. This leads to a larger
accumulation of coions at the higher concentration side (DLP-II), creating a stronger
repulsive force to the particle and pushing the particle towards the lower concentration
side, resulting in a mobility reversal. In droplet diffusiophoresis, the mobility reversal may
happen at a lower surface potential due to the DLP-II effect caused by a locally induced
electric field (Tsai et al. 2022). Several experimental studies (Nery-Azevedo, Banerjee
& Squires 2017; Shimokusu et al. 2019; Shin 2020; Wilson et al. 2020) corroborate the
theoretical findings of the diffusiophoresis of colloidal entities.

Most of the existing studies on the electrokinetics over hydrophobic surfaces considered
the slip velocity condition as being independent of the surface charge. The hydrophobic
behaviour of the solid substrate is characterized by the smaller solid–fluid cohesivity
parameter appearing in the Leonard-Jones potential, which determines the interaction of
the fluid and solid molecules. In addition, the surface ions interact with the solvent ions
by the Coulomb potential. Thus, the friction at the hydrophobic interface is influenced
by the electric force created by the surface charge. The slip length, which is the ratio
of the liquid viscosity to the interfacial friction coefficient, must depend on the surface
charge. Based on the stress balance condition incorporating the electric force created by
the surface charge, Joly et al. (2004) proposed a surface charge-dependent slip length. The
molecular dynamics simulation of Xie et al. (2020) established the dependence of slip
length on the surface charge density. Several experimental studies (Pan & Bhushan 2013;

997 A8-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.778


Laterally mobile surface charge impact on diffusiophoresis

Jing & Bhushan 2015) have established that the slip length diminishes with the higher
accumulation of surface charge. The experimental and theoretical analysis of Kobayashi
(2020) on the electrophoresis of hydrophobic polystyrene nanoparticles concludes that the
slip length is larger for a lower surface charge density.

The slip velocity effects on a hydrophobic solid surface can be interpreted through
the ‘gas cushion model’ (Vinogradova 1995), which combines a thin layer of decreased
viscosity with mobile surface ions located at the interface and immobile ions are fixed at a
solid surface (Vinogradova, Silkina & Asmolov 2023). Maduar et al. (2015) demonstrated
that in response to an electric field, the adsorbed charges on a hydrophobic surface are
laterally mobile with respect to the fluid. Physisorption of the surface charge on the
slippery hydrophobic surface is demonstrated in experimental studies (Dammer & Lohse
2006). This has been corroborated by ab initio simulations (Sendner et al. 2009). Based
on the molecular dynamics simulations on electrokinetic transport through hydrophobic
carbon and hexagonal boron nitride (hBN) nanotubes, Mangaud et al. (2022) established
that the experimental data for the surface state can be deduced correctly by considering
the mobility of the physisorbed surface charge. The laterally mobile surface ions can arise
due to the adsorption of basic and/ or acidic surfactants (Mouterde & Bocquet 2018). The
wetting properties of naturally hydrophilic SiO2 nanoparticles are manipulated using ionic
surfactants (Liang et al. 2019). The experimental study (Galarza-Acosta et al. 2023) reveals
a weak adsorption of surfactant molecules onto the SiO2 nanoparticles. The experimental
and theoretical study by Uematsu, Bonthuis & Netz (2020) demonstrates that the sizable
amount of ζ -potential on a hydrophobic surface, as determined experimentally, may arise
due to the adsorption of surface active agents present in the suspension medium.

The laterally mobile surface ions (physisorbed ions) create a friction force as well as an
electric force at the hydrophobic interface. Several authors (Mouterde & Bocquet 2018;
Liang et al. 2019; Mouterde et al. 2019; Xie et al. 2020; Liu, Xing & Pi 2022) studied
the impact of the mobile surface charge in the context of electrokinetics over charged
slippery flat surfaces. It may be noted that Maduar et al. (2015) and the subsequent study
by Vinogradova, Silkina & Asmolov (2022) neglected the electric force in the fluid friction
at the charged hydrophobic interface and thus the slip length is independent of the surface
charge density in those studies. However, electrokinetics around a curved surface becomes
complicated due to the development of a non-uniform induced tangential electric field.
This unknown induced electric field influences the slip condition at the hydrophobic
curved surface. The laterally mobile surface ions along the surface of a hydrophobic
colloid create hydrodynamic friction and a tangential electric force, which can modify
the local electric field as well as create resistance to the propulsion of hydrophobic
nanoparticles (NPs). Thus, the electrokinetics is expected to have a strong influence due to
the presence of the mobile surface charge.

Despite the relevance of the charged surface wettability condition in several practical
contexts (Van Loosdrecht et al. 1987; Kobayashi 2020), studies on its influence on
diffusiophoresis are rather limited. Recently, Majhi & Bhattacharyya (2022) imposed a
Navier-slip condition to analyse the influence of surface wettability on diffusiophoresis.
In this paper, we consider the diffusiophoresis of a polarizable hydrophobic charged
particle. The adsorbed surface charge on the hydrophobic colloid is considered to be
laterally mobile, which leads to a modification of the slip velocity condition involving
both hydrodynamic friction and electric force. The hydrophobic colloids such as DNA or
protein can have a dielectric permittivity different from the electrolyte medium (Loeb
1924; Shukla & Mikkola 2020). In such cases, the colloid can polarize and create an
induced surface charge. Due to the anti-symmetric distribution of the induced surface
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charge, the electrophoresis part may remain invariant. It also does not alter the tangential
stress balance condition at the interface. However, the induced charge can modify the DLP
and, hence, affect the diffusiophoresis. A theoretical analysis on the diffusiophoresis of
such a type of colloids has not been addressed in the literature.

In the present study, the mathematical model is based on the conservation principle.
A modified interfacial slip condition is developed through a balance of hydrodynamic and
electric stress created by the weakly adsorbed laterally mobile surface ions. The electric
force on the surface charge enables the effective slip length to vary with the surface charge
density. Thus, the slip boundary condition is coupled with the induced electric field, which
is governed by the local distribution of ions. We develop a finite volume based numerical
scheme to solve the governing equations in their full form. In addition, we adopt a regular
perturbation analysis to linearize the governing equation and an explicit analytical solution
for diffusiophoretic mobility is developed under the Debye–Hückel (D–H) limit. Thus, the
present model applicable for polarizable and hydrophobic charged particles with mobile
surface charge will pave the way for the experimentalist to measure the intrinsic parameters
associated with the colloid particle based on the diffusiophoresis correctly.

Several authors (Uematsu et al. 2020, and the references therein) established that the
mechanisms for the electrification of hydrophobic solid surfaces are similar to those of
bubble or droplet surfaces. In this study, based on the numerical solution as well as the
analytical expression under the D–H approximation, we attempt to show an equivalence
between the diffusiophoresis of a hydrophobic colloid with fully mobile surface charge
and a charged droplet.

2. Mathematical model

We consider the diffusiophoresis of a hydrophobic colloidal particle of radius a in an
electrolyte solution of viscosity η under an externally imposed concentration gradient
∇n∞, which enables the particle to translate with a uniform speed UD with respect to the
suspension medium. The dielectric permittivity of the particle and aqueous medium are,
in general, different and are denoted by εp and εe, respectively. We consider the particle
surface to be hydrophobic, which acquires a uniform surface charge density σ as a result
of the weak physisorption of a specific ionic species at the surface. The mobile nature
of such ions significantly modifies the hydrodynamic slip condition (Maduar et al. 2015;
Mouterde & Bocquet 2018; Vinogradova et al. 2022). A spherical polar coordinate system
(r, θ, ψ) is considered with its origin (figure 1) held fixed at the centre of the particle, and
the z-axis (θ = 0) is taken along the imposed concentration gradient ∇n∞. With respect to
this stationary coordinate frame fixed at the particle centre, the far-field fluid is considered
to approach with a velocity −UD towards the particle.

The scaled electric potential (φ), scaled by the thermal potential φ0, within the
electrolyte is governed by the Poisson equation,

∇2φ = − (κa)2

2
ρe, r > 1, (2.1)

where ρe = ∑N
i=1 zini is the scaled space charge density. Here, zi and ni are the valence and

the concentration of the ith ionic species, respectively. The ionic concentration is scaled
by the bulk ionic strength I = (1/2)

∑N
i=1 z2

i n∞
i , where n∞

i is the bulk concentration of
the ith ionic species and can be measured from n∞, which is the ionic concentration at
r = 0 in the absence of the particle.
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Figure 1. A schematic illustration of the diffusiophoresis of a hydrophobic polarizable particle and the
spherical coordinate system.

As there is no free charge inside the particle, the electric potential inside the particle (φ̄)
is governed by the Laplace equation, i.e.

