THE CENTRALIZER OF THE GENERAL LINEAR GROUP

by C. J. MAXSON and A. OSWALD

(Received 25th May 1983)

1. Introduction

Let G be a group, written additively with identity 0, but not necessarily abelian and let S be a semigroup of endomorphisms of G. The set $\mathscr{C}(S;G) = \{f: G \to G \mid f\sigma = \sigma f \text{ for all } \sigma \in S \text{ and } f(0) = 0\}$ is a zero-symmetric near-ring with identity under the operations of function addition and composition, called the centralizer near-ring determined by the pair (S, G). Centralizer near-rings are general, for if N is any zero-symmetric near-ring with identity then there exists a group G and a semigroup $S \subseteq \text{End } G$ such that $N \cong \mathscr{C}(S; G)$. For background material and definitions relative to near-rings in general we refer the reader to the book by Pilz [7]. For material on centralizer near-rings we refer the reader to [4] and [6].

For A, a set of linear transformations on a vector space V with certain conditions, the structure theory of the ring of linear transformations which commute with every element of A has been investigated (e.g., [1], p. 32). In [2], the non-linear analogue for the case in which V is a finite vector space and A is generated by an invertible matrix is studied. This is extended in [4] to include the structure of $\mathscr{C}(A; V)$ where V is a finite vector space and $A \subseteq \operatorname{Aut} V$. For infinite V, the situation is much more difficult. The main structural results for V infinite deal with the question of the simplicity of $\mathscr{C}(A; V)$, $A \subseteq \operatorname{Aut} V$. (See [6] and [8].) It is thus the purpose of this paper to investigate the structure of $\mathscr{C}(\mathfrak{A}; V)$ where V is an abelian group and \mathfrak{A} is the general linear group of size n over a field F with $\mathfrak{A} \subseteq \operatorname{Aut} V$. This study then complements and extends the results in [2] and [4] as well as providing structural theory information about the infinite case.

Throughout this paper \mathscr{U} will denote the general linear group $GL_n(F)$ of $n \times n$ matrices over a field F where we always assume $n \ge 2$, and V will be an abelian group such that $\mathscr{U} \subseteq \operatorname{Aut} V$. Using the fact that the simple ring $R = M_n(F)$, i.e., the ring of $n \times n$ matrices over F, is generated by \mathscr{U} , the action of \mathscr{U} on V can be extended so that V becomes a faithful, unital R-module. Since $R = RE_{11} \oplus \cdots \oplus RE_{nn}$ where the E_{ii} , $i=1,2,\ldots,n$, are the orthogonal idempotents E_{ii} with 1 in position (i,i) and 0 elsewhere, it follows that V is the direct sum of irreducible R-modules, $V = \Sigma \oplus RE_{\alpha}m_{\alpha}$ where E_{α} is one of the idempotents E_{ii} and $m_{\alpha} \in V$. If $E_{\alpha} = E_{ii}$, then the coefficients of m_{α} in $RE_{\alpha}m_{\alpha}$

are matrices with at most the *i*th column different from zero. In representing these elements we will often omit the zero columns and write

$$\begin{bmatrix} a_{1i} \\ \vdots \\ a_{ni} \end{bmatrix} m_{\alpha} \text{ for } \begin{bmatrix} 0 & a_{1i} & 0 \\ \vdots & \vdots & \vdots \\ 0 & a_{ni} & 0 \end{bmatrix} m_{\alpha}.$$

We have therefore the situation in which V is a unital R-module where R is a simple ring contained in End V. Since $\mathscr{U} \subseteq R$, $\mathscr{C}(R; V) \subseteq \mathscr{C}(\mathscr{U}; V)$. The centralizer near-ring $\mathscr{C}(R; V)$ where V is a finite, faithful unital module over the finite simple ring R has been the object of study in [3]. It was shown there that $\mathscr{C}(R; V)$ is a simple near-ring, in fact a simple ring unless R is a field and dim_R V > 1. The proof given in [3] also applies to the present situation where $R = M_n(F)$, F not necessarily finite, so here also one has that $\mathscr{C}(R; V)$ is a simple near-ring and is a ring unless R is a field and dim_R V > 1. One is thus lead to consider if these properties are inherited by $\mathscr{C}(\mathscr{U}; V)$. Our work in this paper on the structure theory of $\mathscr{C}(\mathscr{U}; V)$ will show that in general this is not the case.

In the next section we characterize the pairs $(\mathcal{U}; V)$ such that $\mathscr{C}(\mathcal{U}; V)$ is simple. In Section 3 we investigate the left ideal structure of $\mathscr{C}(\mathcal{U}; V)$ which results in characterizations of v-primitivity for $\mathscr{C}(\mathcal{U}; V)$, v=0, 1, 2. In Section 4 we study the radicals, $J_v(\mathscr{C}(\mathcal{U}; V))$, v=0, 1/2, 1, 2.

2. Structure of $\mathscr{C}(\mathscr{U}; V)$

In this section we obtain several properties of the near-ring $\mathscr{C}(\mathscr{U}; V)$. We first relate the decomposition $V = \sum_{\alpha} \bigoplus RE_{\alpha}m_{\alpha}$ to the group of units \mathscr{U} . Recall from vector space theory that if the *i*th column of a matrix A is nonzero then there exists a non-singular matrix P such that $AE_{ii} = PE_{ii}$. This establishes the following lemma which suggests that V can be considered as a direct sum of vector spaces of dimension n over F with \mathscr{U} acting on each one naturally.

Lemma 2.1. Let $R = M_n(F)$ and let V be a faithful R-module. Then $V = \sum_{\alpha} \oplus \mathscr{U}^0 E_{\alpha} m_{\alpha}$ where $\mathscr{U}^0 = GL_n(F) \cup \{0\}, E_{\alpha} \in \{E_{11}, \dots, E_{nn}\}$ and $m_{\alpha} \in V$.

If V is finitely generated over R then the number of nonzero summands in a direct sum decomposition of V into irreducible submodules is unique (see [1], p. 62) so we may call this number dim_R V. Otherwise we say dim_R $V = \infty$.

Fundamental to our study of $\mathscr{C}(\mathscr{U}; V)$ is the orbit structure of the group V by the group of automorphisms \mathscr{U} . We have $V = \{0\} \cup (\bigcup_{\lambda} \mathscr{U} v_{\lambda})$ where $\{0\} \cup \{v_{\lambda}\}$ is a complete set of orbit representatives. The set $\{v_{\lambda}\}$ is called a *basis* for V over \mathscr{U} . For each $v \in V$ we define stab $(v) = \{A \in \mathscr{U} \mid Av = v\}$. Clearly stab(v) is a subgroup of \mathscr{U} and for $B \in \mathscr{U}$, stab Bv = B stab $(v)B^{-1}$. Let $V^* = V - \{0\}$ and let $\mathscr{S} = \{\text{stab}(v) \mid v \in V^*\}$. Then \mathscr{S} is partially ordered under set inclusion and we say stab(v) is maximal (minimal) if it is maximal (minimal) in \mathscr{S} . The next result due to Betsch (see [6]) points out the importance of the set \mathscr{S} in studying $\mathscr{C}(\mathscr{U}; V)$.

