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Abstract
We study the problem of finding the root vertex in large growing networks. We prove that it is possible
to construct confidence sets of size independent of the number of vertices in the network that contain
the root vertex with high probability in various models of random networks. The models include uniform
random recursive dags and uniform Cooper-Frieze random graphs.

Keywords: Combinatorial statistics; Network archaeology

2020 MSC Codes: Primary: 05C80; Secondary: 60C05

1. Introduction
With the ubiquitous presence of networks in many areas of science and technology, a multitude
of new challenges have gained importance in the statistical analysis of networks. One such area,
termed network archaeology (Navlakha and Kingsford [28]) studies problems about unveiling the
past of dynamically growing networks, based on present-day observations.

In order to develop a sound statistical theory for such problems, one usually models the grow-
ing network by simple stochastic growth dynamics. Perhaps the most prominent such growth
model is the preferential attachment model, advocated by Albert and Barabási [2]. In these mod-
els, vertices of the network arrive one by one and a new vertex attaches to one or more existing
vertices by an edge according to some simple probabilistic rule.

Arguably the simplest problem of network archaeology is that of root finding, when one aims
at estimating the first vertex of a random network, based on observing the (unlabelled) network
at a much later point of time.

The existing literature on the theory of network archaeology mostly focuses on the simplest
possible kind of networks, namely trees, see Haigh [22], Shah and Zaman [30,31], Bubeck et al.
[9], Curien et al. [15], Khim and Loh [25], Jog and Loh [23,24], Bubeck et al. [11], Bubeck et al.
[10], Lugosi and Pereira [26], Devroye and Reddad [18], Banerjee and Bhamidi [3], Crane and Xu
[13], Addario-Berry et al. [1], Brandenberger et al. [7].
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In various models of growing random trees, it is quite well understood up to what extent
one may identify the origin of the tree (i.e., the root) by observing a large unlabelled tree. These
models include uniform and linear preferential attachment trees and diffusion over regular trees.
Remarkably, in all these models, the size of the tree does not play a role. In other words, there exist
root-finding algorithms that are able to select a small number of nodes – independently of the size
of the tree – such that the root vertex is among them with high probability.

Here we address the more difficult – and more realistic – problem of finding the origin of
growing networks when the network is not necessarily a tree. The added difficulty stems from the
fact that the centrality measures that proved to be successful in root estimation in trees crucially
rely on properties of trees.

A notable exception in the literature is the recent paper of Crane and Xu [14] in which the
authors allow for a ‘noisy’ observation of the tree. In their model, the union of the tree of interest
and an (homogeneous) Erdős-Rényi random graph is observed, and the goal is to estimate the
root of the tree.

In this paper we study root estimation in two more complex network models. Both of these
models may be viewed as natural extensions of the random recursive trees that were in the focus
of most of the previous study of network archaeology. Recall that a uniform random recursive tree
on the vertex set [n] is defined recursively, such that each vertex i ∈ {2, 3, . . . , n} is attached by an
edge to a vertex chosen uniformly at random among the vertices {1, . . . , i− 1}, see, for example,
Drmota [20].

In particular, we study the problem of root finding in (1) uniform random recursive dags; and
(2) uniform Cooper-Frieze random graphs.

Uniform random recursive dags
For a positive integer �, a uniform random �-dag is simply the union of � independent uniform
random recursive trees on the same vertex set [n]. Equivalently, a uniform random �-dag may
be generated recursively; each vertex i ∈ {2, 3, . . . , n} is attached by an edge to � vertices chosen
uniformly at random (with replacement) among the vertices {1, . . . , i− 1}. Multiple edges are
collapsed so that the resulting graph is simple. Random recursive dags have been studied by Díaz
Cort et al. [19], Tsukiji and Mahmoud [33], Devroye and Janson [32], Broutin and Fawzi [17],
Broutin and Fawzi [8], Mahmoud [27], among others.

Definition 1. Let n, � ∈N. For i ∈ [�], let Gi ∈ (V , Ei) be independent uniform random recursive
trees on the vertex set V = [n]. A uniform random recursive �-dag on n vertices is G= (V , E1 ∪
· · · ∪ E�).

Uniform Cooper-Frieze random graphs
The other network model studied here was introduced by Cooper and Frieze [12] in an attempt to
mathematically describe large web graphs, see also Frieze and Karoński [21]. In the Cooper-Frieze
networkmodel both vertices and edges are added sequentially to the network based on uniform or
preferential attachment mechanisms. The model is quite general but here we focus on the simplest
version when both vertices and edges are added by uniform attachment.

More precisely, the uniform Cooper-Frieze growth model is defined as follows. The procedure
has a parameter α ∈ (0, 1). The process is initialized by a graph containing a single vertex and
no edges. At each time instance t = 1, 2, . . ., an independent Bernoulli(α) random variable Zt is
drawn. If Zt = 0, a new vertex is added to the vertex set along with an edge that connects this
vertex to one of the existing vertices, chosen uniformly at random. If Zt = 1, then a new edge is
added by choosing two existing vertices uniformly at random and connecting them. Note that the
resulting graph may have multiple edges. In such cases, we may convert the graph into a simple
graph by keeping only one of each multiplied edge.