∇2φ̄ = 0, r < 1. (2.2)

The boundary conditions of the electric potential along the particle surface are

∂φ

∂r
− εr

∂φ̄

∂r
= −σ, φ̄ = φ. (2.3a,b)

Here, the first condition corresponds to the jump discontinuity of the dielectric
displacement vector and the second condition is due to the continuity of the potential.
Additionally, εr (= εp/εe) is the particle to electrolyte permittivity ratio and σ is scaled
surface charge density scaled by εeφ0/a.

The Nernst–Planck equation governing the spatial distribution of the ith ionic species is

∂ni

∂t
+ u · ∇ni = 1

Pei
∇ · (ni∇μi), (2.4)

where μi is the dimensionless electrochemical potential of the ith ionic species, scaled by
kBT , and is defined as

μi = μ0
i + ziφ + ln ni. (2.5)

Here, u = (v, u) is the velocity vector with v the radial and u the cross-radial velocity
components, scaled by U0 = εeφ

2
0/ηa, and t is the dimensionless time which is scaled

by a/U0. The Péclet number Pei = εeφ
2
0/ηDi provides the importance of advective to

diffusive transport of ions, where Di is the diffusion coefficient of the ith ionic species.
The no normal flux of ions at the particle surface leads to the boundary condition at r = 1
as

∇μi · er = 0, (2.6)

where er is the unit normal vector pointing outwards at the particle surface.
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The equation of incompressible Newtonian fluid describing the motion of ionized fluid
can be expressed in scaled form as

Re
∂u
∂t

+ Re(u · ∇)u − ∇2u + ∇p + (κa)2

2
ρe∇φ = 0, (2.7)

∇ · u = 0, (2.8)

where pressure p is the scaled pressure by εeφ
2
0/a

2 and other scales for other variables
are defined earlier. The Reynolds number associated with the electrokinetic motion of
colloidal entities is generally small and the flow field is also axisymmetric in nature. We
assume the z-axis as the axis of symmetry.

We consider lateral mobility of the adsorbed surface charge on the hydrophobic surface.
The interfacial friction modifies by the electric force created by the surface charge, which
leads to the slip length, the ratio between the liquid viscosity to the interfacial friction, at
the hydrophobic surface as (Xie et al. 2020)

λeff = λ

1 − 6π(1 − χs)(τεeφ0/e)λσ
, (2.9)

where λ is the slip length corresponding to the uncharged surface (bare slip length)
and τ is the effective hydrodynamic radius of the physisorbed hydroxide ions. Here,
χs = ωs/(ωs + ωw) is a scaled parameter which can be related to the mobility of the
surface ions, where ωs and ωw are the friction coefficients of the mobile surface ion
with water and wall, respectively (Mouterde & Bocquet 2018; Mouterde et al. 2019).
Based on the Stokes drag on the hydrated ion of size τh, the friction coefficient ωs can
be obtained as ωs = 3πτhη (Mangaud et al. 2022), which has the dimension kg s−1. In
the present formulation, ωw is appearing through the scaled parameter χs, which can
be determined through the electrophoretic mobility of the physisorbed ions, defined as
1/(ωs + ωw). Several theoretical analyses (Mouterde & Bocquet 2018; Liu et al. 2022)
on the electroosmotic flow involving the physisorbed surface ions determined χs by
considering the experimental data for the electrophoretic mobility of physisorbed ions, as
reported by Mouterde et al. (2019) and Mangaud et al. (2022). For a rigid hydrophilic wall
in which the ion–wall frictionωw → ∞, then χs = 0, i.e. ions are immobile on the surface.
As the surface ions are considered to have lateral mobility, the balance of interfacial stress
leads to the modified slip boundary condition as (Majhi, Bhattacharyya & Gopmandal
2024)

ueθ = λeff

{(
σH + χs

(
σE − σ̄ Ē

))
· er −

[((
σH + χs

(
σE − σ̄ Ē

))
· er

)
· er

]
er

}
,

(2.10)
where eθ is the unit tangential vector at the particle surface, σH denotes the hydrodynamic
stress tensor, and the Maxwell stress tensors outside and within the particle are respectively
σE and σ̄ Ē (Yang et al. 2018). Using (2.3a,b), the above boundary condition for the
tangential velocity on the slippery impermeable hydrophobic surface for the axisymmetric
problem can be simplified to

u = λeff

[
r
∂

∂r

(u
r

)
− χsσ

(
1
r
∂φ

∂θ

)]
and v = 0 at r = 1. (2.11)

For the case of immobile surface charge χs = 0, the friction force created by the
electromigration of surface ions becomes zero. The second condition v = 0 on the surface
arises due to the fluid impermeability along the surface of the rigid particle. Note that for a
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hydrophilic surface, λ = 0, which yields λeff = 0 and thus, the tangential velocity reduces
to zero.

The boundary conditions along the far-field (r � 1) in a reference frame fixed at the
particle centre are as follows:

u = −UDez, ni = n∞
i
I
(1 + αr cos θ), φ = −βαr cos θ, (2.12a–c)

where UD is the diffusiophoretic velocity, which is unknown a priori and the
primary concern is to calculate UD. The diffusiophoretic mobility, denoted as μD,
is the diffusiophoretic velocity per unit imposed concentration gradient α. Here,
α = |∇∗n∞|a/n∞ is the scaled concentration gradient imposed externally. The term
β = ∑

i Dizin∞
i /

∑
i Diz2

i n∞
i is the parameter measures the diffusion potential.

At steady state, the unknown diffusiophoretic velocity UD is determined through
the balance of electric and drag forces as experienced by the particle. The steady
diffusiophoresis of a spherical particle can be considered to be axisymmetric, implying
that the azimuthal dependence of the variables can be neglected. Due to this axisymmetry
consideration, the force balance only along the z-direction can be considered. The
electrostatic (FE) and hydrodynamic (FD) forces along the flow direction can be calculated
by integrating over the particle surface the Maxwell stress tensor σE and hydrodynamic
stress tensor σH , respectively (Majhi & Bhattacharyya 2022). The diffusiophoretic
velocity UD and, hence, mobility μD is determined by solving the force balance condition
FE + FD = 0.

We adopt a numerical procedure to solve the governing electrokinetic equations exactly.
In the numerical method, UD is determined iteratively by solving the force balance
condition. Based on an approximate UD, the governing nonlinear electrokinetic equations
are solved in a coupled manner. The diffusiophoresis considered here is a steady process.
However, for numerical simulation, the diffusiophoresis is considered to start impulsively
from the equilibrium state, which approaches the steady state after a transient phase.
A forwards time marching procedure is adopted to solve the governing unsteady equations,
which is continued until the time-independent solution is achieved after a transient phase.
We adopt a control volume approach with a higher-order upwind discretization for the
convection and electromigration terms. A detailed discussion on the numerical method as
adopted here is provided elsewhere (Majhi & Bhattacharyya 2022, 2023a). Through this
numerical solution, the forces acting on the particle are determined and, subsequently, the
solution for UD is updated. The procedure is continued until the force balance condition,
within a tolerance limit, is satisfied.

In addition to the exact numerical solution (ENS), we make a theoretical analysis
on diffusiophoresis under a weak applied concentration field along with linearized
approximation. In this case, we drop the unsteady terms in the governing equations
and neglect the convective terms in the momentum equation (2.7). The reduced set of
equations considered for the theoretical analysis is provided in Appendix A. The explicit
form of the diffusiophoretic velocity is obtained for the low charge limit for which the
D–H approximation holds. Below, we provide an outline of the theoretical analysis and
derivation of analytical expression for the mobility.

3. Linearized solution under a weak concentration gradient

We adopt a first-order perturbation analysis by considering the imposed concentration
gradient scaled by the bulk concentration divided by particle radius, i.e. α as the
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perturbation parameter. When a concentration difference at the two ends of the domain
n∞,R − n∞,L is imposed, then α = (n∞,R − n∞,L)a/[R(n∞,R + n∞,L)], where R is the
radius of the outer boundary. In general, the domain R � a, which implies α � 1. Under
this small α, all the electrokinetic variables appearing in the above governing equations
are considered to be slightly perturbed from their equilibrium condition. The equilibrium
condition implies that the gradient of the electrochemical potential is zero and there is
no relative motion of fluid and the particle. Based on this perturbation, we can derive the
expression for the diffusiophoretic mobility as

μD = 1
9

∫ ∞

1

[
1

1 + 2λeff
− 3r2 + 2

(1 + 3λeff )

(1 + 2λeff )
r3

]
G(r) dr − 2χsλeffσ

3(1 + 2λeff )
Y(1). (3.1)

A detailed derivation of (3.1) based on the linear perturbation analysis is provided in
Appendix A. The functions G(r) and Y(1) are obtained by solving a set of boundary
value problems, as outlined in Appendix A. We show later that the mobility based on this
expression (3.1) matches with the ENS of the governing equations. This simplified model
for the mobility (3.1) requires a numerical solution of the set of linear boundary value
problems (A4) as provided in Appendix A. Thus, the simplified model is significantly more
cost effective as compared with the exact numerical solution, which requires numerical
solutions of coupled set of nonlinear partial differential equations. This expression is
further simplified by adopting the D–H approximation valid for the range of surface charge
density so as to have the surface potential less the thermal potential, i.e. |ζ | < 1.

