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We report on an experimental study in which Lagrangian tracking is applied to millions
of microscopic particles floating on the free surface of turbulent water. We leverage a
large jet-stirred zero-mean-flow apparatus, where the Reynolds number is sufficiently
high for an inertial range to emerge while the surface deformation remains minimal.
Two-point statistics reveal specific features of the flow, deviating from the classic
description derived for incompressible turbulence. The magnitude of the relative velocity
is strongly intermittent, especially at small separations, leading to anomalous scaling of the
second-order structure functions in the dissipative range. This is driven by the divergent
component of the flow, leading to fast approaching/separation rates of nearby particles.
The Lagrangian relative velocity shows strong persistence of the initial state, such that
the ballistic pair separation extends to the inertial range of time delays. Based on these
observations, we propose a classification of particle pairs based on their initial separation
rate. When this is much smaller than the relative velocity prescribed by inertial scaling
(which is the case for the majority of the observed particle pairs), the relative velocity
transitions to a diffusive growth and the Richardson–Obukhov super-diffusive dispersion
is recovered.

Key words: dispersion, homogeneous turbulence

1. Introduction

The transport along the free surface bounding a turbulent liquid has long attracted the
attention of scientists and engineers. A particularly evident and relevant instance is the
dispersion of objects floating in natural bodies of water. Even when waves are negligibly
small and the motion is essentially two-dimensional, upwellings from and downwellings
into the bulk produce sources and sinks in the surface flow, respectively (Csanady 1963;
Schumacher & Eckhardt 2002; Boffetta et al. 2004; Lovecchio, Marchioli & Soldati
2013). The velocity field is then rotational and compressible, exhibiting rich topology
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and complex dynamics in both the Eulerian and Lagrangian frames (Okubo 1970; Haller,
Karrasch & Kogelbauer 2020). One of the crucial questions, for example in the context of
plastic pollution (van Sebille et al. 2020), is the dispersion rate of small floating objects
that follow the turbulent surface flow.

Turbulent dispersion is typically quantified by the statistical magnitude of the separation
r between a pair of tracer particles over time τ . Denoting with r0 the initial separation at
time τ0 and with δu their relative velocity, r(τ ) = r0 + ∫ τ

τ0
δu(τ ′) dτ ′. In homogeneous

turbulence with zero mean flow, the transport is described by the mean square separation
〈(r(τ ) − r0)

2〉 which is classically expected to evolve over three distinct regimes
(Richardson 1926; Batchelor 1950; Salazar & Collins 2009). For times shorter than the
eddy turnover time t0 at scale r0, i.e. τ � t0 = ε−1/3r2/3

0 (where ε is the turbulent
dissipation rate), the relative velocity is highly self-correlated in time and the relative
dispersion is ballistic, 〈(r(τ ) − r0)

2〉 ∼ τ 2. For times longer than the integral time scale,
τ � TL, the relative velocity is completely decorrelated from its initial state and the
dispersion becomes diffusive, 〈(r(τ ) − r0)

2〉 ∼ τ . At intermediate times, t0 � τ � TL,
the relative velocity is presumed independent of the initial separation r0 and influenced
only by ε, leading to a super-diffusive regime, 〈(r(τ ) − r0)

2〉 ∼ τ 3. The latter was
originally derived by Richardson (1926) assuming a scale-dependent effective diffusivity
K ∼ r4/3, consistent with the inertial-range scaling of the relative velocity (Obukhov
1941). The different regimes are associated with specific scaling relations of the velocity
differences with separation, which in turn are at the basis of our understanding of the
phenomenology of turbulence (Kolmogorov 1941). Specifically, the dichotomy between
the ballistic and super-diffusive regimes is directly related to fundamental issues such as
the intermittent nature of turbulence and its memory of initial conditions (Bourgoin et al.
2006; Elsinga, Ishihara & Hunt 2022). In practice, the existence and extent of the different
dispersion regimes is crucial for predicting transport and mixing, especially in systems
where a significant scale separation exists.