If one runs the process for T steps for a large value of T, the graph has n∼ 1+ Binomial
(T − 1, 1− α)≈ (1− α)T vertices and T ≈ n/(1− α) edges. If one removes the edges added at
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the times when Zt = 1, the remaining graph is a tree, distributed as a uniform random recursive
tree on n vertices. The remaining T − n− 1 edges are present approximately independently of
each other and there is an edge between vertices i and j (where 1≤ i< j≤ n) if

T∑
t=1

n∑
�=j

1t∈{t�+1,t�+1−1}1the pair (i, j) is selected at time t ≥ 1,

where 1= t1 < t2 < · · · < tn ≤ T are the times when new vertices are added, that is, when Zt = 1.
Since the probability that edge (i, j) is selected at time t ∈ {t� + 1, t�+1 − 1} is 1/(�2), for large values
of T, the probability that edge (i, j) is present in the graph after T steps is concentrated around

cα
max (i, j)− 1

where cα
def.= 2

1− α
,

whenever max (i, j)− 1≥ cα . Hence, the uniform Cooper-Frieze model is essentially equiva-
lent to the following random graph model. In order to avoid some tedious and uninteresting
technicalities, we work with this modified model instead of the original recursive definition.

Definition 2. Let n ∈N and let c be a positive constant. Let G1 = (V , E1) be a uniform random
recursive tree on the vertex set V = [n]. Let G2 = (V , E2) be a random graph on the same vertex set,
independent of G1, such that edges of G2 are present independently of each other, such that for all
i 
= j,

P{(i, j) ∈ E2} =min
(

c
max (i, j)− 1

, 1
)
.

Finally, the uniform Cooper-Frieze random graph with parameters c and n is G= (V , E1 ∪ E2).

Root estimation
The main result of this paper is that finding the root is possible both in uniform random recursive
dags and in uniform Cooper-Frieze random graphs. More precisely, one may find confidence sets
for the root vertex whose size does not depend on the number of vertices in the graph. To make
such statements rigorous, consider the following definition.

Definition 3. Let {G(n)} be a sequence of random graphs such that G(n) has vertex set [n]. We say
that root estimation is possible if the following holds. For every ε > 0, there exists a positive integer
K(ε) such that, for every n ∈N, upon observing the graph G(n) without the vertex labels, one may
find a set S⊂ [n] of vertices of size |S| =K(ε) such that

P{1 ∈ S} ≥ 1− ε.

The set S in the above definition is often called a confidence set for the root vertex.
As mentioned above, root estimation has mostly been studied for random recursive trees.

Bubeck et al. [10] show that root estimation is possible in the uniform random recursive tree and
linear preferential attachment trees. They show that in the case of the uniform random recursive
tree, one may take K(ε)≤ exp

(
c log (1/ε)/ log log (1/ε)

)
for some constant c. For linear prefer-

ential attachment trees one may take K(ε)= cε−2−o(1), as shown by Banerjee and Bhamidi [3]
who also show that root estimation is possible for a wide class of preferential attachment trees.
Building on the papers of Building on the papers of Shah and Zaman [30,31], Khim and Loh [25]
show that root estimation is possible in random trees obtained by diffusion on an infinite regu-
lar tree, and that one my take K(ε)= exp

(
O
(
log (1/ε)/ log log (1/ε)

))
. Brandenberger et al. [7]

study root estimation in size-conditioned Galton-Watson trees.
The sets S of constant size that establish the possibility of root estimation for various trees

usually contain the set of most ‘central’ vertices according to some notion of centrality such as
Jordan centrality (as in [10], [3]) or rumour centrality introduced in [30,31], see also [10], [25].
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However, these notions are suited for trees only and when the observed network is more complex,
new ideas need to be introduced. Crane and Xu [14] study a model in which the observed network
consists of either a uniform attachment tree (i.e., uniform random recursive tree) or a preferential
attachment tree, with random edges added (independently over all possible vertex pairs, with the
same probability). They introduce a Bayesian method and prove that it is able to estimate the
root as long as there are not too many edges, where the threshold value depends on the particular
model. It is unclear if the method of [14] may be generalized to the random graph models studied
here. Instead, we introduce an alternative root estimation method that is based on the appearance
of certain subgraphs.

The main results of this paper are summarized in the following two theorems.

Theorem 4. Let G=G(n) be a uniform random �-dag on n vertices. Root estimation is possible in G.
In particular, there exist numerical constants c0, c1, c2 > 0 such that, whenever ε ≤ e−c2�, one may
take

K(ε)≤ c0
ε
log (1/ε)

c1
�
log (1/ε).

Explicit values of the constants c0, c1, c2 are given in the proof below. In the uniform Cooper-
Frieze model we have a similar bound:

Theorem 5. Let G=G(n) be a uniformCooper-Frieze random graph on n vertices, with parameter c.
Root estimation is possible in G. In particular, one may take

K(ε)≤ c0 log (1/ε)c1 log (1/ε)

for some constants c0, c1 > 0 depending only on c.

The main results establish that, upon observing the graph after removing its vertex labels, one
may find a set S of vertices of size independent of n such that S contains the root vertex (i.e.,
vertex 1) with probability at least 1− ε. The size of the set is bounded by a function of ε only.

