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Abstract
Sensingmachine elements offer the potential to upgrade conventional machine elements by
extending their primary function to be able to measure a quantity of interest at its point of
origin in a technical system, the so-called in situ measurement. To ensure the functionality
of these next generation machine elements, special attention must be paid to uncertainty in
terms of modelling to be able to correctly evaluate the provided signal and obtain reliable
information. Consequently, this contribution describes an approach to classify uncertainty
in sensing technology, especially in SMEs, based on the amount of available information,
which can be used as a point of departure to reduce the impact of occurring uncertainty to
improve the robustness of the obtained signal. Starting from the understanding of uncer-
tainty and the corresponding classification scheme as well as its linkage to robust design
from the Collaborative Research Centre 805, a quantitative model is presented to determine
the impact of uncertainty on ameasuring signal. The applicability of the proposed approach
is demonstrated using the example of a sensing timing belt by taking into account the
uncertainty from the SME itself and also from the surrounding technical system.
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1. Introduction and motivation
Driven by the rapid progress of the digitization of all engineering disciplines and the
associated trend frommechanical via mechatronic and smart to intelligent systems,
cf. Figure 1, an enormous need for data regarding relevant process and/or state
variables of these technical systems arises. In addition to the control functions,
especially diagnostic functions, of smart or intelligent systems, in which acquired
data are fed into an artificial intelligence tool such as in Veiga, Edin & Peters (2020),
rely heavily on such data. However, their functionality not only depends on the
amount of data fed in, but also on the reliability of these data. A promising approach
to obtain reliable data regarding relevant process and/or state variables within
technical systems is to measure directly in the working process, the so-called in situ
measurement. Therefore, it is possible to minimise the influence of external distur-
bances (cf. Bosch et al. 2017; Hausmann, Koch & Kirchner 2021). Next generation
machine elements allow the placement of sensors at in situ locations. These, so-called
sensing machine elements (SME), offer the potential to substitute conventional
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machine elements, which are widely used in mechanical engineering due to their
standardised design as well as their universal applicability. Therefore, the primary
functions of conventional machine elements are extended with sensory functions
(cf. Vorwerk-Handing et al. 2020). Vorwerk-Handing et al. (2020) advanced this
concept by classifying SMEby their contextual relation betweenmeasurand and their
primary function. Examples for such SME are the sensing rolling bearing presented
by Schirra et al. (2021) and the sensing timing belt by Großkurth & Martin (2019),
which constantly improve their technical readiness level.

2. Aim of the contribution
Typically, little attention is paid to the reliability of the signal obtained from SME in
terms of uncertainty to avoid the gap between established rules on how to handle
uncertainty, described, for example, in the guide to the expression of uncertainty in
measurement (GUM) (Joint Committee for Guides in Metrology 2008), and the
novel concept of SME. Consequently, the target of this contribution is to describe
an approach which closes this gap by quantitatively describing and classifying
uncertainty in SME and sensing technology in general. This classification can then
be used as an indicator of how and where occurring uncertainty could be reduced
bymeans of robust design to improve the reliability, that is, robustness, of the signal
obtained. For this purpose, the understanding and classification of uncertainty
from the Collaborative Research Centre (CRC) 805 as well as its linkage to robust
design strategies and principles are described and subsequently used to develop a
quantitative model to determine the impact of uncertainty on a measuring signal.
Finally, the proposed approach is applied to a sensing timing belt, as exemplary
SME, to reduce and eliminate the impact of occurring uncertainty and thus
improve their functionality and applicability.

3. Fundamentals and state of research
At the Technical University of Darmstadt, research on uncertainty has been
conducted in the CRC 805 ‘Mastering Uncertainty in Load-Bearing Systems of

