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Abstract

One complication in mortality modelling is capturing the impact of risk factors that contribute to mortal-
ity differentials between different populations. Evidence has suggested that mortality differentials tend to
diminish over age. Classical methods such as the Gompertz law attempt to capture mortality patterns over
age using intercept and slope parameters, possibly causing an unjustified mortality crossover at advanced
ages when applied independently to different populations. In recent research, Richards (Scandinavian
Actuarial Journal 2020(2), 110-127) proposed a Hermite spline (HS) model that describes the age pat-
tern of mortality differentials using one parameter and circumvents an unreasonable crossover by default.
The original HS model was applied to pension data at individual level in the age dimension only. This
paper extends the method to model population mortality in both age and period dimensions. Our results
indicate that in addition to possessing desirable fitting properties, the HS approach can produce accurate
mortality forecasts, compared with the Gompertz and P-splines models.

Keywords: Mortality forecasting; Hermite splines; Mortality models; Longevity risk

1. Introduction

Over the past few decades, the reduction in human mortality has been accelerating far faster than
expected. However, such improvement is not consistent across ages. Several studies found evi-
dence that mortality in older populations (55+) has been declining faster than that in younger age
groups (Christensen et al., 2009). From 1970 onwards, the primary driving factor of rising human
life expectancy in developed countries has shifted from decreasing mortality at younger ages to
improving longevity at older ages (Cairns et al., 2009).

Mortality modelling is crucial not only in demography but also in a wide range of areas such as
public health, insurance and pension planning in both the private and public sectors. For instance,
insurance companies that provide life annuities need to make accurate and sensible mortality
predictions in pricing and reserving. Failing to do so might result in an unexpected loss on the
annuity products that pay lifetime income to the annuitants on survival. These portfolios whose
cash flows are linked to survival rates at higher ages are exposed to a risk of people living unex-
pectedly longer, i.e., longevity risk. In order to quantify risks associated with mortality rates, a
number of stochastic mortality models have been proposed by researchers and practitioners. One
category of stochastic mortality models called the extrapolative family makes assumptions about
future age and period patterns of mortality rates based on past developments. According to Blake
et al. (2018), extrapolative models may be broadly divided into three branches.
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The first class originates from the Lee—Carter model (Lee & Carter, 1992) that analyses mor-
tality rates in both age and time dimensions using multiplicative factors. Renshaw & Haberman
(2003) extended the original Lee—Carter model to incorporate two factors and applied this exten-
sion to male mortality data in the United Kingdom and England and Wales. They proposed
another extension of the original Lee-Carter model by adding a cohort factor to explain patterns
specific to birth year (Renshaw & Haberman, 2006). A special case of the Lee-Carter model with
a cohort effect is called the Age-Period-Cohort model (Currie, 2006). It replaces the age-specific
sensitivity to changes in the period and cohort factors by the reciprocal of the number of ages in
the data.

The original Lee-Carter model does not impose assumptions on the smoothness of fitted mor-
tality rates across ages and periods. On the other hand, methods that are part of a second category
of extrapolative approaches assume that mortality rates are smooth for adjacent ages but not years.
An early method in this class was introduced by Cairns et al. (2006) who designed the so-called
Cairns-Blake-Dowd (CBD) model for explaining mortality rates at higher ages. It is constructed
based on the Gompertz law (Gompertz, 1825) that describes the logarithm of the mortality haz-
ard in a given year as a linear function of age, while the CBD model works on the logit of death
rates. The CBD model can also be regarded as an extension of the classic parametric mortality
curves as described in McNown & Rogers (1989). Delwarde et al. (2007) applied a penalty struc-
ture to smooth out the irregular patterns in the age sensitivity factor of the Lee-Carter model while
Hyndman and Ullah (2007) combined the non-parametric smoothing technique with the Lee—
Carter model to deal with the randomness in the data. Another early model situated Lee—Carter
within a state-space framework, enabling integrated estimation and forecasting, and imposed
across-age smoothness using B-splines (De Jong & Tickle, 2006). Other variations in the second
category have been developed by academics to cater for different needs. For example, Cairns et al.
(2009) proposed a modification to the CBD model to accommodate cohort patterns. In the same
paper, they further generalised the CBD model by adding a quadratic term to capture the potential
curvature in the logit death rates.

The last group of extrapolative mortality models originates from splines-fitting techniques,
imposing smoothness on both the age and time dimensions. Eilers & Marx (1996) imposed a dif-
ference penalty on the coefficients of B-splines formed by polynomials joined at different knots.
This so-called penalised B-splines (P-splines (PS)) approach strikes a compromise between the
adherence to data and smoothness of the fitted values. Then the one-dimensional regression
splines were extended to fit temperature data in two dimensions (Eilers & Marx, 2003). Currie
et al. (2004) further developed their work and considered the prediction method via PS matrix to
forecast human mortality rates. A separate cohort factor is not included in the PS model, as pat-
terns related to the year of birth are smoothed out. Dokumentov et al. (2018) applied a bivariate
smoothing approach to produce mortality surfaces that allow for the period and cohort effects.
Unlike the previous two classes of models that often predict future mortality scenarios by select-
ing appropriate time series processes for the period factors, under the PS method projection is a
natural outcome of the smoothing process and does not rely on forecaster judgement. Under the
PS method it is not possible to generate random sample paths of mortality rates without the use
of methods such as bootstrap. One may use the variance-covariance matrix of the PS model to
find the probability intervals of the fitted and predicted mortality rates. However, when it comes
to pricing and hedging problems that require the simulated paths of mortality-/longevity-linked
cash flows, the process uncertainty (variability in the time series) under the PS model cannot be
examined.

Although there have been considerable developments in the methods of mortality modelling,
no consensus has been achieved on the ideal choice so far. To draw a conclusion on the goodness
of fit and forecast accuracy of mortality models, several studies reviewed and examined different
extrapolative candidates both qualitatively and quantitatively (see Booth & Tickle, 2008; Cairns
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et al., 2009; Dowd et al., 2010a, 2010b). Cairns et al. (2009) and (2011) developed a set of criteria
to evaluate the performance of mortality models such as parameter parsimony, biological consis-
tency and plausibility of prediction uncertainty. Thereinto, the biological reasonableness among
multiple populations has been widely discussed in the literature. By way of illustration, it is com-
monly accepted that male life expectancy tends to be shorter than that of females at all ages (Alho
& Spencer, 2006). To avoid the opposite situation, feasible mortality models should not include
a crossover in age-related mortality rates by gender. The coherence between mortality rates of
related populations can be achieved by employing multi-population models (e.g., Li & Lee, 2005;
Hyndman et al., 2013; Li, 2013; Haberman et al., 2014; Villegas et al., 2017).

When multiple populations are considered, it is vital to maintain features of risk factors
contributing to mortality differentials for designing and pricing insurance products. A demo-
graphic theory called the compensation law of mortality (Gavrilov & Gavrilova, 1991) describes
the convergence behaviour of mortality rates between populations. Specifically, the death rates
of a population that are higher than those of related populations tend to increase with age at
a lower speed (a lower aging rate). It follows that the mortality differentials between associated
populations tend to diminish over age. The typical way of modelling mortality progression over
age describes the mortality of a population using two parameters — level and slope. Under this
setting, the fitted age-related mortality curves of related populations in a given year start from
different intercepts and their gaps narrow when the populations get older. However, this method
may cause a crossover problem. Richards (2020) illustrated this possible drawback by applying the
widely used Gompertz law to data of two pension schemes with different pension sizes. The disad-
vantaged portfolio (small-size pension) exhibits heavier mortality at younger ages and a gradual
increase over the age range. In contrast, the advantaged portfolio (large-size pension) displays
lighter mortality at younger ages and steeper slope. The fitted mortality differential between them
reduces with increasing age but eventually results in an unreasonable crossover at advanced ages.

Richards (2020) pointed out the imprudence of classical modelling approaches that potentially
bring a crossover. He introduced a so-called Hermite spline (HS) model in which mortality dif-
ferentials between two populations depend on one single parameter and take a strictly positive
decreasing form, therefore resulting in convergence without crossover. Specifically, the full HS
model of the log mortality hazard rate is constructed with four cubic polynomials in the Hermite
form (Schoenberg, 1969; Kreyszig, 2009), which specifies the gradients approaching the start and
end points of a given age interval. One may set one or both of the gradient parameters to zero to
control the flexibility of the smoothed mortality path between two ages. The author considered
four versions of the HS model, of varying flexibility. The risk factors (e.g., sample size, gender,
smoking status, poverty, etc.) of a population can be incorporated by altering the coefficient
(known as the intercept) of the first HS that is monotonically decreasing. Consequently, the fitted
mortality differentials for each risk factor vanish as age increases, avoiding a crossover between
populations by default.

Richards (2020) applied this method to smooth individual mortality data for pension schemes
in the age dimension only. The task of projecting two-dimensional population mortality rates was
left for future research. Richards (2021) further extended the original HS model by including a
time trend into the gradient parameter and fitted the model using the individual data of a local
pension scheme in England and Wales. Again, mortality forecasting was not addressed.

In addition to being an elegant smoothing approach for individual data, we show in this paper
that the HS models also produce desirable forecast accuracy when country-level mortality experi-
ence is employed. In particular, the full HS model attains a good balance between goodness-and-fit
and forecast accuracy. When multiple risk factors are considered, it tends to describe the patterns
of mortality differentials well and to ensure convergence at advanced ages. The focus of this paper
is on the longevity risk linked to higher-age survival probabilities; hence, we compare our model
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to the widely applied Gompertz law and PS model. The former is well-known for its ability to
model mortality data at higher ages, while the latter serves as a benchmark in spline fitting.

The organisation of the paper is as follows. Section 2 briefly reviews the structure of HS s. It also
introduces four variations of the two-dimensional HS models and the two benchmark candidates.
We then demonstrate the estimation procedure and fitting results of the six models in section 3.
The projection and backtesting performances are analysed in sections 4 and 5, respectively. A sim-
ulation study is presented in section 6 to examine further the predictive power of the six models.
Finally, section 7 concludes the paper and provides some directions of further research.

2. Methodology

Before introducing the mortality models, we first make an assumption about the instantaneous
mortality hazard rate. Since mortality data are mostly available for each single year of age, we
assume that the force of mortality . at age x in year f remains constant over each integer age-
period interval. It follows that the central death rate m,; is equivalent to the force of mortality
iyt For the rest of the paper, we employ my as the modelling measure.

