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The Taylor–Maccoll (T–M) equations are the governing equations for steady inviscid
irrotational axisymmetric conical flow, and have been widely applied to the design of
waveriders and intakes. However, only four classic solutions have been reported: external
conical flow (ECF), Busemann flow and internal conical flow of types A and B (ICFA and
ICFB). In this work, the analysis of the T–M equations clarifies all possible solutions and
reveals their relations. The domain where elementary solutions exist is divided into four
domains. The classic Busemann and ICFB solutions share the same elementary solution
as the template in a domain called the pre-shock domain, while the classic ECF and ICFA
solutions belong to a domain named the ECF domain. Two new solutions, the inner flow of
ECF (IECF) and degenerate conical flow (DCF), are found in the domains named after the
corresponding solutions, namely the IECF and DCF domains. The IECF behaves as the
mass injection supporting the classic ECF on an imaginary cone surface, while the DCF
behaves as the conical expansion of a uniform flow. Furthermore, possible combinations of
pre-shock solutions and supersonic post-shock solutions are clarified. The classic solutions
are special cases where the pre-/post-shock solutions are combined with uniform flows. In
general, the Busemann and ICFB solutions can be combined with any post-shock solutions
in accord with the shock relations, including the ECF, ICFA, IECF and DCF solutions. In
addition, numerical analyses are conducted to verify the validity of the two new solutions,
DCF, IECF and one combined solution Busemann–ECF.

Key words: supersonic flow, shock waves

1. Introduction

The Taylor–Maccoll (T–M) equations were initially formulated to study supersonic flows
over a cone (Busemann 1929; Taylor & Maccoll 1933). It is found, nonetheless, that the
equations held not only for the external conical flow (ECF) but also for internal conical
flows. Busemann (1942, as cited in Grozdovskii 1959; Mölder & Szpiro 1966) studied a
conical flow with uniform inflow and outflow, known as the Busemann flow, using the T–M
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Figure 1. The classic T–M solutions (Mölder 1967; Musa et al. 2023): (a) ECF, (b) Busemann flow,
(c) ICFA and (d) ICFB.

equations. In addition to the ECF and the Busemann flow, Grozdovskii (1959) presented
two types of internal conical flows through a hodograph, which were later termed the
internal conical flow of type A and B (ICFA and ICFB) by Mölder (1967). The above
solutions were also called the M- and W-flow, respectively, in recent studies by Mölder
& Timofeev (2022). The classic solutions, i.e. ECF, Busemann flow, ICFA and ICFB,
are essentially the four primary solutions to the T–M equations that correspond to flows
through the configurations depicted in figure 1 (Mölder 1967; Musa et al. 2023). These
solutions consist of a uniform flow followed by an isentropic compression or expansion
zone, with a conical shock in between. The ICFA and ICFB are additionally bounded by
the singular lines, beyond which the solutions no longer obey the T–M equations. Further,
the T–M equations can be extended beyond the calorically perfect gas. Lampe (1994)
extended the T–M equations to the thermal perfect gas and applied it to the ECF. Granik
(1986) even attempted to construct the T–M equations for the relativistic gas.

The ECF is the most common and simplest of the four classic solutions and is widely
studied analytically. Maccoll & Taylor (1936) solved the T–M equations utilizing Taylor
expansion to yield a lower-order solution, which was subsequently extended by Schwartz
(1975) to a series solution with 30 terms. Moorthy (1986) constructed an approximation
by assuming constant density in the ECF. By dropping the velocity component normal to
the cone surface, Ishimatsu & Morishita (2005) formulated an analytical solution for the
hypersonic ECF, which is applicable to estimation in aero-optics (Yao et al. 2019; Gao
et al. 2022). In conjunction with Newton’s hypersonic approximation, Forbes & Hindle
(2019) improved the approach for conical flows with a wider range of cone half-angles.

For the ICFA and ICFB, the flows beyond the singular lines do not satisfy the T–M
equations. In fact, the flow upstream of the trailing characteristics follows the ICFA, while
the downstream portion departs from the T–M equations. Courant & Friedrichs (1976)
suggested that regular conical shock reflection does not exist in the ICFA, which was
supported by theoretical analyses (Rylov 1990; Isakova et al. 2012; Kraiko & Tillyaeva
2014), as well as numerical and experimental results (Mölder et al. 1997; Timofeev et al.
2001, as cited in Shoesmith et al. 2018).

Theoretically, it is irrelevant to the existence of the supersonic T–M solution whether
the downstream flow is self-similar or not. Mölder & Timofeev (2022) studied the
conical shock reflection in the Busemann flow by experimental and numerical means.
The model in the study is a truncated Busemann intake whose trailing characteristics are
laid downstream of the apex of the conical shock. Accordingly, it is feasible to apply the
T–M theory to the practical design of supersonic intakes, where the streamtube generated
by streamline tracing as the intake channel would essentially be part of the T–M solution
that excludes the portion containing the singular points and lines. Furthermore, Shoesmith
et al. (2018) obtained numerically a flow consisting of the ICFA, expansion flow and
regular reflection portions by setting a cylinder at the axis in conjunction with the initial
ICFA solution.
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Basic solutions to Taylor–Maccoll equations