Mechanic device
e.g. open loop controlled

drive unit

Mechanical func�on

Mechanics + 
actuators

Mechatronic system 
e.g. drive unit with
closed-loop control

Mechatronic func�on

sensors + controller

Mechanics + 
actuators

Smart system
e.g. drive unit with el.
wear compensa�on

Func�onal safety

Self-diagnosis, self-
correc�on, self-

calibra�on

Self-diagnosis, self-
correc�on, self-

calibra�on
sensors + controller

Mechanics + 
actuators

Intelligent system
e.g. smart drive unit

with RUL-display

Safe human-robot
interac�on

Coopera�on and 
communica�on with 

user and operator

Self-diagnosis, self-
correc�on, self-

calibra�on
sensors + controller

Mechanics + 
actuators

Figure 1. Frommechanic devices to intelligent systems (from Vorwerk-Handing et al. 2020, based on Anderl
et al. 2012).
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Mechanical Engineering’ funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Association) (cf. Pelz et al. 2021). Since this contribution is built
upon the results of the CRC 805, the state of research mainly focuses on those.
Subsequent research, which is also attributable to the CRC 805 and applies to data
acquisition problems using sensing technology, SME in particular, is summarised
in the following.

3.1. Previous work

Engelhardt et al. (2009) proposed an holistic framework, the uncertaintymode and
effects analysis (UMEA), for the analysis of uncertainty in load-carrying structures
and their evaluation based on the caused effect on the functional performance of a
considered system (cf. Engelhardt et al. 2009; Engelhardt 2012). The structure and
examples for suitable models and methods supporting each step of the UMEA are
shown in Figure 2. The UMEAwas utilised byWürtenberger to manage the effects
of uncertainty in product models for development purposes but also made the
transfer to mathematical product models (cf. Würtenberger et al. 2017; Würten-
berger 2018). Moreover, the UMEA was carried over to the field of sensor
uncertainty by Vorwerk-Handing et al. and linked to some examples of SME
(cf. Vorwerk-Handing, Welzbacher & Kirchner 2020; Vorwerk-Handing 2021).
Eifler analysed the effect of uncertainty along the product life cycle and evaluated
the usability of the UMEA from a different perspective (cf. Eifler 2015). Freund
focused on mechanical robust design approaches using the variation management
framework (VMF) proposed by Howard et al. (2014) to differentiate the effect of
robust design measures (cf. Freund et al. 2017; Freund 2018). Lotz finally analysed
the effects of uncertainty arising on product families due to similarity (cf. Lotz
2018). For this purpose, Lotz (2018) applied a nondimensional calculus to under-
stand size dependencies and to identify contradicting growth laws. The effects
analysed by Lotz (2018) need to be considered when assessing functional limits of,
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Figure 2. Structure of the uncertainty mode and effects analysis (UMEA) (translated from Engelhardt 2012).
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for example, sensory rolling bearings, in which the electric capacitance of the
lubrication film is used as a sensory effect.When analysing the effects of loaded and
unloaded rolling contacts in a rolling bearing, as described by Schirra et al. (2021),
based on the analysis and modelling of electric damage effects, it turns out that the
growth laws describing size dependencies will imply boundary conditions. From
this point of view, the use of sensory rolling bearings can be considered as a
wildcard when looking at robust design, due to the highly complex, empirical,
model necessary to implement the sensory function, cf. Schirra et al. (2021).

3.2. Uncertainty: definition, classification and variation
management framework

In the ISO-Guide 73 (2009), uncertainty is defined as ‘state, even partial, of
deficiency of information related to understanding or knowledge of an event, its
consequence, or likelihood’ (ISO-Guide 73 2009). This definition is used in the
following.

There are different approaches in engineering to categorise uncertainty, for
example, based on its nature, level ormanifestation in the systemmodel (cf.Walker
et al. 2003; Olausson & Berggren 2010; Kreye, Goh & Newnes 2011). Uncertainty
can be classified as depicted in Figure 3, combining the classification of uncertainty
according to its nature – based on the type of relationship between information and
uncertainty – and level – based on the amount of available and reliable information.
Further details about these two classification approaches are provided by Walker
et al. (2003) and Olausson & Berggren (2010).