2.1 HS models

Spline fitting is an interpolation method under which segments of low-degree polynomials con-
nected at chosen control points are fitted to describe the data shape. One widely used category
known as the cubic HS obtains the fitted curve using cubic polynomials defined in Hermite form
(Hermite, 1864). In more detail, one specifies the values and first derivatives of the start and end
points for each segment, and the shape of the fitted curve is controlled by the Hermite basis
functions (Marschner & Shirley, 2018). In matrix form, the interpolation polynomial p(u) over
u € [0, 1] can be expressed as

2 =2 1 1\ /[po 2 =32 +1\ /po
-3 3 -2 -1 p1 —2u® + 3u? 1
3.2
= > > Uy 1 = - P’
p(u) (” u,u ) 0 0 1 0 8o w—2ut+u 8o @
0 81 1,[3 — u2 51

(1)

where P is the (4 x 1) control matrix, pp and p; represent the start and end points of the fitted
function, & and §; are the corresponding tangents at =0 and ¥ =1 and f(#) contains basis
functions of the cubic HS. The resulting HS p(u) is a linear combination of the four basis functions.

Richards (2020) proposed the HS model that smooths post-retirement mortality m, in a given
year using four third-order polynomials in a Hermite form,

In my = ahgo (x) + who1 (xx) + sohio(xx) + sthi1 (%) (2)

ICairns et al. (2011) investigated the prediction performance of Lee-Carter and CBD type models using mortality data
of the elderly male population in England and Wales. They found that the Lee-Carter model produces implausibly small
levels of uncertainty in mortality forecasts at advanced ages. For this reason, we do not consider the Lee-Carter model in our
analysis which focuses on the modelling of higher age mortality. In this paper, the modelling variable is the log central death
rates. For comparison purposes, we use the Gompertz model instead of the CBD model which works on the logit of death
rates.
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where
hoo (i) = (14 2x5) (1 — x)?
hot (xx) = X7.(3 — 2x;)
hio(x) = xk(1 — xp)? ,
hii () = X7 (x — 1)

X = (x — xp) / (x1 — xp) for a predetermined age interval [x¢, x1] and xx € [0, 1]. There are four
coefficients «, w, so and s; for the Hermite basis functions? hij(xx) , i=0,1, j=0, 1 to be esti-
mated. Thereinto, « and w correspond to py and p; in (1) and reflect the level of In m, at the two
boundary ages xo and x1, respectively®.

We denote respectively D, E and M as the (1, x n,) matrices of the death counts, central expo-
sures and central death rates sorted by age and year, where the total number of ages (years) equals
na(ny). It is assumed that the number of deaths is a random variable following a Poisson distribu-
tion. Suppose d, e and m are the vectors with a length of 1, in the above matrices corresponding
to a given year. In a matrix form, one may write the HS model as

Inm=XypB, (4)

where m is a vector of In m, with a length of n, =x; — xp + 1, Xo refers to a (n, x 4) matrix
containing the four Hermite basis functions at each age, B = (o, w, so, 51)” is the coefficient vector.

A smooth path between the youngest and oldest death rates in the interval is specified by sg
and s; which give the gradients at the two boundary ages. As discussed in the original paper of
the HS method, the fitted mortality curve may be too flexible and may deviate from the typical
shape when both slope parameters are employed. Accordingly, four versions of the HS model
can be constructed by setting one or both gradient coefficients to zero. The four models, namely
HS1 (so = s1 =0), HS2 (s; = 0), HS3 (so = 0) and HS4 can be defined by adjusting the coefficient
vector f3:

3)

HS1: (o, , 0, 0)
HS2: (o, w, sg, 0)
HS3: (o, ®,0,51)
HS4: (o, w, so, 51)

B =

As explained in section 1, the classical Gompertz law requires two parameters to model the
decreasing mortality differentials over age and can potentially cause an unjustified crossover at
advanced ages. On the other hand, the four HS models can ensure the convergence using only the
parameter «. In the work of Richards (2020), the initial mortality level «” for population i can be
expressed as:

G _ 0 J ) (i
o ! = + Zj:l a(rj)z(lf), (5)

where z(#) is an indicator variable which equals 1 if population i has risk factorj (j=1,2,...,])
and 0 otherwise. When a population does not exhibit any of the J risk characteristics, the inter-
cept of the fitted mortality curve is equivalent to the baseline value «(?). The estimated mortality

level at the starting age increases by (%) for each additional risk factor j. By way of illustration,
suppose that mortality data with the same gender of two states in the same country only differ in
one risk factor - state. Under the simplest model HS1, their mortality differentials can be incorpo-
rated using the individual starting values ) = @@ and «® = ¢ ©® + o™ and a common ending

2The basis functions in (3) are the factorised form of those presented in (1).
When x=xp, xx=222 =0 and Inmy, = ahey(0) + who1(0) + soh10(0) + s1h11(0) = (1 +2 x 0) (1 — 0) =cv.

X1 —X0

When x = x1, x; = 2= = 1 and In my, = ahgo(1) + who1 (1) + soh1o(1) +sihn() =w x 12 x 3 =2 x 1) = w.

X1—X0
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Figure 1. Hermite basis splines hj;(x) for x, ranging from0to 1,i=0,1andj=0, 1.

value w. Under the compensation law of mortality, the two sets of state-level mortality rates (in a
specific year) should converge gradually as age increases. As shown in Figure 1 that plots the basis
functions of HSs, hgo(xx) is monotonically decreasing over the defined age range. Consequently,
the gap between the fitted mortality curves of the two populations vanishes over age by default,
without the need of adopting a “slope” parameter.

In addition to the parsimonious modelling of mortality differentials, the potential crossover
problem under the Gompertz model can be avoided due to the monotonicity of the Hermite func-
tion hgo(xy). Specifically, the difference between the log central death rates of the two populations
at age x under the HS1 model is calculated as

Inml® —Inm@ = [Ol(l)hoo(xk) + a)h()l(xk)] - [Ol(z)hoo(xk) + who1(xk)]

= (Ot(l) - 06(2)) hoo (xk) » (6)

where x; = (x — x¢) / (x1 — xp). Note that the two populations are assumed to share a common
death rate Inm,, = w at an advanced age x;*. Since hgo(x;) is a decreasing function ranging
between 0 and 1, the difference in equation (6) narrows down to 0 as x reaches x; but never
switches its sign over the given range [xp, x1]. Nonetheless, one may argue that mortality differ-
entials resulted from certain risk factors such as gender reduce at higher ages but do not vanish
entirely (Tickle, 1997). That is, one population always has lower death rates than the other for
the entire age range considered (assuming V) > ¢® and 0¥ > ®®). To arrive at this pattern,
a population-specific ending value @? may be employed, producing mortality differentials as
follows:

Inml® —Inm@ = [Ol(l)hoo(xk) + w(l)hm(xk)] - [Ot(z)hoo(xk) + w(z)hm(xk)]
= (o = a®) hoo ) + (0 = @) o (30 @)

4No consensus has been reached on the existence of a limiting mortality level. Gampe (2010) found that the human
force of mortality becomes a flat curve after age 110. Nevertheless, some research argued that such plateau is a consequence
of demographic errors such as unreported deaths and the pooling of cohorts (Black et al., 2017; Newman, 2018).
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As illustrated in Figure 1, hoo(xx) is monotonically decreasing, while hg; (xx) is an increasing
function. Besides, they are symmetric about the line /i(x;) = 0.5 (hoo (xx) + ho1 (xx) = 1). It implies

that when (a(l) - a(z)) = (a)(l) - a)(z)), the sum of the two weighted functions in (7) becomes a

horizontal line. Since (¢ —a®) and (V) — ®®)) refer to the differences in the log mortal-
ity rates between the two populations at the youngest and oldest ages, respectively, one would
expect the former to be more pronounced than the latter due to the compensation law of mor-
tality (Gavrilov & Gavrilova, 2001). Accordingly, hgo(xx) contributes more to the weighted sum
in equation (7), leading to declining but non-zero differentials. Again, the no-crossover property
can be guaranteed, as the weighted sum of the two Hermite basis functions does not change in
sign over the domain interval. The other three HS models also possess this property if one sets
common gradient parameters sp and s; between related populations®.

The above HS models were initially proposed to model mortality over the age range rather
than over time. Next, we show that the HS approach can be extended to model two-dimensional
population mortality data. Similar to the widely adopted CBD model, the HS structure is fitted
to the mortality data of each year. By doing so, the estimated values of each model parameter
over different years form a time series, based on which the future death rates can be projected or
simulated. The modified versions of the HS models are given below:

In M = XB = (I, ® Xo) B, (8)

where I, is an identity matrix of size n,, Xo has a dimension of (n,; x 4) and comprises the
Hermite basis functions at each age, the design matrix X is the Kronecker product of I, and

Xy, the coefficient vector B = (ﬂ’to, ﬂ;o TR ,B;l)/ concatenates the year-specific HS coefficients
B;. Again, the four HS versions can be obtained by adjusting ;. The modified versions of the HS
models are given below:

HS1: In my s = athoo(xx) + wihor (xx)

HS2: In my; = athoo (xk) + wihor (xk) + so,eh10 (k)

HS3: In my; = athoo (x) + wrhor (xk) + siehn ()
HS4: Inmyr = arhoo (xk) + wrhor (Xx) + so,tho(xx) + s1,ehi1 (xk)

Similar to the one-dimensional case, oy and w; can be interpreted as the fitted values of In my ;
and In my, ;. The other two parameters so; and s} ¢ specify the smoothed pathway between the two
mortality rates at the two boundary ages in year ¢.

When the time dimension is included in modelling mortality data, avoiding any mortality
crossover between related populations is not straightforward. Particularly, when the sample period
covers more distant years, the observed mortality rates at the oldest ages are more volatile, and the
data themselves may exhibit some crossover. Such features would not be helpful in determining
the fitted mortality surface. We propose one possible solution to cope with this issue by imposing
constraints on the second-level parameter w;. Consider males (population 1) and females (popu-
lation 2) in the same country, when the two populations are assumed to share (only) the common

gradient parameters so; and sy, for year ¢, the initial mortality differential (agl) — a§2)> should

decrease to (a)gl) - wgz)) without changing its sign over the age range considered. This prop-

1) (2)
t

erty is true if (ail) — a§2)> (wgl) — wgz)) > 0.Givenc, ’ > aiz) for all t, a)gl) > w,” is required to

avoid the potential crossover. In other words, the female population with lower mortality rates at
the starting age is expected to maintain this “advantage” at the ending age. As we will discuss in

>Common gradient parameters imply that the fitted curves exhibit similar paths of leaving and approaching the start
and end values of mortality rates, which is a sensible assumption for associated populations.
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more detail later, the maximum likelihood estimation with the Newton-Raphson iterative scheme
is used to calibrate the model parameters. Nevertheless, the inequality constraints are not guar-
anteed to be satisfied during the estimation procedure. Accordingly, we adopt the barrier method
(Wright & Nocedal, 1999) under which the inequality constraints are incorporated using the so-
called barrier functions that serve as a penalty term. It has been applied in mortality modelling by
Li & Liu (2020, 2021) to constrain their heat wave model parameters. As the parameter estimates
approach the inequality bounds, the magnitude of the barrier functions rises to infinity, and so the
log-likelihood is penalised more by such estimates. Then the optimised parameters are “forced” to
fall within the boundaries.