Lemma 2.2. Let $x, y \in V$. There exists $f \in \mathscr{C}(\mathscr{U}; V)$ such that f(x) = y if and only if $\operatorname{stab}(x) \subseteq \operatorname{stab}(y)$.

We consider further the set \mathscr{S} . We observe first that for $x \in V$, $x = x_{\alpha_1} + \cdots + x_{\alpha_i}$ where the X_{α_i} come from different summands of the form $RE_{\alpha}m_{\alpha}$. If $A \in \operatorname{stab}(x)$ then $x = Ax = Ax_{\alpha_1} + \cdots + Ax_{\alpha_i}$. Hence $A \in \operatorname{stab}(x_{\alpha_i})$ for each *i* and so

$$\operatorname{stab}(x) = \bigcap_{i=1}^{t} \operatorname{stab}(x_{\alpha_i}).$$

We turn now to a characterization of maximal stabilizers. First consider

$$x = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_a.$$

Then

stab(x) =
$$\left\{ \begin{bmatrix} 1 & X_1 \\ 0 & X_2 \end{bmatrix} \middle| X_1, X_2 \text{ arbitrary, det } X_2 \neq 0 \right\}$$
.

Suppose for $0 \neq y = A_1 E_{\alpha_1} m_{\alpha_1} + \cdots + A_s E_{\alpha_s} m_{\alpha_s}$, stab(y) \supseteq stab(x). Let

$$A_j E_{\alpha_j} m_{\alpha_j} = \begin{bmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{bmatrix} m_{\alpha_j}.$$

Since

$$\operatorname{stab}(x) \subseteq \operatorname{stab}(y) \subseteq \operatorname{stab}(A_j E_{\alpha_j} m_{\alpha_j})$$

and since X_1 is arbitrary in the elements of stab(x) one finds that $b_{2j} = \cdots = b_{nj} = 0$. Hence

$$y = \begin{bmatrix} b_{11} \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha_1} + \dots + \begin{bmatrix} b_{1s} \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha_s}$$

But then stab(y) \subseteq stab(x). Now let $x \in \mathscr{U}E_{\alpha}m_{\alpha}$, say

$$x = A \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha}$$

and so

stab(x) = A
$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha} A^{-1}$$
.

Hence stab(x) is maximal. Finally let

$$y = A_1 E_{\alpha_1} m_{\alpha_1} + \cdots + A_t E_{\alpha_t} m_{\alpha_t}.$$

We note that stab(y) is maximal if and only if $stab(y) = stab(A_i E_{\alpha_i} m_{\alpha_i})$ for i = 1, 2, ..., t. Moreover, for an appropriate $A \in \mathcal{U}$

stab
$$Ay = \operatorname{stab} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha_i} = \left\{ \begin{bmatrix} 1 & X_1 \\ 0 & X_2 \end{bmatrix} \middle| X_1, X_2 \text{ arbitrary, det } X_2 \neq 0 \right\}.$$

As above this implies

$$AA_{j}E_{\alpha_{j}}m_{\alpha_{j}} = \begin{bmatrix} b_{1j} \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha_{j}}, \quad j = 1, 2, \dots, t$$

and so if $A^{-1} = (c_{ij}), A_{j}E_{\alpha_{j}}m_{\alpha_{j}} = b_{1j}\begin{bmatrix} c_{11} \\ \vdots \\ c_{n1} \end{bmatrix} m_{\alpha_{j}},$

i.e., all the $A_j E_{\alpha_j}$ are in the same 1-dimensional subspace. Conversely if this is the case then a direct calculation shows that

$$\operatorname{stab}(y) = \operatorname{stab}(A_j E_{\alpha_j} m_{\alpha_j}), \quad j = 1, 2, \dots, t.$$

Hence stab(y) is maximal.

Theorem 2.3. Let $y \in V$, $y = A_1 E_{\alpha_1} m_{\alpha_1} + \cdots + A_s E_{\alpha_s} m_{\alpha_s}$. Stab(y) is maximal if and only if there exists $a_i \neq 0$ in F such that

$$a_i A_i E_{\alpha_i} m_{\alpha_i} = A_1 E_{\alpha_1} m_{\alpha_1}, \qquad i = 1, 2, \ldots, s,$$

i.e., if and only if rank $[A_1E_{\alpha_1}, \ldots, A_sE_{\alpha_s}] = 1$.

76

The next lemma will be used later when studying the J_2 -radical. Since it involves maximal stabilizers we present it here in a general setting.

Lemma 2.4. Let $\mathscr{A} \subseteq \operatorname{Aut} G$ and let

$$\Sigma(g) = \{h \in G^* \mid \operatorname{stab}(h) = \operatorname{stab}(g)\} \cup \{0\}$$

where stab(g) is maximal. Then $\Sigma(g)$ is a subgroup of G.

Proof. For $h, k \in \Sigma(g)$,

$$\operatorname{stab}(h-k) \supseteq \operatorname{stab}(h) \cap \operatorname{stab}(k) = \operatorname{stab}(g).$$

But stab(g) is maximal so stab(h-k) = stab(g), hence $h-k \in \Sigma(g)$.

Returning to the partially ordered set $\langle \mathcal{S}, \subseteq \rangle$, let $0 \neq w \in V$,

$$w = A_1 E_{\alpha_1} m_{\alpha_1} + \cdots + A_s E_{\alpha_s} m_{\alpha_s}$$

and suppose rank $[A_1E_{\alpha_1}, \ldots, A_sE_{\alpha_s}] = j \leq n$. Without loss of generality we assume the first j columns are independent. Thus there exists an $A \in \mathcal{U}$ such that

$$w = A \left[\begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} m_{\alpha_1} + \dots + \begin{bmatrix} 0\\\vdots\\0\\1\\\vdots\\0 \end{bmatrix} m_{\alpha_j} \right] + A_{j+1}E_{\alpha_{j+1}} + \dots + A_sE_{\alpha_s}m_{\alpha_s}.$$

From this,

stab
$$A^{-1}w = \left\{ \begin{bmatrix} I_j & X_{j1} \\ 0 & X_{j2} \end{bmatrix} \middle| X_{j1}, X_{j2} \text{ arbitrary with } \det X_{j2} \neq 0 \right\}$$

which we henceforth denote by S_j . This shows that for every nonzero w in V, stab(w) is conjugate to some S_j for a suitable j. Thus the S_j are canonical representatives of the conjugacy classes in \mathcal{S} . In particular we see that stab(v) is maximal if and only if stab(v) is conjugate to S_1 . We also find that stab(w) is minimal if and only if stab(w) is conjugate to S_t where $t = \min{\{\dim_R V, n\}}$ which in turn is equivalent to

rank
$$[A_1E_{\alpha_1}m_{\alpha_1},\ldots,A_sE_{\alpha_s}m_{\alpha_s}] = t$$
 where $w = \sum_{i=1}^s A_iE_{\alpha_i}m_{\alpha_i}$.

Note that $S_n = \{I\}$, the identity matrix. We complete our discussion of \mathscr{S} by showing that S_j and S_k are not conjugate if $j \neq k$. Thus there will be distinct conjugacy classes if $\dim_R V > 1$.