Observe that if � is of the order of log (1/ε), then the bound for K(ε) is 1/ε times a poly-
logarithmic term in 1/ε. On the other hand, when � is a fixed constant, as ε → 0, the obtained
bounds are super-polynomial in 1/ε, significantly larger than the analogous bounds obtained for
uniform and preferential attachment trees. In all ranges of �, these bounds are inferior to the best
upper bounds available for the case � = 1 (i.e., uniform random recursive trees). We do not claim
optimality of this bound. It is an interesting open question whether much smaller vertex sets may
be found with the required guarantees. We conjecture that for any � > 1, root finding is easier in
a uniform random �-dag than in a uniform random recursive tree. If that is the case, one should
be able to take K(ε) as exp

(
O
(
log (1/ε)/ log log (1/ε)

))
. Similar remarks hold for the bound of

Theorem 5.
In order to prove Theorems 4 and 5, we propose a root estimation procedure and prove that

the same procedure works in both models. The procedure looks for certain carefully selected sub-
graphs that we call double cycles. The set S of candidate vertices are certain special vertices of such
double cycles.

The rest of the paper is organized as follows. In Section 2 we introduce the proposed root
estimation procedure. The proof of Theorem 4 is given in Section 3 while Theorem 5 is proved in
Section 4.

2. Double cycles
In this section we define the root estimation method that we use to prove the main results. In
order to determine the set S of vertices that are candidates for being the root vertex, we define
‘double cycles’.
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Figure 1. Examples of double cycles.

Let s, t be positive integers. We say that a vertex v ∈ [n] is an anchor of a double cycle
of size (s, t) if there exists an integer 0< p≤min (s, t)/2 and s+ t − 1− p different vertexes
i1, i2, . . . is+t−2−p ∈ [n], such that

• vertices v, i1, . . . , is−1 form a cycle of length s in G (in this order);
• vertices v, is+1−p, . . . , is+t−1−p form a cycle of length t in G (in this order).
Note that the two cycles are disjoint, except for the common path v∼ · · · ∼ ip−1 (so p is the

number of common vertices in both cycles). Also note that ip−1 is another anchor of the same
double cycle. If p= 1, we declare i0 = v. In that case the two cycles intersect in the single vertex v
and the double cycle has a unique anchor v, see Fig. 1.

In other words, if two vertices v, u ∈ [n] are connected by three disjoint paths such that the sum
of the lengths of the first and second paths is s and the sum of the lengths of the second and third
paths is t, then v and u are anchors of a double cycle of size s and t. Also, v is the anchor of a double
cycle of size (s, t) if vertex v is the unique common vertex of two cycles of lengths s and t.

For a positive integerm, let Sm ⊂ [n] be the set of vertices i such that i is an anchor of a double
cycle of size (s, t) for some s≤m and t ≤m.

In order to prove Theorem 4, it suffices to show that for any given ε ∈ (0, 1/100), one may take
m=mε = ⌈ 30

�
log (1/ε)

⌉
such that

P

{
1 ∈ Sm and |Sm| ≤ 4

ε
�2m(2m)!

}
≥ 1− ε.

This follows if we prove that we have both

P {1 ∈ Sm} ≥ 1− ε

2
(2.1)

and

P

{
|Sm| ≤ 4

ε
�2m(2m)!

}
≥ 1− ε

2
. (2.2)

We prove (2.1) in Section 3.1 and (2.2) in Section 3.2.

Remark 1. The reader may wonder why the proposed method looks for double cycles as opposed
to simpler small subgraphs such as triangles or a clique of size 4 with an edge removed, etc. The
reason is that such simpler subgraphs are either too abundant in the sense that vertices with high
index may be contained in (many of) them or the root vertex is not contained in any of them with
some probability that is bounded away from zero. This may happen in spite of the fact that the
expected number of such small subgraphs containing the root vertex goes to infinity as n→ ∞.
Double cycles guarantee the appropriate concentration expressed in (2.1).
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3. Proof of Theorem 4
As it is explained in the previous section, in order to prove Theorem 4, it is enough to prove the
inequalities (2.1) and (2.2), where Sm is the set of those vertices that are anchors of a double cycle
of size (s, t) for some s, t ≤m.

3.1 The root vertex is the anchor of a small double cycle
First we consider the case when � = 2. Then the observed graphG is the union of two independent
random recursive trees T1 and T2. To prove (2.1) we need to ensure that vertex 1 is the anchor of a
double cycle of small size, with probability at least 1− ε/2. To do so, it suffices to show that there
are two edges (1, i) and (1, j) that are present in T2 but not in T1 where i and j are ‘small’ – whose
meaning is specified below. Indeed, in this case there are two cycles containing vertex 1 formed as
follows:

• the unique path from vertex 1 to i in T1 loops back to 1 thanks to edge (1, i), present in T2;
• the unique path from vertex 1 to j in T1 loops back to 1 thanks to edge (1, j), present in T2.

The only intersection of those two cycles is the intersection of the paths in T1 from vertex 1
to i and from vertex 1 to j. In a tree, the intersection of two paths is either empty or a path itself.
Here the intersection is not empty since both paths contain vertex 1. Thus, vertex 1 is in two cycles
which only intersect in a path having vertex 1 as an extremity, meaning that vertex 1 is the anchor
of a double cycle. Next we show that two such edges indeed exist, with high probability.