For ease of exposition, consider an optimisation problem searching for parameter values that
maximise a function f (), subject to the constraint 6 > a. Under the barrier method, the opti-

misation problem is redesigned as maximising the penalised function f(0) — r(ﬁ), where

B(9) = r(ﬁ) refers to the barrier function with r > 0. Given a feasible initial value that over-

satisfies the constraint, as 0 decreases to its lower bound a, the barrier function tends to infinity,
which then contradicts the aim of maximisation. Accordingly, this formulation would avoid the
violation of the parameter restriction. Similarly, the barrier functions for the constraints 8 < band

a < 6 < b can be constructed as r(ﬁ) and r(ﬁ + ﬁ), respectively.

Setting the objective function to the Poisson log-likelihood function, multiple barrier func-
tions can be embedded to manage the inequality constraints imposed on the population-specific

a)gi). For example, when the male and female populations in the same country are considered, the
following constraints are imposed:

{ a)gl) > ail’z)

wgz) < ail’z)

1 ()
t t

where w; ’ and w,” are the male and female level parameters at the ending age, respectively,
(1,2)

a, ™ is calculated as the average of the initial values of wgl) and w§2)

of the barrier method, the no-crossover condition a)gl) > a)gz) can be met. The specifications of

the barrier functions, initial values, penalised log-likelihood function and the updating equations
for the HS4 model are provided in Appendix A. As we will show in section 3.2, the above barrier
constraints can be applied similarly to risk factors other than gender.

. Under the careful design

2.2 Gompertz model

Gompertz (1825) discovered that the age-specific hazard rate of adult mortality increases expo-
nentially with age and proposed a two-parameter model

Mx = Bc*
or equivalently
In py = k1 + kox. )

Since this discovery, actuaries and researchers have developed various modifications to the
original design®. For instance, Makeham (1867) added an age-independent term to the above
model for the age-specific hazard to account for deaths that do not result from senescence. Besides
including more parameters, adjustments were made to the format of the original function. The

6See Forfar (2014) for a summary of the evolution of mortality laws.
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so-called Perks model (Perks, 1932) with four parameters adopted a logistic function, which is
described as follows:

_A-‘rBCx
T 14D’

Mx

The well-known CBD model (Cairns et al., 2006) can be obtained by replacing the hazard rate
with the death rate and setting A = 0 and B = D under the Perks law and adding a time dimension.
Specifically, the probability of death g, is modelled as:

ekl,t+k2,tx

qxt = —1 i kritkax

or equivalently

logit gyt = In < oot ) = kit + ko ex.
1 —qut

It is evident that the CBD model can be regarded as an application of the Gompertz law
(equation (9)) applied to a transformed measure, in modelling population mortality data with
both the age and time dimensions. This model has been widely applied and extended in the litera-
ture and has been found particularly suitable for explaining mortality rates at higher ages (Cairns
et al., 2009).

For comparison purposes, we utilise the logarithm of the central death rate rather than the logit
probability of death for the two-dimensional Gompertz law in this paper. The log central death
rate In m,; of a life aged x in year ¢ is expressed as

Zi’l mx,t = kl,t + kz,tx, (10)

where ki ; refers to the level of the mortality curve in year ¢ and k;; describes the speed at which
mortality increases for each extra year of age in year t. The fitted log central death rates in a given
year are assumed to grow linearly with age.

2.3 PS model

The two mortality models introduced above make assumptions about the functional form of
mortality rates and only impose smoothness across adjacent ages. However, some academics are
sceptical about specifying the mortality surface using defined functions. To address this con-
cern, one branch of mortality models originated from the spline fitting technique that smooths
mortality rates only based on features of data and avoids the identification of the model structure.

One of the most commonly applied methods in the actuarial literature is the PS model (Currie
et al., 2004). The concept of PS was initially proposed by Eilers & Marx (1996). They applied dif-
ference penalties on the coefficients of B-splines to strike a balance between the goodness of fit
and smoothness of the fitted curve. This one-dimensional spline fitting approach was extended
to a bivariate regression model in Eilers & Marx (2003) and Eilers et al. (2006). Using the same
notation as in section 2.1, D, E and M represent the matrices of the death counts, central expo-
sures and central death rates, and d, e and m are the vector components corresponding to a given
year t.

The log death counts in year t can be modelled as:

Ind=Ine+Inm=Ine+ Ba, (11)
where B is the (1, x k) B-spline regression matrix containing polynomials connected at equally
spaced knots, and a is the (k x 1) coefficient vector. The column dimension k of B is equivalent

to the sum of the polynomial degree g and the number of (internal) knots ny_(i.e., k=g +ng ).
The more knots the regression employs, the more flexible the fitted curve is. One may adopt a
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sufficient number of knots for B-splines to provide more flexibility than needed and avoid over-
fitting by constructing a difference penalty term that imposes smoothness (Eilers & Marx, 2002).
Accordingly, the coefficient vector a can be estimated by maximising the penalised log-likelihood

1
ly=1I(a;d) — Ea/Pa,

where I(a; d) refers to the log-likelihood of Poisson distribution and the penalty matrix P=AA"A
is composed of the smoothing parameter A and difference matrix A with order 2.

The PS approach can also be applied to fitting the mortality surface across ages and years. We
denote the (n, x k,) and (n, x ky) B-spline basis matrices associated with age x and year t by B,
and B, respectively. The number of equally spaced knots can be determined separately for the
age and year horizons based on the data range. Then the B-spline matrix in the two-dimensional
setting is constructed as the Kronecker product

B? =B, ®B,.
Given mortality data across both ages and years, the PS model is expressed as:
InD=InE+InM=InE+B”a=InE+ B,AB), (12)

where A is the (k, x k,) matrix obtained by rearranging the coefficient vector a with a length
of kyky. The parameters in the PS model are estimated by maximising the same Poisson log-
likelihood function using a smoothing matrix that penalises the two dimensions of A separately.
The penalty matrix is given as

P=1, (Iky ® A;Aa) + Ay<A;A}, ® Ika) ,

where I ky(I ki) *a (Ay) and A, (A)) are the identity matrix, smoothing parameter and difference
matrix contributing to the columns (rows) of A.

We have briefly reviewed the theoretical background of the PS method, more technical details
and improvements on the fitting algorithm can be found in Currie et al. (2004, 2006) and Eilers
et al. (2006).

3. Fitting

3.1 Single-population fitting

To fit the above three models, we collect population mortality data of Australia, England and
Wales, France, Japan and the United States from the Human Mortality Database (HMD, 2021).
Specifically, the death counts and exposure to risk of both genders from 1950 to 2018 over ages 56—
95 are employed for this analysis. Following Brouhns et al. (2002), we assume that the number of
deaths is a random variable following a Poisson distribution with the mean equal to the expected
number of deaths. This Poisson assumption enables a rigorous framework to estimate the model
parameters by maximising the log-likelihood function

I=lh1=Y" (dx,t In dyy — dy; — ln(dx,t!)) : (13)
Xt

where d,; represents the observed death counts. The fitted number of deaths ax,t is calcu-

A

lated as the product of the observed exposures and fitted mortality rates (dx,t = Ex,tn%x,t).
As an illustration, the fitted death count for lives aged x in year t under the HS4 model
is dyt = Ex 1Myt = Ext €Xp (otthoo (xx) + wihor () + so,thio(xx) + s1,6h11 (xk)). For a parameter 6,

al 9%l
the Newton-Raphson method is adopted to update its estimate iteratively as 0* =6 — 20 / 207
We provide below a summary of estimation steps under the HS4 model.
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(1) Assign initial values to the parameters under the HS4 model and compute using the initial
estimates. Specifically, we set So; = 51 = 0. The initial values of the other two parameters oy
and oy are set to the observed mortality levels at the two boundary ages x and x; of the sample

X — X0 x— 56

x1—x) 95—56

range in year ¢ (i.e., &; = In my, ; and @; = In m,, ;). For our sample, xj, =
0> > k

3 (At = ) oo (o)
Dox ax,t[hOO(xk)]z .
Doy (dxt - glx,t) ho1 (xk)
Y dne[hn )]t
D (dx,t - ax,t) h1o ()
Yy dee[mo0]”
3 (dus = ) B (x0)
Y dae[huGo]”

(6) Calculate the log-likelihood function /=", (x,t Indy, — cAix,t —1In (dx,t!)> using the param-

eters estimated in (2)-(5).
(7) Repeat steps (2)-(6) until the improvement in [ is small enough, e.g., the change in / between
two iterations is less than 1077,

(2) Update a; as @ = a¢ +

(3) Update wy as @) = & +

(4) Update so,¢ as 57 , = So,t +

(5) Update sy as s}, =516+

This study calibrates the HS and Gompertz models using the Poisson updating approach
described above, while the PS model is fitted and forecasted using an R package
“MortalitySmooth’”. Both fitting methods are based on the Poisson maximum likelihood esti-
mation, while the latter uses a so-called generalised linear array modelling that acts on matrices
(Camarda, 2012). To examine the goodness of fit of the candidates, we calculate two measures -
Akaike information criterion (AIC) and Bayesian information criterion (BIC) - as below:

AIC=—=2l+np x 2
BIC = —=2l+n, Inng,

where [ refers to the Poisson log-likelihood function, and 1y is the number of effective parameters.
These two criteria penalise the likelihood by the number of parameters involved in the model with
a penalty factor of 2 and the log of data counts (ny), respectively. The information criteria and
residuals plots are provided in Table 1 and Figure 2, respectively.

Some interesting remarks can be made from Table 1 that lists the model comparison criteria
values for both genders of the ten datasets. Firstly, HS1-3 models always produce greater AICs and
BICs than the full HS4 model. Note that «; and w; are interpreted as the mortality rates at the two
boundaries of the age interval. Essentially, the fitted mortality curves in each year under the HS1
model are assumed to have a shape determined by the two Hermite functions linking the starting
and ending points. Such a specification may be too rigid for modelling population mortality data,

7The R package allows the user to determine the smoothing parameters based on different criteria. In this study, we use
the “optimal” smoothing parameters that lead to the lowest Bayesian information criterion (BIC) score. Two knot choices
are considered for the PS method - one internal knot per 10 data points and one internal knot per 3 data points in each
dimension. Furthermore, the default order of differences d = 2 is adopted to form a linear extrapolation of the coefficients
of the cubic (g = 3) B-splines. Note that the number of effective parameters under the PS method depends on the estimated
penalty parameter, which can vary with datasets.

https://doi.org/10.1017/51748499522000173 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000173

254 Sixian Tang et al.

Table 1. Effective number of parameters (np), log-likelihood values (l), AIC and BIC values under the HS1-4, Gompertz, PS10
and PS3 models. The mortality models are ranked from 1 (the lowest AIC/BIC) to 6 (the highest AIC/BIC) and the ranks are
given in brackets.

