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Abstract

Fine roots are specialized in nutrient and water acquisition and are critical for species performance
and ecosystem functioning. Recent evidence has shown a broad root economic space determined by
the orthogonal collaboration and conservation gradients related to resource acquisition and
resource conservation, respectively. However, whether these gradients exist among tree species
growing in degraded ecosystems where root growth is limited by soil conditions is much an open
question. We measured six fine root traits (root diameter, specific root length, root dry matter
content, root tissue density, branching intensity, and percentage of arbuscular mycorrhizal
colonization) in 11 young tree species growing in sympatry for 9 years in degraded pastures in a
tropical dry forest (TDF) in Colombia to determine (1) the covariation between fine root traits and
(2) the patterns of belowground niche differentiation among 11 species coexisting under the same
soil conditions. The covariation between fine root traits resembled the acquisitive-conservative,
but not the collaboration gradient for this degraded habitat. The percentage of mycorrhizal
colonization, a critical trait associated with the collaboration gradient, was unrelated to any fine
root trait. Furthermore, we found a strong belowground differentiation among species, mainly
across root diameter and branching intensity. Our results suggest that compacted degraded soils
in TDF landscapes may affect the collaborative association with mycorrhizae, mostly allowing
species differentiation along the do-it-yourself gradient. This finding suggests a hypothesis that
needs to be tested with more species and sites. We discuss the importance of using root traits to aid
species selection for restoration purposes.

Introduction

Soil and vegetation cover degradation resulting from anthropogenic practices such as cattle,
agriculture, and urbanization have impacted the dynamics and functioning of forests worldwide
(Jie et al. 2002). Land degradation has been extreme in tropical dry forests (TDF), which used to
represent 42% of all the world’s tropical forests (Brown& Lugo 1982), withmore than 50% left in
South America (Miles et al. 2006). In Colombia, around 90% of its cover was replaced by the end
of the 20th century (Etter et al. 2008; García et al. 2014), and only 8% of TDF’s original cover is
left in land mosaics of early successional stages (González-M et al. 2018). In these degraded
landscapes, natural regeneration is challenging, and planting trees is necessary for re-
establishing local biodiversity and ecosystem functioning (Rodrigues et al. 2009; Garbowski et al.
2020; Werden et al. 2022). However, water limitation imposed by the pronounced dry season
(3–6 dry months precipitation <100 mm⋅month−1, Portillo-Quintero and Sánchez-Azofeifa,
2010; González-M. et al. 2019), which is exacerbated by soil compaction due to livestock grazing
(Batey 2009; Tracy et al. 2011), represents a barrier to the successful restoration of degraded
TDF. Under this scenario, exploring the variation and coordination of belowground traits
among species will be fundamental for selecting species that can overcome the soil barriers
dominant in dry degraded ecosystems.

Fine roots, which are themost distal orders of fine root systems (typically first- to third-order
roots), are specialized in nutrient and water acquisition (McCormack et al. 2015) and therefore
critical for species performance in degraded ecosystems (Paz et al. 2015; Garbowski et al. 2020;
Werden et al. 2022). Recent studies have identified two main functional belowground gradients
expressing globally (Bergmann et al. 2020). One gradient encompasses plants that optimize
resource uptake by investing carbon in thin roots that efficiently explore the soil themselves
(“do-it-yourself”) to those that “outsource” resource acquisition via mycorrhizal associations,
whereby an expanded cortical area of roots provides a wider intraradical habitat for their fungal
partners (Raven & Edwards 2001; Brundrett 2002; Kong et al. 2014; Ma et al. 2018; Brundrett &
Tedersoo 2018). The acquisition-conservation gradient, orthogonal to the collaboration
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gradient, represents a trade-off between traits linked to high
metabolic activity (e.g., root nitrogen) and those associated with
the costs of root construction (e.g., root tissue density [RTD] or
root dry matter content [RDMC]) (McCormack & Iversen 2019;
Bergmann et al. 2020). These gradients have been reported across
natural ecosystems worldwide (Bergmann et al. 2020). However,
the exploration of root traits covariation and its importance for the
belowground niche partitioning among species is infrequently
studied in degraded habitats. For example, the dry compacted soils
typical of degraded TDFs may affect root exploration capabilities
(Alameda & Villar 2012), their morphology, and root partnership
with mycorrhizae as they are mostly involved in P but not in water
acquisition (Smith & Read 2009). These factors may limit
belowground niche partitioning along the collaborative more than
across the conservative gradient as water acquisition may critically
depend on root morphology and mass deployment.