To this end suppose for some $j \neq k$, j < k, S_j is conjugate to S_k . Observe that all matrices in S_k have 1 as an eigenvalue of multiplicity at least k and in S_j there are matrices which have 1 as an eigenvalue of multiplicity exactly j. Since eigenvalues are preserved under conjugation, S_j cannot be conjugate to S_k .

Summarizing the above, we note that the partially ordered set $\{\mathscr{G}, \subseteq\}$ of stabilizer subgroups has a rather nice structure. Indeed $\langle \mathscr{G}, \subseteq \rangle$ can be thought of as being stratified into t conjugacy layers, $t = \min\{\dim_R V, n\}$, each layer being uniquely determined by a suitable S_i .

In investigating centralizer near-rings over infinite groups Zeller [8] found the following finiteness condition very useful.

Definition 2.5. ([8]) Let G be a group and A a group of automorphisms of G. The pair (A, G) is said to satisfy the finiteness condition (F.C.) if $stab(x) \subseteq stab(\alpha x)$ implies $stab(x) = stab(\alpha x)$ for $x \in G$, $\alpha \in A$.

Theorem 2.6. $\mathscr{C}(\mathscr{U}; V)$ satisfies (F.C.).

Proof. Let $v \in V$ and suppose $\operatorname{stab}(Av)$ for some $A \in \mathcal{U}$. From our discussion about \mathcal{S} , we know there exists a $B \in \mathcal{U}$ such that $\operatorname{stab} Bv = S_k$ for some k and there are components in Bv having column coefficients of the form

$$\begin{bmatrix} 1\\0\\\vdots\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\\\vdots\\0\end{bmatrix}, \dots, \begin{bmatrix} 0\\\vdots\\0\\1\\0\\\vdots\\0\end{bmatrix}$$

where the last column vector has a 1 in the kth row. Then

$$\operatorname{stab}(Bv) \subseteq \operatorname{stab} BAv = \operatorname{stab} BAB^{-1}Bv$$
.

Let $Bv = v_0$ and $BAB^{-1} = C$. If

$$Cv_0 = A_1 E_{\alpha_1} m_{\alpha_1} + \dots + A_t E_{\alpha_t} m_{\alpha_t}$$

Г *а* . ¬

then, since $S_k \subseteq \operatorname{stab}(Cv_0)$, we have

$$A_i E_{\alpha_i} = \begin{bmatrix} a_{1i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Let

$$C = \begin{bmatrix} C_1 & C_2 \\ C_3 & C_4 \end{bmatrix}$$

where C_1 is a $k \times k$ matrix. Then because of the form of the above column coefficients in v_0 and because of the form of the column coefficients in Cv_0 we conclude that $C_3=0$. Therefore C^{-1} has the same form and consequently stab $Cv_0 = CS_kC^{-1} \subseteq S_k$. Hence stab $Cv_0 = \operatorname{stab} v_0$ which in turn gives stab $(v) = \operatorname{stab}(Av)$ as desired.

Zeller [8] also showed that if (A, G) satisfies (F.C.) and there are at least two conjugacy classes of stabilizers then the centralizer near-ring determined by (A, G) is not simple. From the above theorem and the fact that if $\dim_R V > 1$ there are distinct conjugacy classes we have the following.

Corollary 2.7. If dim_R V > 1 then $\mathscr{C}(\mathscr{U}; V)$ is not simple.

The converse of this corollary is also true.

Theorem 2.8. If dim_R V = 1 then $\mathscr{C}(\mathscr{U}; V)$ is simple and in this case $\mathscr{C}(\mathscr{U}; V) = \mathscr{C}(R; V) =$ End_R $V \cong F$.

Proof. Since $\dim_R V = 1$, $V = \mathcal{U}^0 E_{\alpha_1} m_{\alpha_1} = \mathcal{U} E_{\alpha_1} m_{\alpha_1} \cup \{0\}$. Thus there is one nonzero orbit. From this and the fact that $\mathscr{C}(\mathcal{U}; V)$ satisfies F.C. we find that every nonzero f in $\mathscr{C}(\mathcal{U}; V)$ is a bijection, hence $\mathscr{C}(\mathcal{U}; V)$ is a near-field. Suppose

$$f(E_{\alpha_1}m_{\alpha_1}) = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} m_{\alpha_i} \quad \text{and} \quad E_{\alpha_i} = E_{ii}.$$

For $j \neq i$, E_{1j} is nilpotent, so $I + E_{ij} \in \mathcal{U}$. Further $(I + E_{ij})E_{ii}m_{a_1} = E_{ii}m_{a_1}$ while

$$(I+E_{ij})f(E_{ii}m_{a_i}) = \begin{vmatrix} a_1 \\ \vdots \\ a_{i-1} \\ a_i+a_j \\ a_{i+1} \\ \vdots \\ a_n \end{vmatrix}.$$

From this we conclude that

$$f(E_{ii}m_{\alpha_1}) = \begin{bmatrix} 0\\ \vdots\\ 0\\ a_i\\ 0\\ \vdots\\ 0 \end{bmatrix} m_{\alpha_1}$$

or $f(E_{ii}m_{\alpha_i}) = a_i E_{ii}m_{\alpha_i}$, $a_i \in F^*$. Thus for $A \in \mathcal{U}$, $f(A E_{ii}m_{\alpha_i}) = a_i A E_{ii}m_{\alpha_i}$ which implies that $f = \lambda_{\alpha_i}$, i.e. f is just left multiplication by a_i . Hence under the mapping $f \to \lambda_{\alpha_i}$ we have $\mathscr{C}(\mathcal{U}; V) \cong F$. Thus $\mathscr{C}(\mathcal{U}; V)$ is simple. Since $\lambda_{\alpha_i} \in \operatorname{End}_R V$ we have $\mathscr{C}(\mathcal{U}; V) \subseteq \operatorname{End}_R V$. On the other hand since $\mathscr{U} \subseteq R$, $\mathscr{C}(R; V) \subseteq \mathscr{C}(\mathcal{U}; V)$ and clearly $\operatorname{End}_R V \subseteq \mathscr{C}(R; V)$.

Recall that the Kern of a near-ring N is the set

$$\operatorname{Kern} N = \{a \in N \mid a(b+c) = ab + ac \text{ for all } b, c \in N\}.$$

In the case that $\langle N, + \rangle$ is abelian, Kern N is a subring of N. We conclude this section by characterizing Kern($\mathscr{C}(\mathscr{U}; V)$).

Theorem 2.9. Kern($\mathscr{C}(\mathscr{U}; V)$) = End_R $V = \mathscr{C}(R; V)$.