Model HS1 HS2 HS3 HS4 Gompertz PS10 PS3

Australia
np 138 207 207 276 138 36 86
‘ lu N —3‘6,5‘65H - —26;575H B —30,465 ‘ —14,597 —17,285 B —15‘,37‘8 - H—l>4‘,974
. B|C . 74,224 . v.( . 54,790 . ”(5)” . 62570 B 31380 . 35664 . ,(.4,). . 31’044 . (2) . 30,632 (1

3
5
B

&
=
=

England and Wales
np " ‘13g‘ s 2(.)7 s 207 S .2.76.. 138 - - 59 B 170
BIC 248,923 ( 124,920 (5) 211,786 39,801 61,504 (4) 43,796 40,774 (2
France SO T T T AR e e S A
np133 207 207 276 13859139
AIC 202,247 160,930 (6) 101,742 37,848 109,213 (5) 40,438 37,425 (1
BIC 203064 (1) 162,156 (6) 102968 (4) 39,483 (2) 110,030 (5) 40,787 (3) 38,248 (1
Japan
np 138 207 207 . 276 13862176
| —154,116 —100,804 —98,878 —21,985 —46,949 —23,790 —21,090
UmtedStates T T T T
np 138 207 207 276 138 62 264

AIC 658,729 (7) 508,099 (6) 466,871 (5) 62,742 (2) 172,111 (4) 63,450 (3) 49,975 (1)

BIC 659,546 (7) 509,325 (6) 468,097 (5) 64377 (3) 172,928 (4) 63,816 (2) 51,538 (1)

3
3
=
ch

&
G
2
‘

3
=
=
o

‘3
=
=
@

(a) Males

Model HS1 HS2 HS3 HS4 Gompertz PS10 PS3

Australia
np 138 207 207 276 138 38 87
- ”A.IC” - 80’618 . (7) - 70’683 . (6) . 43’552 I 29’620 R ,.3.9,’.5.42 . (4) . 30,714 g (3 e

BIC 81,436 (7) 71,909 (6) 44,778 31,255 40360 (4) 30,940 (2) 30,375 (1

g
B!
SN
‘o
(o]
e
=
)

g
8

England and Wales
L np i 138 B 207 B 207 e 276 e, 138 S 54 [ 172 I
CAIC 233,772 (1) 199,163 () 128019 (5) 38,196 (1) 62464 (4) 45841 (3) 41,087 (2
BIC 234,589 (7) 200,389 129,245 39,831 63,281 (4) 46,062 (3) 42,108 (2
| France oo 0 OO O ST oSOt SO sTOSSSTS AT
= ”n.p” s 138 S 207 et 207 [ 276 [ 138 et 46 [ 133 S
I —158050  —107341  —32427  -17,801  -—73551 21559 —19,728

s
cl
=3

)
G
‘e
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Table 1. Continued.

(a) Males
Model HS1 HS2 HS3 HS4 Gompertz PS10 PS3
AIC 316376 (7) 215,095 (6) 65268 (4) 36,155 (1) 147,377 (5) 43,209 (3) 39,733 (2)
U BIC 317,193 (1) 216321 (6) 66494 (4) 37,790 (1) 148,195 (5) 43478 (3) 40,553 (2)
Japan
. v.n.pv . 138 O 207 S 207 e 276 I 138 T 62 e 1.6,0,., o
[ —249,457 —170,454 —55,538 —19,591 —86,174 —23,169 —21,428
CAIC 499,190 (1) 341,323 (6) 111,491 (4) 39,733 (1) 172623 (5) 46462 (3) 43,175 (2)
CBIC 500008 (7) 342,549 (6) 112,717 (4) 41,368 (1) 173441 (5) 46831 (3) 44120 (2)
UmtedStates e e T
np 138 207 207 276 138 63 264
CAIC 903883 (1) 829698 (6) 323713 (5) 64434 (2) 231,070 (4) 70245 (3) 51,699 (1)
BIC 904701 (7) 830924 (6) 324939 (5) 66,069 (2) 231887 (4) 70,617 (3) 53,260 (1)

(b) Females

which is vividly demonstrated by the worst performance of the HS1 model. Employing additional
gradient factors can introduce more flexibility to the model and so can improve the goodness-of-
fit, which can be seen from the better ranks of the HS2-4 models.

Comparing between the HS2 and HS3 models with one gradient factor so; and s; 4, respectively,
the former only outperforms the latter for males in Australia and England and Wales. Since so;
(s1,1) controls the pattern of the fitted mortality curves leaving from (approaching) the starting
(ending) age, one may suspect that there have been more variations in the mortality development
of older age groups. Under the full HS model, employing two gradient factors yields significantly
better fitting performance than the other HS candidates. As a benchmark, the Gompertz model is
specified by two time-varying components and gives smaller AIC and BIC values than the HS1-2
models in all cases. However, it consistently underperforms the HS4 model (and HS3 model in
some cases).

The above five models all propose a functional form for mortality rates in the age dimension,
while no smoothness assumption across periods is imposed. On the other hand, the PS approach
produces a smoothed mortality surface using splines connected by knots. We consider the PS10
and PS3 models with a different number of knots. Specifically, the PS10 (PS3) refers to the PS
model with one internal knot per 10 (3) data points in each dimension. The PS3 model tends to be
the optimal choice among the seven candidates for males in four out of the five countries, while
the HS4 model appears to be preferred for female populations. When fewer internal knots are
adopted, the PS10 model tends to underperform the HS4 model but still performs better than the
Gompertz model in all cases.

Figure 2 depicts the deviance residuals against age, period and cohort year for Australia. Only
the HS4, Gompertz, PS10 and PS3 models, which have similar AIC/BIC values, are presented.
It is apparent that the residuals are generally quite random under the HS4 and two PS models.
However, those produced by the Gompertz method do exhibit obvious patterns, which may sug-
gest the need for more parameters. Moreover, the residuals plotted against age under the four
models (and the residuals against year under the PS models) show some “bars” at certain ages (in
certain years). Since the HS4 and Gompertz models do not assume smoothed mortality rates in
the period dimension, the time-varying parameters would capture the pattern in each year sepa-
rately and lead to more scattered residuals against year. This difference is a direct consequence of
different smoothness assumptions between the mortality models.

https://doi.org/10.1017/51748499522000173 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000173

256 Sixian Tang et al.
(a) Residuals M Residuals M Residuals M
B e @ °
.,o,
E gu o i E g
"
i i!i ii el 2
o [1] [
=] = =
T i k= b=
wn wn wn
] L O
x !E b ! 4 @
8 ﬁs w ;
G0gaflo § ° o
o §° © o - o
(? | hﬂ B , o®g, 1
80 1850 1970 = 1990 = 2010 1860 1900 1940
Year Cohort
Residuals F Residuals F Residuals F
° : o - o . & .
n“ o~ A o~ A
80
w ann w = w =
© ™ ®
3 = 3
k! q S o S oA
z E! E : z z
x i r o
1 1
b 1 . siBse i e
© ) %, °%°°’ ue%o
[ 1
90 1950 | 1970 = 1990 | 2010 1860 1900 1940
Year Cohort
HS4
Residuals M Residuals M Residuals M
(b)
N J
© ﬁ:ga. %0 o 9o . ™ R %
o~ eoﬁ% 58, oy % & nge"gs o~ - .
Eogen,0 °od Rl ge  o0° Bfacds
_ L st . canpetial, -
£ |a DE'E r i k| 2 3
=3 B ll =1 p=1 J
% o b= 5o
@ o i I @ @
r _ a0 g2 Bgre Ea o '3 r
[ e i §] §§ b !
& gea s % o
o of ag a o® o8 o0 A & i
e adotes’d ° $oge g0 °
™ | og o © B o ° o
' T T = T T T T T T ' T T T 2
60 70 80 a0 1950 1970 1990 2010 1860 1900 1940
Age Year Cohort
Residuals F Residuals F Residuals F
™ - ™ -
Té!iﬂo -
o~ % o~ -
a!
il
@ -— - i i g » ® -—-
g ! ! E Hli| s g
T o4 b= T o4
g i E g l 3 3
X 5 x €
1 1
ok
bl A
A 1 DA
60 70 a‘o 90 1950 1970 1980 2010 1860 1900 1940
Age Year Cohort
Gompertz

Figure 2. Standardised deviance residuals plots under the HS4, Gompertz, PS10 and PS3 models for Australian males (top
panel) and females (bottom panel).
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Figure 2. Continued.
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Based on these observations, one can see that imposing smoothness on both the age and time
dimensions can lead to missing out some important patterns, though having the advantage of a
smaller number of effective parameters. For those mortality models that only impose the smooth-
ness assumption on the age dimension (HS and Gompertz models), more parameters are used
to describe the temporal developments more adequately. It is noteworthy that an outstanding
fitting performance does not guarantee accurate forecasting. As we will see later, the forecast-
ing performance under the PS approach is subject to great uncertainty, though the fitting results
are superior. Backtesting will be conducted and presented in section 5 to investigate the forecast
accuracy of the mortality models.

3.2 No-crossover property of the HS models

As discussed in section 2.1, the key strength of the HS approach is that mortality crossover is
avoided via the properties of Hermite basis functions. Mortality differentials due to risk fac-
tors other than gender decrease as age increases, portrayed by the level parameter «; specifically
for each population. When the gender effect is considered, mortality differentials diminish with
increasing age but never vanish entirely. By imposing constraints on the level parameter specifi-

a)(l) > agl’z)

, the HS models can capture such a feature even if there is
C0;2) - a§1,2)
occasional mortality crossover in the data. In contrast, the Gompertz and PS models are incapable
of modelling this pattern.

As an illustration of this crossover issue, we choose the mortality data for ages between 56 and
108® and years from 1950 to 2018. Figure 3 presents the observed and fitted log central death rates
for the United States in 2018 under the six models. The PS approach here adopts one internal
knot per 10 data points in each dimension to alleviate the potential crossover issue caused by
overfitting. It can be seen that the HS1-3 models tend to underestimate the mortality rates at
younger ages. The constructed shape of the HS1 and HS2 curves fits poorly at the oldest ages. On
the other hand, the Gompertz model proposes a linear mortality curve of age and fails to capture
the curvature observed at the highest ages. By comparison, the fitted curves under the HS4 and PS
models follow the historical patterns more closely. However, the curves fitted under the PS model
adhere to the data very closely, potentially indicating overfitting and lack of smoothness, even
after applying the penalty structure. Another concern from Figure 3 is the intersection of the fitted
female and male central death rates under the Gompertz and PS models at advanced ages. Under
the compensation law of mortality, one would expect the gap between two genders to decline
gradually over increasing age. But there is no biological basis to justify any crossover. Overall, the
four HS models can generate a smoothed mortality curve that captures the relationships between

cally for each population {

males and females in the same country. Given appropriate constraints imposed on a)ﬁ’), the no-
crossover property can be ensured.