The topic, particularly the super-diffusive Richardson–Obukhov regime, has been
widely debated, e.g. concerning its realizability and the role of the initial separation,
separation rate and intermittency (e.g. Bourgoin et al. 2006; Scatamacchia, Biferale
& Toschi 2012; Bitane, Homann & Bec 2012; Shnapp & Liberzon 2018; Tan & Ni
2022; Elsinga et al. 2022). One of the physical mechanisms proposed to rationalize this
regime depicts it as a cascade of scale-dependent ballistic steps (Bourgoin 2015). Other
interpretations propose that tracer particles, after losing memory of their initial state,
sample the velocity space in random fashion, leading to a diffusive behaviour of the
relative velocity, 〈δu(τ )2〉 ∼ τ , and in turn to super-diffusive dispersion (Bitane et al.
2012).

How do small floating particles disperse along the free surface of turbulent flows? The
influence of the non-solenoidal surface velocity was already emphasized by Csanady
(1963) who analysed data from a field campaign in which floaters were released in
Lake Huron. He found that regions of confluence could delay and even revert the
pair separation process. Well-controlled laboratory studies on relative dispersion in
free-surface turbulence are scarce. Cressman et al. (2004) imaged buoyant particles
on the surface of a jet-stirred water tank, observing a dispersion rate significantly
slower compared with the super-diffusive regime. This contrasted with the numerical
simulations of Schumacher & Eckhardt (2002) who found mean square separations
that agreed with the Richardson–Obukhov prediction. These and other computational
studies also highlighted the stronger intermittency of the surface flow compared with
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Figure 1. (a) Schematic of the experimental set-up. (b) A typical snapshot of trajectories coloured by the
instantaneous velocity magnitude.

three-dimensional incompressible turbulence, which was attributed to the compressibility
of the velocity field (Lovecchio et al. 2013).

Here we leverage a large zero-mean-flow apparatus to study the relative motion along the
quasi-flat free surface above homogeneous turbulence. Using high-speed, high-resolution
imaging, we analyse Eulerian and Lagrangian two-point statistics and reveal the profound
influence of the large relative velocities at small separations.

2. Methods

We track millions of floating microparticles (hollow glass spheres, 0.40 g cm−3 in density,
75–90 µm in diameter, Cospheric LLC) on the free surface of homogeneous turbulent
water. The experimental apparatus, described in detail by Ruth & Coletti (2024), is
illustrated in figure 1(a). It consists of a 2 m3 tank, with two planar facing arrays of
submersed pumps, firing jets in random sequence. The two random jet arrays are separated
by a distance of 1.65 m, each lodging 64 pumps spaced 0.1 m from each other. The
firing sequence, which follows the algorithm proposed by Variano & Cowen (2008), and
the power supplied to each pump are dictated by programmable logic controllers. On
average, one in eight pumps is on at a given time and fires for 3 s. Steady homogeneous
turbulence is generated over a central region several times larger than the integral scale
L = O(0.1 m). The free surface is located 0.07 m above the top row of jets, causing
deformations of at most ∼1 mm even for the strongest turbulence level we consider, as
characterized by laser-induced fluorescence (Ruth & Coletti 2024). The water surface is
periodically skimmed and vacuumed to limit accumulation of surfactants. Though some
contamination is unavoidable (Variano & Cowen 2013), the surface tension, measured via
a Du Noüy ring at various points in time, remains at the standard value of 0.07 N m−1

during the experiments. The small particle size and low mean areal concentration of
O(10) particles cm−2 minimize the risk of particle aggregation due to capillarity. Particles
are only tracked if their centroid is more than 1 mm away from any other. Possible
aggregates appear as larger objects and are discarded in post-processing. The individual
particles are faithful tracers of the surface flow, as indicated by their small Stokes number.
The latter can be estimated as St ≡ τpurms/L (Ouellette, O’Malley & Gollub 2008; Shin &
Coletti 2024), where urms is the root-mean-square particle velocity and τp = ρpd2

p/(18μ)

is their response time. While this formulation is strictly valid for fully submerged particles,
the order of magnitude St = O(10−6) shows that particle inertia is negligible.
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Reλ u′
1 (cm s−1) u′