In this classification scheme, uncertainty is generally distinguished from deter-
minacy, which describes a condition where exact models and complete informa-
tion about all relevant parameters exist. It has to be noted that determinacy is an
ideal theoretical condition, whereas real technical systems are always subject to
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uncertainty. Uncertainty itself can range from stochastic uncertainty, where its
variation and its probability are known, to nescience, where neither the disturbing
influencing parameter nor the disturbance’s cause or a model for describing the
interrelations between influencing parameters and the system are sufficiently
known. Nescience comprises cases, where uncertainty is suspected but its effects
remain unknown. Between these extremes, gradations of uncertainty were defined,
based on the amount of available and reliable information. If the probability
density function of the output parameter is not known exactly, as for stochastic
uncertainty, an estimated probability density function can be applied. The esti-
mated function is categorised under estimated uncertainty and describes the
occurrence of a variation of influencing parameters based on known intervals of
input–output relationships. In the category of estimated uncertainty, the unknown
variability of the output depending on the input is also included. A special case is
ignored uncertainty. In this category, the variation is known or estimated but is
neglected on purpose, like, for example, in terms of simplifications in themodelling
process (cf. Lotz 2018; Pelz et al. 2021).

The impact of uncertainty on a technical system – and consequently sensing
technology – as well as its sensitivity to parameter variations becomes notable
within the VMF proposed by Howard et al. (2014). It visualises how variations, in
Figure 4 process properties, propagate via transfer functions through different
domains to ameasure of interest, in case of Figure 4 the customers’ satisfaction. The
final result is influenced by the three linked, sequential steps of production,
development and customer perception as depicted. Each transfer function
describes the relation of process properties to design parameters during the
production, the design parameters towards the system behaviour by the develop-
ment and finally the system behaviour and the customer’s satisfaction by the
customers’ perception (cf. Howard et al. 2014, 2017). How exactly a scattering
impacts the measure of interest, in this case, the costumers perception, can be
understood as uncertainty.
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Figure 4.Variation management framework (translated from Freund 2018, based on
Howard et al. 2017).
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For the design of and with sensing technology, in particular SME, the consid-
eration of uncertainty is of great importance, since occurring uncertainty can limit
their functionality and thus have a significant impact on the benefit of their
application. Consequently, uncertainty needs to be systematically identified, math-
ematically described, to be able to quantify its effects, and considered when
designing sensing technology or technical systems with integrated sensing tech-
nology, to ensure their functionality. Therefore, for example, the UMEA proposed
by Engelhardt et al. (2009) is applicable. Applying theVMF in the framework of the
UMEA clarifies, at which step uncertainty arises within the development of and
with sensing technology and thus how it can be eliminated or at least reduced by
applying robust design. During the design of and with sensing technology, uncer-
tainty can occur, for example, in the following forms (cf. Vorwerk-Handing et al.
2020; Vorwerk-Handing 2021):

(i). manufacturing uncertainty, tolerances and uncertainty due to calibration;
(ii). modelling uncertainty of the relation between the input and output of the

sensing technology;
(iii). uncertainty caused by disturbances of/in the usage phase of the system as

further described in Taguchi, Chowdhury & Wu (2004) and Pelz et al.
(2021).

Since SME are based on standardised conventional machine elements that can
normally be manufactured within narrow tolerances, in terms of, for example,
geometry or material properties, manufacturing uncertainty of SME mainly
arises from the additional nonstandardised components required for the reali-
sation of integrated measuring functions. Furthermore, the sensory function of
SME, thus the relation between the input – the process or state variable to be
measured – and the actually recorded and subsequently interpreted output has
to be modelled based on the used physical effects and their corresponding
individual laws. For this purpose, physical effect catalogues, for example, the
one proposed by Vorwerk-Handing (2021), can be used. The resulting model
finally underlies uncertainty due to, for example, simplifications, made con-
sciously or unconsciously, unknown disturbances or the temporal change of
included design parameters, for example, due to corrosion or wear. These
aspects are related to the SME itself and can in general be determined for each
SME. In addition, when designing with SME, uncertainty arises due to the
integration of the SME into a technical system, which needs to be considered,
too. The uncertainty results, for example, from a change in the environmental
conditions or a different assembly situation compared with standard testing
conditions. These system aspects have to be investigated for each technical
system using SME and taken into account (cf. Kreye et al. 2011; Vorwerk-
Handing et al. 2020; Hausmann et al. 2021).