In the present study, we used six fine root traits (root diameter
[D], specific root length [SRL], RDMC, RTD, branching intensity
[BI], and percentage of arbuscular mycorrhizal colonization [%
M]) measured in young individuals of 11 TDF tree species growing
in sympatry for 9 years in a degraded TDF landscape. Our aims
were (1) to define covariation between fine root traits and (2) to
explore the belowground niche partitioning among 11 species
coexisting under the same compacted soil conditions.

Methods

Study site and species

The study area is located in the restoration area of El Quimbo in the
department of Huila, Colombia (75°41’ W, 2°18’ N), between 700
and 800 m of altitude. The zone is classified as a TDF with a mean

annual temperature of 24°C and an annual mean precipitation of
1036 mm in a bimodal regime, with dry seasons from June to
August and from December to January (Avella-M. et al. 2019). We
took advantage of a restoration experiment established 9 years ago
in abandoned pasture lands in which 11 common tree species
(Table 1) were transplanted to plots containing individuals of all
species randomly distributed, thus controlling for individual age
and soil conditions (Torres-Rodríguez et al. 2019). Soil bulk
density varies between 0.8 and 1.2 (1.1 on average; unpubl. data)
grams per cm3, slopes vary between 0.1° and 14°, and the soils are
classified as inceptisols and mollisols with low P, K, and organic
matter content due to cattle ranching (Torres-Rodríguez
et al. 2019).

Functional traits

Five individuals of each species were sampled in 2021, nine years
after they were planted as saplings. Individual height varied
between 1.7 m (Casearia corymbosa) and 6 m (Guazuma ulmifolia
and Celtis iguanaea). For each individual tree, fine roots were
sampled by following lateral roots growing radially from the main
shoot until fine roots (2 mm or less in thickness) were found. Then,
following the order-based classification (McCormack et al. 2015),
the fine roots were separated into individual root orders,
prioritizing the collection of the first three orders. The diameter
of our fine roots ranged from 0.25 to 0.71mm (Table S1). The fresh
weight of the sampled roots for each individual varied between 0.8
and 1.0 g.

In the field, fine roots were carefully collected, washed, and
stored in plastic bags filled with water inside a cooler for
transportation to the field station laboratory. Upon arrival at the
laboratory, the fresh roots were cleaned, weighed, and scanned at

Table 1. Tree species studied in a tropical dry forest in Huila, Colombia. Family, common name, code, leaf habitat, and wood density (WD) per species. Range (min-
max) and mean (in parenthesis) for height (H) and diameter at breast height (DBH) of trees sampled per species. *Wood density was obtained from Gonzalez et al.
(2021)

Specie Family Common name Code Leaf habit
WD

(g/cm3)* H (m) DBH (cm)

Ochroma pyramidale Malvaceae Balsa Oc.py Evergreen 0.25 4.3–5.6
(5.1)

6.5–9.7
(7.8)

Jacaranda caucana Bignoniaceae Gualanday Ja.ca Deciduous 0.45 4.3–5.5
(5.2)

2.9–4.7
(3.8)

Ceiba pentandra Malvaceae Ceiba Ce.pe Deciduous 0.33 2.4–5.1
(3.3)

3.6–13.8
(8.0)

Sapindus saponaria Sapindaceae Chambimbe Sa.sa Deciduous 0.59 1.8–5.5
(3.4)

1.4–4.4
(2.4)

Pseudobombax septenatum Malvaceae Ceibo Pse.sep Deciduous 0.30 2–4.2
(2.9)

1.9–6.6
(4.4)

Machaerium capote Fabaceae Capote Ma.ca Deciduous 0.62 1.8–3.3
(2.2)

1.2–2.5
(1.8)

Casearia corymbosa Salicaceae Varazón Ca.co Evergreen 0.74 1.7–2.1
(1.9)

2.1–3.3
(2.8)

Guazuma ulmifolia Malvaceae Guazimo Gu.ul Deciduous 0.39 1.9–6
(4.0)

1.6–8.2
(4.6)

Celtis iguanaea Cannabaceae Uña de gato Ce.ig Deciduous 0.52 2.5–6
(4.0)

1.8–3.5
(2.4)

Chloroleucon mangense Fabaceae Raspayuco Ch.ma Deciduous – 3.2–5
(3.9)

3.4–5.9
(4.8)

Tabebuia rosea Bignoniaceae Ocobo Ta.ro Deciduous 0.65 2.1–4.1
(3.0)