Proof. From the generalization of Theorem 1 of [3] as mentioned in the introduction we know $\operatorname{End}_{R} V = \mathscr{C}(R; V)$ so it remains to verify the first equality. If $\dim_{R} V = 1$ then the result follows from the previous theorem. Thus we suppose $\dim_{R} V > 1$. Let $v_{i} \in \mathscr{U}^{0} E_{\alpha_{i}} m_{\alpha_{i}}, v_{j} \in \mathscr{U}^{0} E_{\alpha_{j}} m_{\alpha_{j}}, i \neq j$ and let $v = v_{i} + v_{j}$. Then $\operatorname{stab}(v) \subseteq \operatorname{stab}(v_{i}), \operatorname{stab}(v) \subseteq \operatorname{stab}(v_{j})$ so there exists functions $h_{i}, h_{j} \in \mathscr{C}(\mathscr{U}; V), h_{i}(v) = v_{i}, h_{i}(v) = v_{i}$. For $d \in \operatorname{Kern}(\mathscr{C}(\mathscr{U}; V))$,

$$d(v_i + v_j) = d(h_i(v) + h_j(v)) = d(h_i + h_j)(v) = (dh_i + dh_j)(v) = d(v_i) + d(v_j).$$

Now let v_i , $v_j \in \mathcal{U}^0 E_{\alpha_i} m_{\alpha_i}$. Then there exists $w_j \in \mathcal{U}^0 E_{\alpha_j} m_{\alpha_j}$, $j \neq i$ such that $\operatorname{stab}(v_j) = \operatorname{stab}(w_j)$. Let $w = v_i + w_j$. As above there exist g_i, g_j in $\mathscr{C}(\mathcal{U}; V)$ such that $g_i(w) = v_i$, $g_j(w) = w_j$. Since $\operatorname{stab}(w_j) = \operatorname{stab}(v_j)$, there exists $g \in \mathscr{C}(\mathcal{U}; V)$ such that $g(w_j) = v_j$. Hence $\bar{g}_j = gg_j$ takes w to v_j . Again if $d \in \operatorname{Kern}(\mathscr{C}(\mathcal{U}; V))$ then $d(v_i + v_j) = d(v_i) + d(v_j)$. This suffices to show $d \in \operatorname{End} V$. Since $d \in \mathscr{C}(\mathcal{U}; V)$ we now have $d \in \operatorname{End}_{\mathscr{U}} V$. The converse is clear so $\operatorname{Kern}(\mathscr{C}(\mathcal{U}; V)) = \operatorname{End}_{\mathscr{U}} V$. Since R is generated by \mathscr{U} , $\operatorname{End}_R V = \operatorname{End}_{\mathscr{U}} V$.

3. Left Ideals in $\mathscr{C}(\mathscr{U}; V)$

In this section we examine various left ideals in $\mathscr{C}(\mathscr{U}; V)$. We determine all minimal left ideals and then use our characterization to show that there are no nonzero nilpotent left ideals in $\mathscr{C}(\mathscr{U}; V)$. We further use our characterization of minimal left ideals to establish when $\mathscr{C}(\mathscr{U}; V)$ is v-primitive, v=0, 1, 2.

Notation. For the remainder of this paper we use N to denote the near-ring $\mathscr{C}(\mathscr{U}; V)$.

For an arbitrary centralizer near-ring $\mathscr{C}(A; G) \equiv M$, let e_x denote the idempotent mapping in M which fixes the orbit Ax and maps all other orbits to 0. In [5] it is shown that if L is a minimal left ideal of M then $L \subseteq Me_x$ for some $x \in G$, and under certain conditions related to x, the left ideal Me_x is minimal. Here we find that all minimal left ideals of $N \equiv \mathscr{C}(\mathscr{U}; V)$ are of the form Ne_x .

We first give an easy but useful technical result.

Lemma 3.1. Let L be a left ideal of $N \equiv \mathscr{C}(\mathscr{U}; V)$ contained in Ne_x for some $x \in V$. Let

$$T(x) = \{v \in V \mid \operatorname{stab}(v) \supseteq \operatorname{stab}(x)\}$$

and let

$$L(x) = \{ w \in V \mid w = l(x) \text{ for some } l \in L \}.$$

Then for each

$$y \in T(x) - L(x), y + L(x) \subseteq \mathscr{U}y$$

Proof. We first note that T(x) is a subgroup of V. Now let $y \in T(x) - L(x)$ and assume for some v in L(x) that $y + v \notin \mathcal{U}y$. Thus y, y + v are in different orbits so there exists an f in N such that f(y) = y and f(y+v) = 0. Further there exist $l \in L$, $g \in N$ such that l(x) = v and g(x) = y. Since L is a left ideal of N, $h = f(g+l) - fg \in L$ and so $h(x) \in L(x)$. But

$$h(x) = f(y+v) - f(y) = -y.$$

This is a contradiction since L(x) is group and $y \notin L(x)$.

For x in V. $Ne_x = Ann(1-e_x) = Ann(V - \mathcal{U}x)$ so clearly Ne_x is a left ideal of N. Further $Ann e_x = Ann(x)$ is a left ideal of N with $Ne_x \oplus Ann e_x = N$, hence Ne_x is Nisomorphic to $N/Ann e_x$. Consequently, Ne_x is a minimal (strictly minimal) left ideal if and only if $Ann(e_x)$ is a maximal (strictly maximal) left ideal. Further, Ne_x is strictly minimal if and only if stab(x) is maximal. For if stab(x) is maximal this is indeed the case. If stab(x) is not maximal then $stab(x) \subseteq stab(y)$ for some $y \in V^*$. Hence there exists a mapping $f \in N$ defined by f(x) = y and f(w) = 0 if $w \notin \mathcal{U}x$. But then $f \in Ne_x$ and Nf is an N-subgroup of Ne_x , $(0) \subseteq Nf \subseteq Ne_x$.

Theorem 3.2. For each $x \in V^*$, Ne_x is a minimal left ideal.

Proof. Let L be a nonzero left ideal in Ne_x . Hence $L(x) \neq 0$, say $0 \neq y \in L(x)$ where $y = y_{\alpha_1} + \cdots + y_{\alpha_i}$ with $y_{\alpha_i} \neq 0$ for at least one *i*, say y_{α_1} . Since stab $(y_{\alpha_1}) \supseteq$ stab(y), $y_{\alpha_1} \in L(x)$. If stab(x) is maximal then we know Ne_x is minimal and $L = Ne_x$. If stab(x) is not maximal, $x = x_{\beta_1} + \cdots + x_{\beta_x}$ then from Theorem 2.3, there must be at least two non-zero components. For x_{β_j} , $\beta_j \neq \alpha_1$, if $x_{\beta_j} \notin L(x)$ then since $x_{\beta_j} \in T(x)$ we have from Lemma 3.1, $x_{\beta_j} + L(x) \subseteq \mathscr{U}x_{\beta_j}$. Hence $x_{\beta_j} + y_{\alpha_1} = Ax_{\beta_j}$ for some $A \in \mathscr{U}$. But then $(A - I)x_{\beta_j} = y_{\alpha_1}$ which contradicts the fact that $RE_{\alpha_1}m_{\alpha_1} \cap RE_{\beta_j}m_{\beta_j} = (0)$ for $\alpha_1 \neq \beta_j$. Thus we have $x_{\beta_j} \in L(x)$ for $\beta_j \neq \alpha_1$. For x_{β_j} where $\beta_j = \alpha_1$ we have $\beta_i \neq \beta_j$ such that $x_{\beta_i} \neq 0$ and $x_{\beta_i} \in L(x)$. Therefore as above if $x_{\beta_j} (\equiv x_{\alpha_1}) \notin L(x)$, $x_{\beta_j} + x_{\beta_i} = Bx_{\beta_j}$, $B \in \mathscr{U}$, again leading to a contradiction. From this we find that $x_{\beta_i} \in L(x)$ for each β_j and so

$$x = \sum_{\alpha=1}^{s} x_{\beta_j} \in L(x)$$

Thus there exists h in L such that h(x) = x, i.e., $e_x \in L$ and so $L = Ne_x$.