3.3. Robust design

Uncertainty in different areas of the mechanical engineering domain can be
addressed by applying robust design during the product development process to
achieve insensitivity, that is, robustness, of a technical system against this uncer-
tainty. A technical system is defined as ‘robust’ when it is able to ‘[…] fulfill its
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predefined functions [not only] at the design point, but also in the surrounding
neighborhood […]’ (Pelz et al. 2021). This definition is similar to the understand-
ing of robustness by Taguchi et al. (2004), which is often used in this context, who
defines a systemor process as robust ‘[…] when it has limited or reduced functional
variation, even in the presence of noise’.

To achieve robustness of a technical system, Mathias et al. (2010) defined three
strategies, so-called robust design strategies, for handling disturbances causing
uncertainty. These can already be applied in the development phase of the system.
They differ, as shown in Figure 5, with regard to their individual starting point in
the influencing chain of the disturbances:

(i). Elimination of the disturbance: prevent the disturbance from coming up
at all.

(ii). Suppression of the influence of the disturbance: prevent the caused
influence of the disturbance from acting on the (sub)system.

(iii). Reduction of the impact of the disturbance: prevent the impact of the
disturbance from influencing the behaviour of the system considered and
consequently causing problematic effects.

To implement these strategies in the development phase of a technical system, Ebro
andHoward proposed different robust design principles (cf. Ebro &Howard 2016;
Howard et al. 2017). These principles are categorised according to their influence,
to be applicable for handling variations of the design parameters, influencing the
sensitivity of the system towards the variation of design parameters and for
handling the variation of the system’s behaviour. All principles contribute to the
reduction of the variation of behaviour as depicted in Figure 6.

4. A formal approach to classify uncertainty effects in
sensing technology

In the following, an abstracted signal chain of a measurement setup using a SME,
shown in Figure 7, is considered. This representation is not limited to SME, but can
also be used for sensing technology in general. In Figure 7, each box symbolises a
transformation of a quantity, which can in principle be influenced by uncertainty
caused by a disruption. The signal chain starts at the measuring object, where the
measurand Φ occurs as a function of different state variables like, for example,

Subsystem 1

Disturbance Influence of the disturbance

Subsystem 2

Behavior

Elimination of the
disturbance

Supression of the influence
of the disturbance

Reduction of the impact
of the disturbance

Robust Design Strategies
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Figure 5. Robust design strategies (based on Mathias et al. 2010).
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temperature ϑ, voltage U , current I and mechanical properties like force F, torque
T and acceleration a. The measurand Φ∈ F,T ,a,ϑ,U , I,…f gT is measured by the
SME or sensing technology, respectively, and transformed into a signal. The signal
emitted by the SME S is then transferred to the process control unit, where the
signal S∗ is received. Thewhole signal chain is subject to uncertainty as indicated by
the flash icon in Figure 7, which comprises the uncertainty arising from each
transformation within the signal chain. For example, uncertainty can be caused by
the measuring object due to simplifications in the relation between the actual
quantity of interest and the measurand. It can also arise in the energy transfer, for
example, due to parasitic currents in case of a structure-integrated transfer path via
mechanical elements.

For the subsequent mathematical description of uncertainty, we consider an
uncertainty Δx of a quantity x associated to the SME, or sensing technology in
general, respectively, that influences the relation f between the measurand Φ and
the signal S, causing a deviation of the emitted signal ΔS and consequently a
deviation ΔS∗ of the signal received by the process control unit. It is assumed that
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transfer function between design parameters and the product behaviour following
Ebro (translated from Freund 2018, based on Ebro & Howard 2016; Howard et al.
2017).
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the function f is sufficiently accurate for modelling the dependency between the
governing quantities x and the sensor signal S. Uncertainties such as geometric
tolerances disabling the assembly of, for example, a bolt–bore pair need to be given
special attention since they have an impact on the overall system performance. In
that sense, the discussion needs to be limited to disturbances which do not cause
discontinuities in the primary function of the product or system. For the following
explanations, it is assumed that the uncertainty associated to the measuring object
as well as the energy transfer has little influence on the signal received by the
process control unit compared with the uncertainty associated with the SME itself
and the signal transfer. As the sensor is brought closer to themeasurand, influences
on its transmission through the system are diminished and therefore the uncer-
tainty of the recorded signal is reduced. In turn, the uncertainty is shifted towards
the signal transfer. What sounds like a mere benefit at first, contains drawbacks as
the transfer out of a technical system ismost certainly problematic. For example, in
rotating machines where a wired signal transfer is impossible, wireless transmis-
sion is inevitable but might be compromised by surrounding electric or magnetic
fields. The concept of energy transfer is regarded to be independent from the SME
as long as the measuring is passive.