Based on the D–H approximation, the closed form analytical solution for the
diffusiophoretic mobility of a hydrophobic particle suspended in a monovalent symmetric
electrolyte with distinct diffusion coefficient can be derived as

μD =
[

σ

κa + 1
Θ1(κa)− χsλeffσK1

(εr + K1)(1 + 2λeff )

]
β

+
(

σ

κa + 1

)2 [
1
8
Θ2(κa)− 2χsλeff

3(εr + K1)(1 + 2λeff )

×
{

21
4

− 3
4
κa + 3

4
(κa)2 − 3eκaE5(κa)+ 15eκaE6(κa)− 45eκaE7(κa)

}]
,

(3.2)

where K1 = (1 + κa)+ (1 + κa)−1, and the functions Θ1(κa) and Θ2(κa) are
respectively given by

Θ1(κa) = λeff

1 + 2λeff
κa + 1 + λeff

1 + 2λeff
+ 2eκaE5(κa)− 5

1 + 2λeff
eκaE7(κa), (3.3a)

Θ2(κa) = 2λeff

1 + 2λeff
κa + 1

1 + 2λeff
− 8

3
eκaE3(κa)+ 8eκaE4(κa)

+ 8
3

1
1 + 2λeff

eκaE5(κa)− 8Θ1(κa)eκaE5(κa)− 40
3

1
1 + 2λeff

eκaE6(κa)

+ 10
3

e2κaE6(2κa)+ 7
3

1
1 + 2λeff

e2κaE8(2κa). (3.3b)

The details derivation of the above expression is provided in Appendix B. Equation (3.2) is
one of the key findings of the present study. It is useful for experimentalists for the correct
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evaluation of intrinsic hydrodynamic and electrostatic properties of charged colloids
based on the diffusiophoresis. We can separate the electrophoresis and chemiphoresis
parts in the mobility expression (3.2). The terms multiplied by β in (3.2) correspond to
the electrophoretic contribution, denoted by μE, and the remaining terms independent
β correspond to the chemiphoretic contribution, which is denoted by μC, i.e. μD =
μE + μC, where

μE =
[

σ

κa + 1
Θ1(κa)− χsλeffσK1

(εr + K1)(1 + 2λeff )

]
β, (3.4a)

μC =
(

σ

κa + 1

)2 [
1
8
Θ2(κa)− 2χsλeff

3(εr + K1)(1 + 2λeff )

×
{

21
4

− 3
4
κa + 3

4
(κa)2 − 3eκaE5(κa)+ 15eκaE6(κa)− 45eκaE7(κa)

}]
.

(3.4b)

The mobility expression (3.2) based on the linear-order analysis under the D–H
approximation shows that the dielectric polarization has no impact on the mobility
when immobile surface charge is considered. A similar conclusion has been made by
several authors (O’Brien & White 1978; Bhattacharyya & De 2015) in the context of
electrophoresis. However, the dielectric polarization can have an impact when the surface
charge becomes mobile, which can be captured even through the first-order analysis.

3.1. Mobility expression for 0 � χs < 1
In this subsection, we consider various limiting situations and provide closed form
analytical results for diffusiophoretic mobility. For the case of a perfectly dielectric particle
(εr → 0), the expression (3.2) reduces to

μD =
[

σ

κa + 1
Θ1(κa)− χsλeffσ

(1 + 2λeff )

]
β

+
(

σ

κa + 1

)2 [
1
8
Θ2(κa)− 2χsλeff (κa + 1)

3(1 + 2λeff )((κa + 1)2 + 1)

×
{

21
4

− 3
4
κa + 3

4
(κa)2 − 3eκaE5(κa)+ 15eκaE6(κa)− 45eκaE7(κa)

}]
. (3.5)

It is obvious that the electrophoresis part attenuates as the velocity of the surface ions,
i.e. χs, is increased. For a perfectly conducting particle (εr → ∞), the mobility expression
(3.2) reduces to the limiting form as

μD = σ

κa + 1
Θ1(κa)β + 1

8

(
σ

κa + 1

)2

Θ2(κa). (3.6)

Under the Hückel limit (i.e. κa → 0), the mobility expression (3.2) reduces to the
following simple form:

μD = 2
3
σ

[
1 + 3λeff

1 + 2λeff
− 3χsλeff

(εr + 2)(1 + 2λeff )

]
β. (3.7)

This implies that in the Hückel limit, there is no chemiphoresis contribution in particle
mobility, i.e. the mobility is generated by the corresponding electrophoresis part only.
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Further, for a dielectric particle (εr → 0), the corresponding mobility expression (3.7)
reduces to

μD = 2
3
σ

[
1 + 3λeff

1 + 2λeff
− 3χsλeff

2(1 + 2λeff )

]
β (3.8)

and in the case of perfectly conducting particle (εr → ∞), the above expression (3.7)
reduces to

μD = 2
3
σ

[
1 + 3λeff

1 + 2λeff

]
β. (3.9)

It is clear by comparing (3.8) and (3.9) that the mobility for a hydrophobic particle is
enhanced for the conducting particle as compared with the non-conducting case. Setting
λ = 0, we can deduce the Hückel limit μD = (2/3)βσ applicable for a hydrophilic
particle.

We now consider the Smoluchowski limit for a thin EDL, i.e. κa � 1. The surface
charge density for a low-charged particle is related to ζ -potential by the relation σ = κaζ .
Based on the order of magnitude analysis, the mobility expression (3.2) can be reduced to

μD = ζ

[
λeff κa + 1
1 + 2λeff

− χsλeff (κa)2

(1 + 2λeff )(εr + κa)

]
β

+ ζ 2

8

[
2λeff κa + 1

1 + 2λeff
− 4χsλeff (κa)2

(1 + 2λeff )(εr + κa)

]
. (3.10)

We find from (3.10), which is valid for a thinner Debye length, that the dielectric
polarization has no effect on the mobility when the surface charge is immobile, i.e. χs = 0.
This supports the existing study by Schnitzer & Yariv (2012), which shows that the
dielectric polarization does not alter the leading-order electrokinetics for a thin EDL. It
is evident that both the electrophoresis (μE) and chemiphoresis (μC) parts augment as the
permittivity of the particle is increased, and this augmentation is proportional to χs. For
a perfectly conducting particle εr → ∞, the chemiphoresis part becomes positive and the
dependence on χs appears only through the modification of the effective slip length λeff .
For a perfectly dielectric particle, (3.10) further reduces to

μD = ζ

[
1 + λeff κa
1 + 2λeff

− χsλeff κa
(1 + 2λeff )

]
β + ζ 2

8

[
1 + 2λeff κa

1 + 2λeff
− 4χsλeff κa

1 + 2λeff

]
. (3.11)

Hence, under the Smoluchowski limit (κa � 1), the corresponding electrophoretic and
chemiphoretic mobility of a perfectly dielectric particle can be expressed as

μE = ζ

[
1 + (1 − χs)λeff κa

1 + 2λeff

]
β and μC = ζ 2

8

[
1 + 2(1 − 2χs)λeff κa

1 + 2λeff

]
. (3.12a,b)

It is clear from (3.12a,b) that the sign of μE is governed by βσ and for a fixed β and σ ,
no change of sign in μE occurs as χs � 1. The magnitude of μE reduces as the surface
ions become mobile, i.e. with the increase of χs. However, the chemiphoretic mobility μC
remains positive for χs � 0.5 and it changes its sign from positive to negative for χs >

0.5 + 0.25(λeff κa)−1 with μC = 0 at the critical χs as 0.5 + 0.25(λeff κa)−1. This implies
that at a thinner Debye length and/ or higher slip length, μC becomes negative when χs
becomes marginally bigger than 0.5. Thus, the thin layer analysis shows that the mobility
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Laterally mobile surface charge impact on diffusiophoresis

of surface ions χs attenuates chemiphoretic mobility when χs < 0.5 + 0.25(λeff κa)−1 and
the mobility for βσ > 0 can become negative and can enhance with χs for χs > 0.5 +
0.25(λeff κa)−1.