Although the T–M solutions may not cover the full flow field in some practical conical
flows, they can still be regarded as the baselines representing fully or partially the real
flows in typical configurations. Accordingly, the T–M equations have been widely applied
to waverider and intake design (Ding et al. 2017; Zuo & Mölder 2019). Nonweiler
(1959) proposed a waverider configuration from wedge flow. Jones et al. (1968) then
derived a waverider formally from the ECF, while Goonko, Mazhul & Markelov (2000)
chose an internal compression flow as the basic flow for waverider design. Recently,
following the analysis of the space-marching disturbances, Jiang et al. (2017) and Hu
et al. (2018) proposed a fast design methodology for wedge-cone derived waveriders via a
decomposition of the wedge-cone flow. The T–M equations can be applied to the reference
conical flows as stated above, as well as their infinitesimal elements. Sobieczky, Dougherty
& Jones (1990) proposed the osculating cone method, where the waverider is derived from
local ECFs on the normal planes to the prescribed shock (or equivalently, the osculating
planes of the post-shock streamlines by assumption). Sobieczky et al. (1997) and Rodi
(2005) extended the infinitesimal elementary flows on the osculating planes to other
axisymmetric flows. The composition of different T–M solutions may not only be realized
along the flow direction but also be feasible across the osculating planes. Jiang, Gao & Lee
(2015) proposed an osculating surface method, capable of transforming the infinitesimal
flow from the ECF and wedge flow to the ICFA regime. All methods for waverider design
described above rely on a prescribed shock, while the leading-edge cone method proposed
by Li et al. (2023) employs a prescribed leading edge. T–M theory has also been frequently
applied to airframe-propulsion integration design. Takashima & Lewis (1995) used the
flow over a wedge-cone body as the basic flow to achieve airframe-propulsion integration.
He & Ni (2011) and He et al. (2012) adopted the ICFA and associated downstream
combinations as the elementary flow to furnish the airframe-propulsion integrated design.

The potential application of the Busemann solution to the design of supersonic intakes
was suggested by Courant & Friedrichs (1948, as cited in Mölder 2019). Mölder & Szpiro
(1966) then conducted a performance analysis on Busemann intakes by solving the T–M
equations. The starting performances of a Busemann intake can be estimated via the
Busemann solution in conjunction with the starting theory of propulsion inlets. Based on
a simplified mass spillage model, Najafiyazdi et al. (2007) derived an analytical criterion
for starting flows in Busemann intakes. Similarly, Moradian et al. (2014, 2015); Moradian,
Timofeev & Tahir (2017) formulated the startability criteria through startability analyses
on Busemann intakes with overboard spillage. In addition, their results also revealed
that the Busemann intake designed from the Busemann flow with a strong shock could
improve the startability. The Busemann intake is usually truncated in practice to reduce
the frictional loss. O’Brien & Colville (2008) indicated that the ICFA could act as the
leading edge condition of the truncated Busemann intake. You, Zhu & Guo (2009), Zuo,
Mölder & Chen (2021) and Zuo & Mölder (2022) presented several intake designs by
combining various ICFA with truncated Busemann flows. As to the combined Busemann
intake, Van Wie & Mölder (1992) suggested the tandem of a Busemann intake and a cone.
Luo (2019) designed an intake by integrating a wedge flow, a Busemann flow and an ECF.

During a century of studies on fundamental problems related to the T–M equations and
associated applications on the aerodynamic design, only four classic solutions, i.e. ECF,
Busemann, ICFA and ICFB, have been reported. In particular, among those solutions,
only the ECF, Busemann, ICFA and their combinations are ever utilized in engineering
design. One may expect, however, that other T–M solutions, together with their associated
combinations, would also serve practical purposes. For example, the mass injection into
the supersonic flow over a cone may induce an alternative type of conical flow distinct
from the classic four (see § 4.2). In the present work, the T–M equations are studied
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Figure 2. The coordinates for the T–M equations and T–M flow.

from a different perspective. The elementary solutions to T–M equations are analysed
and classified accordingly in § 2. Solutions containing shocks are then introduced, and the
composite solutions of the associated elementary solutions are categorized in § 3. In § 4,
two new solutions found in the present work and a shock-connected solution are discussed.
Finally, the summary of the work is given in § 5.

2. Elementary solutions to the Taylor–Maccoll equations

In practical applications of the classic T–M solutions, boundary conditions must be
imposed in addition to those derived from the equations. Specifically, the inlet of the ECF
and the ICFA or the outlet of the Busemann flow and the ICFB are manually assigned
as a uniform flow parallel to the axis. However, the integration of the T–M equations
with respect to the polar angle (T–M integration) terminates naturally downstream of
the ECF and ICFA, as well as upstream of the Busemann flow and ICFB. For the ECF,
the integration of the streamline encounters the infinite discontinuity of the streamline
equation. Alternatively, for the Busemann flow, ICFA and ICFB, the T–M integration
terminates at the infinite discontinuity of the T–M equations, or in other words, the singular
line, noting that the singular line in the Busemann flow corresponds exactly to the uniform
inflow.

Leaving out the additional boundary conditions and taking the T–M equations as an
initial value problem, a class of solutions can be obtained by direct integration, which is
terminated by the infinite discontinuity both upstream and downstream. These solutions
can be truncated in accordance with specific boundary conditions and combined with
each other to form composite solutions. Thus, these solutions are termed the elementary
solutions in this work. This section will focus on the preliminary analysis of elementary
solutions to the T–M equations, whose corresponding solution domains are classified
according to the critical surfaces in the pre-shock (§ 2.2) and post-shock (§ 2.3) domains.

2.1. Basic analysis of Taylor–Maccoll solutions

2.1.1. Basic properties of Taylor–Maccoll equations
The T–M equations are usually formulated on the polar coordinates, where the
independent variable is the polar angle (θ ). The dependent variables are the radial
and circumferential components of the flow velocity (ur, uθ ) (Mölder 1967), either
non-dimensionalized by the theoretically maximum speed (Maccoll & Taylor 1936) or the
characteristic sonic speed (Grozdovskii 1959). In this work, the square of the characteristic
Mach number (λ2) and the flow inclination (ψ) are introduced as the dependent variables
to simplify the expression of critical surfaces and facilitate the analysis. As shown in
figure 2, (x, y) are Cartesian coordinates, while (r, θ) are polar coordinates. Also, ϕ and
ψ are the flow inclination with respect to the polar line and the axis, respectively, or the
relative and absolute flow inclinations in short. The characteristic Mach number λ can be
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related to the Mach number M with

λ2 = γ + 1
2/M2 + (γ − 1)