In addition to gender, the no-crossover property of the HS method holds when more risk
factors are considered. As explained in equation (7) and footnote 6, when common gradient
parameters are assumed for associated populations, the fitted mortality curves from the HS models
would demonstrate narrowed gaps without an unreasonable crossover. This assumption should
only be imposed if one believes that the populations under study exhibit similar paths of reaching
the boundary mortality rates over the age interval. We have illustrated that the HS4 model tends
to produce a good fit for mortality rates of males and females in the United States. Next, the
fitting performances of the HS4, Gompertz and PS models are investigated when two risk

8This age interval is applied to demonstrate the possibility of mortality crossover under the Gompertz and PS mod-
els. But since mortality rates at advanced ages tend to be more volatile, we exclude ages above 95 when examining model
performance with AIC and BIC.
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Figure 3. Historical (dots) and fitted (solid lines) log central death rates in 2018 for the United States.

factors — gender and country — are employed. Since the five countries considered in this study
may not be highly related, the common-gradient assumption can be inappropriate. Accordingly,
mortality data between 2008 and 2018 of females and males in Scotland and England and Wales
are used for this particular illustration’. Based on the observations on at(l) of the four populations,
the following restriction is required for the HS4 model to avoid the potential crossover:

a)t(mz) > a)gml) > a)t(fz) > wt(fl),

(m1) () ( m2) (f2)

where ;" “and w, (a)t and ) represent the level parameter of the female and male
populations in England and Wales (Scotland). To conform with the constraint format of the
barrier method, the above inequality can be converted into:

a);mZ) - a§1,2)

a§2,3) < wgml) < a§1,2)

2 b
a§3’4) < wt(f ) < a§2’3)

Dy _ G

oy 7 <a

where at(i ) s computed as the average of the j" and (j+ l)th (j=1,2,3) highest initial val-
ues of the level parameter at the ending age. Note that other relationships among a)gl) ’s can be

assumed. For example, if one believes that populations with the same gender will converge to

9For the PS model, we use one internal knot per 10 ages and per 3 years (instead of 10), as only 10 years of mortality
data are considered.
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Figure 4. Fitted log central death rates in 2018 of females and males in Scotland and England and Wales.

the same level at the ending age (regardless of the country), a common wim) (wt(f )) could be
employed.

Figure 4 displays the observed and fitted mortality rates in 2018 under the three mortality
models. The PS curves show unwarranted bends due to the lack of smoothness. Although the
Gompertz model captures the decreasing mortality differentials over age, evident crossovers are
observed at around age 100. Under the HS4 model, the fitted mortality differentials for popula-
tions with the same gender in the two countries (red and green curves, blue and purple curves)
tend to reduce towards a small gap at advanced ages. For males and females in the same country,
the differences in fitted mortality rates diminish with increasing age but never vanish entirely. To
conclude, the HS4 model seems to strike a good balance between the goodness-of-fit and smooth-
ness. More importantly, the HS4 model can describe the law of mortality properly and avoid the
unjustified mortality crossover that presents under the Gompertz and PS models.
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4. Long-Term Prediction Performance
4.1 Time series models

This study now proceeds to examine the long-term performance of the six mortality models. The
PS model extrapolates mortality rates not covered by the sample range during the fitting process
by treating them as missing values. The R package “MortalitySmooth” offers the facility of both
model estimation and projection, given a predetermined penalty order. In this study, we follow
the suggestion by Currie et al. (2004) and use the default penalty order of 2 for both the age
and period dimensions, which implies that (log) mortality rates are predicted via (approximately)
linear extrapolation. Under the HS and Gompertz models, the time-varying parameters are mod-
elled by time series processes and projected to a future period to predict mortality levels. We first
conduct a unit root test for each of the period factors ay, wy, sot> S1,> k1,+ and k¢

The results suggest that all the period factors are not stationary at 5% significance level under
the five models except for the female w; of Australia under the HS3 model, female w; of France
under the HS4 model, female s, ; of Japan under the HS3 and HS4 models and male so; of Japan
under the HS4 model. When using a 1% significance level, the unit root is detected for all the
time series processes. We decide to fit the time-varying factors in the same mortality model by a
multivariate (bivariate) random walk with drift (RWD):

0t=0t—1+”’+zb (14)

where 6; is a (n x 1) vector of the n time-varying factors in a mortality model in year t, u refers to
the corresponding drift vector, Z; contains #» multivariate Gaussian error terms with mean zero.
Although other time series choices can be considered, the RWD model has been widely adopted
in the literature to extrapolate the decreasing trend of mortality (e.g., Cairns et al., 2006; Dowd
et al., 2010c). In addition, the assumed linear extrapolation under the multi-dimensional RWD
process allows for a fair comparison between the PS approach with the second-order penalty and
the other five models.

Figure 5 displays the estimated and projected parameters in the HS1-4 and Gompertz'® mod-
els for males in England and Wales. As illustrated, the two level parameters o; and @; show a
clear declining trend under the HS models, though the downward tendency in w; becomes less
prominent under the HS3 model. This observation aligns with our expectations because these
parameters are interpreted as the fitted mortality rates at the youngest and oldest ages of the sam-
ple which have been improving over time. Furthermore, the behaviour of sy, and s; ¢ varies to
some extent under different models. For example, the estimated s values under the HS2 model
(second row) demonstrate a generally decreasing trend over time. However, under the full model
(fourth row), the declining tendency becomes less clear and more fluctuations can be found in
the estimated so values. Similarly, although the estimated s;; values have been increasing since
around 1980 under both the HS3 (third row) and HS4 (fourth row) models, the latter tends to
show more fluctuating patterns. Besides, one may notice that the intercept and slope parameters
k1 and ky; in the Gompertz model (first row) show an opposite trend to each other. It indi-
cates that the average mortality level has been improving, and this reduction has been larger at
the younger ages. Though not presented here, the parameter estimates exhibit similar trends for
females and males in the five countries. Then we model the time-varying parameters as the multi-
dimensional RWD. The estimated drift terms, standard deviations and correlation matrices are
presented in Table B.1 in Appendix B.

4.2 Long-term projections

After obtaining the time series forecasts, future mortality rates can be calculated by updating
the predicted time-varying components. It is of interest to investigate the impact of employing

108ince the B-spline coefficients in the PS model do not have meaningful interpretation, they are not plotted here.
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Figure 5. Estimated (solid lines) and projected (dashed lines) period factors in the HS1-4 and Gompertz models for males in
England and Wales.

different model structures on mortality forecasts. We calculate life expectancies at key ages over
the projection period. Since our data only cover ages up to 95, the Coale-Kisker approach (Coale
& Kisker, 1990) is applied to extend the mortality rates to an “ultimate” age 110 with a presumed
log central death rate of 0.7 (Gampe, 2010)!!. Figure 6 shows the Australia and England and Wales
observed life expectancy at age 80 (ego), with projections up to the year 2050.

It is apparent that the PS10 model (yellow curves) predicts significantly longer life expectancy
than the other model candidates for Australia. We remark that the projections produced under
the PS10 model become particularly unreasonable when mortality data of England and Wales are
employed - declining life expectancies over time. As demonstrated in Figure B.1 in Appendix B
that plots the fitted and extrapolated mortality rates at ages 60, 70 and 80, the projected mortality

1 Although the PS approach can extend the mortality forecasts at advanced ages using its own matrix approach, we
apply the same Coale-Kisker method of closing the life table for comparison purpose.
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Figure 6. Observed and projected life expectancy at age 80 for Australia and England and Wales from 2010 to 2050. For
demonstration purposes, the projections under the HS4 and Gompertz models are displayed in dashed lines.

rates for England and Wales exhibit an increasing tendency, which is not the case for Australia.
The potential reason could be the slowing down of mortality improvement over the most recent
few years in England and Wales. Since mortality rates are not predicted by selecting appropri-
ate time series processes to ensure biological reasonableness, it is possible to observe unrealistic
patterns in the forecasts under the PS approach.

The potentially unstable projections of the PS model were highlighted in previous studies. For
example, based on Italian populations, Cocevar (2007) obtained insensible mortality forecasts for
females, while the performance is reasonable for males. Richards et al. (2007) examined the predic-
tion performance of the two-dimensional PS method using mortality data of seven countries and
found erratic forecasts in some cases. They argued that the PS method tends to balance irregular
effects in data with smoothing and those features are carried through to projections.

We also investigate the long-term prediction performance under the PS model using differ-
ent number of knots, while there is no optimal knot choice that can produce sensible forecasts
for all datasets. In addition, though excessive knots are penalised to generate a reasonable effec-
tive dimension, they tend to yield even more volatile forecasts. Therefore, only the prediction
performance of the PS10 model is presented in the remainder of the paper.

Besides this noticeable (and unreasonable) deviation under the PS method, there exist some
differences among the other models. Firstly, the HS1 model that obtains future mortality rates
by projecting the mortality levels at the initial (56) and ending (95) ages results in the longest life
expectancy of the four HS models. As depicted in Figure 6, adding one or two gradient parameters
tends to reduce the predicted values. For example, the green curves under the HS3 model almost
always lie below the other four sets of predictions (excluding the PS method) for the two ages.
This can be attributed primarily to the less linear trend of the second level parameter w;. For
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example, it can be seen from Figure 5 that the projected values of @; (the projected In my, ;) from
the HS3 model are generally higher than those from the other HS candidates, while the HS3 @;
(the projected In ;) values are similar to those from the HS2 model. One would expect the
former to predict longer life expectancy than the latter. Although not presented here, for all the
datasets the projections under the HS2 (blue) and HS4 (purple) models tend to lie within the two
boundary curves formed by the other two HS candidates for all the datasets. Gompertz projections
tend to be similar to those for HS1, with differences of less than 0.1-0.2 years in 2050.

Overall, the HS1-4 and Gompertz models give sensible forecasts of life expectancies. The PS
model predicts unreasonably high or decreasing life expectancies, possibly caused by the auto-
matic extrapolation process that may have overfitted the data and misused the random noises
therein.

5. Backtesting

In the above analysis, we notice some similarities and discrepancies among the mortality forecasts
under the six models. This section investigates the accuracy of their predictions via backtesting
(also known as out-of-sample testing). In more detail, the sample period is split into two parts
for calibrating the model parameters and testing the forecasting performance, respectively. Since
the actual mortality rates are given over the testing period, the forecast accuracy of each model
can be assessed by comparing the projected values against the observations. We adopt the root
mean squared error (RMSE) to examine the forecasting performance quantitatively. To attain a
better insight into the capability of generating sensible forecasts, the comparison is made across
age, time and both dimensions using the following three measures:

N
1 A 2
RMSEx= | < 3 (i i — In it rn)
N b=t
1 o 2
RMSE;= | ————— Y " (I —In 1>
1 h X1
. 2
RMSE ;1 = Inmyryi—Inmyrei)
ah (x1 —x0+1) xh ; xgx:o (e )

where T is the ending year of the calibration period, N is the total length of the testing period,
xo(x1) corresponds to the minimum (maximum) value in the age interval and m,. 1 p, (7, 741)
represents the observed (predicted) central death rate. RMSE,(RMSE},) refers to the root mean
squared error at age x (in the h™" year of forecasting) averaged across all projection years (ages),
and RMSE,;;;, gives a measure considering all ages and predictions up to year T + h. The results
of a 10-step forecasting horizon are provided in Figures 7-8 and Table 2.