2 (cm s−1) ε(m2 s−3) η (mm) τη (s) TL (s) u′
bulk (cm s−1) εbulk (m2 s−3)

355 2.27 1.46 1.58 × 10−5 0.50 0.25 2.50 1.8 4.2 × 10−5

382 3.02 2.32 5.40 × 10−5 0.37 0.14 1.59 3.6 2.5 × 10−4

424 4.58 3.58 2.38 × 10−4 0.25 0.06 0.71 5.5 8.4 × 10−4

549 6.66 5.28 6.50 × 10−4 0.20 0.04 0.47 7.7 2.1 × 10−3

Table 1. Main turbulence statistics of the experiments. Here Reλ is the Taylor-scale Reynolds number; u′
1 and

u′
2 are the r.m.s. velocity parallel and perpendicular to the jetting direction, respectively; ε is the dissipation

rate; η and τη are the Kolmogorov length and time scale, respectively; TL is the integral time scale; and u′
bulk

and εbulk are the r.m.s. velocity and the dissipation rate in the bulk, respectively.

The floating particles are illuminated by light-emitting diode (LED) lamps and imaged
by a CMOS camera (4 megapixel, VEO 640, Phantom) mounting a 25 mm lens (f/1.4
ZF.2, Milvus, Zeiss). The field of view is 0.1 m × 0.1 m, the resolution is 66 µm pixel−1

and the acquisition frequency is 200 Hz. The spatio-temporal resolution warrants subpixel
accuracy in locating the particle centroids while keeping their inter-frame displacement
to less than 5 pixels. Positions and velocities are obtained by convolving the trajectories
with a Gaussian kernel of width 0.125 s (Voth et al. 2002; Berk & Coletti 2021). This is
comparable to the Kolmogorov time scale, and it is verified that the precise duration of
the kernel does not influence the quantitative results. The level of turbulence is varied by
modulating the power supplied to the pumps, resulting in a range of Taylor-scale Reynolds
numbers Reλ = 355–549. This is much higher compared with previous studies (Reλ = 145
in Schumacher & Eckhardt (2002) and Reλ = 140 in Cressman et al. (2004)) and allows for
the development of an inertial subrange. For each condition, we perform 20 independent
measurement runs, for a total duration of 1800 s, and gather O(106) trajectories longer than
50 frames.

The distance between the surface and the forcing region is less than one integral scale,
which is significantly smaller compared with most previous experiments in which the
turbulence was forced at depth (Brumley & Jirka 1987; McKenna & McGillis 2004;
Herlina & Jirka 2008; Variano & Cowen 2008, 2013). Therefore, as discussed in Ruth
& Coletti (2024), the spatial decay of turbulence away from the forcing region is limited;
thus, the differences between the flow properties along the surface versus the bulk are
mostly due to the free-surface boundary condition.

The main statistics of the free-surface turbulence are listed in table 1. The
surface flow approximates zero-mean-flow homogeneous turbulence, which can be
quantified by various metrics following Carter et al. (2016) and Esteban, Shrimpton
& Ganapathisubramani (2019). The measured instantaneous velocity Ũi is decomposed
into the local mean velocity Ui and the local velocity fluctuations ui, i.e. Ũi =
Ui + ui. The root mean square of the velocity fluctuations (r.m.s. velocity) is

defined as u′
i =

√
〈u2

i 〉, in which overline and angle brackets denote ensemble
average and spatial average, respectively. The homogeneity deviation HD = 2σu/u′,
where σu is the spatial deviation of the local ensemble average of the velocity

fluctuations
√

u2 on the free surface, which quantifies the spatial variance of the
turbulent fluctuations; the mean flow factor MFF = |Ū|/u′, which shows the strength
of the mean flow relative to the velocity fluctuations; and the mean strain-rate

factor MSRF = 〈
√

(∂U1/∂r1)2 + (∂U2/∂r2)2〉/
√

〈(∂u1/∂r1)2〉 + 〈(∂u2/∂r2)2〉, which
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Figure 2. (a) Probability distribution function (PDF) of velocity increments δr0 u with a series of separation
distances r0 at Reλ = 424. (b) The kurtosis of PDF changes with increasing separation distance.