We now turn to the problem of showing that $\mathscr{C}(\mathscr{U}; V)$ has no nonzero nilpotent left ideals.

Theorem 3.3. Let L be a left ideal of N containing no nonzero idempotent elements. Then for each f in L, for each $x \in V$ if $f(x) \neq 0$, then $\operatorname{stab}(x) \subsetneq \operatorname{stab} f(x)$.

E

Proof. We know stab $(x) \subseteq$ stab f(x) for each $f \in L$. If the theorem is false, there exists an $f \in L$ and $x \in V^*$ such that stab(x) = stab(f(x)). Let y = f(x). Thus there exists a map e_{xy} in N such that $e_{xy}(y) = x$ and $e_{xy}(w) = 0$ for $w \notin \mathscr{U} y$. Since $e_{xy} \in N$, $e_{xy} f \in L$ so we may assume f(x) = x. Similarly $e_x f \in L$ so we may also assume that $f(V) \subseteq \mathscr{U}^0 x$. Let $K = \{v \in V \mid f(v) \in \mathscr{U} x\}$. Then $K \neq \emptyset$ since $\mathscr{U} x \subseteq K$. If $K = \mathscr{U} x$ then f(v) = v for $v \in \mathscr{U} x$ and f(v) = 0 for $v \notin \mathscr{U} x$; i.e., $f = e_x$ which is a contradiction. Thus there exist $v \in K$, $v \notin \mathscr{U} x$. Thus for some $A \in \mathscr{U}$, f(v) = Ax. Let $f_1 = e_x(-e_v + f) + e_x e_v$ which is in L since L is a left ideal and $f \in L$. Now $f_1(x) = x$, $f_1(v) = e_x(-v + f(v)) = e_x(-v + Ax)$ and $f_1(y) = f(y)$ if $y \notin (\mathscr{U} x \cup \mathscr{U} v)$. Assume $-v + Ax \in \mathscr{U} x$. Then $f_1(v) = -v + Ax$ so $(f - f_1)(v) = Ax - (-v + Ax) = v$ while $(f - f_1)w = 0$ if $w \notin \mathscr{U} v$. Again this is impossible so we have for all $v \in K - x$, $-v + Ax \notin \mathscr{U} x$ where f(v) = Ax. We now define a new function h as follows. Let v_0 be arbitrary but fixed in K - x. Define h by h(y) = y if $y \in \mathscr{U} x \cup \mathscr{U} v_0$, h(y) = -y + f(y) if $y \in K - (\mathscr{U} x \cup \mathscr{U} v_0)$ and h(y) = 0 if $y \notin K$. Let $g_1 = e_x h - e_x(h - f_1)$ and $g_2 = e_x(f_1 - h) + e_x h$. Then $g_1, g_2 \in L$. Now

$$g_{1}(y) = \begin{cases} 0 \text{ if } y \notin K \\ y \text{ if } y \in \mathscr{U}x \\ 0 \text{ if } y \in \mathscr{U}v_{0} \\ y \text{ if } y \in K - (\mathscr{U}x \cup \mathscr{U}v_{0}) \text{ and } -y \in \mathscr{U}x \\ 0 \text{ if } y \in K - (\mathscr{U}x \cup \mathscr{U}v_{0}) \text{ and } -y \notin \mathscr{U}x \end{cases}$$

and $g_2g_1 = e_x$ which is again impossible. Thus the result is established.

Theorem 3.4. Let L be a nonzero left ideal of N containing no nonzero idempotent elements. Then there exists some $x \in V^*$ such that $L \cap Ne_x \neq (0)$.

Proof. Let f be nonzero in L with say $f(x) = y \neq 0$. From the previous theorem $\operatorname{stab}(x) \subseteq \operatorname{stab}(y)$. Since $e_y f \in L$ we suppose without loss of generality that $f(V) \subseteq \mathscr{U}^0 y$. Let $K = \{v \in V \mid f(v) \in \mathscr{U}y\}$. Then $y \notin K$; for if f(y) = Ay for some $A \in \mathscr{U}$, we would have $\operatorname{stab}(y) \subseteq \operatorname{stab}(f(y) = \operatorname{stab}(Ay)$ which contradicts the finiteness condition of Theorem 2.6. A similar argument shows that $y \notin \mathscr{U}x$. Let $f_1 = e_y(-e_x + f) + e_y e_x$. Then $f_1 \in L$ with $f_1(x) = e_y(-x+y)$ and $f_1(w) = f(w)$ for $w \notin \mathscr{U}x$. If $-x+y \in \mathscr{U}y$ then $f_1(x) = -x+y$ and consequently $e_x = f - f_1 \in L$ which is a contradiction. Therefore $-x+y \notin \mathscr{U}y$ so $f_1(x) = 0$. But then $(f - f_1)w = f(w)$ if $w \in \mathscr{U}x$ while $(f - f_1)w = 0$ if $w \notin \mathscr{U}x$. Hence $0 \neq f - f_1 = fe_x$ is in $Ne_x \cap L$.

Corollary 3.5. If L is a nonzero left ideal of N then L contains an idempotent. Further there are no nonzero nilpotent left ideals in N.

Proof. Suppose L is a nonzero left ideal that does not contain an idempotent. From the above theorem, $L \cap Ne_x \neq (0)$ for some $x \in V^*$. But for each $x \in V^*$, Ne_x is a minimal left ideal so that $Ne_x = L \cap Ne_x \subseteq L$. This contradiction establishes the desired result.

Corollary 3.6. Let L be a left ideal of N. L is a minimal left ideal if and only if $L = Ne_x$ for some $x \in V^*$.

Proof. If $L = Ne_x$ then from Theorem 3.2 L is minimal. Conversely, from the above corollary $e_x \in L$ for some $x \in V^*$ and so $Ne_x \subseteq L$. Since L is minimal $L = Ne_x$.

We remark that Lemma 3.1 as well as Theorem 3.3 and Theorem 3.4 do not use the structure of $\mathscr{C}(\mathscr{U}; V)$ in their proofs and therefore are valid in a more general setting. Indeed these results will hold in any centralizer near-ring $\mathscr{C}(A; G)$, $A \subseteq \operatorname{Aut} G$, in which the Ne_x are minimal, for $x \in G^*$ and such that the finiteness condition (F.C.) is satisfied.

We further apply Theorem 3.2 to obtain information about the v-primitivity of $\mathscr{C}(\mathscr{U}; V)$, v=0, 1, 2. For the necessary definitions and background material on this topic we again refer the reader to Pilz [7].

Theorem 3.7. For $N = \mathscr{C}(\mathscr{U}; V)$ the following are equivalent:

- (i) N is simple,
- (ii) N is 2-primitive,
- (iii) N is 1-primitive.

Proof. The equivalence of (ii) and (iii) follows from the general results in [7] (p. 104) since N has an identity.

(i) \rightarrow (ii). Since N is simple, from Theorem 2.8, N is a field and so is 2-primitive on $\langle N, + \rangle$.