∈ (0, λ2
lim), λ2

lim = lim
M2→∞

λ2 = γ + 1
γ − 1

, (2.1a,b)

where γ is the specific heat ratio of the gas. By formulating the T–M equations in
(λ2, ψ, θ) space, we obtain (cf. Appendix A for details)

1
2λ2

dλ2

dθ
= −sinψ

sin θ
sinϕ

1 − M2 sin2 ϕ
, (2.2a)

dψ
dθ

= −sinψ
sin θ

cosϕ

1 − M2 sin2 ϕ
, (2.2b)

whose solution with initial point (λ2
0, ψ0, θ0) can be expressed as F (θ; λ2

0, ψ0, θ0). The
streamline and its curvature are evaluated by solving the following equations:

d ln r
dθ

= cotϕ, (2.3)

κ = sinϕ
r

dψ
dθ
. (2.4)

The solution to the T–M equations (2.2) and the streamline equation (2.3) with
initial value x̂(θ0) = (λ2

0, ψ0, ln r0) is denoted as F̂ (θ; x̂(θ0), θ0), where three intuitive
properties, namely, the properties of evolution, reversal and symmetry, can be deduced.

PROPERTY 2.1 (Evolution). Identical solutions can be obtained with different initial
values on the solution, F̂ (θ) = F̂ (θ; x̂0, θ0) = F̂ (θ; F̂ (θ1; x̂0, θ0), θ1).

PROPERTY 2.2 (Reversal). The flow direction of the T–M solution is reversible.
The solutions with opposite initial velocities satisfy F̂ (θ; x̂0 + (0,±π, 0), θ0) =
F̂ (θ; x̂0, θ0)+ (0,±π, 0).

PROPERTY 2.3 (Symmetry). The solutions with initial values symmetric to the lines
(ϕ, θ) = (kπ/2,π/2) are of reflection symmetry

λ2(π − θ; x̂sym,π − θ0) = λ2(θ; x̂0, θ0)

kπ − ψ(π − θ; x̂sym,π − θ0) = ψ(θ; x̂0, θ0)

r(π − θ; x̂sym,π − θ0) = r(θ; x̂0, θ0).

⎫⎪⎬
⎪⎭ , x̂sym = (λ2

0, kπ − ψ0, ln r0). (2.5)

Critical surfaces can be directly deduced from (2.2)–(2.4). Taking the derivatives in
(2.2) to be zero, the equilibria (sinψ = 0) are yielded, which represent the uniform
flows with ψ = 0 or π. The equilibria here are a collection of trivial solutions and
denoted as Sequ = {(λ2, ϕ, θ) | sinψ = 0}. Taking the denominator in either equation
(2.2), (2.3) to be zero, the infinite discontinuities for the specific equations are yielded.
The integration of the T–M equations (2.2) will be terminated by the infinite discontinuity
M2 sin2 ϕ = 1, which is termed Mach discontinuity in this work and denoted as SMa =
{(λ2, ϕ, θ) | M2 sin2 ϕ = 1}. Similarly, the integration of the streamline equation (2.3) can
be terminated by the infinite discontinuity sinϕ = 0, which is termed slip discontinuity
and denoted as Sslip = {(λ2, ϕ, θ) | sinϕ = 0}. In addition, the surface cosϕ = 0 consists
of zero-curvature points (κ = 0) for the streamlines of non-trivial solutions (sinψ /= 0)
and is denoted as Sκ=0 = {(λ2, ϕ, θ) | cosϕ = 0}.
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Figure 3. (a) Mach discontinuity, equilibria and typical solutions in (λ2, ϕ, θ) space; (b) slice of the surfaces
and projection of the solutions on the (λ2, ϕ) plane at θ = 15◦.

2.1.2. Mach discontinuity as a bound of the elementary solution
The critical surfaces and typical solutions are plotted both in the (λ2, ϕ, θ) space and on
the (λ2, ϕ) plane for clarity (cf. figure 3). The slice of Sequ varies linearly along the ϕ-axis
as θ varies, while the slices of SMa and Sslip are independent of θ . The slices of critical
surfaces on the plane (λ2, ϕ) will be utilized consistently in this work as they are more
concise for illustration, as compared with those on the phase plane (λ2, ψ).

Apart from the trivial solutions on Sequ, the integrations of the T–M equations along θ
directed toward 0 and π are both terminated by SMa, at the corresponding terminal points
marked with © and �, respectively, in figure 3. Thus, the elementary solution is a T–M
solution defined on an interval that cannot be extended across SMa. For clarity, the solution
branches and terminal points are defined as follows.

DEFINITION 2.1 (Lower/upper branches and terminal points). The elementary solution
F (θ) = F (θ; λ2

0, ψ0, θ0) is defined on a maximal open interval (θl, θu) ⊂ (0,π). The
portions of the solution F (θ) defined on the interval, vis-à-vis, (θl, θ0] and [θ0, θu), are
termed the lower and upper branches of the elementary solution, respectively.

The lower and upper terminal points are the limiting points of the lower and upper
branches towards the Mach discontinuity. Symbolically, (λ2

l,u, ψl,u) = limθ→θl,u F (θ) with
M2

l,u sin2 ϕl,u = 1.

The leading and trailing characteristic curves of the elementary solution are tangent to
the singular line at the terminal points since the relative flow inclination there is equal to
the Mach angle, i.e. |ϕl,u| = μ. The Mach discontinuity can be split into two families of
segments based on whether the characteristics are left or right running, (cf. figure 3b).

DEFINITION 2.2 (Left-/right-running Mach discontinuity). The Mach discontinuity which
lies in the interval, vis-à-vis, ϕ ∈ (−π/2 + kπ, kπ) or ϕ ∈ (−π + kπ,−π/2 + kπ), k ∈
Z, is termed a left- or right-running Mach discontinuity and denoted as S±

Ma, respectively.