We find that the mobility of a perfectly dielectric hydrophobic particle (εr = 0) may
change its sign even if β and σ (or ζ ) are fixed, and μD may become zero at χs =
(1 + 2κaλeff )ζ + 8β(1 + κaλeff )/4κaλeff (2β + ζ ) at a thin EDL, where ζ = σ/κa. The
knowledge of mobility reversal is extremely important in various biomedical applications
specially in drug delivery, in which the propulsion of the nanoparticle along the direction
of the imposed concentration gradient is needed. When the slip length is much smaller
than the particle radius, i.e. the dimensionless effective slip length λeff � 1, the mobility
expression (3.11) becomes

μD = βζ [1 + (1 − χs)λeff κa] + ζ 2

8
[1 + 2(1 − 2χs)λeff κa]. (3.13)

It is evident that the effect of slip amplifies as the Debye length becomes thinner and
declines as the surface ions become mobile. For the case of immobile surface charge (χs =
0), the mobility becomes

μD = βζ(1 + λeff κa)+ ζ 2

8
(1 + 2λeff κa), (3.14)

which is identical with the analytical expression as derived by Majhi & Bhattacharyya
(2022) for a hydrophobic particle with immobile surface charge (χs = 0) under a low
surface potential when λeff = λ. The expression for the electrophoresis part shows that the
ζ -potential is amplified by a factor (1 + κaλeff ), which follows the concluding remark of
Khair & Squires (2009) in the context of electrophoresis of a hydrophobic particle under
a thin EDL consideration. For a hydrophilic particle, i.e. λ = 0, the mobility expression
(3.14) reduces to

μD = βζ + ζ 2

8
, (3.15)

which is exactly the same expression as derived by Prieve et al. (1984) for a thin Debye
layer under the D–H approximation.

3.2. Mobility expression for χs = 1 and resemblance to a viscous droplet
The mobility expression of a hydrophobic rigid colloid with fully mobile surface charge
may be derived from (3.2) by setting χs = 1, i.e.

μD =
[

σ

κa + 1
Θ1(κa)− λσK1

(εr + K1)(1 + 2λ)

]
β

+
(

σ

κa + 1

)2 [
1
8
Θ2(κa)− 2λ

3(εr + K1)(1 + 2λ)

×
{

21
4

− 3
4
κa + 3

4
(κa)2 − 3eκaE5(κa)+ 15eκaE6(κa)− 45eκaE7(κa)

}]
.

(3.16)

When χs = 1, the λeff becomes λ. Several researchers (Gopmandal, Bhattacharyya &
Ohshima 2017; Ohshima 2019; Uematsu et al. 2020) have established a similarity in the
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electrokinetic transport of hydrophobic colloids with liquid droplets. We now attempt
to establish such similarity in diffusiophoresis between liquid droplets and hydrophobic
colloids. It is evident that the mobility expression (3.16) becomes identical to the
expression for the mobility of a droplet of viscosity ηd = η/3λ as derived by Samanta
et al. (2023b). Thus, the diffusiophoresis of a hydrophobic colloid with slip length λ for
a fully mobile adsorbed surface charge is equivalent to that of a dielectric droplet with
viscosity ratio of the droplet-to-fluid ηr = 1/3λ. We have shown later in § 4 that our
numerical simulation for the fully mobile surface ions (χs = 1) agrees exactly with the
numerical results of Fan et al. (2022) for a liquid droplet with droplet-to-fluid viscosity
ratio ηr = 1/3λ.

It may be noted that Tsai et al. (2022) derived an expression for the mobility of a
droplet under the D–H approximation, which involves integrals that cannot be evaluated
analytically. However, the present expression for the mobility (3.16) as derived based on
the D–H approximation does not involve any complicated exponential integrals.

Under the Hückel limit (κa � 1), the mobility expression (3.16) reduces to

μD = 2
3
σ

[
1 + 3λ
1 + 2λ

− 3λ
(εr + 2)(1 + 2λ)

]
β. (3.17)

It is evident that the second term of the expression (3.17) reduces with the increase of εr,
which implies that the mobility increases with the increase of εr. If we further consider
εr → ∞ (conducting particle), the above expression (3.17) reduces to

μD = 2
3
σ

[
1 + 3λ
1 + 2λ

]
β. (3.18)

It is clear that |μD| is higher for the conducting particle than the dielectric particle.
Under the Smoluchowski limit (κa � 1), the mobility of a hydrophobic particle with

fully mobile surface ions is obtained as

μD = ζ

[
λκa + 1
1 + 2λ

− λ(κa)2

(1 + 2λ)(εr + κa)

]
β + ζ 2

8

[
2λκa + 1

1 + 2λ
− 4λ(κa)2

(1 + 2λ)(εr + κa)

]
,

(3.19)

where ζ is obtained as ζ = σ/κa. Hence, under the Smoluchowski limit, the
corresponding electrophoretic and chemiphoretic mobility of a polarizable particle can
be separated as

μE = ζ

[
λκa + 1
1 + 2λ

− λ(κa)2

(1 + 2λ)(εr + κa)

]
β

and

μC = ζ 2

8

[
2λκa + 1

1 + 2λ
− 4λ(κa)2

(1 + 2λ)(εr + κa)

]

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (3.20a,b)

For a perfectly dielectric particle, the above electrophoretic and chemiphoretic mobility
expressions are reduced to

μE = ζ

[
1

1 + 2λ

]
β and μC = ζ 2

8

[
1 − 2λκa

1 + 2λ

]
. (3.21a,b)

We find that μC and μE may act concurrently when κaλ > 0.5 even when βσ > 0. It
is evident that for larger slip length, μE becomes small and μC < 0, leading to μD < 0.
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Laterally mobile surface charge impact on diffusiophoresis

Again, the ratio of μE and μC is

μE

μC
= 8β

ζ

[
1

1 − 2κaλ

]
. (3.22)

Since κa � 1, which implies κaλ >> 1 when λ ∼ O(1), in such a situation, |μE/μC| 	
4|β|/(λ|σ |). Therefore, |μC| > |μE| under the condition λ > 4|β|/|σ |. This implies
that μD < 0 when λ > 4|β|/|σ | even when βσ > 0. Again, when λ� 1, i.e. in the
superhydrophobic situation, μE → 0 and μC becomes −σζ/8, which implies that μD < 0
regardless the values of σ and β.

When the particle becomes perfectly conducting, (3.20a,b) becomes

μE = ζ

[
λκa + 1
1 + 2λ

]
β and μC = ζ 2

8

[
2λκa + 1

1 + 2λ

]
. (3.23a,b)

It is clear that for a conducting particle,μC remains positive andμE is positive for βσ > 0.
Hence, the mobility of a conducting particle remains positive if βσ > 0 and can change
sign for βσ < 0. Furthermore, μE and μC reduce to βσ/2 and σζ/8, respectively, in
the super-hydrophobic situation λ� 1, which implies that |μE| > |μC| when |ζ | < 4|β|.
Thus, |μE| is dominant for lower ζ -potential; however, |μC| dominants when ζ -potential
increases to more than four times the diffusion potential when slip length λ� 1.

From expression (3.20a,b), it can be observed that μE increases with εr and reaches its
maximum when the particle is conducting (εr → ∞) and mobility remains positive for
βσ > 0. However, μC = 0 exactly at εr = 4λ(κa)2/(2λκa + 1)− ka or at εr 	 κa − λ−1

if 2λκa > 1, which agrees with the numerical finding of Majhi & Bhattacharyya (2023b)
for a charged droplet. Subsequently, μC � 0 when εr � κa − λ−1 and becomes positive
when εr > κa − λ−1. Furthermore, when μC > 0, the magnitude of μC enhances as εr
increases, and when μC is negative, |μC| behaves as a decreasing function of εr. One may
note that the mobility μD is always positive when εr > κa − λ−1 as μE is always positive
when βσ > 0.

The analytical solution under the D–H approximation for several limiting conditions can
be summarized as follows. The mobility expression for a dielectric particle is given in (3.5)
and the expression for a conducting particle is given in (3.6). The Hückel limit is given in
(3.7), which reduces to the expressions for a dielectric and a conducting particle in (3.8)
and (3.9), respectively. The mobility under the Smoluchowski limit can be expressed by
(3.10). Under the consideration of the Smoluchowski limit, μD for a dielectric particle is
given in (3.11), which reduces to (3.13) for a low slip length λ� 1. This can be further
reduced to the expression (3.14) for the immobile surface ions (χs = 0) and (3.15) for a
hydrophilic particle (λ = 0). For the fully mobile surface charge (χs = 1), μD is governed
by (3.16) and the corresponding Hückel limit for μD is given in (3.17). The Hückel limit
for μD of a conducting particle is given in (3.18). The Smoluchowski limit for μD of
a polarizable hydrophobic particle with fully mobile surface charge is given in (3.19).
The corresponding expression for mobility for a dielectric and a conducting particle are
obtained from (3.21a,b) and (3.23a,b), respectively.