(ii) \rightarrow (i). It is known that when a near-ring M is 2-primitive with a minimal left ideal then all minimal left ideals are M-isomorphic [Pilz, p. 130]. In our situation if N is not simple this is impossible. For if N is not simple, dim_R $V \ge 2$. Thus if $v = E_{\alpha_1} m_{\alpha_1}$ then stab(v) is maximal and hence Ne_v is a strictly minimal left ideal. On the other hand for

$$w = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} m_{\alpha_1} + \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} m_{\alpha_2}$$

stab(w) is not maximal and so as we have seen the minimal left ideal Ne_w is not strictly minimal. Hence $Ne_w \cong Ne_w$ as N-groups.

To complete the characterizations of v-primitivity it remains to consider the case for v=0. Here the situation is quite different. In fact $\mathscr{C}(\mathscr{U}; V)$ is always 0-primitive.

Theorem 3.8. $\mathscr{C}(\mathscr{U}; V)$ is 0-primitive.

Proof. We separate the proof into two cases depending on $\dim_R V$.

Case 1: $\dim_R V \ge n$. As we have seen

$$v = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{\alpha_1} + \dots + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} m_{\alpha_n}$$

is such that $\operatorname{stab}(v) = \{I\}$. But then $Ne_v = V$ is a minimal left ideal, monogenic and clearly the left annihilator of V in N is $\{0\}$. Hence the N-module V is of type 0, i.e., $\mathscr{C}(\mathscr{U}; V)$ is 0-primitive in this case.

Case 2: $\dim_R V = t < n$. If

then we know $\operatorname{stab}(x) = S_t$ and S_t is minimal in \mathscr{S} . Moreover for any $y \in V$ there exists a $B \in \mathscr{U}$ such that $\operatorname{stab}(By) = S_k$ for some k and so $S_t \subseteq S_k$. Now Ne_x is a minimal left ideal, and hence an N-group of type 0, clearly monogenic since for each $f \in Ne_x$, $f = fe_x$. Let $h \in \operatorname{Ann}(Ne_x)$ and let y be arbitrary in V^* . As we showed above, $\operatorname{stab}(x) \subseteq \operatorname{stab}(By)$ for some $B \in \mathscr{U}$ so there exists a $g \in N$ with g(x) = By. But then $0 = h(ge_x)$ implies 0 = h(By) = Bh(y) so h(y) = 0. Since y was arbitrary $h \equiv 0$. Hence N is 0-primitive on Ne_x .

4. Radicals in $\mathscr{C}(\mathscr{U}; V)$

In this section we investigate the structure of the various radicals $J_{\nu}(N)$, $\nu = 0, 1/2, 1, 2$ for the near-ring $N = \mathscr{C}(\mathscr{U}; V)$. For the necessary definitions we again refer to [7]. As in the case of primitivity, since N contains an identity $J_1(N) = J_2(N)$.

From Theorem 3.2, Ne_x is a minimal left ideal for each $x \in V^*$. Thus $Ann e_x$ is a maximal left ideal for $x \in V^*$. Therefore

$$J_{1/2}(N) = \bigcap \{K \mid K \text{ is a maximal left ideal of } N\} \subseteq \bigcap_{x \in V^*} \operatorname{Ann} e_x = \{0\}.$$

Thus $J_{1/2} = (0)$ and since $J_0(N) \subseteq J_{1/2}(N)$, $J_0(N) = (0)$. Of course this latter result was known already since N is 0-primitive.

It remains to consider $J_2(N)$. We first establish some bounds. Let $\mathscr{B} = \{x_{\lambda}\} \cup \{0\}$ be a basis for V over \mathscr{U} . Let $M = \{x_{\lambda} \in \mathscr{B}^* | \operatorname{stab}(x_{\lambda}) \text{ is maximal in } \mathscr{S}\}$ and let $\overline{M} = \mathscr{B} - M$. For $x_{\lambda} \in M$, $\operatorname{Ann}(x_{\lambda})$ is a strictly maximal left ideal so $J_2(N) \subseteq \bigcap_{x_{\lambda} \in M} \operatorname{Ann}(x_{\lambda})$. We note that $\bigcap_{x_{\lambda} \in M} \operatorname{Ann} x_{\lambda} = Ne_{\overline{M}}$ where $e_{\overline{M}}(x) = x$ if $x \in \overline{M}$ and $e_{\overline{M}}(x) = 0$ if $x \in M$.

If L is a strictly maximal ideal not of the form $\operatorname{Ann} x_{\lambda}$ for $x_{\lambda} \in M$ then for each x, $L + Ne_x = N$. If for some x, $L \cap Ne_x = (0)$ then one finds that $L = \operatorname{Ann}(x)$. Since Ne_x is minimal, $\operatorname{Ann}(x)$ is maximal so $\operatorname{Ann}(x) = L$, a contradiction. Thus for each x, $L \cap Ne_x \neq (0)$ so $Ne_x \subseteq L$. This also follows from results in [5]. Consequently for every strictly maximal ideal L not of the form $\operatorname{Ann} x_{\lambda}$, for $x_{\lambda} \in M$, we have $L \supseteq \sum_{x \in V} Ne_x$. Further, $Ne_{\bar{M}} \supseteq \sum_{\lambda \in \bar{M}} \bigoplus Ne_{x_{\lambda}}$. Since $J_2(N)$ is the intersection of all strictly maximal left ideals of N we have $J_2(N) \supseteq \sum_{x_{\lambda} \in \bar{M}} \bigoplus Ne_{x_{\lambda}}$.

Theorem 4.1. $\sum_{x_1 \in \overline{M}} \bigoplus Ne_{x_1} \subseteq J_2(N) \subseteq Ne_{\overline{M}}$.

Corollary 4.2. If \overline{M} is finite, $J_2(N) = Ne_{\overline{M}} = \sum_{x_1 \in \overline{M}} \bigoplus Ne_{x_1}$.

The left ideal $\sum_{x_{\lambda} \in \bar{M}} \bigoplus Ne_{x_{\lambda}}$ is precisely the collection of functions f in $Ne_{\bar{M}}$ with finite support, i.e., $\operatorname{supp}(f) < \infty$ where

$$\sup(f) = \{x \in V \mid f(x) \neq 0\} \cap \mathscr{B} = \{x \in \mathscr{B} \mid f(x) \neq 0\}.$$

We now characterize when this set is $J_2(N)$.

Theorem 4.3. (i) Let F be an infinite field. Then $J_2(N) = \sum_{x_{\lambda} \in \overline{M}} \bigoplus Ne_{x_{\lambda}}$ if and only if $\dim_R V \leq 2$.

(ii) Let F be a finite field. Then $J_2(N) = \sum_{x_1 \in \overline{M}} \bigoplus Ne_{x_1}$ if and only if dim_R V is finite.