Figure 7 plots the 10-step RMSE, under the six mortality models against age. Specifically, the
prediction errors under the HS2 and HS4 models are somewhat similar for all the datasets. At the
youngest and oldest ages, they deviate slightly, in which the HS2 errors are smaller than the HS4
errors. Over older ages, the HS3 model tends to produce the highest RMSE values among the HS
candidates for four out of the five countries. Interestingly, the simplest model does not always lead
to the lowest forecast accuracy. For example, the HS1 errors tend to be larger than the other HS
errors at younger ages but performs better as age increases. One exception is Japan, for which the
HS1 curves lie above the others at the oldest ages.
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Table 2. RMSEg10 (%) under the HS1-4, Gompertz and PS10 models. The mortality models are ranked from 1 (the lowest
prediction error) to 6 (the highest prediction error) and the ranks are given in brackets.

HS1 HS2 HS3 HS4 Gompertz PS10

Females
Australia 6.65% (5) 624% (2) 637% (3) 6.15% (1) 656% (4) 2463% (6)
_ EnglandandWales 549% (5) 526% (2) 532% (3) 5.23% (1) 543% (4) 1639%  (6)
.v.F.rvan.C,e RSN 904% (5) 806% . (3)758% . (2) 745% (1) 855% (4) 2873% (5)
Japan 863% (5 7.79% (3) T7.29% (1) 7.55% (2) 8.44% (4) 25.87% (6)
UmtEd é{afé‘5 R 605% - (5) . 570% . (1) . 603% . (3) 587% . (2) . 603% . (4) e 2546% . (6)
Males
 Australia  841% (2) 842% (3) 856% (5) 8.40% (1) 852% (4) 2058% (6)
England and Wales  6.21% (2) 6.30% (5) 6.27% (4) 6.15% (1) 6.23% (3) 17.80% (6)
. France RSN 588% - (4) . 592% . (5) 557% . (2) 555% . (1) . 533% . (3) . 2485% . (6)
. Japan R 434% e v(.4.) . 447% . .(5). . .3;.9.7,‘.)/0. . (.l,). . 424% . (3) . 417% . v(z.) o 3377% e (6)
United States  7.28% (1) 747% (4) 7.63% (5 7.39% (2) 7.39% (3) 16.86% (6)

As a benchmark, the Gompertz model exhibits comparable results to the HSI model
Comparing with the HS family, this baseline model tends to produce moderately more accurate
mortality forecasts at advanced ages (greater than age 90), whereas its performance is less desir-
able at younger ages (before age 65). Unlike the above five models that generate similar RMSE
patterns across genders and countries, the performance of the PS10 model appears to be highly
dependent on the dataset involved. When French and Japanese male data are employed, the PS
approach seems to produce appealing forecast accuracy for certain age groups. Nevertheless, the
RMSE values under the PS method are unusually high for the other datasets, casting doubt on the
robustness of its forecasting performance.

Averaging over all ages, one can compare the prediction errors under the six mortality models
over time horizons. As depicted in Figure 8, the curves generally show an upward trend, indicating
the increasing uncertainty in mortality forecasts in the more distant future. Based on the mortality
data in Australia, England and Wales and France, the HS4 model appears to be the best performing
candidate amongst the six, while HS3 and HS2 are preferred for Japan and the United States,
respectively. The benchmark Gompertz method has a prediction performance similar to the HS1
model and is almost always worse than the HS2 and HS4 models. Again, the performance of the
PS approach depends heavily on the dataset used to calibrate the parameters. Overall, it fails to
reliably predict mortality rates for the five countries.

After examining the model performance in the age and time dimensions separately, we now
move on to a two-dimensional measure RMSEj; ;, to make a more comprehensive assessment. The
RMSE ;1 1o values averaged over all ages and years for the five countries are tabulated in Table 2.
For both genders, the HS4 model tends to be the best performing candidate for three out of the five
datasets, and it also produces decent forecast accuracy for the other two countries. Interestingly,
the parsimonious HS1 model that is not often preferred in the previous analysis produces the best
forecast accuracy for males in the United States. The Gompertz approach ranks in the middle
among the six mortality models. In line with the above findings, the PS model always has notably
high prediction errors, which highlights the robustness issue of the forecasting performance of the
PS model.

One may argue that the forecasting performances of the mortality models might vary sig-
nificantly with the split between the calibration and testing periods. In order to examine the
robustness of the backtesting results, we repeat the analysis using a 20-step forecasting horizon.
For the sake of brevity, only the overall performance measure RMSE,; 5 is presented in Table 3.
With a longer forecasting horizon, the HS2 model is preferred for females (males) in three (two)
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Table 3. RMSEg 20 (%) under the HS1-4, Gompertz and PS10 models. The mortality models are ranked from 1 (the lowest
prediction error) to 6 (the highest prediction error) and the ranks are given in brackets.

HS1 HS2 HS3 HS4 Gompertz PS10

Females
Austra“a I 811% . (4) 733% b(i‘)” o (.3).. e o s 12% “ . 5215% ...(é)..
 EnglandandWales 12.62% (2) 12.37% (1) 12.83% (5) 1270% (3) 12.71% (4) 25.36% (6)
France  1239% (5) 9.80% (2) 9.83% (3) 9.34% (1) 11.92% (4) 3961% (6
Japan 12.46% (5) 11.02% (3) 10.50% (1) 10.58% (2) 12.34% (4) 50.26% (6)
. UmtEd states R 531% . (4) 470% . “(i‘)” . 511% e (3) e 490% . (2) . 532% . ...(..5). . 5958% “(é)”
Males
Australia  16.78% (2) 16.72% (1) 1693% (5) 16.83% (4) 16.80% (3) 36.54% (6)
England and Wales  20.63% (3) 20.76% (5) 20.75% (4) 20.61% (2) 20.60% (1) 31.31% (6)
France A 1318% . (5)1308% . ..(3.).. . 1312% . (4) . 1237% . (1) . 1307% . ...(..2). . 4769% “(é)”
- Japan R 515% . (5) . 394% . .(i)” . ”4.,6'36/5' . (3) - 403% . (2) . 493% . .(,‘.‘). . 8113% v.(é),.
United States  12.39% (1) 12.56% (4) 12.43% (2) 12.52% (3) 12.62% (5) 24.30% (6)

out of the five countries. The HS4 model gives the lowest prediction error for both genders in
France and is mostly the second or third best method for the other datasets. In comparison, the
other two HS members demonstrate more variations in the rank of the forecasting performances.

A sensible mortality model is expected to generate stable predictions. To further examine the
forecast uncertainty of the six mortality models, a contracting horizon backtesting (Dowd et al.,
2010c) is conducted. In more detail, we calibrate the mortality models on 20-year sequential sub-
samples and obtain mortality predictions for a pre-specified “future” year (year 2018). The first
subsample covers data from 1950 to 1969, then from 1951 to 1970, and so on until the ending
year (stepping-off year) of the fitting period reaches 2017. One would expect the predicted mor-
tality rates on the forecast date to converge steadily to the observed values as the stepping-off
year increases. Figure 9 visualises the forecasts in 2018 under the six models, using the mortality
rates at age 65 as an example. All the mortality models except the PS approach illustrate simi-
lar paths of the projected central death rates. For most populations, the forecasts show a smooth
curve that gradually converges towards the observed values, suggesting a stable progression of the
model parameters between the sequential subsamples. As age increases (not presented here), the
mortality data are more volatile, and the paths of forecasts tend to be less smooth. Nevertheless,
the HS1-4 and Gompertz models still tend to share similar patterns. For the PS model, the paths
fluctuate extensively and are not consistent with other methods, suggesting that the robustness of
the prediction performance is a concern.

In summary, our out-of-sample testing indicates that the HS family, especially the HS4 model,
tends to generate a comparable or higher degree of forecast accuracy than the benchmark
Gompertz model. Furthermore, the unstable performance of the PS model suggests that extrap-
olating patterns without considering the temporal structure of mortality developments explicitly
can give rise to unreasonable predictions'2. The lack of robustness of the forecasting performance
of the PS model is also addressed in Bohk-Ewald and Rau (2017) and Camarda (2019).

6. Simulation study

So far, we have investigated the predictive power of the six mortality models using backtesting
and RMSE. Another crucial aspect of model examination lies in the level of uncertainty of the

12We also tested the performance of the PS approach using different number of knots, while no knot choice can ensure
stable forecast accuracy for the datasets considered in this paper.
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Figure 9. Forecasts of the central death rates in 2018. Mortality models are calibrated from 20-year sequential subsamples
ending in the stepping-off year. The plus sign refers to the observed megs 7018.
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Figure 9. Continued.

generated mortality scenarios. In practice, life insurance companies are required to prepare capital
for mortality and longevity risk based on risk measures such as the 99.5% Value-at-Risk (VaR) and
expected shortfall (conditional VaR). Therefore, the degree of variation in mortality simulations
under a mortality model plays a vital role in pricing longevity-/mortality-linked products and
preparing reserves. This section studies the performances of the candidate models using the semi-
parametric bootstrap (Brouhns et al., 2005) that incorporates both the process error (uncertainty
in time series processes for the HS and Gompertz models) and parameter error (uncertainty in
parameter estimation for all the six models) into the analysis. Firstly, a pseudo sample of death
counts is simulated from a Poisson distribution with the mean being the observed number of
deaths. Then we fit the six mortality models to the pseudo sample and generate one set of future
mortality scenarios. This process is repeated to generate 5,000 scenarios. Note that the PS model
does not involve simulating future paths of time series processes, so the only source of uncertainty
for the PS model is the parameter error. Following Cairns ef al. (2009), the survivor index S(x, t) =
[T (1 = gxti1+i) representing the probability that the cohort aged x in year T survives to year
T + t is employed to compare the model performance, where g, r is the probability that a life aged
x in year T will die in one year. Using a 10-year testing period, we plot in Figure 10 the projected
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Figure 10. Continued.

S(65, t) for the cohort aged 65 in the first prediction year. For illustration purposes, only the 95%
prediction intervals of the HS4, Gompertz and PS models are presented.

For the ten datasets, the predicted survivor indices under the HS1-4 and Gompertz models
follow roughly the same path as the observed values (cross signs). But when the PS model (yellow)
is applied, there exists an obvious overestimation (underestimation) of the death rates for France
and females in the United States (Australia). Besides, the simulated mortality distribution from
the PS model only incorporates the parameter uncertainty, so its prediction intervals tend to be
narrower than the others. Under the Gompertz model, the 95% prediction intervals are slightly
broader than those under the other four HS candidates. Within the HS family, the prediction
bounds are rather close to one another, though the full model appears to generate the widest
prediction bounds because it involves more time series processes and potentially greater process
error. All the mortality models except the PS model can produce prediction intervals that capture
the observed values (the prediction intervals under the HS1-3 models are not displayed).