2.2–3.3
(2.7)
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300 dpi (Epson Perfection V700 Photo scanner). Then, the roots
were dried in an oven at 70°C for 48 hours and weighed to estimate
the dry weight. The images were analyzed with RhizoVision
Explorer, an open-source software for root trait measurement
(Seethepalli et al. 2021). We obtained six morphological traits
(Table 2) using the weights and the measurements from the
scanned roots: (1) average root diameter (D, mm) computed as the
mean of all diameters in each skeleton pixel, (2) Specific root length
(SRL, m g−1) calculated by dividing total length by the dry weight,
(3) root drymatter content (RDMC,mg g−1) calculated by dividing
the dry weight by the fresh weight, and (4) root tissue density
(RTD, g cm−3) calculated by dividing the dry weight by root
volume, assuming root tissues to be cylindrical in shape (Freschet
et al. 2021). (5) Branching intensity (BI, mm−1) was calculated as
the total number of root branching points (“links,” where a lateral
root is linked to its parent root) divided by the total length
(Eissenstat et al. 2015; Seethepalli et al. 2021). (6) The percentage of
arbuscular mycorrhizal colonization (%M) was calculated by
clearing fine roots with 3% KOH and 3% H2O2 acidified with 3%
HCl, washed with distilled water and stained with 0.05% aniline
blue in lactoglycerol solution (Zangaro et al. 2000). Stained root
segments of each harvested plant were then mounted on a slide,
and the presence/absence of Arbuscular mycorrhizal fungi (AMF)
was recorded at 100 intersect points for each slide (McGonigle et al.
1990). Although RDMC and D are claimed to be tightly correlated
with each other and with SRL, we decided to include all of them
because for the TDF, these relationships remain unclear. There,
species with high SRL have been reported to exhibit either
high diameter but succulent low tissue density or the opposite
(Sanaphre-Villanueva et al. 2022).

Data analysis

To explore the patterns of covariation among fine root traits (first
aim), we performed Pearson correlation with Bonferroni correc-
tion using the R Stats package (R Core Team 2021). To explore the

belowground niche partitioning among 11 species (second aim),
we followed 2 approaches (univariate andmultivariate) using trait
probability density (TPD) (Carmona et al. 2016). The TPD
approach is based on estimating Gaussian kernel density
functions around each observation (Carmona et al. 2016, 2019).
The TPD function of a given species represents the probability of
observing different trait values in that species considering all
sampled individuals (Carmona et al. 2016). For the multivariate
approach, we first generated a multivariate functional space
among species by applying a Principal Component Analysis
(PCA) on all plants measured per species and selecting the
first two PCA axes as suggested by the Horn’s test for our data
(Horn 1965; Dinno 2018). Then taking the scores of each plant of
every species along the first and second PCA axes, we calculated
the multivariate functional niche of each species by using the TPD
(Carmona et al. 2016), implemented in the TPD’s function of the
R package “TPD” (Carmona et al. 2019). To explore belowground
niche partitioning among species, we used the dissimilarity
index (dissim function provided by the TPD package and TPD
dissimilarity <0.05; Carmona et al. 2019) that measures the
overlapping probability in the functional space between two
species (TPD distributions). In addition, to better understand
which functional traits differed most between species (univariate
approach), we calculated functional niches based on single traits
and compared them, following the same procedures described
above. All statistical analyses were performed using R statistical
software (R Core Team 2021).

Results

We found a negative correlation between root diameter (D) and all
root traits except for %M which was not significantly correlated
with D (Figure 1, Table S2). Additionally, we found a positive

Table 2. Functional traits measured and their functional significance

Trait Units Functional description

Average root
diameter (D)

mm Storage (Weemstra et al. 2016) and
transport of water and organic
compounds; mycorrhizal
associations for resource absorption
(Eissenstat et al. 2015)

Specific root length
(SRL)

m g−1 Foraging and resource acquisition
capacity (Weemstra et al. 2016).