Proof. (i) If $\dim_R V = 0$ then V = (0) while if $\dim_R V = 1$, $\mathscr{C}(\mathscr{U}; V)$ is simple so in both of these cases $J_2(N) = (0) = \sum_{x_\lambda \in \overline{M}} \bigoplus Ne_{x_\lambda}$ since $\overline{M} = \{0\}$. Thus suppose $V = RE_{\alpha_1}m_1 \bigoplus RE_{\alpha_2}m_2$. From our investigations of the set \mathscr{S} we know that in this case $v \in M$ if and only if stab(v) is conjugate to S_2 . But this means there exists $A \in \mathscr{U}$ such that stab $(Av) = S_2$ and

$$Av = v_0 = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} m_1 + \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} m_2.$$

This in turn implies that if stab(w) is not maximal then $w \in \mathcal{U}v_0$. Thus \overline{M} has one nonzero element so from Corollary 4.2, $J_2(N) = \sum_{z_\lambda \in \overline{M}} \bigoplus Ne_{x_\lambda}$.

Conversely suppose dim_R $V \ge 3$. For $a \in F^*$, let

$$x_{a} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} m_{1} + \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} m_{2} + \begin{bmatrix} a\\0\\\vdots\\0 \end{bmatrix} m_{3}.$$

We claim $\mathscr{U}x_a \neq \mathscr{U}x_b$ if $a \neq b$. Otherwise there would exist $A = [a_{ij}], B = [b_{ij}]$ in \mathscr{U} such that $Ax_a = Bx_b$. Thus

$$Ax_{a} = \begin{bmatrix} a_{11} \\ \vdots \\ a_{n1} \end{bmatrix} m_{1} + \begin{bmatrix} a_{12} \\ \vdots \\ a_{n2} \end{bmatrix} m_{2} + \begin{bmatrix} aa_{11} \\ \vdots \\ aa_{n1} \end{bmatrix} m_{3} = \begin{bmatrix} b_{11} \\ \vdots \\ b_{n1} \end{bmatrix} m_{1} + \begin{bmatrix} b_{12} \\ \vdots \\ b_{n2} \end{bmatrix} m_{2} + \begin{bmatrix} bb_{11} \\ \vdots \\ bb_{n1} \end{bmatrix} m_{3}.$$

From the uniqueness of representation of elements in V we find that a=b, a contradiction. From Theorem 2.3, $\operatorname{stab}(x_a)$ is not maximal. We use the $x_a, a \in F^*$ as part of a basis \mathscr{B} for V over \mathscr{U} . Since F^* is infinite, so is \overline{M} . We define a function f in N as follows. For each $x_a \in \overline{M}$ let

$$f(x_a) = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} m_1 + \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} m_2 \equiv w_0$$

and let f(x) = x for $x \in \overline{M} - \{x_a\}_{a \in F^*}$. Finally define f(y) = 0 for $y \in M$. Then $f \in N$ and $f(V) \subseteq \mathscr{U}\overline{M}$. Further, since $w_0 \in \overline{M}$, $e_{w_0} \in J_2(N)$ and so $e_{w_0}f \in J_2(N)$. But $\operatorname{supp} e_{w_0}f = \{x_a\}_{x \in F^*}$ is infinite so $e_{w_0}f \in J_2(N) - \sum_{x_\lambda \in \overline{M}} \bigoplus Ne_{x_\lambda}$.

(ii) Let F be a finite field. Then R is finite. If $\dim_R V$ is finite then V is finite and the result follows from Corollary 4.2. If $\dim_R V$ is not finite then for $j \ge 3$, the elements $x_j = E_{\alpha_1}m_1 + E_{\alpha_2}m_2 + E_{\alpha_j}m_j$ are in distinct orbits and so can be used as part of a basis. Also $x_j \in \overline{M}$ and $\{x_j\}_{j\ge 3}$ is infinite. As in the first part of the proof one can find a function $0 \neq g \in J_2(N) - \sum_{x_\lambda \in \overline{M}} \bigoplus Ne_{x_\lambda}$.

If $J_2(N) \neq \sum_{x_\lambda \in \bar{M}} \bigoplus Ne_{x_\lambda}$, what can be said about the functions in $J_2(N)$? We give a partial answer to this question. Thus for the remainder of this section we take \bar{M} to be infinite and dim_R $V \ge 3$.

Lemma 4.4. Let L be a strictly maximal left ideal of N. Either e_M or $e_{\bar{M}}$ is in L.

Proof. Suppose $e_M \notin L$. Since L is strictly maximal, $L + Ne_M = N$ so there exist $s \in L$, $n \in N$ such that $s + ne_M = 1$. Let $s_1 = e_{\bar{M}}s$. Then $s_1(V) \subseteq \mathcal{U}\bar{M}$ and since s(x) = x for $x \in \bar{M}$, s_1 is a nonzero element in L. Let $h = e_{\bar{M}}(s_1 + e_M) - e_{\bar{M}}e_M$. Then $h = e_{\bar{M}}(s_1 + e_M)$ is in L with h(x) = x for $x \in \bar{M}$ while $h(y) = e_{\bar{M}}(s_1(y) + y)$ for $y \in M$. Since $y \in M$, stab(y) is maximal so stab $f(y) = \operatorname{stab}(y)$. From Lemma 2.4, $s_1(y) + y \in \mathcal{U}M$ so h(y) = 0. Thus $e_{\bar{M}} = g \in L$.

Theorem 4.5. $J_2(N) = \bigcap \{L \mid L \text{ is a strictly maximal left ideal containing } e_M\} \cap Ne_{\overline{M}}$.

Proof. Let $\Sigma = \{L_{\alpha} | L_{\alpha} \text{ is a strictly maximal left ideal}\}$. By Lemma 4.4, $\Sigma = \Sigma_1 \cup \Sigma_2$ where $\Sigma_1 \cap \Sigma_2 = \emptyset$ and $\Sigma_1 = \{L_{\sigma} \in \Sigma | e_M \in L_{\alpha}\}$, $\Sigma_2 = \{L_{\sigma} \in \Sigma | e_{\bar{M}} \in L_{\sigma}\}$. By definition $J_2(N) = \bigcap_{\sigma \in \Sigma} L_{\sigma} \cap Ne_{\bar{M}}$. For $L_{\sigma} \in \Sigma_2$, $Ne_{\bar{M}} \subseteq L_{\sigma}$ so $Ne_{\bar{M}} = L_{\sigma} \cap Ne_{\bar{M}}$. Thus

$$J_2(N) = \bigcap_{\sigma \in \Sigma_1} L_{\sigma} \cap \left(\bigcap_{\sigma \in \Sigma_2} L_{\sigma}\right) \cap Ne_{\bar{M}} = \bigcap_{\alpha \in \Sigma_1} L_{\alpha} \cap Ne_{\bar{M}}$$

as desired.

Let $f \in N$. We define the rank of f to be the cardinality of the set $f(V) \cap \mathscr{B}^*$ where \mathscr{B} is a basis for V.