For a vertex i ∈ [2, n], the probability that the edge (1, i) is present in T2 is 1/(i− 1). The proba-
bility that it is absent in T1 is 1− 1/(i− 1). By independence of T1 and T2, the probability that the
edge (1, i) is present in T2 and absent in T1 is (1− 1/(i− 1)) /(i− 1). Let Xk denote the number
of edges of form (1, i) for some i ∈ [k], that are not edges in T1. Then Xk may be written as a sum
of independent random variables,

Xk =
k∑

i=2
Bi

where Bi is a Bernoulli random variable with parameter 1
i−1

(
1− 1

i−1

)
.

If Xk ≥ 2, there exist two edges of form (1, i) with i≤ k that are present in T2 but not in T1. By
a standard bound for the lower tail for sums of nonnegative independent random variables, see
[6, Exercise 2.9], we have

P {Xk ≥ 2} ≥ 1− exp

(
− (E[Xk]− 1)2

2E[Xk]

)
.

Since E[Xk] is easily seen to fall between log (k)− 2 and log (k)− 1, we have

P {Xk ≥ 2} ≥ 1− exp
(

−1
2
log (k)+ 5

2
− 1

log (k)− 1

)
.

Hence, for kε = ⌈
16e5/ε2

⌉
, we have P{Xkε

≥ 2} ≥ 1− ε/4. This implies that, with probability at
least 1− ε/4, vertex 1 is the anchor of a double cycle such that all vertices in the double cycle are
in [kε]. To conclude the proof of (2.1) we need to check that indeed the size of the double cycle
containing vertex 1 is at most m. Such double cycles are formed by a path in T1, closed by an
additional edge coming from T2. Therefore, both cycles contained in the double cycle of interest
have a size bounded by the height of the subtree of T1 induced by the vertex set [kε], plus 1.
By well-known bounds for the height of a uniform random recursive tree (see, e.g., Drmota
[20], Devroye [16], Pittel [29]) we have that the depth of a uniform random recursive tree on
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k vertices is bounded by e log (k)+ e log (4e/ε) with probability at least 1− ε/4, see Drmota
[20, p. 284].

Plugging in the value of kε , we get that for any ε ≤ 10−2, the diameter of a uniform recursive
random tree of size kε is at most 15 log (1/ε), with probability at least 1− ε/4.

Putting these bounds together, we have that, in the case � = 2, with probability at least 1− ε/2,
vertex 1 is an anchor of a double cycle of size (s, t) with s, t ≤ 15 log (1/ε), implying (2.1) for � = 2.

It remains to extend the above to the general case of � ≥ 2. SinceG is the union of � independent
uniform random recursive trees, it contains the union of ��/2� independent, identically dis-
tributed random uniform 2-dags. Using the result proved for random uniform 2-dags above, the
probability than in G, vertex 1 is not the anchor of a double cycle of size at most 15 log (ε2/(�−1))
is at most ε. This concludes the proof of (2.1) in the general case.

3.2 High-index vertices are not anchors of double cycles
In order to prove (2.2) we need to show that no vertex with high index is the anchor of a double
cycle of size smaller than m. We bound the probability that there exists v>K such that v ∈ Sm,
where recall that K =K(ε). To this end, we count Cs,t(v), the number of double cycles of size (s, t)
having vertex v as an anchor. Then, by the union bound,

P {∃v>K:v ∈ Sm} ≤
∑
v≥K

∑
s,t≤mε

P{Cs,t(v)≥ 1} ≤
∑
v≥K

∑
s,t≤mε

ECs,t(v). (3.1)

In order to bound ECs,t(v), we may assume, without loss of generality, that s≤ t.
For a permutation σ in the set �s+t−2−p of all permutations of [s+ t − 2− p], we denote by

C(s, t, p, v, σ , i1, . . . , is+t−p−2) the following event:

• if p= 1,

C(s, t, 1, v, σ , i1, . . . , is+t−2)
= {

v∼ iσ (1) ∼ · · · ∼ iσ (s−1) ∼ v∼ iσ (s) ∼ · · · ∼ iσ (s+t−2) ∼ v
}
,

• and if p> 1

C(s, t, p, v, σ , i1, . . . , is+t−p−2)
= {

v∼ iσ (1) ∼ · · · ∼ iσ (s−1) ∼ v∼ iσ (s) ∼ · · · ∼ iσ (s+t−2−p) ∼ iσ (s−p)
}
.

where i∼ j denotes that vertices i and j are joined by an edge. Thus, C(s, t, p, v, σ , i1, . . . , is+t−p−2)
is the event that the double cycle of size s, t (s≤ t) having p vertices in the intersection, with v as an
anchor and on the set of vertices {i1, . . . , is+t−p−2} ordered by σ as illustrated in Fig. 2 is present.

With this notation, we may write Cs,t(v) as follows:

Cs,t(v)=
�s/2�∑
p=1

∑
i1<...<is+t−2−p

∑
σ∈�s+t−2−p

1C(s,t,p,v,σ ,i1,...,is+t−p−2), (3.2)

in order to bound the expected number ECs,t(v) of double cycles of size (s, t) anchored at v, we
need to estimate P

{
C(s, t, p, v, σ , i1, . . . , is+t−p−2)

}
.