To illustrate the influence of the left- and right-running characteristics on the solution,
numerical results of four cases are obtained by solving the axisymmetric Euler equations
and presented in figure 4. Four cases are divided into two groups corresponding to two
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(a)

(b)
(d)

(c)

Figure 4. (a) External and (b) internal flow for a DCF solution. (c) External and (d) internal flow for
a Busemann solution. Solid lines are contour lines of Mach number. Dashed lines are polar lines. The
dot-dash-dot line is the axis.

elementary solutions. Two cases of the same group share the same wall surface (the
bold streamlines) and free-stream Mach number, which are provided by one elementary
solution. The group in the left column (cf. figure 4a,b) is based on an elementary solution
called degenerate conical flow (DCF, later introduced in § 2.3.2). Alternatively, the
reference T–M solution for the group in the right column (cf. figure 4c,d) is a Busemann
flow. The leading characteristics are left running for the DCF solution, indicating that
the disturbance induced by the wall should propagate away from the axis. Thus, the
external flow (figure 4a) behaves as a conical expansion flow. In contrast, the internal
flow (figure 4b) is not conical, because it is affected by the right-running characteristics,
which is not expected in the DCF solution. Alternatively, since the leading characteristics
are right running for the Busemann solution, the internal flow (figure 4d) behaves as the
Busemann flow, while the external flow (figure 4c) does not satisfy the T–M equations.
The characteristic curves at the singular line determine whether a T–M solution is internal
or external.

Since the elementary solution is bounded by SMa, SMa naturally divides the solution
domain into the pre-/post-shock subdomains characterized by the Mach number
corresponding to the θ -component of the velocity, M sinϕ. Symbolically, these domains
can be specified as

Dpre = {(λ2, ϕ, θ) | M2 sin2 ϕ > 1}, Dpost = {(λ2, ϕ, θ) | M2 sin2 ϕ < 1}. (2.6a,b)

Note that the shock here refers to the shock encountered in a T–M solution, which is in
coincidence with the polar line. Secondary shock can emerge if the post-shock flow is
supersonic. However, the secondary shock will not be located on a polar line, and the
flow downstream does not satisfy the T–M equations. A typical example is the supersonic
flow over a biconic body. The elementary solutions in the pre-/post-shock domains are
presented in the following subsections, while discussions on shock solutions are reserved
for § 3.

2.2. Pre-shock domain

2.2.1. Symmetric subdomains
The pre-shock domain is cut by the Mach discontinuity into periodically spanned
unconnected subdomains, in which the kth subdomain can be denoted as

Dpre,k = Dpre ∩ {(λ2, ϕ, θ) |ϕ ∈ ((k − 1)π, kπ), k ∈ Z}. (2.7)

Due to the reversible nature of the T–M equations, the elementary solutions in Dpre,k are
the same as those in Dpre,k+1, except that the reversal in the flow direction. In addition, the
equilibria (ψ = kπ) are those elementary solutions that pass through the lines (ϕ, θ) =
((2k − 1)π/2,π/2), respectively. The symmetry property enables Sequ to subdivide Dpre,k
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Figure 5. (a) Divergence bound and typical solutions in (λ2, ϕ, θ) space; (b) slice of the surfaces and
projection of the solutions on the (λ2, ϕ) plane at θ = 15◦.
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Figure 6. (a) Values of ϕ and (b) λ2 varying with θ for convergent, critical and divergent solutions.

into two symmetric subdomains for each k, which are named pre-shock domains I and II,
which can be specified symbolically as

Dpre,I = Dpre ∩ {(λ2, ϕ, θ) |ϕ ∈ ((k − 1)π, kπ − θ), k ∈ Z}, (2.8a)

Dpre,II = Dpre ∩ {(λ2, ϕ, θ) |ϕ ∈ (kπ − θ, kπ), k ∈ Z}. (2.8b)

Note that the portions of pre-shock solutions in Dpre,I for θ ∈ (π/2,π) and those in Dpre,II
for θ ∈ (0,π/2) are mutually correspondent. The pre-shock solutions with initial points
spanned on θ ∈ (0,π/2] can represent the solutions in the entire pre-shock domain.

2.2.2. Divergence bound
Figure 5 depicts the elementary solutions in Dpre,I for initial values λ2

0 = 4, θ0 = 15◦ with
varying ϕ0 in (λ2, ϕ, θ) space and on the (λ2, ϕ) plane. Projections of the corresponding
convergent, critical and divergent solutions on the (ϕ, θ) and (λ2, θ) planes are shown
in figure 6. All three types of solutions persist in a similar trend, with an essential
difference stemming from the upper terminal point. For the usual convergent solution
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Figure 7. (a) Inflection bound and typical solutions in (λ2, ϕ, θ) space; (b) slice of the surfaces and
projection of the solutions on the (λ2, ϕ) plane at θ = 15◦.
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Figure 8. (a) Values of ϕ and (b) λ2 varying with θ for inflectional, critical and non-inflectional solutions.

(here, ϕ0 = −30◦), λ2
u < λ

2
lim, ψu = 0, the upper terminal point lies on the equilibria,

indicating a uniform inflow at the singular line. For the critical solution (ϕ0 = −48.61◦),
λ2

u = λ2
lim, ψu = 0, the upper terminal point lies on the edge of the equilibria, which

coincides with the limiting characteristic Mach number, implying a uniform inflow with
the maximum speed. For the divergent solution (ϕ0 = −60◦), λ2

u = λ2
lim, ψu < 0, the upper

terminal point retains the maximum speed, but no longer lies on the equilibria, nor does it
pertain to a uniform inflow.

The collection of all possible critical solutions mentioned above can be defined as the
divergence bound, which divides the pre-shock domain into convergent/divergent domains.