4. Results and discussion

The results are obtained based on the parameter values ρ = 103 kg m−3, η = 10−3 Pa s,
εe = 695.39 × 10−12 C (V m)−1 and e = 1.602 × 10−19 at a constant temperature T =
298 K. We consider the scaled imposed concentration gradient α = 10−3, which is close
to the value considered in the experimental study by Ebel, Anderson & Prieve (1988).
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Electrolyte z+ z− D+ (10−9 m2 s−1) D− (10−9 m2 s−1) β

NaCl 1 −1 1.33 2.03 −0.208
KCl 1 −1 2.03 2.03 0.0
LiCl 1 −1 1.03 2.03 −0.327
HCl 1 −1 9.31 2.03 0.65

Table 1. Values of z+, z−, D+, D− and β for some common electrolytes at 25 ◦C.
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D
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Numerical results
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Numerical results

Analytical expression (3.2)

λ

(b)(a) (c)

Figure 2. Comparison of the exact numerical simulations with (a) the experimental results of Ebel et al.
(1988) for a hydrophilic latex particle with a = 57 nm, (b) the analytical solution for different κa = 1, 10, 50
with σ at λ = 1 and χs = 0, and (c) with the analytical solution for different λ = 0.01, 0.1, 0.5, 10 at κa = 10
and σ = −10. In (b,c), the results are computed with NaCl (β = −0.208) as a background salt. In (a), green
symbols, KCl; blue symbols, NaCl; red symbols, LiCl.

The valency and diffusion coefficient of the electrolytes considered in this study are given
in table 1. We begin with a comparison of our numerical algorithm with the existing
experimental results and the simplified model, as well as the linearized model for the
limiting cases.

4.1. Comparison with existing results and present analytical solutions
Figure 2(a) depicts the comparison of our ENS with the experimental results of Ebel
et al. (1988) for the diffusiophoretic mobility of a hydrophilic (λ = 0) latex particle for
different electrolyte solutions. At each κa for which μD is computed, the surface charge
density is different and can be found from Ebel et al. (1988). An excellent agreement
is found between the experimental results and our computed results. The mobility is
positive for KCl as it is governed by the chemiphoresis part only. For LiCl and NaCl, the
electrophoresis and chemiphoresis are cooperating as βσ > 0. We find that as κa varies,
μD increases, achieves a local maxima then it declines with further increase of κa. At a
lower κa, chemiphoresis is weak; it enhances as κa is increased creating an increment in
μD.

Figure 2(b) illustrates the comparison between the mobility of the particle obtained by
ENS and the analytical solution (3.2) based on the D–H approximation. The results are
obtained for λ = 1 and immobile surface charge χs = 0 in NaCl electrolyte, which has a
non-zero β = −0.208 at different σ . At κa = 1, an exact match is found up to σ = −2,
and then deviation is found as σ is increased. The analytical solution (3.2) is based on
the D–H approximation, which is valid at lower ζ -potential (<1), i.e. |σ | � 2 at κa = 1.
For a higher surface charge density, the deviation is obvious as exact numerical simulation
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accounts for the Debye layer relaxation effects, which creates a retarding force and thus, the
mobility undershoots the analytical solution. However, at higher κa, the surface potential
becomes smaller at a fixed σ and the relaxation effect diminishes. Therefore, we find an
excellent agreement with analytical solution (3.2) at a higher κa.

Figure 2(c) presents the comparison between the exact numerical simulation and the
analytical solution (3.2) based on the linearized approximation for mobility at different
slip lengths for κa = 10 and σ = −10. It is found that at a lower slip length, the analytical
solution agrees well with the results computed by ENS. However, at a higher slip length, a
deviation occurs. The surface conduction effect becomes stronger due to the double layer
polarization at a higher slip length, which leads to the discrepancy between the ENS and
the linearized solution (3.2).

4.2. Effect of χs on diffusiophoretic mobility
The impact of the laterally mobile surface ions on diffusiophoresis is illustrated in
figures 3(a)–3(c) by varying the slip length for different electrolytes at different bulk ionic
concentration, i.e. different κa. For the immobile surface charge (χs = 0), the slip velocity
is independent of the tangential electric force. In this case, an increase in slip length
enhances the magnitude ofμD and approaches a saturation at a larger λ, which corresponds
to the superhydrophobic limit. The lateral mobility of the surface ions (χs /= 0) creates a
strong impact on the particle diffusiophoresis. The physisorbed ions create friction force
at the interface as well as generates a tangential electric force created by the electric field
on the charged layer. For a negatively charged surface, the effective slip length on the
charged hydrophobic surface increases as the surface ions become mobile (increase of
χs); however, it remains lower than the bare slip length λ. Based on the slip velocity
condition (2.11), we find that when the tangential electric field near the interface is
negative, it augments the velocity of the particle (figure 3a,b) and it counteracts when the
tangential field is positive (figure 3c). The local electric field is induced by the diffusion
field as well as the field created by the interaction of the double layer with the imposed
concentration gradient. Thus, χs modifies both the electrophoresis and chemiphoresis
parts of the diffusiophoresis. This makes the diffusiophoresis of colloids with mobile
surface ions convoluted as compared with the case of electrophoresis (Majhi et al. 2024)
driven by an external electric field. In diffusiophoresis, in contrast to electrophoresis, the
mobility reversal may occur when the electrophoresis and chemiphoresis parts counteract
and, hence, χs has a significant role on the mobility reversal in diffusiophoresis. We have
illustrated this in our subsequent discussions.

Mobile surface ions create a stronger surface conduction, which leads to a stronger DLP.
This results in a stronger chemiphoresis and the attenuation of electrophoresis. For NaCl
(βσ > 0) and KCl (β = 0), μD < 0 when χs 	 1. Mobile surface ions creates a spinning
force at the surface, which is opposite to the direction of the imposed concentration
gradient, leading to a negative slip velocity. The local electric field in the EDL obstructs
the coins to diffuse from the higher concentration side to the lower concentration side,
resulting in the DLP-II effect. Due to this DLP-II effect, the chemiphoresis part can drive
an electric force which pushes the particle towards the lower concentration side (z < 0),
leading to an increase in −μD as χs is increased. However, for HCl, in which the diffusion
field is significant, a stronger electrophoresis is created which overshadow the DLP-II
effect. In this case, the chemiphoresis part reduces the negative −μD.

For immobile surface ions (χs = 0), the slip velocity is governed by the Navier-slip
condition with a modified slip length, which takes into account the electric interaction
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Figure 3. Variation of μD as a function of slip length (λ) at κa = 1 (solid lines), 10 (dashed lines) in (a) NaCl
(β = −0.208), (b) KCl (β = 0) and (c) HCl (β = 0.65) for different χs (= 0, 0.5, 0.8, 1) with surface charge
density σ = −6 and εr = 0.
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Figure 4. Variation of slip velocity per unit concentration gradient at bare slip length λ = 3 for κa = 1 (solid
lines), 10 (dashed lines) in (a) NaCl (β = −0.208), (b) KCl (β = 0) and (c) HCl (β = 0.65) for different
χs (= 0, 0.5, 0.8, 1) with surface charge density σ = −6 and εr = 0. Circles, analytical expression of slip
velocity (4.2).

on fluid friction at the interface. In this case, the sign of the slip velocity is governed by
the sign of βσ (figure 4). We find from figure 4(a,b) for NaCl and KCl electrolytes that
the slip velocity becomes negative as the surface charge becomes mobile. The momentum
created on the fluid layer adjacent to the interface by the laterally mobile surface ions
directs a fluid motion opposite to the direction of the tangential electric field. For this, the
velocity becomes negative for NaCl and KCl, and −us increases as χs is increased. For
HCl (figure 4c), the tangential electric field is positive, which enables the −us to reduce
with χs.

