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Abstract
Efficiency is a crucial factor in productivity growth and the optimal allocation of resources in the economy;
therefore, measuring inefficiency is particularly important. This paper provides a comprehensive review
of the latest developments in distance functions and the measurement of inefficiency within the stochastic
frontier framework. Recent advances in several related areas are reviewed and evaluated, including vari-
ous approaches to measuring inefficiency using distance functions, advancements in modeling inefficiency
within the stochastic frontier framework, and the most common estimation techniques. A practical guide
is provided onwhen thesemethods can be applied and how to implement them. The radial, hyperbolic, and
directional measures of inefficiency are discussed and assessed. The development of modeling inefficiency
concerning its temporal behavior, classification, and determinants is also examined. To ensure the use of
appropriate estimation techniques, recent advancements in the most common estimation techniques are
reviewed. This paper also addresses the importance of maintaining the theoretical regularity applied by
neoclassical microeconomic theory when it is violated, as well as the econometric regularity when vari-
ables are non-stationary. Without regularity, inefficiency results can be extremely misleading. The paper
discusses significant challenges related to estimation issues that must be managed in future applications.
These challenges include the inaccurate choice of functional form, ignoring the possibility of heterogene-
ity and heteroskedasticity, and suffering from the endogeneity problem. The paper also examines various
approaches to addressing these issues, as well as potentially productive areas for future research.
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1. Introduction
Classical exogenous and contemporary endogenous theories of economic growth illustrate how
enhancements in productivity and the efficient allocation of resources positively influence gross
domestic product and, ultimately, economic growth. Efficiency is a crucial factor in productivity
growth and the optimal allocation of resources in the economy; thus, measuring inefficiency is
particularly important. The efficiency of a production unit is determined by comparing it to the
most efficient production frontier. This comparison involves comparing observed input to the
minimum potential input required to produce the output, comparing observed output to themax-
imum potential output obtainable from the input, or a combination of both. Optimality is defined
in terms of production frontiers and value duals, such as cost, revenue, and profit frontiers.

Battese (1992) conducted a survey on production frontiers and technical efficiency, empha-
sizing econometric models and their empirical applications in agricultural economics. Greene
(1993) offered an extensive review of the econometric approach to both technical and allocative
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efficiency. Darku, et al. (2013) provided a thorough historical review that analyzed various stud-
ies on agricultural efficiency, assessing their methodologies and key findings. Nonetheless, recent
years have seen significant theoretical and empirical advancements in the efficiency literature.

This paper provides a comprehensive review of the latest developments in distance functions
and the measurement of inefficiency within the stochastic frontier framework. Distance functions
are advantageous as they measure how close a producer is to the efficient production frontier or
to the optimal benchmark, such as cost minimization, revenue, or profit maximization, thereby
serving as a direct measure of inefficiency. The primary benefit of the stochastic frontier approach
is its ability to separate the error term from inefficiency, thereby providing more precise measures
of inefficiency. Recent advancements in several related areas are reviewed and evaluated, includ-
ing various approaches to measuring inefficiency using distance functions, the development of
modeling inefficiency in the stochastic frontier framework, and the most common estimation
techniques.

The paper examines the radial measure of inefficiency, as defined by standard distance func-
tions; the hyperbolic measure, as provided by the hyperbolic distance function; and the directional
measure, as defined by directional distance functions.

The development of modeling inefficiency concerning its temporal behavior, classification, and
determinants is also discussed. Initially, in stochastic frontier models, inefficiency is assumed to be
time-invariant in both cross-sectional and panel datamodels. This assumption is later relaxed with
the introduction of time-variant inefficiency models, which allow inefficiency to vary over time
and among individual producers. Time-invariant and time-variant inefficiency models are devel-
oped to address both inefficiency components. More recently, models incorporating four random
components have been proposed to address both inefficiencies and heterogeneous technology.
Dynamic inefficiency models have been introduced to capture the dynamic nature of inefficiency,
where inefficiency evolves through an autoregressive process in which past inefficiency values
influence the current value.

In contrast to models that allow for the existence of extremely inefficient producers who cannot
survive in highly competitive markets, threshold inefficiency models truncate the distribution of
inefficiency by placing a threshold parameter of the minimum efficiency required for survival on
inefficiency. These models, therefore, define an upper bound for the distribution of inefficiency,
in addition to the zero lower bound. While threshold inefficiency models focus on the possibil-
ity of inefficient producers being out of the markets, the zero inefficiency models highlight the
possibility of producers being fully efficient. Zero inefficiency models can incorporate both fully
efficient and inefficient producers within a probabilistic framework.

Heterogeneous inefficiency models are proposed to capture heterogeneity in the inefficiency
component by incorporating characteristics specific to each producer. These characteristics can be
integrated into the inefficiency component itself, or into the mean, variance, or both parameters
of the inefficiency distribution.

To ensure the use of appropriate estimation techniques, recent advancements in the most com-
mon estimation techniques are reviewed. This paper also addresses the importance of maintaining
the theoretical regularity applied by neoclassical microeconomic theory when it is violated, as well
as the econometric regularity when variables are non-stationary. Without regularity, inefficiency
results can be extremely misleading. The paper further discusses techniques for imposing theoret-
ical regularity and explores integration and cointegration methods that can be used to address the
non-stationarity of the residuals.

This paper addresses significant challenges related to estimation issues that must be managed
in future applications. These challenges include the inaccurate choice of functional form, ignor-
ing the possibility of heterogeneity and heteroskedasticity, and suffering from the endogeneity
problem.

The estimates of inefficiency can be distorted by an inaccurate choice of the functional form for
production technology. This paper discusses several criteria for selecting a specific functional form
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for the production technology, based on theoretical properties such as the shape of the isoquants,
separability, flexibility, and regular regions, as well as application properties like homogeneity and
translation properties. Additionally, this paper addresses empirical techniques that can be used to
assess the ability of different functional forms to approximate the unknown underlying function.

The selection of an appropriate functional form is insufficient without accommodating het-
erogeneous technologies that may exist among producers or heterogeneity in the inefficiency
term. Ignoring heterogeneity can lead to incorrect conclusions regarding inefficiency measures
because heterogeneity not captured by producer-specific characteristics is wrongly attributed to
inefficiency. This paper addresses the importance of accommodating heterogeneity and discusses
different approaches to account for both heterogeneous technologies and heterogeneity in the
inefficiency term while estimating inefficiency.

Another potential issue in estimating inefficiency using distance functions is that inputs and
outputs may be endogenous, which may lead to biased and inconsistent estimates of the parame-
ters of the production technology and the associatedmeasures of inefficiency. This paper discusses
various approaches to addressing this issue.

The remainder of the paper is organized as follows: The next section presents the theoretical
background on radial, hyperbolic, and directional measures of inefficiency using distance func-
tions. Section 3 reviews the development of modeling inefficiency within the stochastic frontier
framework. Section 4 provides a brief review of recent advances in the most common estimation
techniques. Section 5 discusses estimation issues, and the last section concludes the paper with
a brief discussion of the important issues that should be addressed in future applications when
estimating inefficiency, as well as potentially productive areas for future research.

2. Distance functions and the measurement of inefficiency
There are various methods to measure inefficiency using distance functions. Inefficiency can be
assessed radially with standard distance functions, hyperbolically with hyperbolic distance func-
tions, or directionally with directional distance functions. It can also be evaluated by utilizing
the duality between distance functions and cost, revenue, and profit functions. The selection of a
method may depend on several criteria: the objectives of the producers, exogeneity assumptions,
data availability, and the complexity of the estimation procedures.

To briefly review some of the literature on radial, hyperbolic, and directional measures of
inefficiency using distance functions, consider a producer employing a vector of n inputs x=
(x1, . . . , xn) ∈R

n+ available at fixed prices w= (w1, . . . ,wn) ∈R
n++ to produce a vector ofm out-

puts y= (
y1, . . . , ym

) ∈R
m+ that can be sold at fixed prices p= (

p1, . . . , pm
) ∈R

m++. Let L
(
y
)
be

the set of all input vectors x which can produce the output vector y

L
(
y
) = {

x= (x1, . . . , xn) ∈ RN+: x can produce y
}

and let P (x) be the feasible set of outputs y that can be produced from the input vector x
P (x)= {

y= (y1, . . . , ym) ∈ Rm+: y is producible from x
}

The production technology T for a producer is defined as the set of all feasible input-output
vectors

T = {
(x, y): x ∈R

n+, y ∈R
m+, x can produce y

}
Note that

(
x, y

) ∈ T ⇔ x ∈ L
(
y
) ⇔ y ∈ P (x).

2.1 The Input and Output-Oriented Radial Measures
The radial measures of technical inefficiency are provided by standard distance functions.
Distance functions were initially defined on the input or output production possibility sets by
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Debreu (1951) and Shephard (1953, 1970). The input distance function examines how much the
input vector can be proportionally contracted while the output vector remains fixed. Conversely,
the output distance function examines how much the output vector can be proportionally
expanded while the input vector remains fixed.

Input (output) distance functions do not consider the opposite output (input) orientation. This
limitation can be challenging if the adjustability of both inputs and outputs is required. Therefore,
the choice between input and output distance functions as a representation of production tech-
nology should be based on the producers’ objectives and the assumption of exogeneity for inputs
and outputs. If the goal of producers is to minimize costs, which involves choosing the opti-
mal quantities of inputs to produce a specific output vector, the input distance function can be
utilized to estimate inefficiency in the cost-minimization problem. Conversely, if the goal of pro-
ducers is to maximize revenues, which involves producing the optimal quantities of outputs from
a given input vector, the output distance function can be employed to estimate inefficiency in the
revenue-maximization problem. Additionally, if producers have significant control over decisions
regarding input usage (output production), selecting the input (output) distance function is more
appropriate.

2.1.1 The input distance function
Following Shephard (1953), the input distance function (IDF) can be defined in relation to the
input set L

(
y
)
or the production technology T as follows:

DI
(
y, x

) =max
ϑI

{
ϑI :

x
ϑI

∈ L
(
y
)} =max

ϑI

{
ϑI :

(
x
ϑI

, y
)

∈ T
}

where 1/ϑI represents the proportional contraction of inputs required to reach the inner bound-
ary of the input set, or the production frontier, with the outputs held constant. The function
DI

(
y, x

)
is defined as the ratio of the observed input to the minimum input required to pro-

duce the given output. Therefore, for any input vector x, the expression x/DI
(
y, x

)
represents the

minimum input vector on the ray from the origin through x that can produce y, as illustrated in
Figure 1. Efficient producers, who produce on the boundary of the input set, or the production
frontier, have DI

(
y, x

) = 1. Inefficiency is indicated by DI
(
y, x

)
> 1.

The Debreu-Farrell input-oriented measure of technical efficiency is defined as follows:

TEI
(
y, x

) =min
ϑFI

{
ϑFI : ϑFIx ∈ L

(
y
)} =min

ϑFI

{
ϑFI :

(
ϑFIx, y

) ∈ T
}

The Debreu-Farrell input-oriented measure of technical efficiency is defined as the reciprocal
of the IDF: TEI

(
y, x

) = [
DI

(
y, x

)]−1. The expression TEI
(
y, x

) ≤ 1 represents a radial reduction
of inputs required to be considered as being efficient. Technical inefficiency is defined as follows:

TII
(
y, x

) = 1− TEI
(
y, x

) = 1− 1
DI

(
y, x

)
where 0≤ TII

(
y, x

) ≤ 1. The input distance function has the following properties [see Färe and
Primont (1995), and Färe and Grosskopf (2004) for more details]

i) representation, DI
(
y, x

) ≥ 1 iff x ∈ L
(
y
)
or

(
x, y

) ∈ T
ii) non-increasing and quasi-concave in outputs, and
iii) non-decreasing, concave, and linearly homogeneous in inputs, DI

(
y, λx

) = λDI
(
y, x

)
,

λ> 0.

The input distance function has been applied across various sectors to assess efficiency. In
the manufacturing sector, it has been used to evaluate the efficiency of production processes,
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Figure 1. The Debreu-Farrell input-oriented measure of technical efficiency.

as shown by Hattori (2002) and Atkinson et al. (2003). In the banking sector, it has been
utilized to measure the efficiency of banks by examining the use of inputs, such as capital,
labor, and other resources, in providing financial services and identifying strategies for perfor-
mance enhancement, as discussed by Sturm and Williams (2008). Additionally, the IDF has
been applied to evaluate the efficiency of agricultural production by analyzing how inputs are
transformed into outputs and identifying areas for improvement, as demonstrated by Tsionas
et al. (2015). Furthermore, the IDF has been utilized to address undesirable outputs. This is
modeled by holding desirable outputs y constant and treating undesirable outputs, denoted as
b, as inputs x; DI

(
y, x, b

) =maxϑI
{
ϑI :

(
x
ϑI
, b
ϑI

)
∈ L

(
y
)} =maxϑI

{
ϑI :

(
x
ϑI
, b
ϑI
, y

)
∈ T

}
. See, for

example, Atkinson and Dorfman (2005). This approach credits producers for proportionally
reducing both inputs and undesirable outputs to reach the production frontier. However, if inputs
are freely disposable, undesirable outputs are as well. This treatment of undesirable outputs has
been criticized due to the implied strong disposability of undesirable outputs, as noted by Färe
et al. (2005). Similarly, treating undesirable outputs as inputs allows for substitutability or com-
plementarity among them. Furthermore, these studies overlook the fact that the production of
undesirable outputs is influenced by the production of desirable outputs, represented as b= f (y),
rather than the opposite, y= f (b). Thus, treating undesirable outputs as inputs is inappropriate
because it imposes incorrect theoretical restrictions on the production technology. Therefore, the
IDF can be used only to decrease inputs while keeping both outputs constant. Assaf et al. (2013)
utilized the IDF and treat undesirable output as a technology shifter.

2.1.2 The output distance function
Instead of looking at how much the input vector x may be proportionally contracted with the
output vector y held fixed, the output distance function (ODF) introduced by Shephard (1970),
considers by how much the output vector may be proportionally expanded with the input vector
held fixed. It is defined on the output set P (x) or the production technology T as follows:

DO
(
x, y

) =min
ϑO

{
ϑO:

y
ϑO

∈ P (x)
}

=min
ϑO

{
ϑO:

(
x,

y
ϑO

)
∈ T

}
where 1/ϑO represents the proportional expansion of outputs required to reach the upper bound-
ary of the output set or the production frontier, holding the inputs constant. The function
DO

(
x, y

)
is defined as the ratio of the observed output to maximum potential output obtainable

from the given input. Therefore, for any output vector y, the expression y/DO
(
x, y

)
represents the
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largest output vector on the ray from the origin through y that can be produced by x, as illustrated
in Figure 2. If y is on the boundary of the output set or the production frontier, thenDO

(
x, y

) = 1,
which implies that the producer operates at full technical efficiency. If y is within the boundary of
the output set or the production frontier, thenDO

(
x, y

)
< 1, indicating that the producer operates

with technical inefficiency.
The Debreu-Farrell output-oriented measure of technical efficiency is defined as follows:

TEO
(
x, y

) =max
ϑFO

{
ϑFO:ϑFOy ∈ P (x)

} =max
ϑFO

{
ϑFO:

(
x, ϑFOy

) ∈ T
}

The Debreu-Farrell output-oriented measure of technical efficiency is defined as the reciprocal
of the ODF: TEO

(
x, y

) = [
DO

(
x, y

)]−1. The expression TEO
(
x, y

) ≥ 1 represents a radial expan-
sion of outputs required to achieve efficiency; the greater this measure, the lower the efficiency.
Technical inefficiency is defined as follows:

TIO
(
x, y

) = TEO
(
x, y

) − 1= 1
DO

(
x, y

) − 1

where TIO
(
x, y

) ≥ 0. The output distance function has the following properties [see Färe and
Grosskopf (1994) for more details]

i) representation, DO
(
x, y

) ≤ 1 iff y ∈ P (x) or
(
x, y

) ∈ T
ii) non-increasing and quasi-convex in inputs, and
iii) non-decreasing, convex and linearly homogeneous in outputs, DO

(
x, λy

) = λDO
(
x, y

)
,

λ> 0.

The output distance function has been applied across various sectors to accommodatemultiple-
output technologies and assess efficiency. In the banking sector, it has been used to evaluate
the efficiency of banks in providing diverse services, such as loans and other financial services,
and to identify banks that may not perform efficiently, as demonstrated by Cuesta and Orea
(2002) and Almanidis et al. (2019). In the public sector, the output distance function has been
applied to measure the efficiency of various public services, such as education, and to determine
how efficiently financial and human resources are used to deliver various educational activities,
as discussed by Letti et al. (2022). Additionally, it has been utilized to measure the efficiency
of public hospitals in providing medical services. By focusing on the outputs, these functions
assist in evaluating and improving healthcare delivery, as demonstrated by Devitt et al. (2024).
Furthermore, the ODF has been applied to address undesirable outputs. This is modeled by hold-
ing inputs x constant and treating undesirable outputs, b, as desirable outputs, y; DO

(
x, y

) =
min
ϑO

{
ϑO:

(
y
ϑO

, b
ϑO

)
∈ P (x)

}
=min

ϑO

{
ϑO:

(
x, y
ϑO

, b
ϑO

)
∈ T

}
. See, for example, Färe et al. (1993)

and Färe et al. (1989). This approach credits producers for proportionally expanding both desir-
able and undesirable outputs to reach the production frontier. However, this is applicable only
if the adjustability of both types of outputs is required. Producers have no control over reducing
undesirable outputs without also reducing desirable outputs, and producing more desirable out-
puts requires producing more undesirable outputs, such as generating pollution as byproducts of
producing desirable outputs. Furthermore, undesirable outputs are inevitably produced unless the
entire production process is terminated.