DEFINITION 2.3 (Divergence bound). The divergence bound I (or II) is the collection of
all possible elementary solutions in Dpre,I (or Dpre,II), whose upper (or lower) terminal
points lie on Sequ and reach exactly the limit of characteristic Mach number λlim.
Symbolically, the divergence bounds can be expressed as follows:

Sdiv,I = {(λ2, ϕ, θ) | F (π; λ2, ϕ, θ) = (λ2
lim, (k − 1)π), k ∈ Z}, (2.9a)

Sdiv,II = {(λ2, ϕ, θ) | F (0; λ2, ϕ, θ) = (λ2
lim, kπ), k ∈ Z}. (2.9b)
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Figure 9. (a) Inflectional, (b) critical and (c) non-inflectional solutions with λ2
0 = 5.0, θ0 = 15◦ and

varying ϕ0.

The domain enclosed by SMa and Sdiv is termed convergent domain and denoted
as Dconv , which is also divided into symmetric subdomains Dconv,I and Dconv,II by
the equilibria. Similarly, the complementary domain of Dconv,I/II in Dpre,I/II is termed
divergent domain I/II and denoted as Ddiv,I/II , respectively.

2.2.3. Inflection bound in pre-shock domain
A three-dimensional plot of the elementary solutions for initial values λ2

0 = 5.0, θ0 = 15◦

with varying ϕ0, together with the projection on the (λ2, ϕ)-plane are shown in figure 7.
The trend of the solutions can be observed from the projections on the (ϕ, θ)- and
(λ2, θ)-planes as depicted in figure 8. Three types of solutions can be seen in this test
case, namely, inflectional, critical and non-inflectional. The streamline of the inflectional
solution (here ϕ0 = 167.1◦) always consists of an inflection point, while those of the
critical solution (ϕ0 = 167.135◦) and the non-inflectional solution (ϕ0 = 167.2◦) do not.
These three types of solutions are close to each other for θ ≤ θ0, and then the inflectional
and non-inflectional ones bend away from the opposite sides of the critical solution
as θ increases (cf. figure 8). The corresponding flow fields are illustrated in figure 9,
where the usual inflectional solution (cf. figure 9a) is similar to the classic Busemann
flow. The lower/upper branches of the inflectional solution terminate, respectively, at
S±

Ma with ϕu < π/2 < ϕl, indicating the transition from internal compression to external
compression. The critical solution terminates at exactly the sonic point λ2

u = 1, ϕu = π/2,
representing the flow with maximum isentropic compression that can be given by the T–M
equations theoretically. The upper and lower branches of the non-inflectional solution both
terminate at S+

Ma, where π/2 < ϕu < ϕl.
The derivative dϕ/dλ2 at cosϕ = 0 in the domain Dpre,II

dϕ
dλ2

∣∣∣∣
cosϕ=0

= − dθ
dλ2

∣∣∣∣
cosϕ=0

> 0, (2.10)

which indicates that the inflectional solution goes across Sκ=0 only once, rather than
passing through it repeatedly or touching it tangentially. As a result, the terminal points of
the inflectional solution will lie on different segments of SMa, while the non-inflectional
solution is supported by the same one, either S+

Ma or S−
Ma. For the critical solution, one of its
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Basic solutions to Taylor–Maccoll equations

terminal points is exactly the split point of S±
Ma. Thus, the inflectional and non-inflectional

solutions can be determined according to the location of the terminal point.

DEFINITION 2.4 (Inflection bound in the pre-shock domain). The collection of
the elementary solutions in Dpre,I , whose lower branches terminate at exactly the
zero-curvature point, is termed inflection bound I and denoted as Sinflect,I .

Similarly, the collection of the elementary solutions in Dpre,II , whose upper terminal
points are sonic, is termed inflection bound II and denoted as Sinflect,II . Symbolically

Sinflect,I = Dpre ∩ {(λ2, ϕ, θ) | F (θl; λ2, ϕ, θ) = (1.0, (2k − 1)π/2), k ∈ Z}, (2.11a)

Sinflect,II = Dpre ∩ {(λ2, ϕ, θ) | F (θu; λ2, ϕ, θ) = (1.0, (2k − 1)π/2), k ∈ Z}. (2.11b)

The domain enclosed by SMa, Sequ, Sinflect,I (or Sinflect,II) and the surface λ2 =
λ2

lim is termed inflection domain I (or II) and denoted as Dinflect,I (or Dinflect,II). The
complementary domain of Dinflect,I/II in Dpre,I/II is termed non-inflection domain I/II and
denoted as Dnon-inflect,I/II .

The intersection of Sdiv and Sinflect divides Spre into four subdomains: the
convergent inflectional domain (Busemann domain, DBu), the convergent non-inflectional
domain (Dnon-inflect,Bu), the divergent inflectional domain (Dinflect,div) and the divergent
non-inflectional domain (Dnon-inflect,div).

2.3. Post-shock domain

2.3.1. Symmetric subdomains
The post-shock domain is the connected domain across the entire ϕ-axis with λ2 <
λ2

Ma. To facilitate the analysis, the post-shock domain is firstly divided into subdomains
according to the property of symmetry. The elementary solutions passing through the
lines (ϕ, θ) = ((2k − 1)π/2,π/2) are exactly the equilibria, ψ = kπ, which divide the
post-shock domain into periodical subdomains as

Dpost,k = Dpost ∩ {(λ2, ϕ, θ) |ψ ∈ ((k − 1)π, kπ), k ∈ Z}. (2.12)

The elementary solutions passing through the lines (ϕ, θ) = (kπ,π/2) are termed
symmetry bound and denoted as Ssym (cf. figure 10)

Ssym = {(λ2, ϕ, θ) | (λ2, ϕ) = F (θ; λ2
0, kπ,π/2), λ2

0 ∈ (0, λ2
lim), k ∈ Z}. (2.13)

The symmetry bound in each Dpost,k can further subdivide it into two symmetric portions,
the post-shock domains I and II, which can be specified symbolically as follows:

Dpost,I = Dpost ∩ {(λ2, ϕ, θ) |ϕ ∈ (kπ − θ, ϕsym), k ∈ Z}, (2.14a)

Dpost,II = Dpost ∩ {(λ2, ϕ, θ) |ϕ ∈ (ϕsym, (k + 1)π − θ), k ∈ Z}. (2.14b)

As a result, the portions of post-shock solutions Dpost,I for θ ∈ (π/2,π) are equivalent to
those in Dpost,II for θ ∈ (0,π/2). The analysis performed in Dpost for θ ∈ (0,π/2] would
be representative for the entire post-shock domain.