4.1. Quantitative description of uncertainty

Asmentioned in Section 3.2, the classification scheme for uncertainty distinguishes
between the categories ‘determinacy’, ‘stochastic uncertainty’, ‘estimated uncer-
tainty’, ‘ignored uncertainty’ and ‘nescience’, cf. Figure 3, depending on howmuch
information about uncertainty and the caused effect is known and thus howprecise
it can be described in terms of modelling. This classification is not limited to
mechanical systems, but is also applicable to signal transfer analysis. The mathe-
matical expressions introduced in the following are summarised in Figure 8. They
allow a formal description of the uncertainty-effect relation and to identify suitable
calculation methods, for instance Gaussian error propagation, to quantify the final
effect caused by uncertainty.

The ideal case would be determinacy, which means complete knowledge about
the system and influences on the systems would exist. Consequently, the effects of
uncertainty on the signal emitted by the SME and its probability could be explicitly
determined. The caused effects on the system could be described mathematically
without a lack of model parameters. Depending on the type of disturbances
identified, different possibilities would exist to describe the effect of the disturbance
on the system. If the disturbance is continuous, it can be mathematically described
following Eq. (1), whereby the derivation of the function indicates the sensitivity of
the system to this disturbance.

S= f xð Þ⇔ΔS=
df
dx

����
x

�Δx: (1)

The evaluation of the derivative at the nominal design point x in Eq. (1) assumes, as
mentioned earlier, that the model f is sufficiently smooth and continuous. Pro-
vided that the primary functions remain unaffected by the influence of the
disturbance Δx. If the sensory function shows any kind of discontinuity, the
determinacy condition for Eq. (1) is violated. If stochastic uncertainty occurs, it
has a known effect on the system but cannot be fully quantified. However, the
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character and extent of the impact are known to have a certain probability density
function and can be considered during the system development. This leads to a
direct dependency of the signal variation ΔS on the uncertainty Δx, which is
described through Eq. (2). Therefore, the continuity of the uncertainty is assumed,
too.

S= cþk �xm⇔ΔS= k �m �xm�1 �Δx: (2)

Estimated uncertainty is present if partial information about the value of influenc-
ing parameters, their impact and/or the probability of occurrence are not known. It
is distinguished between an uncertain variability and an unknown variability. For
uncertain variability, the probability density functions or assignment functions are
estimated and one of the model parameters k and m remains undetermined,
cf. Eq. (3). This leads to a loss of prediction accuracy. The effect of an uncertainty
Δx can only be expressed in a vicinity of the current design state.

S∝ xm⇔ΔS∝ xm�1 �Δx: (3)

The combination of Eqs. (1)–(3) leads to the conclusion that effects of uncertainty
can be described almost completely for the first two cases, whereas dependencies
can only be stated for the third case. For unknown variability, the probability
density functions or assignment functions are known or partly unknown and a
tendency statement can be given but no precise quantity can be calculated. The
leading powerm in Eq. (3) is often known but the coefficient is not. Consequently,
only rough guesses can be stated for unknown variability, which are rather
tendency estimates, as described with Eq. (4).

ΔS∝�Δx: (4)
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Disregarded uncertainty is characterised by the fact that the effects of disturbances
are deliberately neglected, mostly based on some intuitive estimates to limit the
complexity of the description. The effects of uncertainty itself can be of any type
described, they might be understood but excluded.

Unknown uncertainty, analogue to nescience in the classification scheme from
Figure 3, is characterised by the absence of applicable engineering intuition.
Therefore, the system behaviour is not predictable by the engineer. Estimates of
the occurring uncertainty cannot be made explicit due to, for example, contra-
dicting dependencies. None of the dependencies described in Eqs. (1) through (4)
can be applied to estimate the effects of uncertainty.