The standard input and output distance functions adjust both desirable and undesirable
outputs proportionally at the same rate. This approach may not align with the objectives of
policy-makers who aim to simultaneously reduce undesirable outputs and increase desirable ones.
Furthermore, these standard distance functions treat technical inefficiency as environmental inef-
ficiency. Future studies that compare and differentiate these inefficiencies should contribute to a
deeper understanding of their distinctions.
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Figure 2. The Debreu-Farrell output-orientedmeasure of technical efficiency.

2.2 The hyperbolic measure
The hyperbolic measures of technical inefficiency are determined by hyperbolic distance func-
tions. According to Färe et al. (1985), the hyperbolic distance function (HDF) is defined in relation
to the production technology T as follows:

DH
(
x, y

) =min
ϑH

{
ϑH :

(
ϑHx,

y
ϑH

)
∈ T

}
where 1≥ ϑH > 0 represents the proportional contraction of inputs and expansion of outputs
required to reach the production frontier. It is important to note that reducing ϑH implies expand-
ing 1/ϑH . This is illustrated in figure 3 where the hyperbolic curve intersects with the production
frontier at point H =

(
ϑHx, y

ϑH

)
. Efficient producers who produce on the boundary of the pro-

duction frontier, have DH
(
x, y

) = 1. Inefficiency is indicated by DH
(
x, y

)
< 1. The hyperbolic

measure of technical efficiency, as proposed by Färe et al. (1985), is defined as follows:

TEH
(
x, y

) =max
ϑFH

{
ϑFH :

(
x
ϑFH

, ϑFHy
)

∈ T
}

Note that the hyperbolic measure of technical efficiency is the reciprocal of the HDF,
TEH

(
x, y

) = [
DH

(
x, y

)]−1. To measure profitability (or return-to-dollar) efficiency, Zofio
and Prieto (2006) defined the hyperbolic measure of technical efficiency as TEH

(
x, y

) =
minϑH

{
ϑH :

(
ϑHx, y

ϑH

)
∈ T

}
= ϑH . For technology frontiers with variable returns to scale, Nahm

and Vu (2013) demonstrated that the hyperbolic measure of technical efficiency is the square of
the HDF, TEH

(
x, y

) = [
DH

(
x, y

)]2. It is assumed that TEH
(
x, y

) ≥ 1 under the condition of weak
disposability of inputs and outputs. Technical inefficiency is defined as follows.

TIH
(
x, y

) = TEH
(
x, y

) − 1= 1
DH

(
x, y

) − 1

where TIH
(
x, y

) ≥ 0. Färe et al. (2002) demonstrated that under constant returns to scale,
the HDF is related to the standard input and output distance functions as DH

(
x, y

) =[
DI

(
y, x

)]−1/2 = [
DO

(
x, y

)]1/2. Another type of relationship was developed by Simar and
Vanhems (2012) and Daraio and Simar (2014) between the HDF and the directional technol-
ogy distance function, expressed as lnDH

(
x∗, y∗) = �DT

(
x, y;gx, gy

)
where x∗ = exp

(
x/gx

)
and
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Figure 3. The hyperbolic measures of technical efficiency.

y∗ = exp
(
y/gy

)
. The HDF has the following properties [see Färe et al. (1985, 1994) for more

details]

i) representation, DH
(
x, y

) ≤ 1 iff
(
x, y

) ∈ T
ii) non-decreasing in outputs and non-increasing in inputs
iii) homogeneity, DH

(
λ−1x, λy

) = λDH
(
x, y

)
, λ> 0

iv) almost homogeneous of degrees k1, k2, and k3 if DH
(
λk1x, λk2y

)
= λk3DH

(
x, y

)
, and

v) homogeneous of degree zero in inputs and outputs under constant returns to scale.

In contrast to standard distance functions, the hyperbolic distance function simultaneously
contracts inputs and expands outputs proportionally, without imposing the restriction of hold-
ing either inputs or outputs constant. This function can be utilized to estimate inefficiency,
assuming that producers have the capability to adjust both inputs and outputs to improve effi-
ciency. In the banking sector, the HDF has been applied to assess the efficiency of banks by
analyzing their delivery of financial services and cost reduction, as illustrated by Cuesta and
Zofio (2005) and Chaffai (2020). Furthermore, the HDF can be utilized for the simultaneous
contraction of inputs x and undesirable outputs b, and the expansion of desirable outputs y;
DH

(
x, y, b

) =min
ϑH

{
ϑH :

(
ϑHx, y

ϑH
, ϑHb

)
∈ T

}
. See, for example, Cuesta et al. (2009), Fang and

Yang (2014), and Adenuga et al. (2019).

2.3 The directional measure
Directional distance functions (DDF), unlike standard or hyperbolic distance functions, represent
an additive measure of technical inefficiency in a specified direction, g, rather than a proportional
ormultiplicative one. The additive nature of directional distance functions allows for the inclusion
of non-positive inputs or outputs. A significant consideration when using DDF is selecting an
appropriate direction in which inefficient producers are projected onto the production frontier.

2.3.1 The directional technology distance function
The directional technology distance function (DTDF) generalizes Shephard’s input and out-
put distance functions, providing a tool to address efficiency issues in an integrated manner.
Chambers et al. (1998) introduced it as a variant of the Luenberger (1995) shortage function. This
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Figure 4. The directional measure of technical inefficiency.

function allows for the simultaneous expansion of y and contraction of x according to a specified
direction vector g = (

gx, gy
)
, where gx ∈ RN+ and gy ∈ RM+ . This means that inputs are contracted in

the direction of gx, and outputs are expanded in the direction of gy. In particular, the directional
technology distance function is defined as follows:

�DT
(
x, y; gx, gy

) =max
θT

{
θT :

(
x− θTgx, y+ θTgy

) ∈ T
}

(1)

Efficient producers operating on the frontier of T have �DT
(
x, y; gx, gy

) = 0, indicating that
no further expansion of outputs or contraction of inputs is feasible. Inefficiency is indicated
by �DT

(
x, y; gx, gy

)
> 0, with higher values denoting greater inefficiency when producers operate

below the frontier of T. Eliminating technical inefficiency for those operating at point A would
move them to point B= (

xT , yT
) = (

x− θTgx, y+ θTgy
)
on the frontier of T, as illustrated in

Figure 4. The DTDF serves as a technology-oriented measure of technical inefficiency.

TIT = �DT
(
x, y; gx, gy

)
As noted by Chambers et al. (1998), the directional technology distance function has the

following properties:

i) representation, �DT
(
x, y; gx, gy

) ≥ 0 iff
(
x, y

) ∈ T
ii) translation, �DT

(
x− αgx, y+ αgy; gx, gy

) = �DT
(
x, y; gx, gy

) − α, for α ∈ R
iii) non-decreasing in x and non-increasing in y if inputs and outputs are freely disposable
iv) concave in

(
x, y

)
v) homogeneous of degree −1 in g, That is, �DT

(
x, y; λgx, λgy

) = λ−1 �DT
(
x, y; gx, gy

)
, for λ>

0, and
vi) homogeneous of degree +1 in x and y if the technology exhibits constant returns to scale,

�DT
(
λx, λy; gx, gy

) = λ�DT
(
x, y; gx, gy

)
, for λ> 0.

The directional technology distance function can be utilized to represent technologies that are
not separable in desirable and undesirable outputs. This is useful in these production contexts
because it allows for non-radial or hyperbolic expansions of desirable outputs and contractions
of undesirable outputs, as demonstrated by Malikov et al. (2016). The DTDF has been applied
across various sectors to assess efficiency. In the banking sector, these functions have been uti-
lized to determine bank inputs and outputs and to evaluate the performance and efficiency of
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banks by assessing how efficiently they convert inputs-such as capital, labor, and other resources-
into outputs, like loans and other financial services, while minimizing undesirable outputs, such
as non-performing loans. For examples, see Koutsomanoli-Filippaki et al. (2012), Guarda et al.
(2013), and Huang and Chung (2017). In the public sector, the DTDF has been employed to
measure the efficiency of public hospitals in delivering multiple health services by utilizing their
resources, such as medical staff, equipment, and other resources, and minimizing undesirable
outcomes. For examples, see Vardanyan et al. (2022).

2.3.2 The directional input distance function
The inefficiency measures derived from the directional distance function depend on the direc-
tional vector, g = (

gx, gy
)
. By setting gy = 0, the directional vector becomes g = (

gx, 0
)
, which

allows for input contraction with outputs held constant, as illustrated in Figure 4. In this con-
text, equation (1) transforms into the directional input distance function (DIDF), permitting only
input contraction; �DT

(
x, y; gx, 0

) = �DI
(
y, x; gx

)
�DI

(
y, x; gx

) =max
θI

{
θI :

(
x− θIgx

) ∈ L
(
y
)} =max

θI

{
θI :

(
x− θIgx, y

) ∈ T
}

Moreover, according to Chambers et al. (1996, 1998) and Färe and Grosskopf (2000), if the
directional input vector, gx, equals the observed input vector, x,

(
that is, gx = −x

)
, then

�DI
(
y, x; gx

) = �DI
(
y, x; − x

) = 1− 1
DI

(
y, x

)
In this context, a relationship exists between the DIDF, �DI

(
y, x; − x

)
, and the Shephard input

distance function,DI
(
y, x

)
. As illustrated in Figure 4, producers operating at pointA canmaintain

constant output while reducing input in the direction of gx = −x to reach point I. The directional
input distance function serves as an input-oriented measure of technical inefficiency.

TII = �DI
(
y, x; gx

)
The directional input distance function satisfies the following properties, as outlined by Chambers
et al. (1996):

i) representation, �DI
(
y, x; gx

) ≥ 0 iff x ∈ L
(
y
)
or

(
x, y

) ∈ T
ii) translation, �DI

(
y, x− αgx; gx

) = �DI
(
y, x; gx

) − α, for α ∈ R
iii) concavity in inputs
iv) positive monotonicity in inputs. That is, x′ > x implies �DI

(
y, x′; gx

) ≥ �DI
(
y, x; gx

)
v) negative monotonicity in outputs. That is, y′ > y implies �DI

(
y′, x; gx

) ≤ �DI
(
g, x; gx

)
, and

vi) homogeneity of degree −1 in gx. That is, �DI
(
y, x; λgx

) = λ−1 �DI
(
y, x; gx

)
, for λ> 0.

The directional input distance function has been applied across various sectors to evalu-
ate efficiency. In the public sector, researchers have utilized it to compare the performance of
public hospitals with that of hospitals in other countries. This comparison assesses how effi-
ciently hospitals utilize their inputs compared to their peers, identifying best practices and areas
for improvement, as demonstrated by Dervaux et al. (2004). Furthermore, the DIDF has been
employed to evaluate the efficiency of dairy farming by analyzing the use of various resources, such
as labor, equipment, and other inputs, to determine how efficiently these resources are utilized to
produce dairy products, as shown by Serra et al. (2011).
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2.3.3 The directional output distance function
By setting gx = 0, the directional vector becomes g = (

0, gy
)
, which allows for output expansion

while inputs remain constant, as illustrated in Figure 4. In this context, equation (1) simplifies
to the directional output distance function (DODF), allowing solely for the expansion of output;
�DT

(
x, y; 0, gy

) = �DO
(
x, y; gy

)
�DO

(
x, y; gy

) =max
θo

{
θO:

(
y+ θOgy

) ∈ P (x)
} =max

θo

{
θO:

(
x, y+ θOgy

) ∈ T
}

Moreover, as noted by Chambers et al. (1998) and Färe and Grosskopf (2000), if the directional
output vector, gy, equals the observed output vector, y

(
that is, gy = y

)
, then

�DO
(
x, y; gy

) = �DO
(
x, y; y

) = 1
DO

(
x, y

) − 1

In this context, a relationship exists between the DODF, �DO
(
x, y; y

)
, and the Shephard output dis-

tance function, DO
(
x, y

)
. As illustrated in Figure 4, producers operating at point A can maintain

constant input while expanding output in the direction of gy = y to reach pointO. The directional
output distance function serves as an output-oriented measure of technical inefficiency.

TIO = �DO
(
x, y; gy

)
The directional output distance function satisfies the following properties, as outlined by Färe
et al. (2005):

i) representation, �DO
(
x, y; gy

) ≥ 0 iff y ∈ P (x) or
(
x, y

) ∈ T
ii) translation, �DO

(
x, y+ αgy; gy

) = �DO
(
x, y; gy

) − α, for α ∈ R
iii) concavity in outputs
iv) negative monotonicity in outputs. That is, y′ > y implies �DO

(
x, y′; gy

) ≤ �DO
(
x, y; gy

)
, and

v) homogeneity of degreeminus−1 in gy. That is, �DO
(
x, y; λgy

) = λ−1 �DO
(
x, y; gy

)
, for λ> 0.

The directional output distance function has been applied across various agricultural
and industrial sectors to accommodate multiple-output technologies, assess efficiency, and
mitigate undesirable outputs such as pollution and emissions. This function is employed to
address these undesirable outputs, b, with the DODF defined as follows: �DO

(
x, y, b; gy, gb

) =
maxθo

{
θO:

(
y+ θOgy, b− θOgb

) ∈ P (x)
} =maxθo

{
θO:

(
x, y+ θOgy, b− θOgb

) ∈ T
}
; see, for

example, Färe et al. (2006), Watanabe and Tanaka (2007), Feng et al. (2018), and Yang et al.
(2021).

2.3.4 The directional vector
The measure of inefficiency derived from directional distance functions depends on the choice of
the direction vector g, which projects the data onto the frontier of T. Inefficiency is measured
by selecting either an exogenous or an endogenous direction vector. The exogenous vector is
pre-specified, whereas the endogenous vector determines the direction based on specific internal
behavior.
2.3.4.1 Exogenous directional vector. For an exogenous or a pre-specified direction vector, two
widely used directions are the unit value direction g = (−1, 1) and the observed input-output
direction g = (−x, y

)
. The unit value direction g = (−1, 1) implies that the amount by which a

producer can decrease inputs and increase outputs will be �DT
(
x, y; − 1, 1

) × 1 units of x and y;
see, for example, Färe et al. (2005). The advantage of choosing this directional vector lies in its
simplicity, its ability to be aggregated at the industry level, its normalizing nature, and its conve-
nience in explaining the results of measurement. Specifically, an inefficiency measure based on
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such a directional vector provides a single number that indicates, regardless of the units of mea-
surement, how many units of each input must be reduced and how many units of each output
must be increased to any particular point in the technology set to reach the production frontier.
As noted by Färe and Grosskopf (2004), the inefficiency of the industry equals the sum of the
directional distance functions for all producers when a common directional vector is chosen for
all producers.

Another commonly used pre-specified direction is the observed input-output direction g
= (−x, y

)
. This type of directional vector measures the simultaneous maximum proportional

expansion of outputs and contraction of inputs that are feasible given the technology. It assumes
that a producer can reduce inefficiency by decreasing inputs and increasing outputs in proportion
to the initial combination of actual inputs and outputs; see, for example, Färe et al. (2004).

The pre-specified direction vector has been extended in multiple directions. Koutsomanoli-
Filippaki et al. (2012) employed the observed input-output averages direction g = (

x, y
)
. However,

these producer-specific direction vectors cannot be aggregated to the industry level. Tzeremes
(2015) utilized a range directional vector g = (

gx, gy
) = (R, 0), where the range of possible input

reduction of a specific producer is defined as the input minus the minimum inputs observed:
Rik′ = xik′ −min

k
{xik} given a set of producers k= {1, . . . ..K}.

The primary concern with the predetermined direction vector is that the parameter estimates
of the production technology, as well as the associated measures of inefficiency, are affected by
the choice of direction vectors, as noted by Atkinson and Tsionas (2016) and Esheba and Serletis
(2023).

2.3.4.2 Endogenous directional vector. An endogenous direction vector is selected to guide any
producer towards the benchmark of minimizing costs or maximizing revenue/profit. This choice
depends on the availability of price information and the fulfillment of necessary behavioral
assumptions, specifically the behaviors of minimizing costs or maximizing revenue/profit.

Using the direction vector g = (
gCx1 , g

C
x2

)
, the directional measure of input inefficiency is

determined by projecting any inefficient producer onto the cost-minimizing bundle C, where
producers achieve both technical and allocative efficiency. Allocative inefficiency arises from the
failure to choose the cost-minimizing input vector given the relative input market prices. For an
endogenous direction vector that projects to the cost-minimizing benchmark, see, for example,
Malikov et al. (2016). Using the direction vector g =

(
gRy1 , g

R
y2

)
, the directional measure of output

inefficiency is determined by projecting any inefficient producer onto the revenue-maximizing
bundle R, where producers achieve both technical and allocative efficiency. Allocative inefficiency
arises from the failure to choose the revenue-maximizing output vector given the relative output
market prices. Esheba (2018) and Esheba and Serletis (2023) provided a set of directions consistent
with cost minimization, as well as revenue and profit maximization. Using the direction vector g
=

(
gπx , gπy

)
, the directional measure of overall inefficiency is determined by projecting any inef-

ficient producer to the profit-maximizing bundle π , where producers achieve both technical and
allocative efficiency. Allocative inefficiency arises from the failure to choose the profit-maximizing
input-output vector given the relative input and output market prices. All profit inefficiency for
producers operating below the profit frontier can be regarded as measures of overall technical
inefficiency, as noted by Zofio et al. (2013). Feng et al. (2018) discussed an endogenous direction
vector projecting to the profit-maximizing benchmark, and Atkinson and Tsionas (2016) provided
a set of directions consistent with cost minimization and profit maximization.