Theorem 4.6. $J_2(N) \supseteq \{f \in N \mid \operatorname{supp}(f) \subseteq \overline{M} \text{ and } rank f \text{ is finite} \}.$

Proof. Let $f \in Ne_{\bar{M}}$ such that f has finite rank. Let $x_{\lambda_1}, \ldots, x_{\lambda_k}, x_{\lambda_{k+1}}, \ldots, x_{\lambda_i}$, be the basis elements in f(V) where $x_{\lambda_i} \in M$, $i=1,2,\ldots,k$ and $x_{\lambda_j}, j=k+1,\ldots,t$ are in \bar{M} . Thus f can be represented as $f = f_1 + f_2$ where $f_1 = \sum_{i=1}^k e_{x_{\lambda_i}} f$ and $f_2 = \sum_{j=k+1}^t e_{x_{\lambda_j}} f$. Since $e_{x_{\lambda_j}} \in J_2(N)$, $j=k+1,\ldots,t$ so does f_2 . Hence if $f \notin J_2(N)$ then $f_1 \notin J_2(N)$. This in turn implies that one of the summands, say without loss of generality $e_{x_{\lambda_i}} f$, is not in $J_2(N)$. Let $g = e_{x_{\lambda_i}} f$ and let $\operatorname{supp} g = \bar{M}_1$. If \bar{M}_1 is finite then $g \in J_2(N)$ so we assume \bar{M}_1 is infinite. Since $g \in Ne_{\bar{M}}$ but is not in $J_2(N)$ there exists a strictly maximal left ideal L in Σ_1 such that $g \notin L$. Hence L + Ng = N and so there exists a strictly maximal left ideal L in $(Ax_{\lambda_1}) \neq 0$. Thus $n(Ax_{\lambda_1}) \in \mathcal{U}M$ since $x_{\lambda_1} \in M$. Let $h = e_M(e_{\bar{M}_1} - s) - e_M e_{\bar{M}_1} = e_M(e_{\bar{M}_1} - s)$ since $\bar{M}_1 \subseteq \bar{M}$. Then $h \in L$ and for $x \in \bar{M}_1$, $h(x) = e_M(x - s(x)) = x - s(x)$ since $n(Ax_1) \in \mathcal{U}M$ while for $x \notin \bar{M}_1$

$$h(x) = e_M(-x) = \begin{cases} -x \text{ if } x \in M \\ 0 \text{ if } x \in \overline{M} - \overline{M}_1 \end{cases}$$

Since $h \in L$, $h_1 + s$ is also in L and

$$h_1(x) = \begin{cases} x \text{ if } x \in \overline{M}_1 \\ 0 \text{ if } x \in M \\ x \text{ if } x \in \overline{M} - \overline{M}_1. \end{cases}$$

Therefore $e_{\bar{M}} = h_1 \in L$ which is a contradiction. Consequently $f \in J_2(N)$.

In a similar manner we now show that $J_2(N)$ contains all functions with support in \overline{M} and range in $\mathcal{U}M \cup \{0\}$.

Theorem 4.7. $J_2(N) \supseteq \{ f \in N \mid f \in Ne_{\overline{M}} \text{ and } f(\overline{M}) \subseteq \mathscr{U}M \cup \{ 0 \} \}.$

Proof. Let $f \in Ne_{\bar{M}}$ with $f(\bar{M}) \subseteq \mathcal{U}M \cup \{0\}$. Further let $\bar{M}_1 = \text{supp } f$. If $f \notin J_2(N)$ then as in Theorem 4.6 there exists a strictly maximal left ideal L with $e_M \in L$ and $s \in L$, $n \in N$ with s + nf = 1. Since $f(x) \in \mathcal{U}M$ so does nf(x) for all $x \in \bar{M}_1$. Now $h = e_M(e_{\bar{M}_1} - s) - e_M e_{\bar{M}_1} = e_M(e_{\bar{M}_1} - s)$ is in L. As above $h_1 = h + s$ is in L and $h_1 = e_{\bar{M}}$ a contradiction. Thus $f \in J_2(N)$.

The problem of characterizing the elements in $J_2(N)$ remains open. That the above two results do not give this characterization is pointed out in the following example in which we give a function f in $J_2(N)$ with $f(\overline{M}) \subseteq \mathcal{U}\overline{M}$ and f is not of finite rank.

Example 4.8. Let $\dim_R V$ be at least 3 and F an infinite field. Let

$$x_{a} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} m_{1} + \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix} m_{2} + \begin{bmatrix} a\\0\\\vdots\\0 \end{bmatrix} m_{3},$$

 $a \in F^*$ as in Theorem 4.3. Define f_1 by

$$f_{1}(x_{a}) = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{1} + \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_{2}$$

- - -

and f_1 to be zero on the other basis elements. Since f_1 is of finite rank, $f_1 \in J_2(N)$. Define f_2 by

$$f_2(x_a) = \begin{bmatrix} a \\ 0 \\ \vdots \\ 0 \end{bmatrix} m_3$$

and f_2 to be zero on the other basis elements. Since $f_2(\overline{M}) \subseteq \mathscr{U}M \cup \{0\}, f_2 \in J_2(N)$. Hence $f = f_1 + f_2 \in J_2(N)$ where f is the identity on $\{x_a\}_{a \in F^*}$ and f is zero on the other basis elements.

We conclude with a definite result for the situation in which $\dim_R V$ is finite.

Theorem 4.9. Let $\dim_{\mathbb{R}} V$ be finite and let $f \in Ne_{\overline{M}}$. Then $f \in J_2(N)$ if and only if f is the sum of rank 1 functions.

Proof. Suppose $f = \sum_{j=1}^{n} f_j$ where f_j is a rank 1 function. Since each f_j is in $J_2(N)$, so is f. Conversely let $f \in J_2(N)$ and let π_i be the *i*th projection map $i=1,2,\ldots,t$ where $t = \dim_R V$. Since $\pi_i \in \operatorname{End}_R V$, $\pi_i \in N$ so $\pi_i f \in J_2(N)$ and $\pi_i f$ is of rank 1. But $f = \sum_{i=1}^{t} \pi_i f$ so the proof is complete.

Acknowledgement. The first author would like to acknowledge financial support from Teesside Polytechnic where he was visiting when this work was done.

REFERENCES

1. N. JACOBSON, Structure of Rings (Amer. Math. Soc. Coll. Publ. Vol. 37, Providence, RI, 1964).

2. C. J. MAXSON and K. C. SMITH, The centralizer of a group automorphism, J. Algebra 54 (1978), 27-41.

3. C. J. MAXSON and K. C. SMITH, Simple near-ring centralizers of finite rings, Proc. Amer. Math. Soc. 75 (1979), 8-12.

4. C. J. MAXSON and K. C. SMITH, The centralizer of a set of group automorphisms, *Comm. in Alg.* 8 (1980), 211-230.

5. C. J. MAXSON and K. C. SMITH, Centralizer near-rings: Left ideals and 0-primitivity, Proc. Royal Irish Acad. 81 (1981), 187-199.

6. J. D. P. MELDRUM and A. OSWALD, Near-rings of mappings, Proc. Royal Soc. Edinburgh 83A (1978), 213-223.

THE CENTRALIZER OF THE GENERAL LINEAR GROUP

7. G. Pilz, Near-rings (North-Holland, New York, 1977).

8. M. ZELLER, Centralizer near-rings on infinite groups (Ph.D. Dissertation, Texas A&M University, College Station, 1980).

DEPARTMENT OF MATHEMATICS TEXAS A&M UNIVERSITY COLLEGE STATION, TX 77843 USA DEPARTMENT OF MATHEMATICS AND STATISTICS TEESSIDE POLYTECHNIC BOROUGH ROAD MIDDLESBROUGH CLEVELAND TS1 3BA UK