A more pronounced reflection is illustrated in Figure 11 that displays the standard deviations of
S(65, t). At the end of the testing period (t = 10), the Gompertz model demonstrates the greatest
variations, followed by the HS candidates and the PS model. As discussed above, the HS4 model
tends to create more variations in the simulated scenarios of S(65, t). However, the differences
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Figure 11. Standard deviation of survivor index S(65, t) of the cohort aged 65in 2009,t =1, 2, ..., 10. The mortality models
are calibrated on mortality data in Australia and England and Wales over 1950-2008 and projected/simulated over a 10-year
forecasting horizon. Multivariate RWD is fitted to the time-varying parameters.

in the standard deviations of S(65, t) within the HS family are not significant, and no general
conclusion can be made on their ordinal relationship.

The above results for the HS1-4 and Gompertz models are based on the multivariate RWD
model. If the time-varying parameters are modelled separately by univariate RWD processes
regardless of the strong correlation, the level of process uncertainty may differ significantly. We
then investigate the impact of the correlation structure of the time series models on the prediction
intervals. Since the projection results are not affected under this independence setting, we only
present the standard deviations of S(65, t) for the same populations in Figure B.2 in Appendix B.
At the end of the testing period (t = 10), the Gompertz model demonstrates the greatest varia-
tions, followed roughly by the HS4, HS2, HS3 and HS1 models. Although the estimated standard
errors of the time series models for the Gompertz parameters have a similar magnitude to those
for the HS parameters, the time-varying parameters in these two types of models are scaled differ-
ently. Under the Gompertz model, k; ; and k;; are multiplied by 1 and x (from 56-95), respectively.
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On the other hand, the HS parameters are scaled by the Hermite basis functions that are less
than 1 in magnitude. Without considering the correlation structure, the 95% prediction intervals
under the Gompertz model would be much broader than those under the other four HS candi-
dates. Within the HS family, the full (simplest) model generates the widest (narrowest) prediction
bounds because it involves more (fewer) time series processes and greater (smaller) process error.
Although both the HS2 and HS3 models have three time-varying components, the width of the
95% prediction intervals under the former tends to be larger than that under the latter. One poten-
tial explanation could be that the gradient parameter in the HS2 model acts on the younger age
range and creates more variations in mortality simulations at younger ages (e.g., younger than
age 75). Since Figure B.2 considers S(65, t) for 1 <t <10 only, simulations under the HS2 model
would demonstrate a higher level of uncertainty than those under the HS3 model. When older age
groups are considered, the situation would be reversed.

It is interesting to observe that incorporating the correlation structure between the time-
varying components leads to notably different standard deviations of the simulated mortality
scenarios between the HS1-4 and Gompertz models. As presented in Table B.1 in Appendix B,
ki1, and ky; in the Gompertz model exhibit a highly negative correlation. The standard deviations
of simulated mortality rates under the multivariate RWD model are then smaller than that in
the independent case (univariate RWD). By contrast, the two level parameters in the HS1 model
are positively correlated, and the standard deviations in Figure 11 (correlated) are slightly greater
than those in Figure B.2 (independent). In other words, when a positive (negative) relationship
exists between two time-varying parameters, the prediction intervals generated from multivariate
RWD tend to be wider (narrower) than those from the independent setting. Note that there is one
exception in the HS3 and HS4 models. Since the gradient parameter s; ; is multiplied by the func-
tion hy; (x;) that remains negative over the age range, a positive correlation between s; ; and other
time-varying factors would lead to narrower prediction intervals. Overall, more variations can be
observed in the simulated scenarios under the univariate RWD than those from the multivariate
RWD model.

Given the same central projections, wider prediction intervals suggest a larger range in which
the future values are likely to fall. Although there is no “correct” level of uncertainty in mortality
forecasting, an exceedingly broad range means that the predictions are imprecise and the final
outcomes are highly uncertain. For instance, the backtesting results in Figure 10 show that the
historical survivor index is well captured even by the narrowest 95% prediction intervals under
the HS1 model. Such a high level of uncertainty of mortality forecasts in Figure B.2, especially
under the Gompertz model, seems unnecessary.

As an additional comparison, we calculate the present values of the simulated 10-year annuity
for the male cohort aged 65 in 2009. Given the simulated scenarios and a predetermined discount
rate, the term annuity that pays $1 at the end of each future year on survival can be valued as
follows:

10 S(65,1)
a65:10) = Zt:l m, (16)

where ags.107 represents the present value of the 10-year term annuity payable to the 1944 (2009 —
65) birth cohort, and S(65, t) is the corresponding survivor index. We use a 4% discount rate
(r) in this analysis. The simulated density distributions of ags.107 for the six mortality models are
plotted in Figure 12. It can be observed that both the central tendencies and dispersions somewhat
depend on the underlying model. Within the HS category, mortality distributions under the four
models share a rather similar location of the peak. As to the spread, the full model with more
time-varying parameters tends to generate more dispersed distributions, though the difference
is not pronounced. Between the three types of mortality models, the Gompertz model tends to
simulate the annuity distributions with the heaviest tails, which is in line with the findings on
the survivor indices. The density distributions under the Gompertz model seem to lie on the left
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Figure 12. Simulated distributions of 10-year annuity values for the male cohort aged 65 in 2009. The mortality models are
calibrated on mortality data over 1950-2008. The dashed lines correspond to the annuity value calculated from historical
data over 2009-2018.

of the HS distributions for all the five countries, which implies that the HS annuity values are
marginally higher than the benchmark. On the other hand, the situation is more erratic under the
PS model. It produces annuity distributions that often fail to cover the present value calculated
from historical data. Both the evident concentration on the peak and the “wrong” location of the
central tendencies are responsible for this poor performance.

7. Conclusions

In this paper, we have extended the one-dimensional HS model proposed by Richards (2020)
to cater for the modelling of country-level mortality data over time. Four versions of the HS
model are considered and compared with the Gompertz and PS models. Unlike the PS model that
makes no assumptions about the functional form of mortality rates across both ages and years, the
Gompertz and HS methods impose smoothness across ages only. The Gompertz model assumes
that the log mortality rates over an age range follow a straight line, while the HS models smooth
the mortality rates between two boundary ages using Hermite basis functions. Based on the mor-
tality data of Australia, England and Wales, France, Japan and the United States, the full model
of the HS family produces smaller AIC and BIC values than the Gompertz model in all cases. By
imposing smoothness on both the age and period dimensions, the PS model tends to achieve a
satisfactory fit with smaller effective dimensions. Nonetheless, when advanced ages are included
in the sample range, the potential crossover between the fitted mortality rates of populations with
different risk factors can be circumvented only under the HS models.

Although the PS model exhibits a decent fit, it often fails to generate realistic projections by
expanding the fitted mortality matrix. On the other hand, the HS and Gompertz models utilise
time series models and result in reasonable forecasts in the long run. Our backtesting results reveal
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that the forecasting performance of the PS model appears to be highly unstable. Fairly high predic-
tion errors are observed under the PS approach. Comparatively, the other five mortality models
demonstrate more robust backtesting performance. Thereinto, the HS1 and Gompertz models are
quite similar in prediction accuracy. The HS4 and HS2 models tend to perform well for 10-year
and 20-year forecasting horizons, respectively. Next, we simulate the survivor index of lives aged
65 over the last 10 years of the sample period and compare the results with the observed values. It is
found that the prediction intervals well capture the historical survivor index of the cohort under
all the models except the PS method. Furthermore, there are differences in the degree of varia-
tions in the simulated scenarios between the mortality models, which would affect the pricing and
reserving of longevity-/mortality-linked products in practice.

Overall, amongst the six models, the HS4 model achieves a good balance between different
aspects of the mortality modelling exercise. It fits the historical data reasonably well for several
countries. It gives rise to decent prediction accuracy. It induces a suitable level of uncertainty in
the simulations. And it ensures the gradual convergence of mortality rates between populations at
older ages.

There are some potential areas for future research. This paper focuses on longevity risk and
only considers populations aged 56 and above. When a wider age range is under interest, the
HS approach with a maximum of 4 parameters for each year may not capture all the features of
the mortality curves. To overcome this limitation, one may employ multiple HSs that are con-
tinuously joined at different knots. It would be interesting to examine the performance of this
extension and compare it with other mortality models. More investigation is needed to determine
the optimal number and location of knots for different datasets. By default, the HS approach
has the advantage of avoiding mortality crossover in the age dimension. Another modification is
constructing a multi-population HS model that ensures convergence in both age and time dimen-
sions. This property would require a careful choice of time series models, but more investigation is
needed. Note that the fitted mortality rates under the HS models start and end at the correspond-
ing observations, and appropriate endpoints need to be determined when multiple populations
are involved. Furthermore, we have noticed that the HS models are capable of capturing the rela-
tionship between different populations. One may apply this method to evaluate the effectiveness
of longevity risk hedge affected by different types of risk factors.
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Appendix
Appendix A. Maximum likelihood estimation with the barrier method

Suppose that the mortality rates of male (i = 1) and female (i = 2) populations in the same country
are fitted by the HS4 model with common sp; and s, ;. The log central death rates for the ith
population can be expressed as:

In m,ﬁ’i = oo (1) + 0 ho1 (x1) + s0,0h10 (k) + 1,6k (o)

where ozt(’) and a)gl) are the population-specific level parameters, so; and s;; refer to the com-
mon gradient parameters. Thereinto, a)gl) and wiz) are inhibited by the constraint wgl) > wgz)
to ensure the no-crossover property. Following the assumptions discussed in section 3.1, the
model parameters can be calibrated by maximising the Poisson log-likelihood function I, using
the Newton-Raphson iteration scheme.

However, it is not straightforward to implement optimisation with inequality constraints. To
address this issue, we follow Li & Liu (2020, 2021) and employ the barrier method under which
the above optimisation is converted to maximising the penalised log-likelihood function I®. The
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barrier method allows us to set the upper and/or lower bounds of the parameters. Instead of

(1 (

restricting the direct relationship between w, ’ and a)tz), two separate constraints are introduced,

a);l) > a;l 2)

0)52) < (ZEI 2)

(1)

where w, att?

and a)gz) are the male and female level parameters at the ending age, respectively, a,
is calculated as the average of the initial values of wgl) and wiz)

likelihood function can be written as:
1B —j_ B(l)@n; rgy) _g® (5(2); rg)) ,

. Accordingly, the penalised log-

where [ is defined in equation (13), 5)(1)(5)(2)) is a vector containing a)gl) ( (2)) values for t €

[to, t1]. The barrier functions BV ((7)(1); r((ol )>, B@ (5)(2); rc(l,2 )> and the so-called resistance levels

rC(u1 ), (2) are defined as follows:
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t t

5 With >
2 2) 1 2)
B ( ) Yt o (m) ri,) = 000011}/ (Zt fo W)

where w(l) is the initial value of the second level parameter in year t for the i population, Tis

calculated using the initial values of all the model parameters.