evaluates the strain rate of the mean flow relative to the turbulent strain rates. All the
quantities are calculated over the field of view on the free surface. It is found that
HD < 0.055 for all the cases we tested, indicating good spatial homogeneity. With
the exception of the lowest Reλ = 355 case, MFF < 0.065, showing the mean flow is
negligible relative to the turbulent fluctuations. The mean strain-rate factor is also low,
i.e. MSRF < 0.044 for all the cases, confirming a low level of mean flow strain compared
with its fluctuating counterpart. These quantities attain similar levels in the homogeneous
bulk flow (Ruth & Coletti 2024).

The level of large-scale anisotropy is comparable to that of similar set-ups and does
not alter fundamental scaling laws (Carter et al. 2016; Carter & Coletti 2017; Esteban
et al. 2019). The dissipation rate ε is estimated at the surface by assuming Kolmogorov
(1941) scaling of the second-order velocity structure function over the inertial range, which
has been found to approximately hold in free-surface turbulence (Cressman et al. 2004).
Using values of εbulk measured in the bulk (Ruth & Coletti 2024) leads to quantitative
differences in the Kolmogorov length η and time τη, but does not affect the trends and
conclusions presented below. The integral time scale is evaluated from the e-fold decay of
the Lagrangian autocorrelation of the particle velocity.

3. Results

3.1. Eulerian velocity differences and structure functions
In figure 2(a), we display probability distribution functions of the longitudinal relative
velocity δru = δu · r/r, for a wide range of separations r0 = 11η–401η. The distributions,
shown for Reλ = 424 and analogous in the other considered cases, display very
strong intermittency, signalled by the broad exponential tails especially at small
separations. This is quantified by the kurtosis plotted in figure 2(b), which only slowly
approaches the Gaussian limit for integral-scale separations. Small-scale intermittency
in three-dimensional incompressible turbulence at similar Reλ is far less pronounced,
with kurtosis of the velocity gradients around 10 (Gylfason, Ayyalasomayajula & Warhaft
2004; Carter & Coletti 2017). The likelihood of extremely large velocity differences at
small separations is interpreted as a consequence of the compressibility of the velocity
field: in the presence of upwelling motions from beneath the surface, nearby floating
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Figure 3. (a) Second-order structure functions at the indicated Reynolds numbers. Solid and dashed lines
show the longitudinal and the transverse components, respectively. The inset shows the structure functions
compensated by (Dll/C)3/2/r and (3/4Dtt/C)3/2/r for the longitudinal and the transverse components,
respectively. (b) The Helmholtz decomposition of Dll + Dtt into the rotational and divergent components Drr
and Ddd of the second-order structure function at Reλ = 355. Also displayed is the ratio between divergent and
rotational components Ddd/Drr.

particles separate explosively; vice versa, downwellings cause local confluence and large
approaching rates between particle pairs.