The slip velocity us can be determined by us = dh(r)/dr|r=1α sin θ , which can be
expressed as

us = 3λeff

(1 + 2λeff )

[∫ ∞

1

r3 − 1
9

G(r) dr − χsσ

3
Y(1)

]
α sin θ. (4.1)

Note that us becomes zero for hydrophilic surface, i.e. when λeff = 0. The slip velocity
for any arbitrary surface charge density and bulk molar concentration can be obtained by
numerical integration of (4.1). Based on the D–H approximation, an analytical expression
for us can be obtained as

us = λeff

1 + 2λeff

[
σ

κa + 1
βS1(κa)+ 1

8

(
σ

κa + 1

)2

S2(κa)− χsσY(1)

]
α sin θ, (4.2)
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Figure 5. Streamlines of the ionized fluid at (a) χs = 0 and (b) χs = 0.8 for σ = −6, κa = 1 and bare slip
length λ = 3 for NaCl (β = −0.208) electrolyte. (c) Variation of μD as a function of κa at σ = −10.53 and
χs = 1 in NaCl electrolyte. Circles, Fan et al. (2022) for a dielectric droplet with viscosity ratio ηr (= 1/3λ) =
0.01, 0.1, 0.5, 1, 10.

where S1(κa) and S2(κa) are given by

S1(κa) = 1 + κa + (κa)2

2
eκaE5(κa), (4.3a)

S2(κa) = 5 + 3κa − 16eκaE5(κa)− 16κaeκaE5(κa)

− 4(κa)2e2κaE2
5(κa)− 7e2κaE8(2κa). (4.3b)

The explicit analytical expression of Y(1) is provided in (B15). The first two terms of (4.2)
for us account the tangential hydrodynamic stress inherent in the slip boundary condition,
whereas the last term arises due to the tangential electric force on the charged surface.
Based on this expression (4.2), the mobility of the hydrophobic particle under the D–H
approximation can be expressed as μD = μH

D + (2/3α)us|θ=π/2, where μH
D is the part of

the mobility which is independent of the slip velocity, i.e. mobility corresponding to the
hydrophilic particle. It is shown in the earlier studies (Majhi & Bhattacharyya 2023b;
Samanta et al. 2023a) in the case of immobile surface charge (χs = 0) that μD > 0 for
NaCl and KCl when βσ > 0. However, the negative slip velocity induced by the electric
force on the mobile surface ions leads to a reduction in the positive μD and eventually μD
becomes negative. For HCl in which βσ < 0, the tangential electric force at the interface
is along the positive direction, which causes a reduction in −us and, hence, a reduction
in −μD. We find from figure 4(a,c) that when the electrophoresis part dominates (i.e. the
sign of μD is the same as the sign of βσ ), the impact of slip condition augments at a larger
κa (thinner EDL), which leads to a higher us at a higher κa.

The opposite spinning force on the particle surface associated with mobile surface ions
reduces the positive mobility and may create an outer vortex for μD > 0. The formation
of such a vortex region traps the counterions and prevents the coins from diffusing across
the Debye layer, leading to a DLP-II effect as described before. The streamline pattern, as
described in figure 5(a,b), shows that for the immobile surface charge (χs = 0), a Stokes
flow develops around the particle. For the mobile surface ions (χs = 0.8), a toroidal vortex
develops in the vicinity of the particle, which retards the translation of the particle. The
streamline pattern for χs = 0.8 has a similarity with the streamlines outside a charged
droplet in diffusiophoresis. The electric stress develops due to the mobile surface ions
creating a tangential velocity in a direction opposite to the translation of the particle, which
leads to the formation of a recirculating vortex adjacent to the particle.

Based on the D–H linearization, we have shown that the expression for μD, i.e. (3.16),
for the case of a fully mobile surface charge (χs = 1) becomes identical to the mobility
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Figure 6. Variation of diffusiophoretic mobility as a function of κa at λ = 1 in (a) NaCl (β = −0.208), (b)
KCl (β = 0) and (c) HCl (β = 0.65) for different χs (= 0, 0.5, 0.8, 1) with surface charge density σ = −6 and
εr = 0. Pink circles, the Smoluchowski limit (3.11) under thin Debye length.

of a droplet of viscosity ratio ηr = 1/3λ. In figure 5(c), we have quantitatively established
that the mobility for the hydrophobic particle with χs = 1 is identical to μD of a droplet
of droplet-to-fluid viscosity ratio 1/3λ. It is seen that for a higher slip length with fully
mobile surface charge, which is equivalent to a low viscous fluid droplet, μD is negative.
This −μD increases with the increase of κa and attains a maximum, then it declines with
further increase of κa. However, for a lower range of λ, equivalently a higher viscosity of
the droplet, μD decreases monotonically with κa. This pattern of variation of μD with κa
at different ηr = 1/3λ is similar to the variation of μD of a droplet as described by Fan
et al. (2022) and Majhi & Bhattacharyya (2023a). For a low viscosity droplet, equivalently
higher λ with χs = 1, the DLP-II effect created by the Maxwell stress at the interface
creates a negative mobility, which reduces at a thinner Debye length κa > 10. Figure 5(c)
shows that the chemiphoresis has a stronger impact when the surface charge is fully mobile
(χs = 1) and the impact grows with κa for a moderate range of κa.

We now consider in figures 6(a)–6(c) the diffusiophoresis by varying the Debye length
for mobile as well as immobile surface ions in different electrolytes. The results show that
for χ � 0.5, μD is higher for the lower range of κa (<10) and have a sign the same as that
of βσ , which implies that the mobility is dominated by the electrophoresis effect. However,
for the fully mobile surface ions (χs = 1), μD < 0 for a lower range of κa for which
κa > 1, implying the dominance of chemiphoresis when χs = 1. The linearized solution
for κa � 1, i.e. (3.7), shows that the chemiphoresis is negligible and the diffusiophoresis
is governed by the electrophoresis part. For a lower range of κa in which μD is dominated
by the electrophoresis part, the magnitude of μD is higher for HCl than NaCl or KCl.

As pointed out before, the chemiphoresis and electrophoresis parts cannot be separated
for the general case. However, under the D–H approximation valid for ζ < 1, we have
derived expressions for the electrophoresis (μE) and chemiphoresis (μC) parts of the
mobility, which has been indicated in figure 6(a–c) for κa � 8. The solution for μD
governed by (3.2) derived under the D–H approximation matches with the numerical
solution for κa � 8 for which ζ < 1. The results based on the D–H approximation show
for a hydrophobic particle with immobile surface charge, μC > 0, and μC < 0 for the
case of a fully mobile surface charge. For this, we find that the mobility declines as χs
increases for NaCl and HCl electrolytes, for which βσ is non-zero. However, for KCl, μD
increases when κa is increased up to a moderate range of κa for which chemiphoresis
augments and then it declines with κa. When the surface ions become mobile, a stronger
chemiphoresis effect develops, which overwhelms the electrophoresis part for the NaCl
electrolyte, leading to a negative mobility even when βσ > 0. For HCl, the diffusion field

997 A8-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.778


Laterally mobile surface charge impact on diffusiophoresis

μD

χs
χs

χs

μC (Eq. (3.4b))
μC (Eq. (3.4b))

μD (Eq. (3.2))

μD (ENS)

(b)(a) (c)

σ
–75–50–250

–10

–8

–6

–4

–2

0

2

σ
–75–50–250

–10

–8

–6

–4

–2

0

2

σ
–75–50–250

–10

–8

–6

–4

–2

0

2

Figure 7. Variation of diffusiophoretic mobility as a function of σ at λ = 1 in (a) NaCl (β = −0.208), (b)
KCl (β = 0) and (c) HCl (β = 0.65) for different χs (= 0, 0.5, 0.8, 1) when κa = 50 and εr = 0. Dash lines,
(3.4b); symbols, (3.2).

is stronger, and because of this, −μD decreases as κa is increased. We find that at a higher
κa � 1, the numerical solution for μD merges with the analytical solution (3.11) obtained
under the thin layer consideration. The impact of χs diminishes with κa for a larger range
of κa (�10), in which the surface potential becomes lower, which reduces the DLP-II
effect. The role of the chemiphoresis part on the particle diffusiophoresis intensifies as the
Debye length becomes thinner, and further amplifies as the surface ions become mobile.

In figures 7(a)–7(c), we have quantified the role of chemiphoresis at a thinner Debye
length, i.e. κa = 50 for different values of χs in different electrolytes. In figure 7(a–c), the
analytical solution for the chemiphoresis part under the D–H approximation is indicated.
It is evident that as χs is increased, the numerical solution for μD becomes closer to
the analytical solution for chemiphoresis (μC), implying that the chemiphoresis part
dominates over the electrophoresis part. Figure 7(c) shows that at a lower range of σ , an
increase of χs reduces |μD| as the stronger diffusion field (β = 0.65) reduces the DLP-II
effect. However, at a higher σ , the DLP-II effect overwhelms the diffusion field induced
electrophoresis, leading to an increment in |μD| as χs is increased. The results based on
the D–H linearization show that at a thinner Debye length, the chemiphoresis part (μC)
is stronger than the electrophoresis part (μE), and μC can become negative for χs > 0.5.
An enhancement in surface charge density augments μD by increasing the contribution of
both μC and μE. We find a deviation of our direct numerical solution for the approximate
analytical solutions at a higher range of σ for which the D–H approximation is not valid.