As suggested in Li & Liu (2020, 2021), the resistance levels are determined using the initial value
of the log-likelihood function. The above specification implies that each barrier function accounts
for 0.1% of the magnitude of at the start of the estimation process'>. At the end of each iteration,

the resistance levels r)) and r.2 are reduced by 15% so that the penalty term contributes less and
less to the log-likelihood function as it converges.

A.1 Initial values of »."

(@) )

Since w;~ represents the mortality levels at the ending age x;, one may simply set In m( Lt as its

initial values. Nonetheless, in the presence of crossovers in the mortality data (ln mxl,t <In mi?t)

in some years, such conditions can violate the requirements of the barrier method (starting from
the interior points of the bounds). To avoid such a violation, we employ the following initial
values:

a)fl) = max(ln m In m? )

X1,1° X1,

wg ) = mm(ln m® 1 m® )

X1,1? X1,t

When the sample covers early periods (e.g., before 1970), mortality data at advanced ages
may demonstrate some fluctuations. Using the above initial values can result in unreasonable

13Note that the number 0.1% is chosen based on empirical analysis. If the proportion is too high, the parameters are
estimated in a way that is more prone to satisfying the constraints rather than producing the “best” fit. If an unreasonably
low proportion is used, the penalty functions would have a minor effect on the optimisation, which may lead to parameters
falling outside the bounds. After testing a set of values, we find that 0.1% strikes a good balance between the goodness-of-fit
and satisfaction of the constraints for the mortality data of United States. Though the proportion seems low, no constrained
parameters are found to escape from their bounds.
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bounds ail’z) at the ending age x;, which affects the goodness-of-fit. To develop proper con-
straints, one may also consider using the maximum likelihood estimates (without the no-crossover
restrictions) as the initial values.

A.2 Updating equations of wii)

As before, the parameters under the HS4 model are estimated iteratively using the Newton-

Raphson method. Combining with the barrier approach, the general updating equation becomes
9IB)  52(B)

0% =6 — TR Because the barrier functions in I®) are only associated with a)gi), the
updating equations remain the same for the other parameters. The first and second partial
derivatives for wt(l) are summarised below:
B al 1) 1
= + 710" X 2
0(w£1)) B(wfl)) (wgl)iagl,Z))
B a2 1
) T T
921 321 (1) 2
7 = 7 — T X 3
8<w(1)) 3((1)5”) (w(l)—a§1’2)>

Appendix B. Tables and Figures

Table B.1. Estimates of multivariate (bivariate) random walk with drift. /i and & refer to the drift and standard deviation of
the fitted processes. Values of the correlation matrix are given in italic.

Australia
Male Female
L G ot Wt So,t S1t i G ot Wt So,t S1t
HS1 HS1
oy —0.022 0.030 1.000 0.406 —0.023 0.026 1.000 0.276
v.o,l.tv. . _0015 0037 . 1000 e 0482 . _0610 R _0012 0041 . 1000 e 0594 _0781 R
w¢ —0.007 0.055 0.482 1.000 —0.364 —0.008 0.054 0.594 1.000 —0.538
. SOt_00550]_89 _0510 _0354 . 1000 R _00740237 ;0;7‘31” _0538 . 1000 e
ut . _0019 0029 e 1000 . 0384 S 0133 _0018 0027 1000 0503 0361 e
[ors 0.000 0.078 0.384 1.000 0.779 —0.003 0.069 0.503 1.000 0.763
ut . _0013 0043 e 1000 . 0040 . _0732 . _0401 _0016 0045 1000 0180 _0801 _0347 e
w¢ —0.005 0.071 0.040 1.000 0.280 0.668 —0.007 0.066 0.180 1.000 0.128 0.619
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Table B.1. Continued.

Australia

Male Female

n o ot Wt So,t S1t n o ot Wt So,t S1t

sot —0.019 0.258 -—0.732 0.280 1.000 0.653 —0.022 0.309 —0.801 0.128 1.000 0.637
S1t 0.032 0.344 —0.401 0.668 0.653 1.000 0.038 0.296 —0.347 0.619 0.637 1.000
”GF(Sn‘qbpér»tZ“ A AN Gompertz R A

i G kit kat i 4 kit kot
kat 0.000 0.001 —0.957 1.000 0.000 0.002 —0.969 1.000

England and Wales

Male Female

CH

Wt So,t S1t i

@
13
S

I ot ot So,t S1t

HS1 HS1
| ”oct —0018 ‘0.6‘28 ‘ i.OOb ' 0507 - —‘0.0v18 ' 0‘(')25" i.OOO ‘ 0;423
w¢ —0.010 0.045 0.507 1.000 —0.010 0.049 0.428 1.000
e eon be e o Tomm T aoes oo ieos o owm
”wt —0007 ‘0.6‘48 ‘ b.592 ' 1000 —0.296v - ;0.007 ' 0.049” 0.448 ‘ 1;00() —0089
sot —0.041 0.156 —0.294 —0.296 1.000 —0.068 0.130 —0.434 —0.089 1.000
i ve e o e eom oo rens ems T hent
w¢ —0.002 0.061 0.277 1.000 0.680 —0.001 0.051 0.498 1.000 0.350
S1t 0.054 0.196 —0.263 0.680 1.000 0.071 0.113 —0.011 0.350 1.000
i b e o Town oo eon oo ieos o osw o
w¢ —0.008 0.051 0.377 1.000 —0.003 0.427 —0.004 0.052 0.198 1.000 0.326 0.422
| ‘50,t —0012 ‘0.1161> ‘ —0.375 —0003 l.bOO - 0389 ‘ —‘0.0l‘7 » 0.1168> ‘ ;(‘7‘545 B 0.3261 B l.OOOH 0‘605‘ B
Csie 0014 0157 —0248 0427 0389 1000  0.042 0130 —0270 0422 0605 1000
Gompertz e A S Gompertz e T
i G kit kat i G kit kot
| ‘k]_’t —0034 ‘0.6‘82 ‘ 1.000 —0944 ‘ - —‘0.03‘0 » 0.0‘88> ‘ bi‘OOO » ‘—0.96.1‘ - -

France

Male Female

ot ot So,t S1t i o ot ot So,t S1t

=
@

oy —0.009 0.030 1.000 0.707  —0.291 —0.007 0.031 1.000 0.689 —0.468
w¢ —0.009 0.050 0.707 1.000 —0.298 —0.010 0.058 0.689 1.000 —0.397
sot —0.055 0.140 —-0.291 —0.298 1.000 —0.104 0.143 —0.468 —0.397 1.000
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Table B.1. Continued.

France

Male Female

=
Q
3
S
=
QD
8
&

So,t S1t So,t S1t

HS3 HS3

sye 0049 0206 —0.236 039 0638 1000 0052 0152 —0.435 —0.09 0682 1000
Gompertz Gompertz
i 4 kit kat i G kit kot

k¢ 0.000 0.001 —0.924 1.000 0.000 0.001 —0.954 1.000

Japan

Male Female

=
Q@

ot Wt So,t ot Wt So,t S1t

HS1
0.023 o 1.000 }
0.055 b o o 0.684 5

HS2

@ —0016 0027 1000 0643 —0550  —0017 0031 1000 0502 —0537
®w¢ —0.009 0.058 0.643 1.000 —0.169 —0.012 0.051 0.502 1.000 0.085

- SOt . 70055 0147 70550 . 70169 - 1000 [ 70107 0124 70537 . 0085 e 1000 B

. ut . _0019 0023 1000 . 0627 T 0098 . _0027 0026 . 1000 0551 ............. 0136
[or 0.002 0.065 0.627 1.000 0.518 —0.005 0.053  0.661 1.000 0.279

@ —0.020 0.028 1000 0529 —0.59 —0.322 —0025 0.028 1000 0482 —0379 0024
®w¢ —0.009 0.053 0.529 1.000 0.055 0.124 —0.012 0.052 0.482 1.000 0.291 0.299

- SOt . 70008 0186 ,0595 e 0055 . 1000 e 0596 . 70030 0124 70379 . 0291 . 1000 e 0404 e

vGoh‘ﬁpve‘rtz Gompertz
it 6 kit kot i l kit kat
. k“ . 0000 0001 _0962 e 1000 et 0001 0001 _0945 . 1000 e

https://doi.org/10.1017/51748499522000173 Published online by Cambridge University Press


https://doi.org/10.1017/S1748499522000173

Annals of Actuarial Science 283

Table B.1. Continued.

United States

Male Female

@
8
)
=

ot Wt So,t St i
HS1 HS1
oy —0.013 0.018 1.000 0.429 —0.014 0.014 1.000 0.418
w¢ —0.008 0.022 0.429 1.000 —0.009 0.026 0.418 1.000
HS2 HS2
oy —0.009 0.018 1.000 0.533 —0.346 —0.007 0.020  1.000 0.679 —0.662
w¢ —0.006 0.024 0.533 1.000 —0.357 —0.006 0.028 0.679 1.000 —0.607
so,t —0.030 0.088 —0.346 —0.357 1.000 —0.048 0.091 —0.662 —0.607 1.000
HS3 HS3
oy —0.011 0.017 1.000 0.348 0.024 —0.011 0.015 1.000 0.554 0.300
w¢ —0.002 0.034 0.348 1.000 0.753 —0.002 0.034 0.554 1.000 0.774
S1t 0.043 0.123  0.024 0.753 1.000 0.053 0.098  0.300 0.774 1.000
HS4 HS4
oy —0.011 0.018 1.000 0.241 —0.388 —0.155 —0.010 0.019 1.000 0.407 —0.628 —0.120
w¢ —0.005 0.033 0.241 1.000 0.263 0.704 —0.005 0.033 0407 1.000 0.057 0.637
so,t —0.007 0.099 -—0.388 0.263 1.000 0.567 —0.013 0.102 —0.628 0.057 1.000 0.535
S1t 0.021 0.140 —0.155 0.704 0.567 1.000 0.029 0.106 —0.120 0.637 0.535 1.000

Gompertz Gompertz

=
Q

So,t S1t

kit —0.021 0.050 1.000 —0.947 —0.021 0.048 1.000 —0.957
k¢ 0.000 0.001 —0.947 1.000 0.000 0.001 —0.957 1.000

2 A L. SN 1 o oy

AUS male In{m) PS10 EW male In(m) PS10

-1
1

In{m)
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— 60 : © | — 60
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T T T T T T T T T T T T T T T T
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-6

Year Year

Figure B.1. Fitted (before the dashed line) and extrapolated (after the dashed line) log central death rates under the PS10
model for males in Australia and England and Wales. The dashed line refers to the ending year (2018) of the sample period.
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Figure B.2. Standard deviation of survivor index S(65, t) of the cohort aged 65in 2009, t =1, 2, . .., 10. The mortality models
are calibrated on mortality data in Australia and England and Wales over 1950-2008 and projected/simulated over a 10-year
forecasting horizon. Univariate RWD is fitted to the time-varying parameters.
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