Such anomalously large relative velocities at small separations directly impact the
Eulerian structure functions. In figure 3(a) we display the second-order structure functions
Dii(r) = 〈|u(x + r) − u(x)|2〉, where u(x) is the velocity fluctuation evaluated at the
generic position x, for the four considered levels of Reλ. The longitudinal components
Dll(r) are close to the transverse ones 3/4Dtt(r) and both approximately follow the scaling
Dii(r) ∼ r2/3 for separations r � η, as predicted by Kolmogorov (1941). However, at small
separations, we observe a marked departure from the scaling Dii(r) ∼ r2 expected for
smooth flows in the dissipation range. The slope of the structure function at millimetric
separations is in fact shallower than in the inertial subrange. This behaviour shares
similarities with the formation of caustics displayed by inertial particles in turbulence
(Bewley, Saw & Bodenschatz 2013; Bec, Gustavsson & Mehlig 2024). As those particles
describe a compressible velocity field, intermittently large relative velocities result in
anomalous scaling exponents of the structure functions at small scales, as shown in
numerical simulations (Bec et al. 2010; Salazar & Collins 2012; Ireland, Bragg & Collins
2016) and laboratory experiments (Berk & Coletti 2021; Hassaini, Petersen & Coletti
2023). To investigate this analogy and explore the role of the non-solenoidal nature of
the present velocity fields, we use the Helmholtz decomposition to compute the rotational
and divergent components of the structure functions, respectively as (Lindborg 2015)

Drr = Dtt +
∫ r

0

1
r
(Dtt − Dll) dr, (3.1)

Ddd = Dll −
∫ r

0

1
r
(Dtt − Dll) dr. (3.2)

These are presented in figure 3(b) for the representative case Reλ = 355. It appears
that, while both components deviate from the r2 scaling, the divergent one is majorly
responsible for the effect at small separations, as also indicated by the growth of the ratio
Ddd/Drr for decreasing r.
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Figure 4. (a) Relative pair separation 〈(r − r0)
2〉 for a series of initial separations r0, with the colour of

increasing r0 gradually changing from light to dark. (b) The Lagrangian relative velocity 〈δru(τ )2〉 compensated
by the measured second-order structure function 〈δr0 u2〉 with initial separation r0. For the purpose of visibility,
the curves corresponding to the three flow conditions Reλ = 355, 382 and 424 have been shifted down by three,
two and one decade, respectively.

3.2. Mean squared separation of particle pairs
The same particle pairs used to evaluate two-point Eulerian statistics are used to investigate
dispersion in the Lagrangian frame. Figure 4(a) reports the mean square separations as a
function of time, shifted down by one decade with increasingly higher Reλ for illustration
purposes. For all cases and over multiple decades in time, we observe a behaviour
consistent with ballistic dispersion, with no sign of a transition to a super-diffusive
regime. This suggests a persistence of the initial separation rate, as confirmed by the
temporal evolution of the mean square relative velocity 〈δru(τ )2〉 between particles
initially separated by r0, shown in figure 4(b). Normalization by the mean initial relative
velocity 〈δr0u2〉 = Dll(r0) produces a tight collapse of the data at unity, as the structure
functions account for the ballistic separation at short times. Within experimental scatter,
the relative velocity remains approximately constant even for τ > t0, which is equivalent to
the scaling 〈(r − r0)

2〉 ∼ τ 2 (Batchelor 1950; Tan & Ni 2022). In the following, we show
how the lasting memory of the initial state is related to the fast separation/approaching
rates.

To gain insight into the evolution of the relative velocity, we perform a short-time Taylor
expansion around its initial value:

〈δru(τ )2〉 = 〈δr0u2〉 + 2
〈
δr0u(τ )

∂δru(τ )

∂τ

〉
τ=0

τ + O(τ 2). (3.3)

Assuming inertial scaling (Kolmogorov 1941), the second term in the right-hand side is
of order (r0ε)

2/3τ/τη. Combining the well-known relationships u′2 ∼ (εL)2/3, uη/u′ ∼
Re−1/4
λ and η/L ∼ Re−3/2