4.2. Consideration of uncertainty in the transfer path

For the consideration of uncertainty, the signal chain shown in Figure 7 can be used
as a guideline to determine the sensitivity of a signal with respect to occurring
uncertainty, which affects the signal on its way from the measurand Φ to the
process control unit, where a signal S∗ is received.

Under the assumption that determinacy is present and the relation between the
measured Φ and the emitted signal S is completely known, the sensitivity of the
sensing technology can be calculated as described in Eq. (5) with regard to
variations in both the measurand Φ and the uncertainty affected quantity x.

S= f Φ,xð Þ⇔ΔS=
∂f
∂Φ

����
Φ,x

�ΔΦþ ∂f
∂x

����
Φ,x

�Δx: (5)

In case the relation f between the measurandΦ and the emitted signal S cannot be
completely described including all relevant and consequently required parameters,
the derivatives in (1) cannot be determined, leaving in best case a tendency
statement in form of Eq. (2). Hence, if this relation cannot be fully described, there
is at least estimated uncertainty present, which allows only trend predictions.

Since uncertainty not only arises within the transformation of themeasurandΦ
into the emitted signal S, but also the signal transfer turning the emitted signal S
into S∗, both transformations must be considered. The argumentation applied in
terms of sensing technology can also be applied to the signal transfer. Hence,
considering an additional uncertainty Δex arising within the transformation of the
emitted signal S into S∗, described by the function g, the sensitivity of the signal
transfer can be calculated as shown in Eq. (6).

S∗=g S,exð Þ⇔ΔS∗=
∂g
∂S

����
S,~x

�ΔSþ ∂g
∂ex
����
S,~x

�Δex: (6)

Consequently, the accumulated effect ΔS∗ of the uncertainty portions Δx and Δex
on the signal received at the process control unit can be described following (7).

ΔS∗=
∂g
∂S

����
S,~x

� ∂f
∂Φ

����
Φ,x

�ΔΦþ ∂f
∂x

����
Φ,x

�Δx
( )

þ ∂g
∂ex
����
S,~x

�Δex: (7)

The challenge is, however, to differentiate a change in the signal received ΔS∗ by its
reason, being caused by either occurring uncertainty or in fact by a change of the
measurand ΔΦ.
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To interpret the reason for a change of the signal received by the process control
unit, it is indispensable to understand all differential expressions in Eq. (7).
Therefore, all dependencies must be fully determined, which would allow the
application of Eq. (1). Oftentimes, engineers try to bypass this problem of limited
knowledge by applying additional sensors, for example, a thermocouple to record a
drift in temperature. Using this thermocouple, a change in the signal received by
the process control unit, which is caused by a thermally induced uncertainty, can be
clearly related to the drift in temperature once the temperature sensitivity is known.
But, as long as the sensitivity is unknown, not even in the form of Eqs. (2) or (3),
one can only guess – but not quantitatively describe – the reason for the change of
the received signal ΔS∗.

This approach always targets at moving individual entries in Eq. (7) up in the
hierarchy of managed uncertainty starting from Eqs. (4) to (1). In doing so,
estimated uncertainty is gradually reduced to stochastic uncertainty resulting
theoretically in determinacy, which would allow the correct interpretation of the
different root causes of a signal change ΔS∗ when uncertainty Δx and Δex are either
excluded or measured by individual sensors denoting their change.

Themathematical description of a system or part of it, respectively, provides an
opportunity to objectively determine the uncertainty category of the correspond-
ing model. The classification of uncertainty then leads to useful measures how and
where to eliminate or gradually reduce disruptions causing uncertainty – in terms
of robust design. Furthermore, an already existing system model allows a step by
step concretisation, in which the reduction of uncertainty can be tracked by
comparing the mathematical description before and after the concretisation and
subsequently re-categorising according to the descriptions in Figure 8. The aim of
the concretisation is to identify, which information is still required about the
system, its behaviour or its interrelations so that the model follows a stochastic
uncertainty behaviour in the end. This makes the data acquisition with sensing
technology, in particular SME, a robust, and hence an applicable and useful, tool. In
the following section, an example is discussed to outline the resulting robust design
process.