Färe et al. (2013) developed a method for selecting direction vectors that are endogenously
determined based on exogenous normalization constraints using Data Envelopment Analysis,
without the need for price data. Hampf and Kruger (2015) utilized optimization methods to
endogenously determined optimal directions for a non-parametric efficiency analysis. However,
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Figure 5. Radial, hyperbolic and directional measures of technical inefficiency.

further research is necessary to compare alternative choices of directional vectors and to establish a
framework for determining an optimal set of directions using parametric measurement methods.

To summarize, Figure 5 illustrates the projections of the observed input-output vec-
tor at point A using various types of distance functions. The standard distance function
projects A proportionally onto R. The radial measure of efficiency is given by TER

(
x, y

) =
maxϑ

{
ϑ :

(
ϑx, ϑy

) ∈ T
}
. However, the radial measure provided by the standard distance func-

tion can yield high inefficiency measures even when the observed input-output vector is very
close to the frontier, as noted by Hudgins and Primont (2007). The hyperbolic distance func-
tion projects A hyperbolically onto H, where the intersection between the hyperbolic curve
and the frontier of T is the point H = (

ϑFHx, y/ϑFH
)
. The hyperbolic measure of efficiency is

expressed as TEH
(
x, y

) =maxϑFH
{
ϑFH :

(
x/ϑFH , ϑFHy

) ∈ T
}
. Implementing the hyperbolic mea-

sure using the hyperbolic distance function can be complex due to the non-linear optimization
involved. The directional technology distance function is particularly well-suited for simulta-
neously contracting x and expanding y to project A onto D using the direction vector g. The
directional measure of inefficiency is technology-oriented and expressed as �DT

(
x, y; gx, gy

) =
maxθT

{
θT :

(
x− θTgx, y+ θTgy

) ∈ T
}
. The important properties of the alternative distance func-

tions that can be used for measuring inefficiency and the relationships among them are
summarized in Table 1.

3. Modeling inefficiency
The deterministic frontier approach assumes that all deviations from the efficient frontier are
under the control of producers and are considered inefficiencies. In contrast, the stochastic fron-
tier approach introduces a random error term that accounts for exogenous stochastic factors
beyond the control of producers, in addition to the inefficiency term, in the specification of the
frontier model. The primary advantage of the stochastic frontier approach is its ability to separate
the error term from inefficiency, thereby providing more precise measures of inefficiency. The
stochastic frontier model is presented as follows:

Y = f (X; β)exp(v− u)
where (ν − u) is a composed error term, u represents the inefficiency term and v represents ran-
dom errors associated with random factors that can positively or negatively affect production.
Technical efficiency is defined as the ratio of the observed production values to the corresponding
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Table 1. A summary of the important properties of alternative distance functions

Property Homogeneity/

Function Feasibility Monotonicity Translation Inputs Outputs Inefficiency Relationships

IDF DI
(
y, x

) ≥ 1 ∇xDI (.)≥ 0 homogeneity concave quasi- TII
(
y, x

)
under CRS;

iff
(
x, y

) ∈ T ∇yDI (.)≤ 0 DI
(
y, λx

)
concave = 1− TEI

(
y, x

)
DI

(
y, x

) =
DI

(
y, x

)
if

(
x, y

)
is on = λDI

(
y, x

) = 1− 1
DI(y,x)

1/Do
(
x, y

)
=maxϑI : the frontier λ> 0 duality;(

x
ϑI
, y

)
of T, then 1/DI

(
y, x

) ≥
∈ T DI

(
y, x

) = 1 C(y,w)/wx

ODF Do
(
x, y

) ≤ 1 ∇xDo (.)≤ 0 homogeneity quasi- convex TIo
(
x, y

)
under CRS;

iff
(
x, y

) ∈ T ∇yDo (.)≥ 0 Do
(
x, λy

)
convex = TEo

(
x, y

) −1 Do
(
x, y

) =
Do

(
x, y

)
if

(
x, y

)
is on = λDo

(
x, y

) = 1
Do(x,y)

−1 1/DI
(
y, x

)
=minϑo : the frontier λ> 0 duality;(
x, y

ϑO

)
of T, then 1/Do

(
x, y

) ≤
∈ T Do

(
x, y

) = 1 R(x, p)/py

HDF DH
(
x, y

) ≤ 1 ∇xDH (.)≤ 0 almost convex convex TIH
(
x, y

)
under CRS;

iff
(
x, y

) ∈ T ∇yDH (.)≥ 0 homogeneous = TEH
(
x, y

) −1 DH
(
x, y

)
DH

(
x, y

)
if

(
x, y

)
is on DH

(
λ−1x, λy

) = 1
DH(x,y)

−1 = 1√
DI(y,x)

=minϑH : the frontier = λDH
(
x, y

) =
√
DO

(
x, y

)(
ϑHx, y

ϑH

)
of T, then under CRS; duality;

∈ T DH
(
x, y

) = 1 DH
(
λx, λy

) [
1/DH

(
x, y

)]2
=DH

(
x, y

) ≥ py/wx

DTDF �DT (.)≥ 0 ∇x �DT (.)≥ 0 translation concave concave TIT
(
x, y

) �DT
(
x, y; 0, gy

)
iff

(
x, y

) ∈ T ∇y �DT (.)≤ 0 �DT (x− αgx , = �DT (.) = �Do
(
x, y; gy

)
�DT (.) if

(
x, y

)
is on y+ αgy ; g)= �DT

(
x, y; gx , 0

)
=maxθT : the frontier �DT

(
x, y; g

) −α = �DI
(
y, x; gx

)
(x− θTgx , of T, then homogeneity duality;

y+ θTgy) �DT (.)= 0 �DT
(
x, y; λg

) = �DT
(
x, y; g

) ≤
∈ T λ−1 �DT

(
x, y; g

) π(p,w)−(py − wx)
pgy+wgx

DIDF �DI (.)≥ 0 ∇x �DI (.)≥ 0 translation concave quasi- TII
(
y, x

) �DI
(
y, x; − x

) =
iff

(
x, y

) ∈ T ∇y �DI (.)≤ 0 �DI
(
y, x− αgx

) = concave = �DI (.) �DT
(
x, y; − x, 0

)
�DI

(
y, x; gx

)
if

(
x, y

)
is on �DI

(
y, x; gx

) −α = 1− 1/DI
(
y, x

)
=maxθI : the frontier homogeneity duality;(
y, x− θI gx

)
of T, then �DI

(
y, x; λgx

) = �DI
(
y, x; gx

) ≤
∈ T �DI (.)= 0 λ−1 �DI

(
y, x; gx

) wx−C(y,w)
wgx

DODF �Do (.)≥ 0 ∇x �Do (.)≥ 0 translation quasi- concave TIo
(
x, y

) �Do
(
x, y; y

)
iff

(
x, y

) ∈ T ∇y �Do (.)≤ 0 �DO
(
x, y+ αgy

) = concave = �Do (.) = �DT
(
x, y; 0, y

)
�Do

(
x, y; gy

)
if

(
x, y

)
is on �DO

(
x, y; gy

) −α = [
1/Do

(
x, y

)] −1

=maxθo: the frontier homogeneity duality;(
x, y+ αgy

)
of T, then �DO

(
x, y; λgy

) = �DO
(
x, y; gy

) ≤
∈ T �Do (.)= 0 λ−1 �DO

(
x, y; gy

) R(x,p)−py
pgy

estimated frontier values.

TE= Y
Y∗ = f (X; β)exp(v− u)

f (X; β)exp(v)
= exp (− u)
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where u≥ 0 represents a measure of technical inefficiency because u= −lnTE≈ 1− TE≈ 1−
exp(− u). Several techniques have been proposed in the literature to separate the composed error
term ε= ν − u. Refer to Section 4 for more details on estimation techniques.

This section examines the development of modeling inefficiency concerning its temporal
behavior, classification, and determinants. Initially, in stochastic frontier models, inefficiency is
assumed to be time-invariant in both cross-sectional and panel data models. This assumption
is later relaxed with the introduction of time-variant inefficiency models, which allow inef-
ficiency to vary over time and among individual producers. Time-invariant and time-variant
inefficiency models are developed to address both inefficiency components. More recently, mod-
els incorporating four random components have been proposed to address both inefficiencies
and heterogeneous technology. Dynamic inefficiency models have been introduced to capture
the dynamic nature of inefficiency, where inefficiency evolves through an autoregressive pro-
cess in which past inefficiency values influence the current value. Threshold inefficiency models
examine the possibility that inefficient producers might be excluded from markets. In contrast,
zero inefficiency models highlight the possibility for producers to be fully efficient. These mod-
els can incorporate both fully efficient and inefficient producers within a probabilistic framework.
Heterogeneous inefficiency models are proposed to capture heterogeneity in the inefficiency com-
ponent by incorporating characteristics specific to each producer. These characteristics can be
integrated into the inefficiency component itself, or into the mean, variance, or both parameters
of the inefficiency distribution.

3.1 Time-invariant inefficiency models
Time-invariant inefficiency models consider inefficiency as unchanging over time. In the inef-
ficiency literature, it is sometimes referred to as long-term or persistent inefficiency. This
inefficiency can be modeled using either cross-sectional or panel data.

3.1.1 The cross-sectional models
The early literature on stochastic frontier models utilized cross-sectional models, where specific
distributions for inefficiency and error terms were assumed to estimate the frontier function.
These distribution assumptions were also necessary to separate inefficiency from the error term.

The stochastic production frontier was independently proposed by Aigner et al. (1977) and
Meeusen and Van den Broeck (1977). Battese and Cora (1977) introduced the first application. It
is presented as follows:

Yi = α + f (Xi; β)+ νi − ui
In this context, inputs, outputs, stochastic factors, and inefficiency vary only across producers. A
key issue with the cross-sectional model is its reliance on the strong assumption that inefficiencies
are independent of the regressors. If this assumption is violated, it results in inconsistent estimates
of the model’s parameters and the measures of inefficiency.

3.1.2 The panel data models
The use of panel data addresses the limitations of cross-sectional models and offers several advan-
tages in models with time-invariant inefficiency. It provides consistent estimates of inefficiency
by incorporating more temporal observations for the same producer, assuming the time series is
sufficiently large. Additionally, it does not require inefficiency to be independent of the regressors,
which is beneficial for including time-invariant regressors in the model. Furthermore, there is no
need to make specific distributional assumption regarding inefficiency, and all parameters of the
model can be estimated using standard estimation procedures for panel data, such as fixed and
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random-effects. The production frontier panel data model can be represented as follows:
Yit = α + f (Xit ; β)+ νit − ui

In this context, inputs, outputs, and stochastic factors vary over time and among producers, but
inefficiency varies only among producers, this assumption may be unrealistic. However, it might
hold true if the time dimension of the panel is particularly short or if inefficiency is associated with
management and there is no change in management during that period. If the time dimension is
long, it seems unrealistic to assume constant inefficiency over time or for inefficient producers to
continue operating in the market.
3.1.2.1 The fixed-effects models. If inefficiency is considered systematic and, therefore, ui is
treated as a producer-specific constant or an unknown fixed parameter to be estimated, a fixed-
effect model can be implemented. No distribution assumption is required for ui, which is assumed
to be correlated with the regressors Xit or the random errors νit . Schmidt and Sickles (1984)
defined a fixed-effects model of inefficiency as follows:

Yit = αi + f (Xit ; β)+ νit

Since ui is treated as fixed, it becomes the producer-specific intercept αi = α − ui. These are
regarded as fixed numbers that can be estimated as parameters or eliminated through suitable
transformation if the number of producers is too large. Schmidt and Sickles (1984) considered
various procedures for estimating the fixed-effects model: the within estimator, the Generalized
Least Squares (GLS) estimator, and the Maximum Likelihood Estimation (MLE). The within esti-
mator does not assume independence between ui and the regressors, whereas the GLS estimator
assumes that ui is uncorrelated with the regressors. The MLE assumes both distributional and
independence assumptions. Sickles (2005) presented a diverse array of methods for identifying
producer-specific inefficiency using panel estimators. Koop et al. (1997) described procedures for
Bayesian estimation of fixed-effects inefficiency models.

Using the within estimator, the fixed-effects estimate β̂ , also known as the within estimate, can
be determined by either regressing Ỹit =

(
yit − yi

)
on X̃it = (xit − xi), where yi =

∑T
i=1yit/T and

xi = ∑T
i=1xit/T, thereby eliminating αi, or, equivalently, by regressing Yit onXit along with a set of

specific dummy variables for producers using the Ordinary Least Squares (OLS). Consequently, α̂i
is obtained by averaging its residuals over time as α̂i = yi − xiβ̂ , or, equivalently, α̂i represents the
estimated coefficients of the dummy variables. Inefficiency is assessed by comparing the estimated
intercept of each producer to the maximum estimated value.

ûi =maxj
{
α̂j

} − α̂i

Producer-specific efficiency can be obtained from TEi = exp (−ûi). However, this approach
considers the producer with the highest intercept as fully efficient, making inefficiency for other
producers relative to that producer. Feng and Horrace (2012) estimated inefficiency relative to
the least efficient producer instead of the most efficient one by comparing the estimated intercept
of each producer to the minimum estimated value. They argued that these inefficiency estimates
have smaller bias than those using the maximum estimated value when many producers operate
close to the efficient frontier. However, in both cases, inefficiency is estimated as relative rather
than absolute inefficiency. Furthermore, the intercept α̂i captures all time-invariant unobserved
heterogeneity, not only those related to inefficiency. Additionally, as pointed out by Kim and
Schmidt (2000), Wang and Schmidt (2009), and Satchachai and Schmidt (2010), the estimation
of inefficiency based on the fixed-effects estimator can be upwardly biased when the number of
time series is small and the number of cross-sectional observations is large. The max operator
induces an upward bias in α̂ =maxj

{
α̂j

}
, which in turn induces an upward bias in the inefficiency

estimates ûi.
Wikstrom (2016) introduced amodified fixed-effects estimator that does not suffer from bias in

large cross-sectional observations. This is accomplished by utilizing the second central moment
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of the inefficiency distribution to correct the intercept value derived from the fixed-effects esti-
mator. Wikstrom presented a consistent estimator of α, assuming a half-normal distribution and
an exponential distribution for ui as α̂ = μ̂α + μ̂u where μ̂α = ∑N

i=1α̂i/N, μ̂u = σ̂ 2
α (2/π − 2)1/2

assuming a half-normal distribution for ui and μ̂u = (
σ̂ 2
α

)1/2 assuming an exponential distribu-
tion for ui, σ̂ 2

α =
(∑N

i=1 (̂αi − μ̂α)
2 /N

)
− (
σ̂ 2
v /T

)
. The modified fixed-effects estimator of ui is

defined as follows:
ûi = α̂ − α̂i

The fixed-effects estimator has the advantage of not requiring a distributional assumption
on inefficiency and allows inefficiency to be correlated with any other variables. However, the
assumption of time invariance in inefficiency is very restrictive and may not be reasonable for
relatively long panels. Additionally, fixed-effect time-invariant models are based on the assump-
tion that all time-invariant effects are parts of inefficiency. Consequently, inefficiency measures
include any other source of time-invariant unobserved heterogeneity, not only those related to
inefficiency, making it challenging to distinguish unobserved heterogeneity from inefficiency, as
noted by Greene (2004a). Furthermore, time-invariant regressors cannot be used in the specifi-
cation of the frontier model, as this would lead to perfect multicollinearity between αi and the
time-invariant regressors.
3.1.2.2 The random-effects models. When the assumption of no correlation between the regres-
sors and inefficiency is correct, random-effects models provide more efficient estimates than fixed
effects models. Random-effects time-invariant inefficiency models were introduced by Pitt and
Lee (1981), Kumbhakar (1987), and Battese and Coelli (1988), where inefficiency is treated as
time-invariant. Similar to fixed effects models, inefficiency measures can be estimated using the
GLS technique commonly applied to standard random-effects panel data models. Inefficiency
measures can also be estimated by E(ui | εit), where εit = νit − ui, using maximum likelihood esti-
mation or the posterior mean E(ui | Y) using Bayesian estimation. See section 4 for more details
on estimation techniques.

Fixed-effect models allow for a correlation between inefficiency and regressors, whereas
random-effect models require independence among them and do not allow for endogenous
regressors in the model. This assumption may be unrealistic because inefficiency could be related
to the usage and quality of inputs when modeling production. Additionally, random-effect
time-invariant models are based on the assumption that all time-invariant effects are parts of inef-
ficiency. An advantage of random-effects models is that time-invariant regressors can be included
in the model without causing collinearity issues.

3.2 Time-variant inefficiency models
To accommodate efficiency improvements and allow inefficiency to change over time, time-
variant inefficiency models are employed. In the inefficiency literature, time-variant inefficiency
is sometimes referred to as short-term or transient inefficiency. Estimates of inefficiency in these
models depend on model specifications, distributional assumptions, and the temporal behavior
of inefficiency. Time-variant inefficiency models facilitate the identification of both time-variant
inefficiency and producer effects simultaneously, accounting for heterogeneous technologies.
Additionally, they allow for the simultaneous identification of both time-variant inefficiency and
technical change.