This exact probability is difficult to compute. Instead, wemake use of the following proposition
that establishes that a uniform random �-dag is dominated by an appropriately defined inhomo-
geneous Erdos-Rényi random graph. This random graph is defined as a graph on the vertex set
[n] such that each edge is present independently of the others and the probability that vertex i and
vertex j are connected by an edge equals
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Figure 2. Index ordering in a double cycle.

π(i, j) def.= min
(
1,

�

max (i, j)− 1

)
.

The next proposition shows that every fixed subgraph is at most as likely to appear in a uniform
random �-dag as in the inhomogeneous Erdos-Rényi random graph.

Proposition 6. Let G= (V , E) be a uniform random �-dag on the vertex set V = [n]. For some
k≤ (n2), let (a1, b1), . . . , (ak, bk) be distinct pairs of vertices such that ai 
= bi for all i≤ k. Then

P
{
(a1, b1), . . . , (ak, bk) ∈ E

}≤
k∏

i=1
π(ai, bi).

Proof. Recall that the edge set of G may be written as E= ∪�
j=1Ej, where (V , E1), . . . , (V , E�) are

independent uniform random recursive trees. We may assume, without loss of generality, that
bi > ai for all i ∈ [k].

We prove the proposition by induction on k. For k= 1, the inequality follows from the union
bound:

P
{
(a1, b1) ∈ E

}≤
�∑

j=1
P
{
(a1, b1) ∈ Ej

}= �

max (a1, b1)− 1
. (3.3)

For the induction step, suppose the claim of the proposition holds for up to k edges and consider
k+ 1 distinct pairs (a1, b1), . . . , (ak+1, bk+1). Then, by the induction hypothesis,

P
{
(a1, b1), . . . , (ak+1, bk+1) ∈ E

}
= P

{
(a1, b1), . . . , (ak, bk) ∈ E

}
P
{
(ak+1, bk+1) ∈ E | (a1, b1), . . . , (ak, bk) ∈ E

}
≤ P

{
(ak+1, bk+1) ∈ E | (a1, b1), . . . , (ak, bk) ∈ E

} k∏
i=1

π(ai, bi).

Thus, it suffices to show that for all distinct pairs (a1, b1), . . . , (ak+1, bk+1),

P
{
(ak+1, bk+1) ∈ E | (a1, b1), . . . , (ak, bk) ∈ E

}≤ π(ak+1, bk+1)π(ak+1, bk+1).

First, consider the simpler case when for all i ∈ [k], bi 
= bk+1. Then, for every fixed j ∈ [�], the
events {(a1, b1) ∈ Ej, . . . , (ak, bk) ∈ Ej} and {(ak+1, bk+1) ∈ Ej} are independent. Moreover since
the � uniform random recursive trees are independent, the events {(a1, b1) ∈ E, . . . , (ak, bk) ∈ E}
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and {(ak+1, bk+1)} ∈ E are also independent, and therefore
P
{
(ak+1, bk+1) ∈ E|(a1, b1), . . . , (ak, bk) ∈ E

}= P
{
(ak+1, bk+1) ∈ E

}≤ π(ak+1, bk+1),
by (3.3).

Now, suppose that there exist some i ∈ [k] such that bi = bk+1. Wemay assume that there exists
a w ∈ [k] such that b1, . . . , bw = bk+1 and for all i ∈ [w+ 1, k], bi 
= bk+1. Since each (V , Ej) is a
recursive tree, for i ∈ [w], (ai, bk+1) ∈ Ej and (ak+1, bk+1) ∈ Ej cannot happen at the same time.
Thus, edge (ak+1, bk+1) can only be present in the sets Ej that do not contain any of the edges
(ai, bk+1). Hence, introducing A= #

{
j ∈ [�]: Ej ∩ {(a1, bk+1), . . . , (aw, bk+1)} 
= ∅}, we have, for

all a ∈ [�],

P
{
(ak+1, bk+1) ∈ E|(a1, b1), . . . , (ak, bk) ∈ E andA= a

} = P

{
(ak+1, bk+1) ∈ ∪�−a

j=1 Ej
}
.

Using the union bound again,

P

{
(ak+1, bk+1) ∈ ∪�−a

j=1 Ej
}

≤ � − a
bk+1 − 1

≤ �

bk+1 − 1
.

Since this holds for all a, we have

P
{
(ak+1, bk+1) ∈ E|(a1, b1), . . . , (ak, bk) ∈ E

}≤ �

bk+1 − 1
,

as desired.

To count Cs,t(v) we split the sum in (3.2) by adding a parameter r in order to separate the
vertices i1, . . . , is+t−2−p according to whether they are smaller or larger than v, obtaining

Cs,t(v)=
�s/2�∑
p=1

s+t−p−2∑
r=0

∑
σ∈�s+t−2−p

∑
i1<···<ir<v

∑
v<ir+1<···<is+t−2−p

1C(s,t,p,v,σ ,i1,...,is+t−p−2).