4.3. Effect of dielectric polarization of the particle
We now investigate the impact of the dielectric polarization on the diffusiophoresis
of a hydrophobic particle with physisorbed surface ions. The jump condition on the
displacement vector at the interface separating the two media of different permittivity
does not alter the electric stress balance condition and, hence, the effective slip length
remains unaltered. However, the tangential electric field at the interface attenuates as the
particle permittivity increases, which can alter the slip velocity when the surface ions are
considered to be mobile. It has been established by several authors (O’Brien & White 1978;
Bhattacharyya & De 2015) that the dielectric permittivity of the particle does not alter the
electrophoresis at the linear order. The modification in the electrophoresis arises when
higher order in the electric field is considered (Bhattacharyya & De 2015). Figure 8(a,b)
shows that εr have an effect on the diffusiophoresis determined by the linear order of the
imposed concentration gradient. These results are in excellent agreement with our ENS
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Figure 8. Variation of diffusiophoretic mobility as a function of εr when κa = 5, 10, 50, 100, σ = −10, χs =
0.5 for (a) NaCl, (b) HCl, and (c,d) μD versus χs when κa = 10 for different εr = 0, 1, 10, 102, 103 and σ =
−6. (a,c) NaCl electrolyte; (b,d) HCl electrolyte with slip length λ = 1.

results. We find from figure 8(a,b) that |μD| enhances as the dielectric permittivity εr is
increased for both NaCl and HCl electrolytes. This also corroborates our findings based on
the D–H linearization. As the permittivity is enhanced, the tangential electric stress at the
interface created by the mobile surface ions reduces. This leads to an augmentation in |μD|.
We find that for the particle with high dielectric permittivity (εr � 1), μD is independent
of κa for HCl, whereas it is influenced by κa for the NaCl electrolyte. This is because the
chemiphoresis part μC is positive for εr � 1. For εr � 1, the tangential electric field at
the surface attenuates, leading to a reduction in Maxwell stress and, thus, suppresses the
DLP-II effect. For NaCl, the chemiphoresis is supportive and it is counteractive for HCl.
At a higher εr � 1, μC is significant for NaCl and diminishes as κa is increased, creating
a stronger dependence of μD on κa than the variation of μD with κa in HCl, in which μC
is relatively smaller. This corroborates our finding based on the D–H approximation valid
for a larger κa for the considered value of σ , as presented in Appendix B (figure 9).

Figure 8(c,d) illustrates the impact of the particle dielectric permittivity (εr) on μD at
different values of χs for a moderate κa = 10. We find that the dielectric permittivity of the
particle has an impact on its diffusiophoresis only when the surface charge is considered
to be mobile. The impact of the dielectric polarization augments as the mobility of the
surface ion is enhanced. The mobility of the conducting particle (εr � 1) is higher as
the slip velocity does not involve the friction force created by the mobile ions. For a
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conducting particle, the tangential field is weak, which declines the spinning force created
by the mobile ions at the hydrophobic surface. However, the slip velocity augments as
χs increases due to the increment of the effective slip length. This leads to an increment
in |μD| by increasing the normal electric force. As can be see from (3.23a,b), μD > 0
when βσ > 0 and μD can become negative for βσ < 0 when |β| > |ζ |/4, i.e. for a
lower range of ζ . Our numerical solutions in figure 8(c,d) corroborate the thin layer
analysis under the D–H approximation. For a non-conducting particle or at a smaller εr,
the Maxwell stress is non-negligible and its impact augments as χs is increased. This
leads to the development of the DLP-II effect, which leads to μD < 0. Equation (3.21a,b)
shows that for a non-conducting particle with fully mobile surface ions χs = 1, μC < 0
and the electrophoresis part is smaller for a larger slip length. Our numerical results for
this moderate κa are in agreement with the present linear analysis. For the range of εr
in NaCl electrolyte for which the diffusiophoresis is dominated by chemiphoresis effect
and creating a negative μD, the magnitude of μD reduces with εr as μE > 0 reduces as εr
decreases. It is evident from figure 8(c,d) that the impact of χs becomes less significant as
εr is increased, which follows our linear-order analysis. We find that the mobility of the
surface ions produces a higher |μD| for the conducting particle, which is in contrast to the
non-conducting particle.

5. Conclusion

A numerical model supplemented by theoretical analysis on the diffusiophoresis of a
hydrophobic NP with laterally mobile surface ions is made. An exact analytical solution
for the mobility based on the Debye–Hückel approximation under a weak applied
concentration gradient is determined. This laterally mobile surface charge modifies the
slip velocity condition by creating a hydrodynamic frictional force and a tangential
electric force. Thus, the boundary condition is coupled with the electric field, which
involves the induced field generated by the interaction of the EDL with the imposed
ionic concentration gradient. The tangential electric force created by the mobile surface
ions leads to a polarization of the EDL, resulting in a stronger chemiphoresis. We have
also considered the dielectric polarization of the particle, which has impact in the linear
order of diffusiophoresis when the surface ions are mobile. In this case, in contrast to the
electrophoresis, the dielectric polarization of a hydrophobic particle with laterally mobile
surface ions magnifies the mobility.

A noteworthy result of this study is the derivation of the explicit analytical solution
under the D–H approximation for the mobility of a hydrophobic NP with mobile surface
ions valid at any bulk ionic concentration. Based on this analytical solution and the exact
numerical solutions, we have established that the diffusiophoresis of a hydrophobic NP
with fully mobile surface charge is identical to the viscous droplet whose viscosity ratio
with the suspension medium is 1/3rd of the inverse of the slip length to particle radius.

In this study, a homogeneous distribution of the surface ions is considered so as to
neglect the surface tension that arises due to the development of a non-zero gradient of the
charge distribution. The development of the Marangoni stress and the interfacial tension
due to the non-uniform distribution of surface ions could be a possible extension of the
present study.
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Appendix A

To develop the simplified model based on the linear-order analysis under a weak imposed
concentration gradient, we consider the following set of governing equations:

∇2φ̄ = 0, r < 1, (A1a)

∇2φ = −(κa)2

2
ρe, r > 1, (A1b)

u · ∇ni = 1
Pei

∇ · (ni∇μi) r > 1, (A1c)

−∇2u + ∇p + (κa)2

2
ρe∇φ = 0 r > 1. (A1d)

The scaled imposed concentration gradient α � 1, which is considered in several
experimental studies (Ebel et al. 1988; Abécassis et al. 2008; Kar et al. 2015; Shin et al.
2016). Under such a weak α, the the unknown variables can be expressed as a linear
deviation from their equilibrium, i.e.

A(r, θ) = A0(r)+ δA(r, θ), (A2)

where the quantities with the superscript ‘0’ refer to those at equilibrium and the quantities
with ‘δ’ refer to perturbed quantities due to imposed concentration gradient. Here, A refers
to the unknown variables, such as φ, φ̄, μi, ni, ρe, etc. Note that the equilibrium quantities
are a function of radial coordinate and the perturbed quantities are a function of both the
radial as well as cross-radial coordinates.

Using the separation of variable technique, we may write δφ = −Y(r)α cos θ , δφ̄ =
−Ȳ(r)α cos θ and δμi = −ziΦi(r)α cos θ (Ohshima 1994, 1995). The governing equations
for Y(r), Ȳ(r) are derived from the linearized form of Laplace and Poisson equations, and
the equation relating Φi(r) is derived from the linearized form of the mass conversation
equation. The problem under consideration is axisymmetric in nature and, thus, the
velocity field can be obtained as (Landau & Lifshitz 1987)

u =
(

−2
r

h(r)α cos θ,
1
r

d
dr

[rh(r)]α sin θ, 0
)
. (A3)

To linearize the governing equations, we substitute (A2) and (A3) into the reduced
governing equations (A1) under a steady-state situation with negligible impact of inertial
effect. Neglecting the square and higher orders of perturbed quantities, we get the
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linearized equations for Y(r), Ȳ(r), Φj(r) and h(r) as follows:

LȲ = 0 : 0 < r < 1, (A4a)

LY = (κa)2

2I

N∑
i=1

z2
i n∞

i exp(−ziφ
0)(Y −Φi) : r > 1, (A4b)

LΦi = dφ0

dr

[
zi

dΦi

dr
− 2Pei

h
r

]
: r > 1, (A4c)

L(Lh) = G(r) : r > 1. (A4d)

Here, the operator L is defined as

L = 1
r2

d
dr

(
r2 d

dr

)
− 2

r2 . (A5)