3.2.1 The fixed-effects models
Cornwell et al. (1990) modified the assumption of time invariance in the Schmidt and Sickles
(1984)model by replacing αi with a quadratic function of time. This adjustment allows inefficiency
to vary over time and among individual producers. The model is represented as follows:
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Yit = αit + f (Xit ; β)+ vit

where αit = θ0i + θ1it + θ2it2. The model is estimated by regressing the residuals for each pro-
ducer

(̂
εit = Yit − X′

itβ̂
)
on a constant, time, and time squared. The fitted values from this

regression provide an estimate of αit . Inefficiency measures are computed relative to the most
efficient producer across all time periods or, alternatively, to the most efficient producer in
a given year. This modification allows the most efficient producer to change from year to
year.

ûit =maxj
{
α̂jt

} − α̂it

The advantages of this model include its independence of distribution assumption on inef-
ficiency and its allowance of inefficiency to vary among producers and over time. However, it
is quite restrictive in describing the temporal behavior of inefficiency, as this is assumed to be
deterministic. Additionally, this model cannot distinguish inefficiency from technical change,
which represents a shift in the production frontier, because time is a factor in the inefficiency
function.

Lee and Schmidt (1993) described inefficiency as the product of individual producer ineffi-
ciency and time effects; αit = θtαi, where θt = ∑

tδt with δt being a dummy variable for each
period t and ûit =maxj

{
θ̂tα̂i

} − θ̂tα̂i. This specification differs from the time-invariant fixed-
effect model by allowing inefficiency to vary over time. However, the producer effect, denoted
as αi, cannot be identified separately from θ unless a specification for the inefficiency component
is considered without the intercept. Furthermore, the temporal behavior of inefficiency is assumed
to be the same for all producers.

The primary challenge with these fixed-effects, time-variant inefficiency models is that they
require the estimation of numerous parameters, which can be constrained by very short panels.
Furthermore, inefficiency varies over time in both models through the use of a time trend or time
dummies, which hinders the control of technical change.

Greene (2005a, 2005b) introduced what is known as the true fixed-effects model. It is
represented as follows:

Yit = αi + f (Xit ; β)+ vit − uit

In this context, αi represents unobserved time-invariant heterogeneity and is treated as a ran-
dom variable that is correlated with Xit , but does not capture inefficiency and can be estimated
as a parameter. A true fixed-effects model can be estimated by adding dummy variables for each
producer to the model. The disadvantage of this model is that it induces the incidental parame-
ters problem, which can lead to inconsistency because the number of parameters to be estimated
depends on the number of producers, as discussed by Neyman and Scott (1948). Recent studies
have considered addressing the problem of incidental parameters in the true fixed-effects model
by using within transformation to eliminate the producer effects for unobserved heterogeneity,1
see, for example, Wang and Ho (2010) and Chen, et al. (2014).

3.2.2 The random-effects models
In these models, time-variant inefficiency can either be independently and identically distributed
(iid) among producers and over time, or it can be modeled as the product of a determinis-
tic function of time, g(t; γ ), and a non-negative time-invariant random variable ui, such that
uit = g(t; γ )ui, where γ is a parameter to be estimated. Thus, g(t; γ ) allows the data to deter-
mine the temporal behavior of inefficiency rather than imposing it a priori. Inefficiency is then
estimated from ûit = ĝ(t; γ )E(ui | εi), or, alternatively, ûi = E(ui | εit); see Kumbhakar and Lovell
(2000).
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Kumbhakar (1990) assumed that uit = ui
(
1+ exp

(
γ1t + γ2t2

))−1. His model allows ineffi-
ciency to either increase or decrease monotonically, depending on the values of γ1 and γ2. Battese
and Coelli (1992) and Battese and Tessema (1993) assumed that uit = exp (−γ (t − T)) ui, where
T represents the final time period. Their model implies that inefficiency changes over time in a
monotonic manner, increasing or decreasing exponentially for all producers based on the sign of
γ . Specifically, inefficiency increases at a decreasing rate when γ is positive and decreases at an
increasing rate when γ is negative. A time-invariant model is obtained when γ is equal to zero.
Kumbhakar andWang (2005) assumed that uit = exp

(−γ (
t − t

))
ui. In this context, inefficiency

evolves over time according to exp
(−γ (

t − t
))
, where t denotes the initial time period, ensuring

uit = ui at time t. A promising area for further research is developing a model that incorporates
both the initial and final time periods, as it considers both market entry and exit in defining the
reference point.

Lee and Schmidt (1993) assumed that uit = γtui, where γt represents the parameters associ-
ated with the time dummy variables that need to be estimated. While Battese and Coelli (1992)
and Battese and Tessema (1993) assumed a quite restrictive temporal behavior of inefficiency
which is assumed to be the same for all producers, Cuesta (2000) modified the Battese and Coelli
(1992) model to allow for greater flexibility in how inefficiency changes over time by assum-
ing uit = exp (−γi (t − T)) ui, uit = exp

(
gi (t, T, zit)

)
ui. This specification allows inefficiency to

evolve over time at varying rates among producers.
Cuesta and Orea (2002) and Feng and Serletis (2009) extended the Battese and Coelli (1992)

model by assuming uit = exp
(−γ1 (t − T)− γ2 (t − T)2

)
ui. This specification relaxes the mono-

tonicity of the time path of inefficiency using a two-parameter approach. Consequently, the model
allows for producer effects to be either convex or concave and to vary over time, increasing in some
periods and decreasing in others.

The primary advantage of random-effects models over fixed-effects time-variant inefficiency
models is that they allow for the inclusion of time-invariant regressors. However, random-effects
models require independence between inefficiency and regressors in the model, a condition not
required in fixed-effects models.

The Hausman and Taylor (1981) model integrates fixed and random-effects models, allowing
inefficiency to be uncorrelated with certain, but not all, regressors. It also enables the inclusion
of time-invariant regressors in the model. In this framework, producer inefficiency can be con-
sistently estimated and separated from the producer effects or the intercept, provided that the
cross-sectional and temporal observations are sufficiently large.

To separate producer heterogeneity, or producer effects, and inefficiency, where inefficiency
can vary over time and may be either iid or a function of exogenous variables, Greene (2005a,
2005b) introduced a time-invariant random effect to account for unobserved producer hetero-
geneity and proposed what is known as the true random-effects model.

Yit = (α +wi)+ f (Xit ; β)+ vit − uit
where αi = α +wi represents unobserved time-invariant heterogeneity and is treated as a random
variable that is uncorrelated with Xit . It is important to note that Kumbhakar and Wang (2005)
introduced these producer-specific intercepts αi to account for heterogeneous technologies. If αi
is treated as a random variable that is correlated with Xit but does not capture inefficiency, then
the model becomes the true fixed-effects model.

3.3 Time-invariant and time-variant inefficiency models
Previous models for panel data have focused either on time-invariant inefficiency or time-variant
inefficiency, but none of these models considers both simultaneously. Mundlak (1961) noted that
time-invariant inefficiency reflects the effects of inputs such asmanagement; therefore, it is impor-
tant to estimate it, particularly in short panels. However, for large panels or when there are changes
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in management, it is also important to estimate time-variant inefficiency. Colombi et al. (2014)
argued that time-variant inefficiency arises due to the failure to allocate resources properly in the
short run. Tsionas and Kumbhakar (2014) noted that estimating a model with only one ineffi-
ciency component, regardless of controlling for producer effects for unobserved heterogeneity,
is likely to yield incorrect estimates of inefficiency. Kumbhakar and Heshmati (1995) proposed a
model in which inefficiency is assumed to have both time-invariant and time-variant components
as follows:

Yit = α+ f (Xit ; β)+ vit − ui0 − uit
In this context, ui0 represents time-invariant inefficiency, uit represents time-variant inefficiency,
and ui0 + uit constitutes total inefficiency. The error components are assumed to be independent
of each other and also independent of Xit . The model can be estimated using MLE, Bayesian esti-
mation, or a three-step procedure as follows: First, Employing a standard random-effects model
for panel data provides consistent estimates of the model parameters and predicted values of ui0
and uit . Second, The time-invariant inefficiency is estimated as ûi0 =maxj

{̂
uj0

} − ûi0. Finally,
the time-variant inefficiency is estimated by maximizing the log-likelihood function for pooled
data, expressed as [rit = α+ vit − uit] where rit = Yit − f (Xit ; β)+ ui0. Estimates of uit , condi-
tional on the estimated (εit = νit − uit), are obtained from ûit = E(uit | εit), following the method
of Jondrow et al. (1982). Total efficiency is then defined as the product of time-invariant and
time-variant efficiencies.

Total efficiencyit = exp [−ûi0]× exp [−ûit]

3.4 Four random components inefficiency models
Time-invariant and time-variant inefficiency models have not explicitly accounted for producer
effects related to unobserved heterogeneity, nor have they separated these effects from time-
invariant inefficiency. In response, Kumbhakar et al. (2014), Colombi et al. (2014), Tsionas and
Kumbhakar (2014), and Fillipini and Greene (2016) expanded upon the true random-effects
model proposed by Greene (2005a, 2005b). They introduced a time-invariant inefficiency com-
ponent and proposed four random components inefficiency models to address both inefficiencies
and heterogeneity. These models decompose the time-invariant producer effect into a producer
effect and a time-invariant inefficiency effect.

Yit = α + f (Xit ; β)+ωi + vit − ui0 − uit
In this context, the error term comprises four random components: ωi represents random pro-
ducer effects for unobserved heterogeneity, ui0 denotes time-invariant inefficiency, uit represents
time-variant inefficiency, and vit indicates random errors. Kumbhakar et al. (2014) estimated
the model using a three-step procedure based solely on OLS. First, the model is rearranged as
Yit = α + f (Xit ; β)+ ξi + εit where ξi =ωi − ui0 and εit = νit − uit . Here, ξi can be viewed as the
producer-specific component. Using a standard random-effect model for panel data provides con-
sistent estimates of the model’s parameters and predicted values of ξ̂i and ε̂it . Second, estimates
of uit conditional on the estimated (εit = νit − uit) are obtained from ûit = E(uit | εit) following
Jondrow et al. (1982). Third, a similar procedure to that in stage two is used to estimate the time-
invariant inefficiency component ui0. It should be noted that Kumbhakar et al. (2014) used the
procedure of Jondrow et al. (1982), which implicitly assumes that the marginal distribution of
inefficiency given the observations is truncated-normal. However, as shown by Cartinhour (1990)
and Horrace (2005), the marginal distributions of a multivariate truncated-normal distribution
are not truncated-normal distributions.

Colombi et al. (2014) adopted a single-step approach using MLE, drawing on results from the
closed skew-normal distribution, as opposed to the three-step procedure utilized by Kumbhakar
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et al. (2014). The MLE is asymptotically more efficient than the three-step procedure because
it estimates all parameters simultaneously. However, Tsionas and Kumbhakar (2014) observed
that the MLE method employed by Colombi et al. (2014) becomes computationally challenging
when T is large, due to the likelihood function’s reliance on a (T + 1)-dimensional integral of the
normal distribution. Tsionas and Kumbhakar (2014) employed Bayesian estimation to estimate
the model using a large panel of banks in the United States. Conversely, Fillipini and Greene
(2016) utilized the Simulated Maximum Likelihood Estimation, as introduced by Greene (2005a,
2005b), to estimate the parameters and various random components of the model. By applying the
moment-generating function for the closed skew-normal distribution, as developed by Colombi
et al. (2014), they estimated the efficiency values.

3.5 Dynamic inefficiency models
The temporal behavior of inefficiency in dynamic inefficiency models is characterized by its evo-
lution through an autoregressive process, where past values of inefficiency determine the current
value. However, these models are infrequently utilized in the literature to measure inefficiency.
Ahn and Sickles (2000) assumed that inefficiency follows a first-order autoregressive process,
AR(1), where the current inefficiency, uit , is influenced by two components: the unadjusted por-
tion of the inefficiency from the previous period, (1− ρi) ui,t−1, where 0<ρi ≤ 1 represents the
adjustment speed, and the new, unexpected inefficiency, eit .

uit = (1− ρi) ui,t−1 + eit
The econometric method employed, specifically the Generalized Method of Moments (GMM),

are suitable for stationary or trend-stationary data but not for data exhibiting stochastic trends.
Tsionas (2006) applied Bayesian estimation to a panel of large U.S. commercial banks, consider-
ing inefficiency as a function of explanatory variables that reflect producer-specific characteristics
to account for heterogeneity in inefficiency. Specific assumptions were also made regarding the
initial value ui1.

ln uit = zitδ + ρ ln ui,t−1 + eit for t = 2, . . . . . . , T

ln ui1 = zi1δ/ (1− ρ)+ ei1 for t = 1
In this context, eit ∼N(0, σ 2

e ), ei1 ∼N(0, σ 2
e /

(
1− ρ2

)
). Deprins and Simar (1989) utilized the

specification of log-normality for inefficiency. However, assuming a log-normal distribution
for inefficiency cannot accommodate a situation where most producers are fully efficient. For
the ln uit process to be stationary, the restriction |ρ|< 1 should be imposed. Tsionas (2006)
found that the posterior mean was ρ = 0.91, indicating that the autoregressive process is nearly
static.

The evolving environment, which encompasses government policies and regulations, market
conditions, and economic shocks, can cause producers to react differently at various times. This
indicates potential instability over time in the relationships among macroeconomic variables.
Rather than presuming that the parameters are stationary and constant, a promising area for
future research is the examination of time-varying parameters when analyzing macroeconomic
time series.

3.6 Threshold inefficiency models
In contrast to models that allow for the existence of extremely inefficient producers who cannot
survive in highly competitive markets, threshold inefficiency models truncate the distribution of
inefficiency by placing a threshold parameter of the minimum efficiency required for survival.
These models, therefore, define an upper bound for the distribution of inefficiency, in addition to
the zero lower bound.
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Lee (1996) introduced a tail-truncated half-normal distribution with a threshold parameter θ ;
ui ∼N+(0, σ 2

u ), 0≤ ui ≤ θ . In contrast, Lee and Lee (2014) assumed a uniform distribution, ui ∼
U(0, θ). Almanidis, et al. (2014) extended Lee’s (1996) model to a panel data model and assumed
that uit are drawn from a time-variant distribution with an upper bound θt , which is considered to
be the sum of weighted polynomials: θt = ∑N

i=0 bi (t/T)
i, where t = 1, . . . , T and bi are constants.

These threshold inefficiency models are beneficial for empirical studies that aim to estimate the
inefficiency threshold.

3.7 Zero inefficiency models
The threshold inefficiency models focus on the possibility of inefficient producers being excluded
from themarkets, whereas the zero inefficiencymodels highlight the possibility of producers being
fully efficient.

Wheat et al. (2014) noted that the probability of any producer being fully efficient is zero in
models that do not allow for the presence of fully efficient producers. However, Bos, et al. (2010),
along with Bos, et al. (2010), used latent class models and identified small groups of producers
that are fully efficient. Kumbhakar, et al. (2013) observed that if the data represent a mixture of
both fully efficient and inefficient producers, then models imposing inefficient behavior on all
producers result in biased estimates of inefficiency. They introduced the zero inefficiency model,
which can accommodate the presence of both fully efficient and inefficient producers within a
probabilistic framework.

Assuming that some producers operate with full efficiency, where ui = 0 for certain producers,
and others operate with inefficiency, where ui > 0, the zero-inefficiency model is represented as
follows:

Yi = f (Xi; β)+ vi with probability p
f (Xi; β)+ vi − ui with probability

(
1− p

)
In this context, p denotes the probability of a producer being fully efficient or the proportion

of producers who are fully efficient, while
(
1− p

)
represents the proportion of producers who

are inefficient. Kumbhakar, et al. (2013) specified the estimates of inefficiency as ũi =
(
1− p̃i

)
ûi,

where ûi is the zero-inefficiency estimator of inefficiency with p= 0, and p̃i is the estimate of the
probability of being fully efficient.

Kumbhakar, et al. (2013) and Rho and Schmidt (2015) proposed modeling the probability or
proportion of producers achieving full efficiency as a parametric function of a set of explana-
tory variables that determine full efficiency through a logit or probit function. However, Tran
and Tsionas (2016b) argued that misspecification of the parametric functional form of this prob-
ability affects the identification of fully efficient producers and the estimates of inefficiency. They
employed a non-parametric approach for the probability of producers achieving full efficiency,
utilizing an unknown smooth function of explanatory variables that influence the likelihood of a
producer reaching full efficiency.

The zero inefficiencymodel addresses two classes a priori: fully efficient and inefficient produc-
ers. Therefore, it does not face the challenge of determining the number of classes, as is the case
with latent class models. However, Rho and Schmidt (2015) discussed the presence of the incor-
rect skewness issue identified by Waldman (1982) and the identification challenges within zero
inefficiency models. They argue that when all producers are fully efficient, it is unclear whether
efficiency results from p being close to one or from σ 2

u being close to zero, which has signifi-
cant implications for conducting inference. Another concern with zero inefficiency models is that
the consistency of the estimates depends on the exogeneity of the explanatory variables. Tran
and Tsionas (2016a) investigated the endogeneity issues in zero inefficiency models through a
simultaneous equation setting, allowing for one or more regressors to be endogenous.
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3.8 Heterogeneous inefficiency models
Heterogeneous inefficiency models are proposed to capture heterogeneity in the inefficiency
component by incorporating characteristics specific to each producer. These characteristics,
represented as Z, can be integrated into the inefficiency component itself, or into the mean,
variance, or both parameters of the inefficiency distribution. These models are also valuable for
understanding the relationship between inefficiency and its exogenous determinants.