From Proposition 6 we know that the probability of each given double cycle is upper bounded by
the product of π(i, j)= �/( max (i, j)− 1). Thus we introduce Eσ (j) ∈ {0, 1, 2, 3, 4} counting the
number of vertices neighbouring vertex ij in the double cycle, that have indices smaller than ij. By
convention we write Eσ (0) for the analogous quantity for vertex v. Doing so, we may write

ECs,t(v)≤
�s/2�∑
p=1

�s+t−p
s+t−p−2∑

r=0

∑
σ∈�s+t−2−p

(v− 1)−Eσ (0)

×
⎛
⎝ ∑

i1<···<ir<v

r∏
j=1

(ij − 1)−Eσ (j)

⎞
⎠×

⎛
⎝ ∑

v<ir+1<···<is+t−2−p

s+t−2−p∏
j=r+1

(ij − 1)−Eσ (j)

⎞
⎠ .

(3.4)
This allows us to decompose the sum in two parts; the sum involving the r vertices with index
smaller than v and the s+ t − 2− p− r vertices with index larger than v. If we fix p,m and σ , we
need to upper bound both

A(σ , p, r):=A=
∑

i1<···ir<v

r∏
j=1

(ij − 1)−Eσ (j)

and

B(σ , p, r):= B=
∑

v<ir+1<···<is+t−2−p

s+t−2−p∏
j=r+1

(ij − 1)−Eσ (j)(ij − 1)−Eσ (j).

This may be done with the help of the next two lemmas.
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Lemma 7. Fix a vertex v, vertices i1 < · · · < ir < v< ir+1 < · · · < is+t−p−2 and an ordering σ of a
double cycle on this set of vertices with v as an anchor. Then, for every k ∈ [r] we have

k− 1≥
k∑

i=1
Eσ (i).

Proof. For k ∈ [r], we define G(k) as the subgraph of the double cycle in which we only keep the
k vertices of smallest index, so that

∑k
i=1 Eσ (i) is the number of edges in G(k).

Since G(k) does not contain v, there are no cycles in G(k), and therefore it is a forest. Since
|G(k)| = k, it follows that G(k) has at most k− 1 edges.

Lemma 8. Fix a vertex v, vertices i1 < · · · < ir < v< ir+1 < · · · < is+t−p−2 and an ordering σ of a
double cycle on this set of vertices with v as an anchor. Then, ∀k ∈ [s+ t − 2− p− r] we have

k+ 1≤
k∑

i=1
Eσ (s+ t − 1− p− i).

Proof. For k ∈ [s+ t − 2− p− r], we define G′(k) as the subgraph of the double cycle in which
we only keep the k vertices of largest index. Vertex is+t−2−p−k has at least two neighbours in the
double cycle. From the definition of Eσ (s+ t − p− 1− k), Eσ (s+ t − p− 1− k) is then at least 2
minus the number of neighbours of is+t−2−p−k in the double cycle with larger index. The number
of such neighbours of is+t−2−p−k is exactly the number of edges in G′(k) minus the number of
edges in G′(k− 1). Denoting G′(k)= (

V ′(k), E′(k)
)
, it leads to

Eσ (s+ t − p− 1− k)≥ 2− (
#E′(k)− #E′(k− 1)

)
,

implying
k∑

i=1
Eσ (s+ t − 1− p− i)≥ 2k− #E′(k).

SinceG′(k) does not contain v, it is a forest. Moreover |G′(k)| = k soG′(k) has at most k− 1 edges,
which concludes the proof.

We may decompose A as follows:

A=
∑

ir : ir<v
(ir − 1)−Eσ (r) · · ·

∑
i1: i1<i2

(i1 − 1)−Eσ (1).

From Lemma 7 with k+ 1, we know that Eσ (1)= 0, leading to∑
i1: i1<i2

(i1 − 1)−Eσ (1) ≤ (i2 − 1)1−Eσ (1),

which in turn leads to
A≤

∑
ir : ir<v

(ir − 1)−Eσ (r) · · ·
∑

i2: i2<i3

(i2 − 1)1−Eσ (1)−Eσ (2).

Once again, by Lemma 7 with k= 2, we have 1− Eσ (1)− Eσ (2)≥ 0, leading to∑
i2: i2<i3

(i2 − 1)1−Eσ (1)−Eσ (2) ≤ (i3 − 1)2−Eσ (1)−Eσ (2).

Iterating this scheme r times, using Lemma 7 at each step leads to

A≤ (v− 1)r−
∑r

i=1 Eσ (i). (3.5)
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Similarly, we decompose B as

B=
∑

ir+1: ir+1>v
(ir+1 − 1)−Eσ (r+1) · · ·

∑
is+t−p−2: is+t−p−2>is+t−p−3

(is+t−p−2 − 1)−Eσ (s+t−p−2).

It follows from Lemma 8 that Eσ (s+ t − p− 2)≥ 2, and therefore∑
is+t−p−2: is+t−p−2>is+t−p−3

(is+t−p−2 − 1)−Eσ (s+t−p−2) ≤ (is+t−p−3 − 1)1−Eσ (s+t−p−2).