Root dry matter
content (RDMC)

mg g−1 Biomass storage, structural defense,
and decomposition rate (Freschet
et al. 2021; Salgado-Negret et al.
2016)

Root tissue density
(RTD)

g cm−3 Biomass storage, resistance to
rupture and herbivores, increased
root lifespan (Salgado-Negret et al.
2016; Freschet et al. 2021)

Branching intensity
(BI)

mm−1 Architectural investment for foraging
and resource acquisition capacity
(Eissenstat et al. 2015; Freschet
et al. 2021)

Percentage of
mycorrhizal
colonization (%M)

% Resources acquisition and
outsourcing strategy (Eissenstat
et al. 2015; Bergmann et al. 2020) Figure 1. Pearson correlation coefficients with Bonferroni correction for pairwise

relationships among six fine root traits. Significant correlations are indicated as red
(negative) and blue (positive) ovals. Trait abbreviations: D: root diameter, %M:
mycorrhizal colonization, RDMC: root dry matter content, RTD: root tissue density, BI:
branching intensity, SRL: specific root length.
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correlation between traits associated with construction root costs,
RTD or RDMC, and BI (Figure 1, Table S2).

The bivariate relationships between traits were supported by
the multivariate approach (Figure 2). The belowground trait
space of the 11 tree species was summarized by the first 2
dimensions of the PCA (Figure 2a, Table S3), which together
explained 73.3% of the among-individuals variation and were the
only 2 significant components according to Horn’s test (Horn’s
test adjusted eigenvalues greater than 1: 2.657 and 1.004,
respectively). The first PCA axis (PC1 explaining 52.5%)
suggested a trade-off between high BI and SRL (loading positively
on PC1) and a high D (loading negatively on PC1). The
contribution of %M to the first axis was low (Figure 2a, Table S3).
The second PCA axis (PC2 explaining 20.8%) separated species

with high tissue densities (i.e., high values of RTD and RDMC)
located on the negative side from species with high SRL on the
positive side (Figure 2a). However, it is important to note that
both SRL and tissue density also partially contributed to PC1. The
multivariate approach showed strong belowground niche
partitioning among species, mainly across the D and BI gradient
(PC1) (Figure 2b, Table S4). Species such as Celtis iguanaea
(Ce.ig), Casearia corymbosa (Ca.co), and Guazuma ulmifolia
(Gu.ul) with high scores on PC1 were significantly different from
species with high values of D, such as Ceiba pentandra (Ce.pe),
Tabebuia rosea (Ta.ro), Chloroleucon mangense (Ch.ma), and
Ochroma pyramidale (Oc.py) (Figure 2b). We did not find
differences between trees of different species along the PC2
(Figure 2b, Table S4).

Figure 2. Multivariate trait analysis. (a) PCA of six fine root
traits. Each point in the PCA is an individual of a given species;
color codes are shown in panel (b). Trait abbreviations: D: root
diameter, BI: branching intensity, SRL: specific root length,
RDMC: root dry matter content, RTD: root tissue density, %M:
mycorrhizal colonization. (b) Trait probability densities (TPD)
showing the functional trait combinations for eleven tree
species. Species abbreviations are in Table 1; each species has
a distinctive color in the PCA and TPD plots. Different letters in
parenthesis next to the species abbreviation indicate
significant differences between species using the dissimilarity
index (>95% non-shared probability).
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The multivariate divergences for the individual traits among
species were supported by the univariate approach (Figure 3,
Table S5–S10). The species differentiation was mainly explained
by D, with Ca.co and Ce.ig showing the thinnest roots and differing
significantly from the other species (except Gu.ul and Pse.sep)
(Figure 3a). Regarding BI, Ca.co showed the highest values and
were statistically different from the other species (except for Ce.ig,
Sapindus Saponaria (Sa.sa) and Gu.ul and Jacaranda caucana
(Ja.ca) (Figure 3b). Ta.ro showed the lowest BI values and varied
from Sa.sa, Ce.ig, and Ca.co, which had the highest values
(Figure 3b). Concerning SRL, Ca.co showed the highest values
and significantly differed from Oc.py, Ce.pe, Ch.ma, Ja.ca, and
Machaerium capote (Ma.ca) (Figure 3c). We detected little
differentiation among species for RDMC, RTD, and %M, probably
associated with strong functional intraspecific variability
(Figure 3d–f, Table S8–S10).

Discussion

Using 6 fine root traits measured in young individuals of 11 TDF
tree species growing in degraded pastures in Colombia, we found
ample variation in root traits that does not resemble the
expectations from the collaboration gradient. The percentage of
mycorrhizal colonization, an essential trait associated with the
collaboration gradient, was unrelated to any fine root trait.
Furthermore, we found strong species’ belowground differ-
entiation mainly determined by the gradient between D versus
BI and SRL rather than the acquisitive-conservative gradient. The
differences in belowground niche among species highlighted their

multiple strategies to deal with drought and penetrate compacted
soils, essential information to understand species’ responses to
climate change and to prioritize species for restoration purposes.