The elementary solutions on Dsym are literally symmetric, as shown in figure 11(b).
Also, the solutions above and below the symmetry bound (cf. figure 11a,c) are symmetric
to each other. The flow above the slipstream resembles the classic ECF solution, while
the flow below differs entirely from the nature of those four classic solutions. Thus, the
corresponding solution branches can be abbreviated as the ECF and the inner flow of ECF
(IECF), respectively.
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Figure 10. (a) Critical surfaces and typical solutions in (λ2, ϕ, θ) space; (b) slice of the surfaces and
projection of the solutions on the (λ2, ϕ) plane at θ = 15◦.

λ2 2.0 2.1 2.2

λ2 = 2.0

θ = 90°

2.3

(a)

(b)

2.4

λ2 = 2.0

θ = 15°

λ2 = 2.0

θ = 165°

(c)

ECF

IECF

IECF

ECF

IECF=ECF

Figure 11. The ECF–IECF solutions (a) with θ0 < θsym, (b) on Ssym and (c) with θ0 > θsym.

2.3.2. Degeneration bound
The elementary solutions for ϕ0 = 150◦, θ0 = 15◦ by varying λ2

0 show a similar trend as
depicted in figures 12 and 13, where the essential difference appears at the upper terminal
points. The elementary solution that passes through the slip discontinuity is split into the
ECF and IECF branches (cf. figure 14c). However, unlike the classic ECF solution, the
ECF branch here contains an inflection point. As λ2

0 increases, the slipstream moves toward
the axis, and the IECF branch shrinks accordingly. When λ2

0 reaches a critical value, the
slipstream coincides with the axis while the IECF branch disappears (cf. figure 14b).

The elementary solution that consists of ECF and IECF branches and passes through the
slip discontinuity can be stated as the non-degenerate solution in contrast to the solution
for the DCF, whose IECF branch disappears. In general, the upper terminal points of
the degenerate and critical solutions are located exactly on the equilibria (cf. figure 13a),
implying uniform flow (cf. figure 14a,b). In particular, all the critical solutions approach
tangentially to the singular points (1, (2k + 1)π/2,π/2). The collection of the above
critical solutions can be defined as the degeneration bound, which separates the degenerate
solutions from the non-degenerate ones.
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Figure 12. (a) Critical surfaces and typical solutions in (λ2, ϕ, θ) space; (b) slice of the surfaces and
projection of the solutions on the (λ2, ϕ) plane at θ = 15◦.

λ2ϕ (deg.)

θ 
(d

eg
.)

Equilibria

Non-degenerate

Critical

Degenerate

Equilibria

Degenerate

Non-degenerate

Critical

Degenerate

Non-degenerate

Non-degenerate

Degenerate

Critical

Degenerate

IECF branch
IECF branch

–180 –120 –60 0 0 1 2 3 4 5 6

30

60

90

120

150

180

60 120 180
0

30

60

90

120

150

180
(a) (b)

Figure 13. (a) Values of ϕ and (b) λ2 varying with θ for degenerate, critical and non-degenerate solutions.

DEFINITION 2.5 (Degeneration bound). The collection of the elementary solutions in
Dpost, which are terminated by and tangent to SMa at the singular points (1, (2k +
1)π/2,π/2), is termed the degeneration bound and denoted as Sdegen

Sdegen = Dpost ∩ {(λ2, ϕ, θ) | F (π/2; λ2, ϕ, θ) = (1.0, (2k + 1)π/2)}. (2.15)

The domain enclosed by SMa, Sequ and Sdegen can be defined as the degenerate domain
and denoted as DDCF. The associated complementary domain in Dpost is termed
non-degenerate domain and denoted as DCF.

Accordingly, the degeneration bound divides the post-shock domain into non-degenerate
and degenerate domains consisting of elementary solutions with and without the
IECF branch, respectively. The non-degenerate domain can be subdivided further into
subdomains corresponding to the ECF and IECF branches, considering that the streamline
of ECF–IECF solutions is not continuous at Sslip. The IECF domain is enclosed by SMa,
Sslip and Ssym and denoted as DIECF, while the ECF domain is the complementary domain
of DIECF in DCF and denoted as DECF. The associated subsets of DECF in Dpost,I/II are
denoted as DECF,I/II .
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Figure 14. (a) The DCF, (b) critical and (c) ECF–IECF solutions with ϕ0 = 150◦, θ0 = 15◦ and varying λ2
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Figure 15. (a) Critical surfaces in (λ2, ϕ, θ) space and (b) their slices at θ = 15◦.

2.3.3. Sonic bound
The local minimum of λ2 for the elementary solution in Dpost is located at dλ2/dθ =
0, or sinϕ = 0. Thus, elementary solutions passing through the sonic points on the slip
discontinuity are supersonic elsewhere. Accordingly, the collection of the above solutions
is termed a sonic bound and denoted as Ssonic. Symbolically,

Ssonic = {(λ2, ϕ, θ) | (λ2, ϕ) = F (θ; 1.0, kπ, θ0), θ0 ∈ (0,π), k ∈ Z}. (2.16)

The elementary solutions on Sdegen terminate exactly at the sonic point (1, (2k +
1)π/2,π/2), among which the sonic equilibrium has the minimum speed. Thus, the
solutions in DDCF are supersonic. As illustrated in figure 15, Ssonic and Sdegen divide Dpost
into the transonic domain Dtrans and the supersonic domain Dsuper. Since the post-shock
solutions with inflection points (cf. figure 31c) must intersect with Sκ=0, where the
intersection points are subsonic, all the elementary solutions in Dsuper are non-inflectional.