Following an analogous reasoning to the upper bound ofA, iterating this scheme s+ t − 2− p− r
times, using Lemma 8 at each step leads to

B≤ (v− 1)s+t−2−p−r−∑s+t−2−p
j=r+1 Eσ (j). (3.6)

Substituting (3.5) and (3.6) into (3.4), we obtain

ECs,t(v)≤
�s/2�∑
p=1

s+t−p−2∑
r=0

∑
σ∈�s+t−2−p

�s+t−p(v− 1)−Eσ (0)

× (v− 1)s+t−2−p−r−∑s+t−2−p
j=r+1 Eσ (j) × (v− 1)r−

∑r
i=1 Eσ (i).

Since
s+t−2−p∑

j=0
Eσ (j)= s+ t − p,

we have

ECs,t(v)≤ 1
(v− 1)2

�s/2�∑
p=1

s+t−p−2∑
r=0

∑
σ∈�s+t−2−p

�s+t−p,

leading to

E
[
Cs,t(v)

] ≤
�s/2�∑
p=1

�s+t−p(s+ t − p− 2)!(s+ t − p− 2)
1

(v− 1)2

≤ 2�s+t (s+ t)!
(v− 1)2

.

Finally, we plug this bound in (3.1):

P (∃v≥K : v ∈ Sm) ≤
∑
v≥K

∑
s,t≤mε

2�s+t (s+ t)!
(v− 1)2

(3.7)

≤ 4�2mε (2mε)! 1K . (3.8)

Choosing K = 81
ε
�2mε (2mε)! concludes the proof of (2.2) and therefore Theorem 4 follows.

4. Proof of Theorem 5
The proof of Theorem 5 is analogous to that of Theorem 4. In order to avoid repeating essentially
the same argument, we only highlight the differences in the proofs.
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It is enough to prove that, choosingm = mε = ⌈
(9+ 12/c) log (1/ε)

⌉
one has

P

{
1 ∈ Sm and |Sm| ≤ 4

ε
(c+ 1)2m (2m)!

}
≥ 1− ε.

This follows if we prove that

P {1 ∈ Sm} ≥ 1− ε

2
(4.1)

and

P

{
|Sm| ≤ 4

ε
(c+ 1)2m (2m)!

}
≥ 1− ε

2
(4.2)

both hold.
Recall that the uniform Cooper-Frieze model is the union of a uniform random recur-

sive tree G1 and an inhomogeneous Erdős-Rényi random graph G2 (with edges probabilities
min (c/max (i, j)− 1, 1)).

Proving (4.1) and (2.1) shares the same basic argument. In order to show that the root vertex
is an anchor of a double cycle of size (s, t) for some s, t ≤m, one may show that, with the desired
probability, there exist at least two vertices i, j with sufficiently small index such that the edges
(1, i) and (1, j) are not present in the uniform random recursive tree but they are present in the
inhomogeneous Erdős-Rényi random graph G2. This follows by similar concentration arguments
(for sums of independent Bernoulli random variables and for the height of a uniform random
recursive tree) as in the proof of Theorem 4.

The proof of (4.2) is once again analogous to the proof of (2.2). We remind the reader than the
main step of the proof of Theorem 4 relies on the fact that a uniform random �-dag is dominated
by an inhomogeneous Erdős-Rényi random graph with of edges probabilities �/( max (i, j)− 1),
as shown in Proposition 6. Using a similar reasoning as in Proposition 6, one may prove that a
uniform Cooper-Frieze random graph is dominated by an inhomogeneous Erdős-Rényi random
graph with edge probabilities (c+ 1)/( max (i, j)− 1). The remainder of the proof is exactly the
same as that of the proof of (2.2) and concludes the proof of Theorem 5.

5. Concluding remarks
In this paper we addressed the problem of finding the first vertex in dynamically growing net-
works, based on observing a present-day snapshot of the unlabelled network. This problem has
mainly been studied for trees and the main purpose of the paper is to study root finding in more
complex networks. The main results show that in certain natural models it is possible to construct
confidence sets for the root vertex whose size does not depend on the observed network. These
confidence sets contain the root vertex with high probability, and their size only depends on the
required probability of error. We prove this property in two models of random networks, namely
uniform �-dags and a simplified model inspired by a general random network model of Cooper
and Frieze. In both models, the constructed confidence set contains all vertices that are anchors of
certain small subgraphs that we call ‘double cycles’.

The paper leaves a number of questions open. We conjecture that the upper bounds obtained
for the size of the confidence set are suboptimal (as a function of the probability of error ε). To
substantially improve on these bounds one may need to consider ‘global’ measures, reminiscent
to the centrality measures employed in the case of root finding in recursive trees, as opposed
to the ‘local’ method proposed here. However, their use and analysis appears substantially more
challenging.
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Deriving lower bounds for the size of the confidence set is another interesting open question.
Another path for further research is to extend the network models beyond the uniform ones

considered in this paper. The most natural extensions are preferential attachment versions of the
models. The standard preferential attachment graph is grown recursively by connecting each new
vertex to � vertices chosen with a probability proportional to a function of their degree. Unlike
in the uniform attachment model studied here, a preferential attachment graph is not the union
of � independent trees. For this reason, the proofs presented in this paper are not adapted to deal
with preferential attachment models. On the other hand, a recent result of Banerjee andHuang [4]
shows that in a preferential attachment graph, the root vertex is in a set of constant size, containing
the vertices of highest degree. Hence, one may find the root by sorting vertices by their degrees.
This property fails to hold in the uniform attachment model.