The function G(r) involved in (A4d) is given by

G(r) = −(κa)2

2I
1
r

dφ0

dr

N∑
i=1

z2
i n∞

i exp(−ziφ
0)Φi. (A6)

Substituting (A2) and (A3) into the boundary conditions as described in § 2, we derive the
boundary conditions for Y , Ȳ , Φi and h as

Y(1+) = Ȳ(1−),
dY
dr

∣∣∣∣
r=1+

− εr
dȲ
dr

∣∣∣∣
r=1−

= 0, (A7a)

Y = βr as r → ∞, (A7b)

dΦi

dr

∣∣∣∣
r=1

= 0, Φi =
(

− 1
zi

+ β

)
r as r → ∞, (A7c)

h|r=1 = 0,
dh
dr

∣∣∣∣
r=1

= λeff

[
d2h
dr2 − χsσY(r)

]
r=1

, (A7d)

h → UD

2α
r + O

(
1
r

)
as r → ∞. (A7e)

Note that the solution of (A4a) is finite at r = 0 and thus, Ȳ(r) = C1r, where C1 is a
constant, which can be obtained by using the first boundary condition of (A7a) as C1 =
Y(1). Therefore, the perturbed electric potential inside the droplet is Ȳ(r) = Y(1)r. With
that, we find from (A7a) that

dY
dr

∣∣∣∣
r=1+

= εrY(1). (A8)

Using (A3) in the boundary condition (2.12a–c), we may obtain the diffusiophoretic
mobility (μD) as

μD = 2 lim
r→∞

h(r)
r
. (A9)

Through the solution of h(r), we can easily obtain the diffusiophoretic mobility. The
governing equation for h(r) involves the function Φi(r), Y(r) and Ȳ(r), as well as φ0 and

997 A8-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

77
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.778


S. Majhi, S. Bhattacharyya and P.P. Gopmandal

n0
i . Solving the boundary value problems for these variables and performing algebraic

simplifications, we obtain an expression for the diffusiophoretic mobility as

μD = 1
9

∫ ∞

1

[
1

1 + 2λeff
− 3r2 + 2

(1 + 3λeff )

(1 + 2λeff )
r3

]
G(r) dr − 2χsλeffσ

3(1 + 2λeff )
Y(1). (A10)

Appendix B

At equilibrium, the spatial distribution of the concentration of mobile ions follows the
Boltzmann distribution, given as

n0
i = n∞

i
I

exp(−ziφ
0). (B1)

In addition, the equilibrium distribution of electrostatic potential under spherical
symmetry may be determined solving the Poisson equation

1
r2

d
dr

(
r2 dφ0

dr

)
= − (κa)2

2

N∑
i=1

zin0
i , r > 1. (B2)

Similarly, the equilibrium potential φ̄0 inside the droplet is governed by

1
r2

d
dr

(
r2 dφ̄0

dr

)
= 0, r < 1. (B3)

Solving (A4c) subject to the boundary condition (A7c), we get

Φi(r) =
(

− 1
zi

+ β

)(
r + 1

2r2

)
− 1

3

(
r + 1

2r2

)∫ ∞

1

dφ0

dx

(
zi

dΦi

dx
− 2Pei

h
x

)
dx

+ 1
3

∫ r

1

(
r − x3

r2

)
dφ0

dx

(
zi

dΦi

dx
− 2Pei

h
x

)
dx. (B4)

Solving (A4d) with respect to the boundary condition (A7d) and (A7e), we obtain h(r) as

h(r) = 1
9

[(
1 + 3λeff

1 + 2λeff

)
r − 3

2
+ 1

2(1 + 2λeff )r2

]
×

∫ ∞

1
x3G(x) dx

−
[

r3

30
−

(
1

1 + 2λeff

)
r

18
+

(
1 − 3λeff

1 + 2λeff

)
1

45r2

] ∫ ∞

1
G(x) dx

−
∫ r

1

[−r3

30
+ rx2

6
− x3

6
+ x5

30r2

]
G(x) dx

− χsλeffσ

3(1 + 2λeff )
Y(1)

(
r − 1

r2

)
. (B5)

We now derive an explicit analytical expression for the diffusiophoretic mobility of a
particle based on the D–H approximation for a monovalent symmetric 1 : 1 electrolyte
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with distinct diffusion coefficient. Substituting (B1) into (B2) and linearizing the potential
equation under the D–H limit, we get

d2φ0

dr2 + 2
r

dφ0

dr
− (κa)2φ0 = 0. (B6)

The solution of the above equation subject to the boundary condition for electrostatic
potential discussed earlier is given by

φ0(r) = σ

(κa + 1)
1
r

exp(−κa(r − 1)). (B7)

The solution of Φ±(r) can be obtained under the low potential assumption as

Φ±(r) = (∓1 + β)

[(
r + 1

2r2

) {
1 ∓ 1

3

∫ ∞

1

dφ0

dx

(
1 − 1

x3

)
dx

}

± 1
3

∫ r

1

dφ0

dx

(
1 − 1

x3

)(
r − x3

r2

)
dx

]
. (B8)

Under D–H approximation, the equation associated with perturbed electric field (A4b) can
be written as

LY = (κa)2Y + (κa)2H(r), (B9)

where the function H(r) is given by

H(r) = −
(

r + 1
2r2

) [
β +

{
φ0 + 1

3

∫ ∞

1

dφ0

dx

(
1 − 1

r3

)
dr

}]

+ 1
3

∫ r

1

dφ0

dx

(
r − x3

r2

)
dx. (B10)

Solving the integrations involved in (B10), H(r) can be obtained in a explicit form as

H(r) = −
[(

r + 1
2r2

)
β +

{(
r + 1

2r2

)
φ0 − σ

κa + 1

(
1

κar2 + 1
(κar)2

− exp(−κa(r − 1))
(

1
κar

+ 1
(κar)2

)
+ 1

2r2 exp(κa)E5(κa)

+ 1
r3 exp(κa)E3(κar)

)}]
. (B11)

Equation (B9) can be further simplified to

d2Y
dr2 + 2

r
dY
dr

−
[

2
r2 + (κa)2

]
Y = (κa)2H(r). (B12)

The general solution of the above equation can be obtained as

Y(r) = C1f1(r)+ C2f2(r)+ (κa)3

2
f1(r)

∫ r

1
x2f2(x)H(x) dx

− (κa)3

2
f2(r)

∫ r

1
x2f1(x)H(x) dx, (B13)
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Figure 9. Variation of μD, μE and μc with εr at (a,c) κa = 50 and (b,d) κa = 100 for χs = 0.5 with surface
charge density σ = −10 and λ = 1. (a,b) NaCl electrolyte; (c,d) HCl electrolyte.

where f1(r) and f2(r) are complementary functions, i.e. the solutions of the corresponding
homogeneous equation and can be obtained with some basic mathematics as

f1(r) = e−κar
(

1
(κar)2

+ 1
κar

)
, (B14a)

f2(r) = eκar
(

1
(κar)2

− 1
κar

)
. (B14b)

Applying the boundary conditions (A7a), (A7b), we can find the value of Y at the surface
of the particle as

Y(1) = 3
2

K1

εr + K1
β + σ

(εr + K1)(κa + 1)2

×
{

21
4

− 3
4
κa + 3

4
(κa)2 − 3eκaE5(κa)+ 15eκaE6(κa)− 45eκaE7(κa)

}
,

(B15)

where K1 = (1 + κa)+ (1 + κa)−1. Again, to obtain the diffusiophoretic mobility of the
particle, we need to find the term G(r). For a low surface charge limit, G(r) can be written
as
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G(r) = −(κa)2
dφ0

dr

[(
1 + 1

2r3

) {
β +

(
φ0 + 1

3

∫ ∞

1

dφ0

dr

(
1 − 1

r3

)
dr

)}

− 1
3

∫ r

1

dφ0

dx

(
1 − x3

r3

) (
1 − 1

x3

)
dx

]
. (B16)

Substituting G(r) and Y(a) into the mobility expression (3.1), and performing algebraic
simplification, we may derive the explicit form of the diffusiophoretic mobility valid for a
weakly charged hydrophobic particle with mobile surface charge as

μD = σ

κa + 1
βΘ1(κa)+ 1

8

(
σ

κa + 1

)2

Θ2(κa)− 2χsλeffσ

3(1 + 2λeff )
Y(1). (B17)

By substituting Y(1) from (B15), we get the mobility expression as provided in (3.2).
The variation of the corresponding μC (3.4a) and μE (3.4b) with εr in NaCl and HCl
electrolytes for κa = 50, 100 with σ = −10, for which the D–H approximation holds, is
provided in figure 9.
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