Heterogeneous inefficiency models can be estimated using either a two-step procedure, where
inefficiency and explanatory variables Z are estimated sequentially, or a one-step procedure, where
the explanatory variables are estimated simultaneously with the other parameters of the model.
However, the two-step procedure has been criticized for potentially misspecifying the first-step
model, suffering from omitted variable bias ifX and Z are correlated, and for its bias from ignoring
the impact of Z on inefficiency. For further discussion, see Caudill and Ford (1993), Battese and
Coelli (1995), and Wang and Schmidt (2002).

3.8.1 Determinants of inefficiency models
In these models, inefficiency is represented as a function of explanatory variables Z that reflect
characteristics specific to each producer and explain the differences in inefficiency among them.
For further discussion, see Deprins and Simar (1989), Kumbhakar et al. (1991), andHuang and Liu
(1994) who introduced interaction terms between producer-specific characteristics and regressors,
zixi.

ui = g (zi, zixi; δ)+ ei
where δ represents unknown parameters to be estimated, and ei is a random variable defined by
the truncation of a normal distribution. If there are no interaction terms zixi, the model reduces
to those of Deprins and Simar (1989) and Kumbhakar et al. (1991). Tsionas (2006) extended the
Kumbhakar et al. (1991) model to a panel data model that allows for dynamic inefficiency; ln uit =
zitδ + ρ ln ui,t−1 + eit . Srairi (2010) further extended the Kumbhakar et al. (1991) model to panel
data where uit = g (zit ; δ)+ eit to examine bank-specific variables that may explain the sources of
inefficiency.

Determinants of inefficiency models face the challenge of ensuring non-negative inefficiency
values. Kumbhakar et al. (1991) proposed a solution to address this issue: ui =

∣∣N (
ziδ, σ 2

u
)∣∣.

Reifschneider and Stevenson (1991) assumed that ui = u∗
i + exp (ziδ), where both u∗

i ∼N+(0, σ 2
u )

and exp (ziδ) are positive. However, it is not necessary for both components to be positive
to achieve a positive ui. Huang and Liu (1994) extended the assumption of Reifschneider and
Stevenson (1991) by assuming only that u∗

i ≥ − exp (ziδ).

3.8.2 Determinants of inefficiency distribution models
In these models, producer-specific characteristics can be incorporated into the mean, variance,
or both parameters of the inefficiency distribution. Battese and Coelli (1995) and Wang and
Ho (2010) proposed that the mean of the inefficiency distribution be modeled as a function of
explanatory variables that represent producer-specific characteristics.

uit = g (zit ; δ) ui, uit ∼N+(μit , σ 2
u ), μit = zitδm

Including producer-specific characteristics in the variance of the inefficiency distribution
is motivated by the potential presence of heteroscedasticity in inefficiency. Reifschneider and
Stevenson (1991), Caudill and Ford (1993), and Caudill et al. (1995) assumed that the inefficiency
term, u, is heteroskedastic and included the standard deviation in exponential form to ensure a
positive estimate of the variance parameter for all parameters involved, Z and γu.

σui = exp (zuiγu), σvi = exp (γv)
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It is also possible to assume that both u and v are heteroskedastic, which is referred to in the
literature as the doubly heteroskedastic model. The variance parameters of the u and v distribu-
tions are modeled as functions of the explanatory variables zui and zvi, which may or may not be
equivalent; see, for example, Hadri (1999) and Hadri et al. (2003).

σui = exp (zuiγu) , σvi = exp (zviγv)
Including producer-specific characteristics in both the mean and the variance of the ineffi-

ciency distribution allows for non-monotonic inefficiency effects across producers. For examples,
see Wang (2002) and Wang and Schmidt (2002).

uit ∼N+(μit , σ 2
uit), μit = zitδm, σ 2

uit = exp (zitγu)
Kumbhakar andWang (2005) proposed that the variance parameter of the v distribution could

be modeled as a function of the explanatory variables zvi, alongside the mean and variance of the
inefficiency distribution.

ui ∼N+(μi, σ 2
ui), μi = ziδm, σ 2

ui = exp (zuiγu) , vit ∼N(0, σ 2
vi), σ

2
vi = exp (zviγv)

A key question to consider regarding heterogeneous inefficiencies is whether heterogeneity in
inefficiency exists or if producer-specific inefficiency depends on a set of exogenous factors. As
Kim and Schmidt (2008) suggested, one can test for the presence of these factors by regressing Y
on X and Z, and then testing the significance of the parameters of these factors using the F-test.

A summary of the main characteristics of inefficiency models commonly used in the literature
is presented in Table 2. A time-variant and time-invariant inefficiency model is derived by omit-
ting ωi from the four random components inefficiency model. A time-variant inefficiency model
is derived by omitting ui0, while a time-invariant inefficiency model is derived by omitting uit
from the time-variant and time-invariant inefficiency model.

4. Estimation techniques
A variety of econometric estimation techniques, incorporating recent advancements, have been
proposed in the literature to estimate inefficiency within the stochastic frontier approach. Fixed-
effects and random-effects estimators are briefly discussed in the previous section. Sickles (2005)
summarized different panel frontier estimators of inefficiency that have been utilized in the lit-
erature. For developments in econometric estimation techniques, see, for example, Bauer (1990),
Greene (1993), and Parmeter and Kumbhakar (2014). Given the extensive nature of this litera-
ture, this section provides a concise review of the most common estimation techniques: maximum
likelihood estimation and Bayesian estimation.

4.1 Maximum likelihood estimation
Estimating inefficiency in the stochastic frontier approach using maximum likelihood estimation
(MLE) requires a distribution assumption for the inefficiency term as well as the random error
to disentangle one from the other. Various distributions have been assumed in the literature for
the inefficiency term, with the most commonly used being the half-normal, exponential, gamma,
truncated-normal, and skew-normal distributions. Greene (1993) employed different distribution
assumptions and demonstrated that inefficiency measures are similar across these distributions.
Berger and DeYoung (1997) found that assuming a truncated-normal distribution for the ineffi-
ciency term provides similar but statistically significant estimates compared to the half-normal
assumption. However, Baccouche and Kouki (2003) found that inefficiency measures depend
heavily on the distribution assumptions.

The MLE method involves specifying the model through the joint probability density func-
tion, denoted as f (Y , θ). When assuming independence, the joint density of Y is expressed as the
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Table 2. A summary of the main characteristics of inefficiency models

Inefficiency ωi Heterogeneous inefficiency

Inefficiency Models ui uit u Meanμ Variance σ 2 Models are proposed by

Time-invariant ui NA NA NA ui∼N+(0, σ 2
u) σ 2

u Aigner et al. (1977),
Cross-section Meeusen & Van den

Broeck (1977)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

Time-invariant αi= α− ui NA NA NA No distribution No distribution Schmidt and Sickles (1984)
Fixed-effects assumption assumption



Time-invariant ui NA NA NA ui∼N+(0, σ 2
u) σ 2

u Pitt and Lee (1981),
Random-effects Battese and Coelli (1988)

Time-variant NA αit= g(t) NA NA No distribution No distribution Cornwell et al. (1990),
Fixed-effects assumption assumption Lee and Schmidt (1993)



Time-variant NA uit= g(t)ui NA NA ui∼N+(0, σ 2
u) σ 2

u Kumbhakar (1990),
Random-effects Battese and Coelli (1992)

True fixed-effect NA uit αi NA uit∼N+(0, σ 2
u) σ 2

u Greene (2005a, b)


True random-effect NA uit ωi NA uit∼N+(0, σ 2
u) σ 2

u Greene (2005a, b)

Time-variant and ui0 uit NA NA uit∼N+(0, σ 2
u) σ 2

u Kumbhakar &
time-invariant ui0∼N+(0, σ 2

u0 ) σ 2
u0 Heshmati (1995)

Four random ui0 uit ωi NA uit∼N+(0, σ 2
u) σ 2

u Colombi et al. (2014),
components ui0∼N+(0, σ 2

u0 ) σ 2
u0 Kumbhakar et al. (2014)

Dynamic NA uit= h(ui,t−1) NA uit= g (z; δ) ui,t−1∼ σ 2
u Ahn and Sickles (2000),

N+(μi,t−1, σ 2
u) Tsionas (2006)

Threshold ui NA NA NA ui∼N+(0, σ 2
u) σ 2

u Lee (1996)

0≤ ui≤ θ
Zero Inefficiency ui = 0with p NA NA NA ui∼N+(0, σ 2

u) σ 2
u Kumbhakar et al. (2013),

ui > 0with (1− p) Rho and Schmidt (2015)

Heterogeneous ui NA NA ui= g (z; δ) ui∼N+(μ, σ 2
u) σ 2

u Deprins and Simar (1989),
Zon u Huang and Liu (1994)

Heterogeneous NA uit NA uit= g (z; δ) uit∼N+(μit , σ 2
u) σ 2

u Battese and Coelli (1995)
Zonμ μit= zitδm
Heterogeneous ui NA NA NA ui∼N+(0, σ 2

ui) σui= exp (zuiγu) Reifschneider &
Zon σu Stevenson (1991)

Heterogeneous ui NA NA NA ui∼N+(0, σ 2
ui) σui= exp (zuiγu) Hadri (1999),

Zon σuand σv σvi= exp (zviγv) Hadri et al. (2003)

Heterogeneous NA uit NA NA uit∼N+(μit , σ 2
uit) σ 2

uit= exp (zitγu) Wang (2002),
Zonμ and σu μit= zitδm Wang and Schmidt (2002)

Heterogeneous NA uit= g(t)ui αi NA ui∼N+(μi , σ 2
ui) σ 2

ui= exp (zuiγu) Kumbhakar & Wang
Zonμ, σuand σv μi= ziδm σ 2

vi= exp (zviγv) (2005)

Note: ωi denotes heterogeneous technologies and NA indicates that the component is not included in the inefficiency model.

product of the densities of the individual observations, fi(Yi, θ).

f (Y , θ)= ∏N
i=1fi(Yi, θ)

Due to the potential for the product to be either extremely large or extremely small, it is more
practical to work with the logarithm of the likelihood function.

L(Y , θ)= log f (Y , θ)= ∑N
i=1 log fi(Yi, θ)= ∑N

i=1 log li(Yi, θ)

In this context, L(Y , θ) represents the likelihood of the parameters θ given the observed data Y . It
is important to note that L(Y , θ) provides the same parameter estimates because it is a monotonic
transformation of f (Y , θ). The MLE of the model’s parameters is obtained by maximizing the
likelihood function with respect to the parameters. The estimated parameters are then used to
obtain the estimate of inefficiency by employing one of the inefficiency estimators.
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4.1.1 Normal-half-normal models
The likelihood function for the normal-half-normal cross-sectional models was derived by Aigner
et al. (1977). In these models, it is assumed that inefficiency follows a half-normal distribution

ui ∼N+(0, σ 2
u ) ; f (u)=

(
σu

√
2π

)−1
exp

(−u2/2σ 2
u
)
, the random errors follow a normal distribu-

tion vi ∼N(0, σ 2
v ), and ui and vi being independently and identically distributed. The likelihood

function is defined as the product of the densities of the composed error term
∏N

i=1fε(εi), where
fε(εi) represents the density of the composed error term εi = νi − ui. Inefficiency can be esti-
mated using Jondrow et al. (1982) estimator for the half-normally distributed inefficiency in
cross-section models.

ûi = E(ui | εi)= σS

[
φ (ψi)

1−� (ψi)
−ψi

]
where φ (.) represents the density of the standard normal distribution,� (.) represents the cumu-
lative density function, σS = σλ/

(
1+ λ2

) = (
σ 2
uσ

2
v /σ

2)1/2 = σuσv/σ , σ = (
σ 2
u + σ 2

v
)1/2, ψi =

λεi/σ , and λ= σu/σv. To implement this estimator, it must be evaluated at the estimated param-
eters

(̂
α, β̂ , σ̂ 2

u , σ̂ 2
v
)
and the implied values of λ̂, σ̂ 2, and ε̂i = Yi − α̂ − X′

i β̂ . However, Wang and
Schmidt (2009) demonstrated that the distribution of Ê(ui | εi) differs from the distribution of ui
unless σv → 0. As σ 2

v increases, it converges to E(ui), indicating that εi is no longer useful in pre-
dicting inefficiency through the conditional mean of the Jondrow et al. (1982) estimator. Battese
and Coelli (1988) proposed an alternative efficiency estimator given by

E(TEi | εi)= E
(
exp (−ui) | εi

) = 1−� (σS −ψi)

1−� (ψi)
exp

(
σSψi +

(
(σS)

2 /2
))

Fried et al. (2008) argued that the efficiency estimator of Battese and Coelli (1988) is preferable
to 1− E(ui | εi) used in the Jondrow et al. (1982) estimator because the latter is merely a first-
order approximation to the more general infinite power series approximation, exp(− (ui | εi))=
1− ui + u2i /2− u3i /3 . . . .. However, Fried et al. (2008) and Kumbhakar et al. (2014) argued that
Jondrow et al. (1982) and Battese and Coelli (1988) estimators are not consistent in cross-sectional
models. Although these estimators are unbiased, they do not provide consistent estimates of effi-
ciency, as p lim E(ui | εi)− ui �= 0 or E(ui | εi) never approaches ui as the number of producers or
cross-sectional units approaches infinity.

Greene (1990) argued that the half-normal assumption for the distribution of inefficiency
is relatively inflexible and implicitly assumes that most producers are nearly fully efficient.
Furthermore, the distribution of the composed error term, εi, is no longer normal, as observed by
Horrace (2005). In fact, it might be positively skewed in the wrong direction, leading to full effi-
ciency measures for all producers.2 Waldman (1982) demonstrated that if εi is incorrectly skewed
in the positive direction, then maximum likelihood estimates are equivalent to OLS estimates for(
α, β , σ 2

u , σ 2
v
)
and zero for λ. The wrong skewness direction of the OLS composed error term,

and consequently a zero maximum likelihood estimate of σ 2
u , is expected given the dependence of

the maximum likelihood estimator for σ 2
u on the skewness of the OLS composed error term in the

normal-half-normal model.3 Feng et al. (2015) suggested using constrained optimizationmethods
to impose the restriction that σ 2

u > 0 in the normal-half-normal model. Hafner et al. (2018) gen-
eralized the inefficiency distribution to allow for the existence of the incorrect skewness, thereby
obtaining well defined inefficiency measures.

Pitt and Lee (1981), Kumbhakar (1987), and Battese and Coelli (1988) extended the normal-
half-normal model proposed by Aigner et al. (1977) to the panel data time-invariant inefficiency
model. Inefficiency is estimated using an extension of the Jondrow et al. (1982) estimator for the
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panel data model.

ûi = E(ui | εit)= ϕNi + σP

[
φ

(
ϕNi /σP

)
1−�

(
ϕNi /σP

)]
(2)

where ϕNi =
(
−σ 2

u
∑T

t=1εit
)
/
(
σ 2
v + Tσ 2

u
)
, and σP = (

σ 2
v σ

2
u
)
/
(
σ 2
v + Tσ 2

u
)
. Kumbhakar (1987)

noted that these estimates are asymptotically consistent. Lee (1996) introduced a tail-truncated
half-normal distribution to incorporate a bound for inefficiency, as the extremely inefficient pro-
ducers cannot survive in highly competitive markets. He introduced the threshold parameter of
the minimum efficiency for survival, denoted as θ , where ui ∼N+(0, σ 2

u ), 0≤ ui ≤ θ . Thus, the
variance of inefficiency depends on two parameters: σ 2

u and θ .

4.1.2 Normal-exponential models
Aigner et al. (1977) andMeeusen and van den Broeck (1977) proposed a likelihood function under
the assumption that ui follows an exponential distribution; f (u)= θ exp (−θu), where θ > 0 and
θ = σ−1

u . Additionally, vi is assumed to follow a normal distribution, vi ∼N(0, σ 2
v ). Inefficiency

can be estimated using the Jondrow et al. (1982) estimator for exponentially distributed ineffi-
ciency in cross-sectional models.

ûi = E(ui | εi)= σv

[
φ

(
ϕEi

)
�

(
ϕEi

) + ϕEi

]

where ϕEi = (
εiσu − σ 2

v
)
/ (σuσv). Kim and Schmidt (2000) extended the normal-exponential

model proposed by Aigner et al. (1977) to a panel data time-invariant inefficiency model.
Inefficiency is estimated using an extension of the Jondrow et al. (1982) estimator for the
panel data model by replacing εi by εi and σ 2

v by σ 2
v /T. A simulation study conducted by

Horrace and Parmeter (2018) indicates that a Laplace model, where vi follows a Laplace distri-
bution and ui follows a truncated Laplace distribution, performs relatively well compared to the
normal-exponential model when vi is misspecified.