λ , we write

〈δru(τ )2〉 ≈ 〈δr0u2〉 + ξ

(
r0

η

)2/3

Re1/4
λ ετ, (3.4)

where ξ is a non-dimensional constant. Compared with the similar expression in
Bitane et al. (2012), (3.4) explicitly incorporates the dependence of the diffusive term
on the Reynolds number and initial separation. By balancing the first and second
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Figure 5. (a) Mean-squared separation for s0 = 1, 0.5, 0.25, 0.1 with Reλ = 424. (b) The Lagrangian relative
velocity 〈δru2(τ )〉 compensated by the measured second-order structure function 〈δr0 u2〉 with initial separation
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changing from light to dark. (d) The mean-squared separations compensated by the super-diffusive scaling
(τ/tD)3. The dashed lines highlight the plateau of the curves representing the compensated scaling (τ/tD)3.

terms on the right-hand side of (3.4), we introduce the transition time scale tD =
〈δr0u2〉/[ξ(r0/η)2/3Re1/4

λ ε]. For τ � tD, the relative velocity is determined by the initial
state, 〈δru(τ )2〉 ≈ 〈δr0u2〉. For τ � tD, the diffusive behaviour dominates, 〈δru(τ )2〉 ∼ τ ,
which is equivalent to the Richardson–Obukhov regime 〈(r − r0)

2〉 ∼ τ 3. Note that (3.4)
implicitly requires tD � TL; i.e. sufficient time is needed for the super-diffusive regime to
develop before the pair separations exceed the inertial range. In the present experiments,
the mean initial relative velocity 〈δr0u2〉 is too large and the scale separation too small for
the condition tD � TL to be realized.

To quantify the influence of the initial relative velocity, we introduce a dimensionless
parameter s0 = |δr0u|/(r0ε)

1/3: for each particle pair, it compares the initial relative
velocity with that prescribed by inertial scaling. This is similar to the parameter γ defined
by Shnapp & Liberzon (2018), comparing the time over which the initial separation rate
is retained against the eddy turnover time at the relevant scale. We then focus on pairs
with s0 smaller than a given threshold, applied to the initial velocity differences in both
longitudinal and transverse directions (see Elsinga et al. 2022). Figure 5(a) illustrates
the effect of reducing such threshold from s0 = 1 (for which virtually all tracked pairs
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Figure 6. Trajectory pairs initially separated by r0 = 10η represented on the space–time domain and
coloured by the relative velocity, for (a) s0 = 0.1 and (b) s0 = 1.

are considered) to s0 = 0.1 (approximately 60 % of the pairs are considered), for the
case Reλ = 424: the mean square separation is slowed down at the early stages, and the
super-diffusive regime is approached at intermediate times. Figure 5(b) shows how, for all
Reλ, the mean relative velocity 〈δru2〉 of pairs with at most s0 = 0.1 evolves according to
(3.4). By fitting the data, we obtain ξ = 0.017 ± 0.005 for all Reynolds numbers, while the
transition time scale is tD ≈ 0.15, 0.04, 0.02 and 0.01 s for Reλ = 355, 382, 424 and 549,
respectively. The corresponding mean square separations in figure 5(c) confirm that, even
enforcing such limitation on the initial separation rates, the Richardson–Obukhov regime
emerges only at the larger Reλ, for which the condition tD � TL is strictly met. This is
clearly highlighted by the compensated plots in figure 5(d), where only for Reλ = 424 and
549 is the scaling 〈(r − r0)

2〉 ∼ τ 3 achieved, and over a limited temporal range.
The role of the initial relative velocity between particle pairs is illustrated in figure 6

which displays sample trajectory pairs for s0 = 0.1 and 1, both having an initial separation
r0 = 10η. The trajectory pairs are depicted in the space–time domain and coloured by the
relative velocity. In the example at s0 = 0.1 (figure 6a), the separation grows significantly
in time, in particular for τ > tD, which is the hallmark of the super-diffusive regime. At
later times, the motions of both particles in the pair decorrelate from each other, signalling
that the diffusive long-time regime has been reached. In the example for s0 = 1 (figure 6b),
the relative velocity is initially higher but changes only marginally in time, as typical of
the ballistic regime.