5. Application example, the sensing timing belt
The above-described approach for the quantitative description of uncertainty and
the resulting robust design process is now applied to the sensing timing belt by
Großkurth & Martin (2019) as an exemplary SME. The quantity of interest for
maintaining belt drives is the timing belt’s wear. The sensing timing belt enables an
in situ measurement of the span-specific belt force during operation, which
corresponds directly to the wear. Thus, the sensing technology extends the
mechanical primary function of a conventional timing belt (cf. Großkurth &
Martin 2019).

The belt force is divided into its pretension and the drive torque, which leads,
for a two pulley drive, to one spanwith a higher belt force (tight span) and one span
with a lower belt force (slack span). The pretension is key for an effective and
efficient torque transmission between two or more toothed pulleys. Wear, due to
tear and fretting of the tension members, reduces the timing belt’s stiffness.
Moreover, the stiffness change can serve as an indicator for the current wear.
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A CAD-model showing the concept and a prototype of the sensing timing belt by
Großkurth & Martin (2019) are shown in Figure 9.

During operation, a timing belt is subject to a broadband vibration excitation,
mainly caused by the polygon effect. For further information about the polygon
effect, please refer to, for example, Nagel (2008) or Perneder (2009). The sensor
module and a lithium ion accumulator, as energy supply, are adhesively embedded
into two neighbouring pockets which are milled out of the timing belt teeth. The
span-specific belt force of the sensing timing belt is measured indirectly via
the eigenfrequencies of the vibrating belt using MEMS-acceleration sensors
(cf. Großkurth & Martin 2019). The timing belt conducts as a string and the
span-specific belt force is calculated using the string equation, cf. Figure 10. The
measuring function of the sensing timing belt can be described on a basic level
using physical relationships, generally referred to as effect chain, which is shown
for the sensing timing belt in Figure 10. The transfer of Figure 7 for the example is
shown in Figure 11 for better understanding.

Based on the effect chain of the measuring function of the sensing timing belt,
the therein-included quantities as well as first experimental studies using pro-
totypes, Großkurth & Martin (2019) identified torsional vibrations and heat
transmission as main disturbances impacting the sensory function. As long as
these are neither determined nor prevented, this results in uncertainty. Both
disturbances originate from the environment of the timing belt and are therefore

Sensor module

Lithium ion
accumulator

Pitch

Figure 9. CAD-model and prototypically realised concept of the sensing timing belt
(cf. Großkurth & Martin 2019).
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Figure 10. Effect chain of the measuring function of the sensing timing belt.
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highly application-dependent. Consequently, these sources cannot be described or
quantified in a general way, which is why unknown uncertainty is present. In
addition to that, due to their occurrence in the environment, both disturbances are
typically located outside the circle of control when designing SME. Hence, it is
impossible to directly eliminate this uncertainty; it is only possible to design the
sensing timing belt in a way that its sensory function is insensitive to the causing
disturbances and therefore robust. This can be achieved in two different ways. On
the one hand, additional sensory functions could determine the disturbances,
which allow their consideration during the signal evaluation; on the other hand,
the technical systemmight be adopted towards a less sensitive design regarding the
disturbances. Both approaches are outlined in the following section, starting with
the option of additional sensing technology.

Two measures were implemented in a first design iteration by Großkurth &
Martin (2019) to achieve the necessary robustness of the sensing timing belt against
uncertainty caused by torsional vibrations and heat transmission. On the one hand,
the sensor module of the initial concept was extended by a second MEMS-
acceleration sensor and the initial sensor was rearranged. Both sensors are
mounted on opposite sides of the PCB perpendicular to the direction of travel of
the timing belt with maximum distance from the middle of the timing belt. This
makes it possible to clearly differentiate between longitudinal vibrations of the
timing belt, which enable the measurement of the timing belt’s eigenfrequencies,
and torsional vibrations, caused, for example, by the drive unit, which superpose
the longitudinal vibrations. If the output signal of both acceleration sensors is in
phase, the measured vibration is a longitudinal vibration, for example, an eigen-
frequency of the timing belt. In contrast, if the signals from the sensors are 180°
phase shifted to each other, themeasured vibration is a torsional vibration and thus
needs to be filtered out in the subsequent signal evaluation and interpretation to
ensure the correctness of the measurement. On the other hand, a temperature
sensor was added to the sensor module of the sensing timing belt. Based on the
information provided by this sensor, the thermally induced change in span-specific
belt force can be detected and subsequently be compensated during signal evalu-
ation and interpretation.