4.1.3 Normal-Gammamodels
Greene (1980a, 1980b), Stevenson (1980), and Greene (1990) assumed a gamma distribu-
tion for the inefficiency term, where f (u)= [

θP/�(P)
]
exp (−θu) uP−1, P> 0, θ = σ−1

u , �(P)=∫ ∞
0 tP−1e−tdt, and vi ∼N(0, σ 2

v ). Stevenson (1980) considered only the Erlang form (integer val-
ues of P; 1.0 and 2.0), which produces a tractable formulation for fε(εi) but significantly restricts
the model. Beckers and Hammond (1987) derived the log-likelihood function for fε(εi) without
limiting P to integer values; however, the resulting functional form was intractable. When P = 1,
the normal-gamma model reverts to the normal-exponential model. The inefficiency estimator
for the gamma model is

ûi = E(uit | εit)= q (P, εit)
q (P − 1, εit)

The normal-gamma distribution provides a more flexible parameterization of the distribution.
However, the computational complexity of the maximum likelihood estimator limits its applica-
tion in empirical studies. Various efforts, including those by Ritter and Simar (1997) and Greene
(2003), have been made to simplify the computation using simulation methods.
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4.1.4 Normal-truncated-normal models
Stevenson (1980) argued that the assumption of a zeromean in the Aigner et al. (1977) model is an
unnecessary constraint. He suggested that inefficiency follows a non-negative truncated distribu-

tion, represented as ui ∼N(μ, σ 2
u ); f (u)=

(
� (μ/σu) σu

√
2π

)−1
exp

(− (u−μ)2 /2σ 2
u
)
. Greene

(1993) demonstrated that the conditional expectation of inefficiency for the truncated-normal
distribution, where μ can vary from zero in either direction, is obtained by replacing ψi with
ψT
i = λεi/σ +μ/λσ .
Pitt and Lee (1981) expanded the normal-truncated-normal model to accommodate panel

data with time-invariant inefficiency. Battese and Coelli (1988) and Battese et al. (1989) further
developed the Jondrow et al. (1982) estimator for application in the panel data model.

ûi = E(ui | εit)= ϕTi + σP

[
φ

(
ϕTi /σP

)
1−�

(
ϕTi /σP

)]

where ϕTi =
(
μσ 2

v − σ 2
u
∑T

t=1εit
)
/
(
σ 2
v + Tσ 2

u
)
. By setting μ= 0, it reverts to the estimator for

the normal-half-normal model in equation (2). Battese and Coelli (1988, 1992) extended the panel
data to E

(
exp (−ui) | εi

)
as

E
(
exp (−ui) | εit

) =
[
�

[(
ϕTi /σP

) − σP
]

�
(
ϕTi /σP

) ]
exp

(
−ϕTi + (σP/2)

)
Almanidis et al. (2014) specified inefficiency as a doubly truncated-normal distribution. In

addition to the zero lower bound, they specified an upper bound for inefficiency to exclude
extremely inefficient producers. The upper bound, θt , is assumed to be the sum of weighted
polynomials, θt = ∑N

i=0bi (t/T)
i, where t = 1, . . . .., T, and bi are constants. Their specification

provides a closed-form solution for fε(εi) and the log-likelihood. Furthermore, this specification
results in non-zero estimates of σ 2

u in the presence of wrong skewness of the composed error term.
The truncated-normal distribution is applicable when producers are assumed to be inefficient,

as it has a mode at zero only if μ≤ 0. Furthermore, it provides a method for introducing hetero-
geneity into the distribution of inefficiency by incorporating characteristics specific to producers
into the mean, variance, or both parameters of the inefficiency distribution.

4.1.5 Skew-normal models
Recent studies have focussed on the distribution of the composed error term fε(εi) rather than
on the distribution of inefficiency. In models with four random components, these components
(ωi + νit − ui0 − uit) can be treated as two terms because they can be expressed as the sum of
the time-invariant terms (ξi =ωi − ui0) and the time-variant terms (εit = νit − uit). The time-
invariant terms combine the producer-specific effects for unobserved heterogeneity (ωi) and time-
invariant inefficiency (ui0), whereas the time-variant terms combine the random errors (νit) and
time-variant inefficiency (uit). These two terms are assumed to result from the difference between
a normal random variable and an independent normal random variable that is left-truncated at
zero. Consequently, each of the two terms follows its own skew-normal distribution rather than a
normal distribution.4

The full unconditional log-likelihood function for this model, based on the joint distribution
of (εit , ξi), was derived by Colombi et al. (2014). They estimated the four random components
as E

(
exp (ωi) | yi

)
, and E

(
exp (t′ui) | yi

)
, where the first element of E

(
exp (t′ui) | yi

)
repre-

sents the conditional expected value of the time-invariant inefficiency ui0 for each producer i.
However, the computational complexity of the maximum likelihood estimator arises from the
(T + 1) dimentional multivariate normal integrals.5 Tsionas and Kumbhakar (2014) observed
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that the maximum likelihood estimator developed by Colombi et al. (2014) becomes compu-
tationally challenging when T is large. However, for models with time-invariant inefficiency,
whether or not they include a producer-specific component to account for heterogeneous tech-
nologies, the integral is one-dimensional. For models with time-variant inefficiency that do not
include a producer-specific component for heterogeneous technologies, it is a product of T one-
dimensional integrals. Consequently, the computational challenge is primarily associated with
time-variant inefficiency models that include a producer-specific component for heterogeneous
technologies, or time-invariant and time-variant inefficiency models, where time-variant ineffi-
ciency coexists with time-invariant inefficiency. Fillipini and Greene (2016) utilized Butler and
Moffitt’s (1982) formulation to propose a simplified density of yi conditional on ui0 and ωi, which
is the product over time of T univariate closed skew-normal densities.

The efficiency estimates are derived using the results from Colombi et al. (2014), which are
based on the moment-generating function for the closed skew-normal distribution. Inefficiency is
calculated using the expression − log E

(
exp (t′ui) | ei

)
, computed element by element. Fillipini

and Greene (2016) followed the methodologies of Kumbhakar and Heshmati (1995) and
Kumbhakar et al. (2014) to measure total efficiency as follows:

Total efficiencyit = E
(
exp (−ui0) | ei

) × E
(
exp (−uit) | ei

)
Concerning the significance of distribution assumptions, if the goal is to estimate ineffi-

ciency specific to individual producers, then the assumption about the distribution of inefficiency
becomes crucial. However, if the objective is to compare the rankings of producers, employing
models without distribution assumptions or adhering to the suggestion by Ritter and Simar (1997)
to utilize a simple one-parameter distribution for inefficiency may be adequate.

4.1.6 Confidence intervals
Distributions imposed on v and u create distributions for (u | ε) and (

exp (−u) | ε), which can
be used to construct confidence intervals for inefficiency. Several studies have demonstrated that
it is possible to obtain confidence intervals for any of the inefficiency estimators. Hjalmarsson
et al. (1996) developed confidence intervals for the Jondrow et al. (1982) estimator, and Bera and
Sharma (1999) did so for the Battesse and Coelli (1988) estimator. Horrace and Schmidt (1996)
derived lower and upper bounds on

(
exp (−u) | ε) based on the lower and upper bounds of (u | ε).

However, Wheat et al. (2014) argued that the form of confidence intervals derived by Horrace and
Schmidt (1996) is not of minimum width because f (u | ε) is truncated-normal at zero and thus
asymmetric. They proposed a minimum width prediction interval for u given ε. Parmeter and
Kumbhakar (2014) noted that the narrower interval proposed by Wheat et al. (2014) is preferable
to the intervals of Horrace and Schmidt (1996) if the aim is to accurately predict producer-specific
inefficiency.

4.2 Bayesian estimation
Bayesian estimation of inefficiency was initially introduced in the literature for cross-sectional
models by Van den Broeck et al. (1994) and Koop et al. (1994, 1995). Koop et al. (1997), Fernandez
et al. (1997), and Osiewalski and Steel (1998) expanded the application of Bayesian estima-
tion to panel data models. Koop et al. (1997) outlined procedures for Bayesian estimation in
both fixed-effects and random-effects models. Fernandez et al. (2000, 2002) further extended
the use of Bayesian estimation to situations where some outputs produced might be undesirable,
differentiating between technical and environmental inefficiency.

The Bayesian approach treats the model parameters as random variables that are conditional
on the data, rather than as known or fixed values estimated solely from the data. Instead of using
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the distribution of u conditional on ε, E(u | ε), inefficiency inference is derived from the condi-
tional posterior distribution, p(u | θ−u, Y), based on its marginal posterior, where θ−u includes
all parameters except u. Bayesian inference, including point and interval estimation, hypothesis
evaluation, and prediction, is obtained from the posterior distribution.

Bayesian estimation involves specifying prior distributions for the unknown parameters, p(θ);
deriving the likelihood function, L(Y | θ); and deriving the joint posterior distributions for all the
parameters by using Bayes’ theorem to combine the likelihood function with the joint prior dis-
tributions. Iterative Markov Chain Monte Carlo (MCMC) methods are then employed to obtain
the marginal posteriors for the estimated parameters.

4.2.1 The prior distribution
The prior distributions of the parameters to be estimated, including inefficiency, represent infor-
mation that is not contained in the data and are expressed as a probability distribution, p (θ).
These distributions are categorized as either informative priors, which are based on previous
findings and theoretical predictions, or uninformative priors, which are based on a lack of prior
knowledge available for estimation.

Specifying a uniform or flat prior distribution allows the prior to play a minimal role in esti-
mating the posterior distribution by relying on the data through the likelihood function. This
approach is equivalent to specifying a prior distribution with a large variance, which makes the
prior distribution of the parameter values nearly flat. However, non-informative prior distribu-
tions are often improper. Fernandez et al. (1997) demonstrated that choosing an uninformative
prior on the scale parameter leads to an improper prior.

Informative priors convey information and summarize existing knowledge about parameters.
Since the normal distribution allows for negative numbers, it is not suitable as a prior distribu-
tion for inefficiency or scale parameters. Van den Broeck et al. (1994) found that the exponential
distribution is more robust to prior assumptions than other distributions. Alvarez et al. (2014)
compared the inverse Wishart, scaled inverse Wishart, and hierarchical inverse Wishart as poten-
tial priors for the scale parameter in multivariate models. They found that all priors perform well
except the inverse Wishart prior, which is biased toward large values when the true variance is
small relative to the prior mean. Esheba and Serletis (2023) utilized the Wishart distribution for
the scale parameter and found it to be biased toward large values, resulting in large values for
the scale parameter and consequently large values for the inefficiency measures. They also noted
that the MCMC algorithm for a system of equations terminated after a small number of iterations
due to the large values involved. In general, the prior distribution for the scale parameter, which
plays a crucial role in the estimation of inefficiency, is essential in any multivariate model and
becomes more challenging as the dimension increases due to the quadratic growth in the number
of parameters and the need to ensure the matrix remains non-negative definite.

Informative priors can be utilized to impose constraints derived from economic theory, such
as monotonicity and curvature constraints, as noted in Terrell (1996). They can also be employed
for linear constraints among the elements of the parameters, as demonstrated by Geweke (1993),
or for constraints on inefficiency, where u≥ 0, as shown by Feng et al. (2018) and Esheba and
Serletis (2023). It is important to note that selecting a prior distribution that is conjugate to the
likelihood results in a posterior that retains the same form as the prior.

4.2.2 The posterior distribution
Updating the prior information of the parameters is accomplished by combining the prior
distribution, p(θ), with the likelihood function, L(Y , θ). This process results in the posterior dis-
tribution, which serves as the basis for Bayesian estimation and is defined by Bayes’ theorem as
follows:

p(θ | Y)∝ L(Y , θ)p (θ)
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In this context, p(θ | Y) represents the posterior distribution, which is proportional to the likeli-
hood function multiplied by the prior. The posterior mean E(θ | Y) serves as the optimal Bayesian
estimator of θ . However, when the model involves multidimensional parameters to be estimated,
the posterior distribution becomes a joint posterior distribution. The marginal posterior distribu-
tion for a given parameter θi is defined by integrating the joint posterior density of θ with respect
to all elements of θ other than θi. This process can be too complex for direct analytical integra-
tion or may not be analytically tractable. Implementing the Bayesian approach often requires the
use of an iterative MCMC algorithm. Two common algorithms are Gibbs sampling, introduced
by Geman and Geman (1984), and the MetropolisHastings algorithm, introduced by Metropolis
et al. (1953) and further developed by Hastings (1970).

When the joint posterior distribution is challenging to work with, Gibbs sampling, which
involves drawing from the conditional posterior distributions, can be employed to approximate
joint andmarginal distributions6 This method is advantageous in situations where the conditional
posterior distributions have relatively simpler forms than the joint distribution, facilitating simu-
lation. To assess whether the draws from the conditional posterior distributions have converged
to the marginal posterior distribution, Geweke (1992) proposed a convergence test. If there is
insufficient evidence for convergence, the number of draws must be increased.

The Gibbs sampling algorithm relies on conditional distributions. However, in some situa-
tions, conditional posterior distributions do not belong to any known family distributions or
are not available in closed form, making simulation from them challenging. In such situations,
the Metropolis-Hastings algorithm, which is more general than Gibbs sampling, serves as an
alternative MCMC algorithm that can be used to approximate the posterior distribution. The
Metropolis-Hastings algorithm requires the specification of a proposal density, q(θ∗ | θS), which
is easier to simulate from than the target density, p(θ | Y).

The initial MCMC iterations are discarded as a burn-in, and estimates of the parameters are
obtained by averaging over the remaining iterations. It should be noted that the Gibbs sampler
is considered a specific case of the Metropolis-Hastings algorithm, where the candidate density
q(θ∗ | θS) coincides with the target density, resulting in an acceptance probability of 1 for each
draw.

4.3 Theoretical regularity
As required by microeconomic theory, production technology must satisfy the theoretical reg-
ularity conditions of monotonicity and curvature. Barnett (2002) noted that these regularity
conditions can be violated unless they are imposed. However, Lau (1986) demonstrated that
imposing these regularity conditions globally can compromise the flexibility of flexible functional
forms.7 Ryan and Wales (2000) demonstrated that imposing curvature locally at a single point
can be sufficient to achieve global regularity while preserving the flexibility of flexible functional
forms. Terrell (1996) indicated that imposing regularity conditions over small regions of data can
preserve the flexibility of flexible functional forms. Wolff (2016) imposed regularity conditions
locally, globally, and regionally on a flexible input demand system using the same data set. He
found that regional estimators outperform global and local estimators in terms of the model’s fit
to the sample data and preserving the flexibility of flexible functional forms.

Barnett (2002) and Barnett and Pasupathy (2003) noted that monotonicity conditions have
often been disregarded in stochastic frontier estimation. However, monotonicity is crucial in
assessing inefficiency, as it ensures that additional units of input do not reduce output. Violating
monotonicity conditions can lead to highly misleading results, such as incorrectly identifying
a producer as efficient when it is not. Consider an example of two producers, Producer A and
Producer B, with a non-monotone technology frontier, as illustrated in Figure 6. Under this non-
monotone technology frontier, Producer A is deemed efficient, while Producer B is considered
inefficient because it operates below the production frontier. However, Producer B produces the
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Figure 6. Violation of monotonicity and curvature conditions.

same output
(
y1

)
as Producer A but uses less input (x1 < x2). Consequently, the technical inef-

ficiency measures of these two producers based on this non-monotone technology frontier are
reversed; in this situation, Producer A is inefficient relative to Producer B. Imposingmonotonicity
conditions prevents the production technology from exhibiting negative marginal productivities,
which are implied by a downward-sloping production frontier, such as at point A.

Curvature conditions are primarily required by microeconomic theory for the duality theorem
to hold. Unless exploiting the duality theory and using the dual system specifications, measur-
ing inefficiency does not require curvature conditions; instead, monotonicity conditions must be
satisfied. In general, the regularity conditions can be verified as follows:

• Monotonicity is verified by analyzing the first-order derivatives of the estimated produc-
tion technology with respect to the input and output. Refer to Table 1 for the properties of
various distance functions.

• Concavity (convexity) is determined using the unbordered Hessian matrix, which must be
negative (positive) semi-definite. This determination can be verified by examining whether
the values of the Cholesky factors are non-positive (negative), as discussed by Lau (1978a).

If the regularity conditions are not attained, the model can be estimated by imposing these
conditions, thereby treating them as maintained hypotheses. This process may require the use
of Bayesian estimation to enforce the necessary inequality restrictions for regularity conditions.
Regularity conditions can be imposed either locally at a single point in the regressor space, glob-
ally across the entire domain, or regionally on a connected subset of the domain. Techniques for
imposing regularity conditions locally have been developed by Ryan andWales (1998), globally by
Lau (1978a) and Diewert and Wales (1987), and regionally by Gallant and Golub (1984), Terrell
(1996), Wolff et al. (2010), and Wolff (2016).

4.4 Econometric regularity
The non-stationarity of residuals in production technology is an important issue when estimat-
ing inefficiency, as inefficiency measures are derived from these estimated residuals. However,
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non-stationarity is often disregarded in inefficiency studies, primarily because standard methods
for addressing non-stationarity in linear models do not apply to non-stationarity in non-linear
models. Nonetheless, ignoring the potential non-stationarity of the residuals can lead to mislead-
ing inefficiency results.8 Barnett (1977) demonstrated that consistency and asymptotic efficiency
require stationarity assumptions as part of the econometric regularity conditions.