In principle, D and%Mare expected to be tightly associated due
to the limited intrinsic ability to acquire soil resources of thick
roots (Bates & Lynch 2001); however, in our study, such traits
varied independently. The lack of such correlation is not exclusive
to our study, though no clear explanations have been claimed
(Siqueira & Saggin-Júnior 2001; Lugli et al. 2020). One possibility is
that under habitats with dry soils, since mycorrhizal association
enhances mainly P capture but not water (Gavito et al. 2008; Smith
& Read 2009, but see Bahadur et al. 2019), the root’s abilities to
forage water may be more dependent on root morphology itself
than on microbial associations. Alternatively, under low phos-
phorous availability, typical from old and weathered tropical soils
(Vitousek 2004), even finely branched roots may not ensure
sufficient nutrient uptake by themselves, making them very
responsive to and dependent on AMF (Siqueira & Saggin-Júnior
2001). For instance, in our study, the species with the thinnest roots
(Celtis iguanaea and Casearia corymbosa) exhibited mycorrhizal
colonization percentages exceeding 42% on average. It is essential
to recognize that the informative value of %Mmay be reduced, and
identifying specific fungal groups through molecular techniques
that better capture the functional nature of the symbiosis is needed
(Cusack et al. 2021). As we did not report a positive relationship
between D and %M and, therefore, did not find a collaboration
gradient, the negative relationship between D and SRL may reflect
a mathematical autocorrelation more than ecological meaning
(Ostonen et al. 2007). However, in TDFs, the previous observations

Figure 3. Trait probability density for each of the 6 fine root traits and for the 11 tree species. The Y axis is the density. Trait abbreviations: D: root diameter, BI: branching
intensity, SRL: specific root length, RDMC: root dry matter content, RTD: root tissue density, %M: mycorrhizal colonization. Species abbreviations are in Table 1. Different letters in
parenthesis next to species abbreviations indicate significant differences between species according to the similarity index.
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of species with high SRL and high root diameters with low-density
succulent tissues (Sanaphre-Villanueva et al. 2022) call for a
functional role of both traits that still need to be studied in depth.
Given the importance of mycorrhizal symbiosis for promoting the
survival and growth of trees and shrubs within restoration
experiments (Asmelash et al. 2019), an in-depth exploration of
their role under degraded and dry soils becomes imperative.

The second gradient was related to resource acquisition-
conservation, supported by a high RTD and RDMC (although we
did not measure root N concentration). These results are
consistent with other studies (Bergmann et al. 2020; Arrieta-
González et al. 2021; Weemstra et al. 2023). Surprisingly,
conservative traits such as RTD and RDMC were negatively
related to D (Werden et al. 2022), challenging the traditional idea
that D increases with RTD for carbon conservation (McCormack
et al. 2012; Weemstra et al. 2016). This negative correlation may
reflect that D increases through the root cortex, a parenchymatous
tissue with low carbon content and dry weight, faster than the stele
area, a tissue specialized in transporting nutrients and water
through lignified cells (Kong et al. 2014; Valverde-Barrantes et al.
2017). The common observation of thick roots with low tissue
density in other TDFs suggests a potential role of water storage in
fat roots in maintaining tissue hydration within a dry soil matrix
(Paz et al. 2015; Sanaphre-Villanueva et al. 2022). Interestingly,
according to the PCA, in our study, SRL was an important trait
contributing to both root gradients, which has already been
reported by other studies (Cusack et al. 2021;Weemstra et al. 2023;
but only in pairwise correlations in Bergmann et al. 2020). The
longer and thinner fine roots can increase overall absorptive
capacity (“do-it-yourself” strategy), but the negative correlation
with conservative traits could be explained mathematically (as long
as the volume is filled with dry mass and not water or air), as high
RTD implies more root mass per unit root volume and generally
decreases the rootmass per unit root length (Weemstra et al. 2023).