3. Shock-connected solutions to the Taylor–Maccoll equations

There is always a shock in the four classic solutions to the T–M equations, where the
pre- or post-shock flow appears as part of an elementary solution or a trivial solution,
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Basic solutions to Taylor–Maccoll equations

i.e. the uniform flow. The shock discontinuity cannot be obtained from direct integration
of the T–M equations (2.2). Rather, the shock serves as the termination condition for
the elementary solution, which does not alter the distribution of flow parameters along
the polar angle. Thus, a T–M solution with a shock can be regarded as a combination
of two elementary solution branches sharing a common shock as their initial stations.
Accordingly, the above combined solution can be named the shock-connected solution.

In the shock-connected solution, the Rankine–Hugoniot relation can be represented in
terms of the pre- and the post-shock parameters as

tanϕ1

tanϕ2
= (γ + 1)M2

1 sin2 ϕ1

2 + (γ − 1)M2
1 sin2 ϕ1

, (3.1)

M2
2 sin2 ϕ2 = 2 + (γ − 1)M2

1 sin2 ϕ1

2γM2
1 sin2 ϕ1 − (γ − 1)

, (3.2)

where the subscripts 1, 2 denote the points on the opposite sides of a shock. Note that the
formula remains valid after the swap of the subscripts. The details of the manipulation
are given in Appendix B. Let the shock be located at θ = θs, then a pair of points on both
sides of the shock, (λ2

1, ϕ1, θs) and (λ2
2, ϕ2, θs), can produce a pair of elementary solutions,

F 1,2(θ) = F (θ; λ2
1,2, ϕ1,2, θs), whose branches can be combined to form T–M solutions

with a shock. One branch (upper/lower) of the pre-shock solution can be combined with
the other branch (lower/upper) of the post-shock solution by the shock. The nature of some
particular combinations with trivial uniform solutions corresponding to the four classic
solutions will be discussed firstly in § 3.1. Then, combinations of general T–M solutions
will be analysed in § 3.2.

3.1. Classic solutions to Taylor–Maccoll equations
Recall that the equilibrium surface Sequ is a plane consisting of trivial solutions. The
mapping of the shock relations (3.1), (3.2) brings Sequ to a parametric curvilinear
surface, called the shock opposite of equilibria and denoted as S′

equ, which represents the
pre-/post-shock state on the opposite side of a shock encountered in a post-/pre-shock
uniform flow. Thus, conversely, the pre-/post-shock solution integrated from any point on
S′

equ corresponds to a uniform post-/pre-shock solution, respectively. In other words, the
non-trivial solution branches of the four classic solutions, i.e. the ECF, Busemann, ICFA
and ICFB branches, are either tangent to or intersect with S′

equ in the space (λ2, ϕ, θ).
In addition, the projection of S′

equ on the (λ2, ϕ) plane contains all possible
pre-/post-shock states corresponding to the post-/pre-shock state on (0, λ2

lim)× ((k −
1)π, kπ), which indicates that shock solutions cannot exist if the post-shock state (λ2, ϕ)
is outside the boundary of the projection, or symbolically

λ2 ≤ γ 2 − 1
(γ 2 + 1)− 2γ cos 2ϕ

. (3.3)

3.1.1. Classic solutions with uniform outflow
The collection of the elementary solutions tangent to S′

equ (cf. figure 16a) is termed the
classic Busemann bound and denoted ScBu. The elementary solutions in Dpre outside
ScBu do not intersect with S′

equ, which implies that the classic solutions with uniform
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Figure 16. (a) Classic Busemann bound and elementary solutions in (λ2, ϕ, θ) space. Slices of critical
surfaces and projection of the solutions on the (λ2, ϕ) plane at (b) θ = 15◦, (c) θ = 78.56◦.
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Figure 17. Classic Busemann solutions with a (a) weak and (b) strong shock based on the same pre-shock
solution.

outflows, i.e. the classic Busemann and ICFB solutions, may not exist for the present
case. In addition, each elementary solution on ScBu is tangent to S′

equ, corresponding to
one uniform outflow. Every elementary solution interior to ScBu intersects with S′

equ at
two points, which produces two types of shock-connected solutions with strong and weak
shocks, respectively. The numerical results reveal that ScBu does not intersect with Sinflect,
and the domain consisting of the classic pre-shock solutions is contained in Dinflect. Hence,
there exists an inflection point upstream of the shock in the classic Busemann flow, which
is consistent with the conclusion given by Mölder (2019).

The combinations of the upper pre-shock branches and the lower post-shock branches
in figure 16(b,c) are illustrated in figure 17(a,b). It is seen that the same pre-shock solution
may be connected to different uniform post-shock flows with shocks of different intensities
and locations. Here, the pre-shock solution is the same in the sense that the pre-shock
branches that split at different shock locations share the same elementary solution.

3.1.2. Classic solutions with uniform inflow
Post-shock elementary solutions cannot approach tangentially to S′

equ. They rather intersect
with S′

equ at a single point or emerge without intersection. Then, the boundary of S′
equ

(∂S′
equ), determines the existence of the classic post-shock solution. Accordingly, the

collection of the elementary solutions integrated from the points on the boundary is
termed the classic ECF bound and denoted as ScECF. In addition, the elementary solutions
integrated from the points on S′

equ which satisfy the shock detachment condition (B6) turn
out to be exactly the detached solution of classic ECF type. Likewise, the collection of the
above elementary solutions can be termed the detachment bound and denoted as Sdetach.
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Figure 18. (a) Classic ECF bound, detachment bound and elementary solutions in (λ2, ϕ, θ) space. Slices
of critical surfaces and projection of the solutions on the (λ2, ϕ) plane at (b) θ = 15◦, (c) θ = 42.5◦,
(d) θ = 87.14◦.