Measurand Original measurement
signal

Signal delivered from
structure

Sensor module
Sensing machine 

element

Process 
control unit

System boundary of sensory unit

Bluetooth
Signal transfer

Accumulator
Energy storage

Uncertainty

Timing belt
Measuring 

object

Figure 11. Schematic description of the sensing timing belt and its components (based on Großkurth &
Martin 2019).
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But not only the robustness of the sensing technology itself is of great
importance to ensure the correct measurement outcome. In addition, when
designing a technical system with SME also the behaviour of the system itself
must be considered. In case of the sensing timing belt, the behaviour of the
timing belt drive, in which the timing belt will be used, must also be taken into
account to reduce uncertainty in terms of the subsequent interpretation of the
signal received by the process control unit. This is due to the fact that different
types of timing belt drives commonly used in practice, differ in terms of their
behaviour.

For the following explanations, two different types of timing belt drives, shown
in Figure 12, are considered. Timing belt drive (a) from Figure 12 consists of two
stationary toothed pulleys whereas timing belt drive (b) consists of one stationary
and onemovable toothed pulley, which is fixed in a sled with an attached weight. If
an elongation of the timing belt occurs, for example, due to thermal disturbances,
belt drive (b) is able to maintain the belt pretension whereas in belt drive (a), the
pretension cannot be maintained. Thus, the measured eigenfrequencies of the
sensing timing belt in belt drive (b) change according to Eq. (8), similar to (5),
based on the law of the physical effect ‘String’, shown in Figure 10, and the
Gaussian error propagation.

∂ f λb
∂T

=
X
j

∂ f λ
∂x j

���� ���� �∂x j

∂T
=

∂ f λ
∂l

���� ���� � ∂l
∂T

: (8)

In contrast, the eigenfrequencies of the sensing timing belt in belt drive (a) change
according to Eq. (9), also based on the physical effect ‘String’ and Gaussian error
propagation.

∂ f λa
∂T

=
X
j

∂ f λ
∂x j

���� ���� �∂x j

∂T
=

∂ f λ
∂l

���� ���� � ∂l
∂T

þ ∂ f λ
∂FTV

���� ���� �∂FTV

∂T
: (9)

The additional term in Eq. (9), representing the temperature-induced change in
pretension of the timing belt, qualitatively implies that themounting of the sensing
timing belt is less robust towards the disturbance for configuration (a) than it is for
(b). Consequently, if the behaviour of the technical system itself is not taken into
account while interpreting the received signal of the SME, the change in the signal
due to a temperature disturbance would be interpreted as significant change of the
measurand wear. In case of the presented example, the monitored part of the
system, the timing belt itself, would mistakenly be maintained.

Figure 12. Timing belt drive (a) – left and timing belt drive (b) – right (cf. Schlecht 2007).
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6. Conclusion and outlook
Finally, it is shown that the design of and with sensing technology is challenging
and still an open field of research. The robust design framework showed that the
application of, in the example case SME, not only requires a deeper understanding
of the sensing technology itself, in particular, but also of the technical periphery it
will be embedded in. It was demonstrated, that changes in the technical system,
which are not incorporated in the analysis of the sensor signal, or eliminated from
the beginning, corrupt the information provided by the sensing technology.
Consequently, the signal of the SME is misinterpreted and thus the added benefit
of being close to the or inside the process vanishes. Robust design strategies during
the design process of the sensing technology itself as well as the application of those
strategies on themechanical system in conjunction with the sensing technology are
necessary for a successful product development.

The further research needs to focus on the development of robust SME, which
implies robust design of the element itself but also considering strategies for their
integration into a specific technical system. Both topics are under investigation in a
research project funded by the DFG (German Research Association) about the
derivation of analysis- and synthesis-methods and therefore suitable models to
manage uncertainty in the development of technical systems with SME (Project
number: 426030644).
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