Although our species were planted in a pasture with similar
soils and drought conditions, we found strong belowground
differentiation among species mainly through the D-BI gradient
rather than the acquisitive-conservative gradient. The compacted
soils, typical of degraded pastures in dry ecosystems, could
promote strong differentiation in traits associated with resource
acquisition strategies (D vs BI and SRL). Under compacted soils,
cortical cells tend to become broader and shorter as a strategy to
penetrate soils, protecting the stele and causing thicker roots
(Atwell 1993). Conversely, mechanical damage caused by soil
compaction may also alter the root system architecture in some
species, forcing lateral roots to alter their direction of growth and
resulting in an increase in lateral root branching (Chen et al. 2014),
which is particularly important in those species unable to develop
thick roots. Additionally, thick roots have higher storage space
for accumulating water and starch (cortical cells, Lux et al. 2004);
both resources are fundamental for drought responses under
stomatal closure (Sala et al. 2010). On the contrary, the absence of
belowground niche differentiation among species in conservative
traits (RDMC and RTD) and %M could be explained by the high
intraspecific variability in these traits. This variability may result
from the high spatial heterogeneity of soil resources (Weemstra
et al. 2016). For example, the spatial distribution of root-
mycorrhizal associations is expected to be driven by P content, a
highly variable nutrient in the soil (Cui & Caldwell 1996).
Furthermore, compaction may exert strong selective pressure,
leading a reduced intraspecific variability in D and BI (as
mentioned earlier). However, it appears that compaction does

not influence conservative traits (RDMC and RTD), which are
more associated with resource conservation. As a result, there is no
single optimal phenotype of conservative traits (with low
intraspecific variability) that responds to compacted soils.

More information is needed to better understand how
variations in root traits within and between species contribute to
niche differentiation and prioritization of restoration efforts in
TDF communities. For example, species such as Ochroma
pyramidale (Oh.py), Pseudobombax septenatum (Pse.sep), and
Ceiba pentandra (Ce.pe), known for their low wood density and
fast growth rates, exhibited thick roots with low density. This
efficient strategy allows them to store water and carbohydrates,
which is advantageous in dry forest environments (Pineda-García,
Paz & Tinoco-Ojanguren, 2011; Sanaphre-Villanueva et al. 2022).
However, it is worth noting that dense wood species like Celtis
iguanaea (Ce.ig) and Tabebuia rosea (Ta.ro) also exhibited a
similar combination of traits. This suggests that further exploration
and study of a wide functional space of species are needed to fully
understand the patterns of variation in root traits.

Root traits such as root diameter and branching intensity may
be useful for prioritizing species to restore abandoned pastures of
TDF regions. For instance, in Ceiba pentandra (Ce.pe), thick roots
and low tissue density were associated with water storage. Thismay
be important for the maintenance of root xylem hydration and the
water stream from roots to leaves, allowing photosynthesis and
growth rates during dry periods at the seasonal or daily scale,
during the hours of greatest transpiration (Čermák et al. 2007;
Poorter & Markesteijn 2008). Several studies have suggested that
the large diameter of growing tips helps to deform and separate soil
particles, enhancing mechanical force and soil penetration ability
(Materechera et al. 1992; Atwell 1993; Clarkl et al. 2003; Bengough
et al. 2006; Weemstra et al. 2016), which makes species with thick
roots promising candidates for establishing at initial stages of forest
cover. A perfect example is Chloroleucon mangense (Ch.ma), with
thick roots and high fiber and structural carbohydrate contents
(Paz obs. Pers.). Additionally, Ch.ma is a nitrogen-fixing legume
(Sprent 2001), which may restore soil fertility in degraded
drylands, frequently seen in TDF (Avendaño-Yáñez et al. 2018).
Conversely, Casearia corymbosa (Ca.co), Celtis iguanaea (Ce.ig),
and Guazuma ulmifolia (Gu.ul), with branched, thin, and high-
density roots, are predicted to be efficient in exploring soils and
acquiring resources, allowing them to supply the high-water
demand of the leaves, as these species have low water potentials
during drought periods (Werden et al. 2018). However, those
species may not develop in compacted soils because their roots
cannot easily penetrate dense soils (Clarkl et al. 2003); therefore,
they are good candidates for restoring sites with low soil
compaction.

Here, we highlight these results as essential insights about what
traits should be used to select and what can be the possible relations
with restoration effectiveness. However, other belowground traits
need to be explored. Root depth, elongation rate, and other
physiological traits have been identified as critical determinants of
plant performance under drought due to allowing access to
unexploited soil moisture (Garbowski et al. 2020). Additionally, in
TDF, the introduction of exotic grasses and legumes to promote
and improve animal forage (Vasquez-Valderrama et al. 2020) may
reduce the establishment probability of tree species. Therefore, to
explore traits associated with the competitive exclusion of those
exotic species may be essential to improve the restoration success
(Garbowski et al. 2020). Finally, tree species selection for
restoration should not rely only on root traits analysis, but these
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results must be confirmed by demographic analyses that relate
these strategies to species’ performance in the field.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0266467424000129.
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