4. Conclusions

We have investigated the motion of microscopic particles floating above zero-mean-flow
homogeneous turbulence, focusing on the case of minor surface deformations. The
particles are bound to the surface by buoyancy and faithfully follow the local fluid
fluctuations, describing therefore a rotational and compressible velocity field. The
relatively high Reynolds number realized in the present experiments, along with the large
number of long trajectories reconstructed over a wide range of initial separations, have
allowed us to address fundamental questions on relative dispersion in this configuration.
Specific features of the flow are revealed by two-point statistics, deviating from the classic
description of incompressible turbulence. The relative velocity of the floating particles is
strongly intermittent, especially for small separation distances. As indicated by Helmholtz
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decomposition, this is associated with the non-solenoidal nature of the velocity field:
i.e. sources and sinks caused by upwelling and downwelling motions from and into the
bulk, respectively. In analogy to caustics exhibited by inertial particles in turbulence, the
compressibility of the surface flow leads to velocity structure functions that sharply deviate
from the dissipative scaling of smooth incompressible flows.

The high probability of large separation/approaching rates of nearby particles
profoundly impacts the relative dispersion. In particular, the Lagrangian relative velocity
between particle pairs, rather than growing diffusively as expected in incompressible
turbulence at high Reynolds numbers, persists beyond the local eddy turnover time. This
results in a ballistic separation of the pairs that extends to time delays in the inertial range.

Based on these observations, we present a generalization of pair dispersion in
free-surface turbulence, by classifying particle pairs based on the dimensionless parameter
s0. This compares the separation rate at the initial separation r0 and the relative velocity
following inertial scaling. Pairs with s0 < 0.1, which account for more than half of
the observations, separate sufficiently slowly to transition to the diffusive growth of
relative velocity, and thus to super-diffusive dispersion. The framework may also help in
interpreting observations in incompressible three-dimensional turbulent flows, where the
Richardson–Obukhov regime has remained elusive. Such a direction, however, is outside
the scope of our work.

Specifically for free-surface transport, the picture that emerges is strikingly consistent
with that painted by Csanady (1963) in his appraising of the field data in Lake Huron:
‘The dispersal of floating objects was complicated by surface confluences, slicks and
windrows, which under certain circumstances could completely reverse the diffusion
process. In the absence of such disturbing effects, however, the dispersal of floating objects
exhibited an increase in rate of growth with the size of the diffusing cloud, characteristic
of relative turbulent diffusion.’ Indeed, once the pairs seemingly most influenced by the
surface compressibility are resected from the data, the Richardson–Obukhov prediction
is recovered. Our analysis further suggests that super-diffusive dispersion becomes more
prevalent at very large Reλ: this warrants an integral time scale much larger than tD, which
marks the transition to the scaling 〈|r(τ ) − r0|2〉 ∼ τ 3. This is consistent with the evidence
that drifters in the ocean do exhibit this behaviour over intermediate times (Salazar &
Collins 2009).

The non-zero divergence provides a mechanism that can directly alter relative
dispersion. However, one cannot exclude that other specific aspects of free-surface
turbulence may be at least partly responsible for the observed trends. In particular, the
zero-stress boundary condition, which causes the vortices to connect perpendicular to the
surface, results in long-lived attached structures (Shen et al. 1999). These may significantly
contribute to the relative dispersion, though this cannot be directly ascertained by the
present measurement.

The present findings also trigger other related and highly relevant questions. For
example, based on fundamental understanding of particle-laden turbulence as well as
recent field studies, one expects different transport properties for larger particles which
filter some of the turbulent flow scales (Toschi & Bodenschatz 2009; Brandt & Coletti
2022; Sanness Salmon et al. 2023). Moreover, intense subsurface turbulence and/or wind
shear may significantly deform the surface, with gravity–capillary waves impacting the
dispersion in non-trivial ways. Finally, at significant number density, floating particles
clustered by the surface flow are kept together by capillarity and grow increasingly
large aggregates (Protière 2023; Shin & Coletti 2024) which may even back-react on the
underlying flow. Dedicated investigations of those aspects are underway.
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