We end by noting that the methodology based on double cycles also works in a variant of
the uniform Cooper-Frieze model in which the uniform random recursive tree is removed. More
precisely, one may consider an inhomogeneous Erdos-Rényi random graph on the vertex set [n]
with edge probabilities min

(
c/( max (i, j)− 1), 1

)
, where c> 1 is a constant. In this case one may

prove the following.

Theorem 9. Let c> 1 and let G=G(n) be an inhomogeneous Erdos-Rényi random graph on n ver-
tices, with edge probabilities pi,j =min

(
c/( max (i, j)− 1), 1

)
. Root estimation is possible in G. In

particular, there exist constants c0, c1 > 0, depending on c only, such that one may take

K(ε)≤
( c0
εc1

) c0
εc1 .

The outline of the proof is similar to that of Theorems 4 and 5. The only difference is in the
proof that the root vertex is an anchor of a sufficiently small double cycle. To prove this, we may
write G as the union of two independent inhomogeneous Erdos-Rényi random graphs as follows.
Let k be a sufficiently large integer (only depending on ε). Then we may define G1 = ([n], E1)
and G2 = (n, [E2]) as independent inhomogeneous Erdos-Rényi random graphs such that for all
1≤ i< j≤ n,

P
{
(i, j) ∈ E1

}=
⎧⎨
⎩

c
k if j≤ k

0 otherwise

and

P
{
(i, j) ∈ E2

}=
⎧⎨
⎩

pi,j− c
k

1− c
k

if j≤ k

pi,j otherwise

Clearly, G= ([n], E1 ∪ E2). The subgraph of G1 induced by the vertex set [k] is a supercritical
Erdos-Rényi random graph and therefore, with high probability, it has a connected ‘giant’ com-
ponent of size that is linear in k. Then one may easily show that, with high probability, there are
three edges in G2 of the form (1, i), where i belongs to the giant component. This is enough for
vertex 1 to be an anchor of a double cycle.

The rest of the proof is identical to that of Theorem 4.
Finally, we remark that the suggested root-finding method can be implemented in polynomial

time. Indeed, for any pair of vertices, checking if they are the anchors of a double cycle of size at
most m can be achieved by finding the three shortest disjoint paths between them. This can be
achieved in O(n) time by running three times a modified Dijkstra algorithm, see Bhandari [5]. By
performing this for all pairs of vertices, we may compute the confidence set of the double cycle
method in O(n3) time.
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[21] Frieze, A. and Karoński, M. (2016) Introduction to Random Graphs. Cambridge University Press.
[22] Haigh, J. (1970) The recovery of the root of a tree. J. Appl. Probab. 7(1) 79–88.
[23] Jog, V. and Loh, P.-L. (2016) Analysis of centrality in sublinear preferential attachment trees via the crump-mode-jagers

branching process. IEEE Trans. Network Sci. Eng. 4(1) 1–12.
[24] Jog, V. and Loh, P.-L. (2018) Persistence of centrality in random growing trees. Random Struct. Algorithms 52(1)

136–157.
[25] Khim, J. and Loh, P.-L. (2016) Confidence sets for the source of a diffusion in regular trees. IEEE Trans. Network Sci.

Eng. 4(1) 27–40.
[26] Lugosi, G. and Pereira, A. S. (2019) Finding the seed of uniform attachment trees. Electron. J. Probab. 24 1–15.
[27] Mahmoud, H. M. (2014) The degree profile in some classes of random graphs that generalize recursive trees.Methodol.

Comput. Appl. 16(3) 527–538.
[28] Navlakha, S. and Kingsford, C. (2011) Network archaeology: uncovering ancient networks from present-day interac-

tions. PLoS Comput. Biol. 7(4) e1001119.
[29] Pittel, B. (1994) Note on the heights of random recursive trees and random m-ary search trees. Random Struct. Algor.

5(2) 337–347.
[30] Shah, D. and Zaman, T. R. (2011) Rumors in a network: Who’s the culprit? IEEE Trans. Inform. Theory 57(8)

5163–5181.

https://doi.org/10.1017/S0963548323000184 Published online by Cambridge University Press

https://arxiv.org/abs/2107.00153
https://doi.org/10.1017/S0963548323000184


Combinatorics, Probability and Computing 873

[31] Shah, D. and Zaman, T. (2016) Finding rumor sources on random trees. Oper. Res. 64(3) 736–755.
[32] Tsukiji, T. and Mahmoud, H. (2001) A limit law for outputs in random recursive circuits. Algorithmica 31(3)

403–412.
[33] Tsukiji, T. and Xhafa, F. (1996) On the depth of randomly generated circuits. Springer, pp. 208–220, European

Symposium on Algorithms.

Cite this article: Briend S, Calvillo F, and Lugosi G (2023). Archaeology of random recursive dags and Cooper-Frieze random
networks. Combinatorics, Probability and Computing 32, 859–873. https://doi.org/10.1017/S0963548323000184

https://doi.org/10.1017/S0963548323000184 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000184
https://doi.org/10.1017/S0963548323000184

	Introduction
	Double cycles
	Proof of Theorem 4
	The root vertex is the anchor of a small double cycle
	High-index vertices are not anchors of double cycles

	Proof of Theorem 5
	Concluding remarks