The non-stationarity of the residuals in production technology can result from the non-
stationarity of either the dependent or explanatory variables, or from the omission of non-
stationary variables. When all variables are integrated of order one, denoted as I(1) in the
terminology of Engle and Granger (1987), the production technology represents a cointegrating
relationship, and the OLS provides super-consistent estimates.9 If all variables are non-stationary,
the production technology represents a spurious relationship, leading to significantly misleading
inefficiency measurements and rendering the results meaningless. Additional complications arise
if the production technology is unbalanced, with different variables having different orders of
integration or some variables being stationary while others are non-stationary. Feng and Serletis
(2008) presented an empirical comparison and evaluation of the effectiveness of four flexible cost
functions: the locally flexible generalized Leontief (GL), translog, and normalized quadratic (NQ),
as well as one globally flexible cost function, the asymptotically ideal model (AIM). They found
that the GL and translog models fail both economic and econometric regularity, and the NQ and
AIM models fail econometric regularity, indicating that these models are non-stationary.

Serially correlated residuals are commonly modeled in the literature by assuming a first-order
autoregressive process, AR(1), in the error terms as εt = ρεt−1 + et , where ρ is an unknown
parameter and et is a non-autocorrelated random error term. The AR(1) process is stationary
when |ρ|< 1 and becomes a non-stationary random walk process when ρ = 1. Consequently,
tests for stationarity can be conducted by examining whether ρ is equal to one or significantly less
than one. These tests are referred to as unit root tests for stationarity. Additionally, the following
tests are utilized to assess the presence of a unit root and non-stationarity in the residuals of the
production technology: the augmented Dickey-Fuller test proposed by Dickey and Fuller (1981),
the non-parametric test of Phillips (1987), the numerical Bayesian test by Dorfman (1995), the
test proposed by Harris and Tzavalis (1999) for dynamic panels, and the Fisher test by Maddala
and Wu (1999).

If stationarity is not achieved, cointegration techniques can be employed to address the
non-stationarity of the residuals.10 If all variables are non-stationary, these variables must be
cointegrated in levels, given that inefficiency models are linear. Ng (1995) and Attfield (1997)
argued that standard estimation techniques are inadequate for obtaining accurately estimated
standard errors in cointegrated panels. Tsionas and Christopoulos (2001) applied panel cointegra-
tion techniques to estimate inefficiency using Fully Modified Ordinary Least Squares (FM-OLS),
as proposed by Phillips andHansen (1990), Phillips (1995), Phillips andMoon (1999), and Pedroni
(2001) for cointegrated panels.11 They compared their results with those obtained by estimating
inefficiency using standard estimation techniques and found significant quantitative differences.
However, these cointegration techniques are applicable to linear models. Park and Hahn (1999)
considered models that are linearized in the non-stationary variables. Lewbel and Ng (2005) pro-
posed a reformulation of the translog model, which can be modified into a linear form to address
non-stationarity.

If cointegration between the I(1) variables is not found, a suitable solution is to convert the non-
stationary series to stationary series by taking first differences if they are difference stationary, by
de-trending, or alternatively by including a trend variable in the model if they are trend station-
ary. However, Serletis and Shahmoradi (2007) argued that correcting serially correlated residuals
increases the number of curvature violations and induces spurious violations of monotonicity.

Several attempts have been proposed in the literature to develop estimation techniques for non-
stationary models. Chang et al. (2001) extended earlier work by Phillips and Hansen (1990) and
developed an estimator for non-linear, non-stationary models. Their estimator is consistent under
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fairly general conditions, but the convergence rate critically depends on the type of functional
form. Han and Phillips (2010) proposed a consistent GMM estimation method for estimating
autoregressive roots near unity with both time series and panel data. However, their estimator has
little bias even in very small samples. Therefore, with non-linear, non-stationary inefficiencymod-
els, further research is needed to modify linear model cointegration techniques and to advance
existing non-linear cointegration techniques.

5. Estimation issues
The estimates of inefficiency can be distorted by an inaccurate choice of the functional form
for production technology, ignoring the possibility of heterogeneity and heteroskedasticity, and
suffering from the endogeneity problem.

5.1 Functional forms
The estimates of inefficiency can be distorted by an inaccurate selection of the functional form for
production technology. Berger and Mester (1997) argued that achieving a close fit of the actual
data for the estimated production frontier is crucial for estimating technical inefficiency, as tech-
nical inefficiency is assessed based on deviations from this production frontier. Giannakas et al.
(2003b) demonstrated that an inaccurate choice of the functional form results in biased estimates
of inefficiency, confidence intervals, and production elasticities.

Although the true functional form is unknown, several properties of the production technology
are known from economic theory. Various empirical methods can be employed to evaluate how
well different functional forms approximate the unknown underlying function. A functional form
may be considered appropriate due to its theoretical properties, the feasibility and ease of applica-
tion and empirical estimation, or a combination of these criteria. However, many studies do not
explicitly state the rationale for selecting a specific functional form for production technology.

The selection of a specific functional form for production technology can be based on the-
oretical properties such as the shape of isoquants, separability, flexibility, and regular regions.
Greene (1993) noted that the choice of functional form for production technology has important
implications with respect to the shape of the isoquants. Färe and Vardanyan (2016) compared
the quadratic and translog functional forms in terms of their ability to approximate convex fron-
tiers of the input set and found that both functional forms provide a reliable approximation when
a true frontier is assumed to be convex. Their findings support those of Färe et al. (2010) and
Chambers et al. (2013), who found that the translog functional form tends to yield convex frontier
estimates even when the true frontier is concave. Therefore, the translog functional form, which
can approximate convex frontiers of the input set, should perform relatively well when modeling
input isoquants, such as input distant functions. On the other hand, if the true production fron-
tier is concave, simulation studies by Färe et al. (2010) and Chambers et al. (2013) suggest that the
concave frontier of the output set is better parameterized using a quadratic functional form than
a translog functional form. Chambers et al. (2013) further found that the translog specification of
a concave frontier can yield imprecise estimates of the technology. Consequently, the quadratic
functional form, which can approximate concave frontiers of the output set, should perform rel-
atively well when modeling output isoquants, such as standard or directional output distance
functions. The separability properties are important for consistent aggregation. Thompson (1988)
noted that both the translog and the quadratic are separable functional forms.

The selection of a specific functional form for particular studies can be based on choosing
between functional forms that globally satisfy the theoretical regularity conditions of economic
theory and those that possess flexibility. Flexible functional forms are characterized by their
second-order approximation property and are sufficiently flexible to ensure that the production
elasticities and substitution elasticity are not restricted by the choice of the functional form.12
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However, the selection of functional forms for estimating inefficiency should prioritize regular
functional forms that are consistent with economic theory, rather than focusing on flexibility.
Greene (1980b) argued that flexible functional forms might suffer from multicollinearity due to
the large number of parameters that need to be estimated, and single-equation estimates are likely
to be imprecise.

Different distance functions have various application properties that influence the choice of
functional forms, such as homogeneity and translation properties.13 For instance, the selection
of a functional form for standard distance functions should be based on the satisfaction of the
homogeneity property. Griffin et al. (1987) noted that commonly used functional forms that are
not linearly homogeneous include logarithmic and augmented Fourier forms. Some functional
forms can be linearly homogeneous by incorporating the appropriate restrictions, such as the
quadratic, Cobb-Douglas, transcendental, constant elasticity of substitution, and the translog. In
contrast, selecting a functional form for performing directional distance functions should be based
on satisfying the translation property and ensuring homogeneity of degree (−1) in the direction
vector. Chambers (1998) suggested two functional forms that satisfy the translation property: the
logarithmic transcendental and the quadratic. Further research is needed to identify alternative
functional forms that satisfy both the translation property and the homogeneity of degree (−1) in
the direction vector.

5.1.1 The translog functional form
The translog functional form is a generalization of the Cobb-Douglas functional form and was
introduced by Christensen et al. (1973). It is a locally flexible functional form that provides a
second-order local approximation. Caves and Christensen (1980), Guilkey and Lovell (1980),
Barnett and Lee (1985), and Barnett et al. (1985) argued that most locally flexible functional forms
are not globally regular and have very small regions where theoretical regularity conditions are
satisfied. The translog functional form is defined over N inputs andM outputs as follows:

ln
(
D

(
x, y

)) = α0 +
N∑

n=1
αn ln xn +

M∑
m=1

βm ln ym + 1
2

N∑
n=1

N∑
n′=1

αnn′ ln xn ln xn′

+ 1
2

M∑
m=1

M∑
m′=1

βmm′ ln ym ln ym′ +
N∑

n=1

M∑
m=1

γnm ln xn ln ym

Symmetry requires that αnn′ = αn′n (n �= n′), and βmm′ = βm′m (m �=m′). The translog func-
tional form includes numerous parameters that require estimation, totaling

(
k2 + 3k+ 2

)
/2

parameters, including the intercept. It is linear in the parameters, which can be constrained to sat-
isfy the homogeneity property of standard and hyperbolic distance functions; however, it cannot
be constrained to satisfy the translation property of directional distance functions.

The constraints necessary for achieving homogeneity of degree one in inputs are:
∑N

n=1αn = 1,∑N
n′=1αnn′ = 0, and

∑N
n=1γnm = 0. One approach to imposing these restrictions on the input dis-

tance function is to normalize the function by one of the inputs. This is achieved by setting the
parameter of the homogeneity property to λ= 1/xN , resulting in DI

(
y, x/xN

) =DI
(
y, x

)
/xN .

For further details, refer to Sturm and Williams (2008). The constraints necessary for achieving
homogeneity of degree one in outputs are:

∑M
m=1βm = 1,

∑M
m′=1βmm′ = 0, and

∑M
m=1γnm = 0.

One method to impose these restrictions on the output distance function is to normalize the func-
tion by one of the outputs. This is achieved by setting the parameter of the homogeneity property
to λ= 1/yM , resulting in DO

(
x, y/yM

) =DO
(
x, y

)
/yM . For further details, refer to O’Donnell

and Coelli (2005). The restrictions required for almost homogeneity of degrees −1, 1, and
1 are:

∑M
m=1βm − ∑N

n=1αn = 1,
∑M

m=1γnm − ∑N
n′=1αnn′ = 0, and

∑M
m′=1βmm′ − ∑N

n=1γnm = 0.
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One approach to imposing these restrictions on the hyperbolic distance function is to nor-
malize the function by one of the inputs. This is achieved by setting the parameter of the
homogeneity property to λ= 1/xN , resulting in DH

(
x/xN , yxN

) =DH
(
x, y

)
/xN . Alternatively,

normalization can be accomplished by one of the outputs by setting λ= 1/yM , resulting in
DH

(
xyM , y/yM

) =DH
(
x, y

)
/yM . For further details, refer to Cuesta and Zofio (2005). The

first-order and second-order partial derivatives are expressed as follows:
∂ ln

(
D

(
x, y

))
∂ ln xn

= αn +
N∑

n′=1
αnn′ ln xn′ +

M∑
m=1

γnm ln ym,
∂2 ln

(
D

(
x, y

))
∂ ln xn ln xn′

= αnn′

∂ ln
(
D

(
x, y

))
∂ ln ym

= βm +
M∑

m′=1
βmm′ ln ym′ +

N∑
n=1

γnm ln xn,
∂2 ln

(
D

(
x, y

))
∂ ln ym ln ym′

= βmm′

The translog functional form, unlike the Cobb-Douglas functional form, is neither mono-
tonic nor globally convex. Caves and Christensen (1980) noted that the translog functional form
exhibits satisfactory local properties when the technology is nearly homothetic and the substitu-
tion between factors of production is high. Guilkey et al. (1983) demonstrated that the translog
functional form is globally regular if and only if the technology is Cobb-Douglas. Färe and
Vardanyan (2016) found that the translog functional form often violates theoretical regularity
conditions and requires the imposition of appropriate regularity conditions, which significantly
compromise its flexibility. Their findings align with the simulation results of Wales (1977) and
Guilkey et al. (1983), who compared the performance of various functional forms, including the
translog.

5.1.2 The quadratic functional form
Chambers (1998) suggested the use of a quadratic functional form for directional distance func-
tions, as its parameters can be constrained to satisfy the translation property. Lau (1978b)
introduced this quadratic functional form, which is expressed as follows:

D
(
x, y

) = α0 +
N∑

n=1
αnxn +

M∑
m=1

βmym + 1
2

N∑
n=1

N∑
n′=1

αnn′xnxn′

+ 1
2

M∑
m=1

M∑
m′=1

βmm′ymym′ +
N∑

n=1

M∑
m=1

γnmxnym (3)

Symmetry requires that αnn′ = αn′n (n �= n′), and βmm′ = βm′m (m �=m′). The quadratic func-
tional form includes numerous parameters that require estimation, totaling

(
k2 + 3k+ 2

)
/2

parameters, including the intercept. It is linear in the parameters, which can be restricted
to satisfy the translation property of the directional distance functions. The set of linear
restrictions required for the translation property is as follows:

∑M
m=1βmgym − ∑N

n=1αngxn =
−1;

∑M
m=1βmm′gym = 0;

∑N
n=1αnn′gxn = 0;

∑M
m=1γnmgym = 0; and

∑N
n=1γnmgxn = 0. One

approach to imposing these restrictions is to apply them directly in Equation (3) to
derive a restricted version, as illustrated by Atkinson and Tsionas (2016). Alternatively,
these restrictions can be imposed by setting the parameter of the translation prop-
erty, α, equal to a selected input, α = xN , or the negative of a selected output, α =
−yM . The corresponding direction vector is then normalized so that gxN = 1 or gyM = 1.
In the situation where α= xN is chosen, the expression �DT

(̃
x− xNg̃x, y+ xNgy; gx, gy

) =
�DT

(
x, y; gx, gy

) − xN holds, where x̃= (x1, . . . .., xN−1) and g̃x = (gx1 , . . . ., gxN−1 ). The input
xN is absent from �DT

(̃
x− xNg̃x, y+ xNgy; gx, gy

)
because xN − xN(1)= 0. In the situation

where α = −yM is chosen, the expression �DT
(
x+ yMgx, ỹ− yMg̃y; gx, gy

) = �DT
(
x, y; gx, gy

) +
yM holds, where ỹ= (y1, . . . .., yM−1) and g̃y = (gy1 , . . . ., gyM−1 ). The output yM is absent from
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�DT
(
x+ yMgx, ỹ− yMg̃y; gx, gy

)
because yM − yM(1)= 0; see, for example, Malikov et al. (2016).

The first-order and second-order partial derivatives are expressed as follows:

∂D
(
x, y

)
∂xn

= αn +
N∑

n′=1
αnn′xn′ +

M∑
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∂xnxn′

= αnn′
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∂ym
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βmm′ym′ +

N∑
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∂2D

(
x, y

)
∂ymym′

= βmm′

Thompson (1988) noted that the quadratic functional form can satisfy global curvature restric-
tions without additional constraints in estimation. This finding is supported by the results of Färe
and Vardanyan (2016), who demonstrated that the quadratic functional form satisfies global regu-
larity without curvature restrictions and maintains its flexibility. A simulation study by Chambers
et al. (2013) suggests that the quadratic functional form outperforms the translog in large samples
with a relatively high degree of curvature. Diewert and Fox (2008) noted that curvature restric-
tions can be globally imposed on the quadratic functional formwithout losing flexibility. However,
monotonicity cannot be imposed simultaneously with curvature without compromising the flexi-
bility of the functional form. As Barnett (2002) noted, imposing global curvature on the quadratic
functional form may induce spurious violations of monotonicity.

5.1.3 The logarithmic-transcendental functional form
Chambers (1998) suggested the use of a logarithmic-transcendental functional form for direc-
tional distance functions due to its inherent satisfaction of the translation property. However,
it has been largely ignored in the inefficiency literature, as researchers have favored the
quadratic functional form for its linearity in parameters. The logarithmic-transcendental or
the transcendental-exponential functional form is a flexible functional form that provides a
second-order approximation and can be expressed as follows:
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The logarithmic-transcendental functional form requires fewer parameters to be estimated
than the translog and quadratic functional forms, with a total of

(
k2 + k+ 2

)
/2 parameters,

including the intercept. Symmetry requires that αnn′ = αn′n (n �= n′), and βmm′ = βm′m (m �=m′).
The first-order partial derivatives are expressed as follows:

∂ exp
(
D

(
x, y

))
∂ exp

( xn
2
) =

N∑
n′=1

αnn′ exp
(xn′

2

)
+

M∑
m=1

γnm exp
(
−ym

2

)

∂ exp
(
D

(
x, y

))
∂ exp

(− ym
2

) =
M∑

m′=1
βmm′ exp

(
−ym′

2

)
+

N∑
n=1

γnm exp
(xn
2

)
The second-order partial derivatives are expressed as follows:
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∂2 exp
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D

(
x, y

))
∂ exp

(− ym
2

)
exp

(− ym′
2

) = βmm′

Empirical techniques can also be used to assess the ability of different functional forms to
approximate the unknown underlying function. Several methods have been proposed in the lit-
erature, including Monte Carlo simulations, parametric modeling, and constructive techniques.
Monte Carlo simulations assess the approximation capabilities of different functional forms rel-
ative to the underlying technology. For applications of this technique, see, for example, Guilkey
and Lovell (1980), Giannakas et al. (2003b), Färe et al. (2010), Chambers et al. (2013), and Färe
and Vardanyan (2016). Parametric modeling examines the plausibility of various functional forms
in fitting actual data. For applications of this technique, see, for example, Griffin et al. (1987),
Giannakas, et al. (2003a), and Feng and Serletis (2008). The primary challenge with parametric
modeling is that the true functional form for production technology is unknown. Evaluating the
performance of different functional forms in fitting actual data is beneficial if the focus is on ana-
lyzing the data itself, rather than the functional forms. As noted by Giannakas, et al. (2003a), the
appropriate functional form in this context is specific to each situation. Constructive techniques
provide a method to determine preferable functional forms by deriving and graphically displaying
their regular regions. For applications of this technique, see, for example, Caves and Christensen
(1980), and Barnett et al. (1985, 1987).

5.2 Heterogeneity issue
The selection of an appropriate functional form for production technology is insufficient without
considering heterogeneity within the production model. Heterogeneity may manifest in the tech-
nology by shifting the production frontier, in the inefficiency term by altering the inefficiency
distribution, or in both. To account for heterogeneous technologies, it is essential to include
producer-specific characteristics directly in the functional form of the technology. Since ineffi-
ciency heterogeneity affects the location and scale parameters of the inefficiency distribution, it
can be addressed by incorporating producer-specific characteristics either in the inefficiency term
or in the parameters of the inefficiency distribution. Greene (2005a) argued that these charac-
teristics are important sources of heterogeneity that have been largely ignored in the inefficiency
literature.

5.2.1 Heterogeneity in the production technology
Ignoring the diversity of technologies among producers can lead to incorrect conclusions regard-
ing inefficiency measures, as demonstrated by Casu and Molyneux (2003) and Bos and Schmiedel
(2007). Brown and Glennon (2000) noted that assuming a uniform production technology for
all producers is a highly restrictive assumption. According to Tsionas (2002), assuming a com-
mon technology for all producers might result in a producer being ranked as inefficient, even
though the producer employs a different technology and fully utilizes its own resources. Mester
(1997), Greene (1993, 2005b) and Caiazza et al. (2016) confirmed that heterogeneity leads to
biased estimates obtained from the stochastic frontier approach.

To illustrate the importance of accommodating heterogeneity in the production frontier when
estimating inefficiency, consider an example involving two producers, labeled A and B, with pro-
duction frontiers denoted as A and B, respectively, as shown in Figure 7. If a common frontier
C is assumed for these two producers, the directional measure of overall technical inefficiency
is given by TIpooledT (xA, yA)=

∥∥ACT∥∥ / ∥∥0g∥∥ for producer A and TIpooledT (xB, yB)=
∥∥BCT∥∥ / ∥∥0g∥∥

for producer B. Under this assumption, producer A appears less efficient than producer B because∥∥ACT∥∥> ∥∥BCT∥∥. However, when considering each producer operating on their own fron-
tier, the measures become TIownT (xA, yA)=

∥∥AAT∥∥ / ∥∥0g∥∥ and TIownT (xB, yB)=
∥∥BBT∥∥ / ∥∥0g∥∥.
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Figure 7. Heterogeneous technologies and inefficiency.

Consequently, the efficiency ranking of these two producers reverses, as in this case, producer
B appears less efficient than producer A because

∥∥BBT∥∥> ∥∥AAT∥∥. Similarly, the directional mea-
sure of output technical inefficiency is expressed as TIpooledO (xA, yA)=

∥∥ACO
A
∥∥ for producer A and

TIpooledO (xB, yB)=
∥∥BCO

B
∥∥ for producer B, assuming a common frontier C. Under this assumption,

producer A is less efficient than producer B. However, when each producer operates on their
individual frontier, the measures become TIownO (xA, yA)=

∥∥AAO∥∥ and TIownO (xB, yB)=
∥∥BBO∥∥.

Consequently, the efficiency ranking of these two producers is reversed. In this situation, producer
B is less efficient than producer A because

∥∥BBO∥∥> ∥∥AAO∥∥.
The directional measure of input technical inefficiency is expressed as TIpooledI (xA, yA)=∥∥ACI
A
∥∥ for producer A and TIpooledI (xB, yB)=

∥∥BCI
B
∥∥ for producer B, assuming a common fron-

tier C. Under this assumption, producer A is less efficient than producer B. However, when each
producer operates on their individual frontier, the measures become TIownI (xA, yA)=

∥∥AAI∥∥ and
TIownI (xB, yB)=

∥∥BBI∥∥. Consequently, the efficiency ranking of these two producers is reversed.
In this situation, producer B is less efficient than producer A because

∥∥BBI∥∥> ∥∥AAI∥∥.
There are several approaches to addressing heterogeneous technologies. One approach involves

introducing a producer-specific intercept into the model, as demonstrated by Greene (2005a,
2005b). Cornwell et al. (1990) and Swamy and Tavlas (1995) assumed that both the intercept and
the slope parameters are random. Akhavein et al. (1997), Tsionas (2002), and Feng et al. (2018)
proposed a stochastic frontier model with random coefficients. Alternatively, varying coefficient
models, in which the coefficients are expressed as functions of other variables, can be employed,
as shown by Hastie and Tibshirani (1993) and Tran (2014).

Another approach involves categorizing producers into groups based on factors such as size,
ownership, organizational structure, or geographic regions, and then estimating a model for each
group. This method is illustrated by Mester (1996) and Altunbas et al. (2001), among others.
However, a limitation of this approach is that the model for each group is estimated indepen-
dently, without incorporating information from producers in other groups, as noted by Greene
(1993, 2004b), Orea and Kumbhakar (2004), and Parmeter and Kumbhakar (2014). Alternatively,
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threshold models categorize producers into technology groups based on the value of the thresh-
old variable. The model for each group is estimated using information provided by producers
in other groups. For examples of a single threshold model, see Hansen (1999, 2000) and Yélou
et al. (2010); for multiple threshold models, refer to Almanidis (2013) and Tsionas et al. (2019).
However, Almanidis (2013) noted that the joint estimation of the threshold parameters requires a
grid search over an enormous number of points, which increases with the number of break points.
The solution is to use sequential estimation of the threshold parameters. This method, however,
yields asymptotically efficient estimates only for the last threshold parameter in the process. Bai
(1997) introduced a refinement for estimating threshold parameters. This method involves re-
estimating the threshold parameters in reverse order while keeping the estimates of the previous
thresholds constant. The refined estimator has been demonstrated to be asymptotically efficient.

5.2.2 Heterogeneity in the inefficiency term
Ignoring the presence of heterogeneity in the inefficiency term can result in inaccuratemeasures of
inefficiency, as heterogeneity not accounted for by producer-specific characteristics is incorrectly
attributed to inefficiency. This heterogeneity can be addressed by incorporating producer-specific
characteristics into the mean, variance, or both parameters of the inefficiency distribution. For
more details on these models, refer to Section 3.

To summarize, exogenous factors that influence a producer’s output but are not considered
inefficiencies, because they are beyond the producer’s control, are intended to capture technolog-
ical differences and diversity. These factors should be specified in the production frontier itself.
When exogenous factors that can be managed by the producer are more related to inefficiency,
inefficiency heterogeneity directly impacts inefficiency and is often included in the location or
scale parameters of the inefficiency distribution.

5.3 Heteroscedasticity issue
Several inefficiency models are based on the assumption that the random errors v and the ineffi-
ciency term u are homoscedastic, meaning both σ 2

u and σ 2
v remain constant. However, this may

not be the case in practice, as they can be heteroscedastic. Heteroscedasticity refers to models in
which σ 2

u and σ 2
v are not constant but are instead functions of explanatory variables that reflect

producer-specific characteristics. Kumbhakar and Lovell (2000) and Wang and Schmidt (2002)
concluded that ignoring the heteroscedasticity of v results in consistent estimates of the parame-
ters of the production technology but leads to biased estimates of the intercept and inefficiency. In
contrast, ignoring the heteroscedasticity of u causes biased estimates of both the parameters of the
production technology and the estimates of inefficiency. To address heteroscedasticity, the scale
parameter of the distribution of the random error and inefficiency can be modeled as functions
of explanatory variables that reflect characteristics specific to each producer. For more details on
these models, refer to Section 3.

5.4 Endogeneity issue
A potential issue in estimating inefficiency using distance functions is that inputs and outputs
may be endogenous. This means they could be correlated with the random errors, inefficiency, or
both, leading to biased and inconsistent estimates of the parameters of the production technology
and the associated measures of inefficiency. For further discussion, refer to Atkinson and Primont
(2002), Atkinson et al. (2003), and O’Donnell (2014).

There are two approaches to addressing this issue: one involves the use of instruments for
inputs and outputs, and the other employs a systems approach. The use of instruments involves
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selecting instrumental variables that are uncorrelated with the composed error term, estimat-
ing the stochastic frontier model with exogenous and endogenous variables, and utilizing the
reduced form equation for the endogenous variables, which includes the exogenous variables
and the instruments. Tran and Tsionas (2013) proposed a simple GMM procedure for estimating
stochastic frontier models in the presence of endogenous variables. Assaf et al. (2013) compared
the use of instruments with GMM and Bayesian estimation and found that the Bayesian estimates
are more precise compared to GMM. Tran and Tsionas (2015) considered an alternative proce-
dure that does not involve the use of instruments and is based on the copula function to directly
model and capture the dependency between the endogenous variables and the composed error
term.

Alternatively, the endogeneity issue can be addressed by employing a system approach. To
meet the rank condition for identifying the system, it is necessary to include a total number of
potentially endogenous variables as independent equations within the system, including the pro-
duction technology. The selection of the system should be based on the behavioral assumptions
of producers, duality theory, and the endogeneity of inputs and outputs. If only inputs (outputs)
are endogenous, choosing the first-order conditions of cost minimization (revenue maximiza-
tion), along with the IDF (ODF) or DIDF (DODF) may be preferable. Coelli (2000) showed that
OLS provides consistent estimates of an IDF (ODF) under the assumption of cost-minimizing
(revenue-maximizing) behavior when estimating distance functions in a system of equations,
suggesting that instrumental variables may not be necessary. Refer to Tsionas et al. (2015) as
an example of a system based on the IDF and the first-order conditions for cost minimization
and Esheba and Serletis (2023) for an example of a system based on the DIDF (DODF) and the
first-order conditions for cost minimization (revenue maximization). However, if both inputs and
outputs are endogenous, it may be preferable to select the first-order conditions of profit maxi-
mization in conjunction with the HDF or DTDF. Atkinson and Tsionas (2016) and Esheba and
Serletis (2023) provided examples of systems based on the DTDF and the assumption of profit-
maximizing behavior. Tsionas et al. (2022) estimated a stochastic ray production frontier along
with additional equations derived from profit maximization to address the issue of endogeneity.
However, Malikov et al. (2016) considered the DTDF and the first-order conditions for cost min-
imization, without addressing the endogeneity of outputs. Feng et al. (2018) utilized the DODF
and the first-order conditions for profit maximization, considering inputs as fixed in the DODF
and endogenous in profit maximization.

The systems approach is not only considered amethod to address the endogeneity issue but also
offers several advantages. Berndt and Christensen (1973) argued that using the systems approach
overcomes the multicollinearity issue that a single equation may suffer due to the large num-
ber of parameters that need to be estimated. When evaluating different functional forms using
both a single equation and a system of equations, Guilkey et al. (1983) found that the functional
form considered in the system of equations outperforms the single equation in terms of bias.
Furthermore, the system approach incorporates a significant amount of information through the
first-order conditions, resulting in more meaningful outcomes.

6. Conclusion
Efficiency is a crucial factor in productivity growth and the optimal allocation of resources in
the economy; therefore, measuring inefficiency is particularly important. This paper provides a
comprehensive review of the latest developments in distance functions and the measurement of
inefficiency within the stochastic frontier framework. It examines the radial measure of ineffi-
ciency, as defined by standard distance functions; the hyperbolic measure, as provided by the
hyperbolic distance function; and the directional measure, as defined by directional distance
functions. The radial measure can result in high inefficiency measures even when the observed
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input-output vector is very close to the frontier. However, implementing the hyperbolic mea-
sure can be complex due to the non-linear optimization involved. The directional measure is
technology-oriented and simultaneously contracts inputs and expands outputs using either an
exogenous or an endogenous directional vector to reach the efficient frontier. Additionally, the
paper discusses the development of modeling inefficiency concerning its temporal behavior,
classification, and determinants.

To ensure the use of appropriate estimation techniques, recent advancements in the most com-
mon estimation techniques are reviewed. This paper also addresses the importance of maintaining
the theoretical regularity applied by neoclassical microeconomic theory when it is violated, as well
as the econometric regularity when variables are non-stationary. If regularity conditions are not
attained, the model can be estimated subject to imposed regularity conditions, which may require
the use of Bayesian estimation. If stationarity is not achieved, cointegration techniques can be
utilized to address the non-stationarity of the residuals. However, with nonlinear non-stationary
inefficiency models, further research is necessary to modify linear model cointegration techniques
and to develop existing nonlinear cointegration techniques.

Regarding estimation issues, inefficiency estimates can be distorted by an inaccurate choice of
functional form for the production technology, ignoring the possibility of heterogeneity and het-
eroskedasticity, and suffering from the endogeneity problem. It is crucial for future applications to
estimate inefficiency and address these issues using one of the various procedures discussed in the
paper. The paper outlines several criteria for selecting a specific functional form for the produc-
tion technology, based on theoretical properties such as the shape of the isoquants, separability,
flexibility, and regular regions, as well as application properties like homogeneity and translation
properties. Additionally, this paper addresses empirical techniques that can be used to assess the
ability of different functional forms to approximate the unknown underlying function.

The selection of an appropriate functional form is insufficient without accommodating het-
erogeneous technologies that may exist among producers or heterogeneity in the inefficiency
term. Ignoring heterogeneity can lead to incorrect conclusions regarding inefficiency measures
because heterogeneity not captured by producer-specific characteristics is wrongly attributed to
inefficiency. This paper addresses the importance of accommodating heterogeneity and discusses
different approaches to account for both heterogeneous technologies and heterogeneity in the
inefficiency term while estimating inefficiency. In general, exogenous factors that influence a
producer’s output but are not considered inefficiencies, because they are beyond the producer’s
control, are intended to capture technological differences and diversity. These factors should
be specified in the production frontier itself. When exogenous factors that can be managed by
the producer are more related to inefficiency, inefficiency heterogeneity directly impacts ineffi-
ciency and is often included in the location or scale parameters of the inefficiency distribution.
Including producer-specific characteristics in the scale parameter of the inefficiency distribution
also accounts for heteroscedasticity.

Another potential issue in estimating inefficiency using distance functions is that inputs and
outputs may be endogenous, which may lead to biased and inconsistent estimates of the parame-
ters of the production technology and the associatedmeasures of inefficiency. This paper discusses
various approaches to addressing this issue and identifies potentially productive areas for future
research.

Notes
1 Performing the within transformation on Greene (2005a) true fixed-effects model yields Ỹit = X̃itβ + ṽit − ũit where Ỹit =
yit − yi are the deviations from the producer means, yi =

∑
tyit/T. Similarly for X̃it ,̃vit ,and ũit . The transformation from Yit

to Ỹit is called the within transformation. Note that this transformation removes time-invariant heterogeneity αi since α̃i = 0.
See Hsiao (2003) for a detailed discussion regarding the advantages of using within transformation.
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2 Azzalini (1985) defined a continuous random variable ε to have a skew-normal distribution if it has density function f (ε)=
2φ(ε)�(aε), where a is a fixed arbitrary number. The distribution is right skewed if a> 0 and is left skewed if a< 0.
3 Proper specification testing can be undertaken to check the sign of the skewness of the OLS residuals. See, for example,
Kuosmanen and Fosgerau (2009).
4 See Gonzalez-Farias, et al. (2004), and Arellano-Valle and Azzalini (2006) for the probability density function of the skew-
normal distribution.
5 See Genz and Bretz (2009) for a detailed review on computation methods of multi-normal integrals.
6 See, for example, Gelfand and Smith (1990), Casella and George (1992), Smith and Roberts (1993), Roberts and Smith
(1994), Koop (1994), McCulloch and Rossi (1994), Dorfman (1997), and Geweke (1999) for further details on Gibbs sampling
method.
7 For example, imposing both monotonicity and curvature conditions globally on a translog functional form transforms it
into the Cobb-Douglas functional form.
8 See Stock (1994) and Watson (1994) for a review of the econometric issues associated with non-stationary variables.
9 Series that can be made stationary by taking the first difference, represented as [�Yt = Yt − Yt−1], are referred to as inte-
grated of order one, denoted as I(1). Stationary series are considered integrated of order zero, denoted as I(0). Generally, the
order of integration of a series is the minimum number of times it must be differenced to achieve stationary.
10 When Yt and Xt are non-stationary I(1) variables, their difference, or any linear combination of them, is also I(1). In this
case, Yt and Xt are said to be cointegrated.
11 Another estimation technique that can be used for cointegrated panels with higher-order integrated systems is the
Dynamic Ordinary Least Squares proposed by Stock and Watson (1993).
12 For different definitions of the flexibility property, see, for example, Diewert (1971), Gallant (1981), and Barnett (1983).
Diewert (1971) formalized the notion of flexibility in functional forms by defining a second-order approximation to an arbi-
trary function. Gallant (1981) proposed the sobolev norm as a measure of global flexibility. See, for example, Griffin et al.
(1987) for a comprehensive review of the flexibility property.
13 Table 1 presents the properties of alternative distance functions.
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