The bounds ScECF and Sdetach are illustrated in figure 18. The elementary solutions
outside ScECF or on the right of Sdegen do not intersect with S′

equ, indicating that the
classic solutions with uniform inflow, i.e. classic ECF and ICFA solutions, do not exist.
The domain enclosed by ScECF can be subdivided further by Sdetach into subdomains for
classic solutions with strong (left side) and weak (right side) shocks. Figure 19 depicts two
types of ECF branches integrated downstream of strong and weak shocks, respectively,
with the same uniform pre-shock inflow.

3.1.3. Classic solutions as solution branches
A classic solution is a combination of two solution branches sharing a common shock as
their initial stations. One branch shows the features of classic solutions, while the other
is part of the equilibria. As illustrated in figure 20, with a pre-shock elementary solution
in Dpre and its corresponding trivial solution in Dpost, two pairs of different branches can
be obtained to form two classic solutions. Specifically, the lower branch of the pre-shock
solution can be combined with the upper branch of the post-shock equilibria to form the
classic ICFB solution (cf. figure 20b), while the upper pre-shock branch and the lower
post-shock branch form the classic Busemann solution (cf. figure 20c). Similarly, for
the shock-connecting solution with a post-shock solution in Dpost and its corresponding
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Figure 19. Classic ECF solutions with a (a) weak and (b) strong shock under the same inflow velocity and
cone half-angle.
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Figure 20. (a) Branches of the elementary solutions. Classic (b) ICFB solution (dashed lines in (a)) and
(c) Busemann solution (solid lines in (a)).
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Figure 21. (a) Branches of the elementary solutions. Classic (b) ICFA solution (dashed lines in (a)) and
(c) ECF solution (solid lines in (a)).

pre-shock trivial solution (cf. figure 21), the upper branch of the post-shock solution is
part of the classic ICFA solution (figure 21b), and the lower one is part of the classic ECF
solution (figure 21c).

In summary, the four classic solutions are combinations of branches extracted from
two pairs of elementary solutions. The classic Busemann and ICFB solutions belong to
one, while the classic ECF and ICFA solutions belong to the other. Further, following
notations of the four classic solutions, the branch of solutions in DBu with uniform flows
can be denoted as the Busemann branch, and the remaining branch the ICFB branch.
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Basic solutions to Taylor–Maccoll equations

Meanwhile, the branch of solutions that approaches Sslip in DECF can be denoted as the
ECF branch, and the opposite branch is denoted as the ICFA branch.

3.2. Elementary solutions connected by a shock
The classic solutions are special cases of shock-connected solutions, where one of the pre-
and post-shock elementary solutions is a trivial solution. In general, for a shock located at
θ = θs, the branches integrated from any pre-shock point (λ2

pre, ϕpre, θs) can be connected
with branches integrated from the corresponding post-shock point (λ2

post, ϕpost, θs) in
accordance with the shock relations (3.1) and (3.2), to form a set of shock-connected
solutions. The types of these elementary solutions are determined by the locations of the
pre- and post-shock points. The shock plane, Sθ=θs = {(λ2, ϕ, θ) | θ = θs}, where the pre-
and post-shock points are located, is divided into several regions by the critical surfaces.
Thus, the possible types of shock-connected solutions can be determined by investigating
the topology of the regions.

3.2.1. Critical points for supersonic shock-connected solutions
Analogously to the shock opposite of equilibria, the mapping of the shock relations (3.1)
and (3.2) can bring the critical surfaces defined in § 2 to parametric curvilinear surfaces,
called the shock-opposite surfaces and denoted as S′. The shock-opposite domains can be
defined similarly and denoted as D′. Note that the shock-opposite surfaces are no longer
collections of elementary solutions. Instead, they serve only as the references where the
pair of pre- and post-shock points are located on Sθ=θs . In other words, the topology of the
critical surfaces together with their associated shock opposites determine which pairs of
pre- and post-shock subdomains D1,2 can be connected for a shock located at θ = θs, or
symbolically, D′

1 ∩ D2 ∩ Sθ=θs /= ∅.
To avoid a lengthy discussion, here, efforts will be focused on the combination with

elementary solutions in Dsuper, and the symbols introduced before will be used extensively
(cf. Appendix C for the nomenclature). Figure 22 depicts the slices of most critical surfaces
and their associated shock opposites at critical shock locations. The topologies on different
slices are significantly distinct from each other. Thus, the permissible shock-connected
solution varies correspondingly with respect to the variation of θs.

As illustrated in figure 22, there are three relevant subdomains in Dpost for θ ∈ (0, 90◦],
i.e. Dsuper,ECF,I , Dsuper,IECF and DDCF; D′

super,ECF,I behaves as a simply connected region
contained in Dinflect,I ∪ Dpre,II on Sθ=θs until θs reaches 58.92◦. On Sθ=58.92◦ , Ssonic
touches SMa and Dsuper,ECF,I is split into two separate portions (cf. figure 22d), among
which the smaller portion near the sonic equilibrium shrinks quickly as θs increases. When
θs > 66.85◦, D′

super,ECF,I retreats from Dinflect,div,I (cf. figure 22f ). In addition, the larger
portion of D′

super,ECF,I also retreats from DBu,I and becomes contained in Dpre,II , while
the smaller portion still intersects with DBu,I .

The shock-opposite subdomain D′
super,IECF is contained in Dnon-inflect,div,I initially. As

θs increases, D′
super,IECF begins to intersect with Dinflect,div,I , Dnon-inflect,Bu,I and DBu,I

at θs = 23.41◦, 55.35◦, 63.77◦, respectively (cf. figure 22a,c,e). The shock-opposite
subdomain D′

DCF intersects with Dinflect,I initially. As θs increases, D′
DCF retreats from

Dinflect,div,I and becomes contained in DBu,I at θs = 27.87◦ (cf. figure 22b). As illustrated
also in figure 22(b), Dconv,I and Dnon-inflect,I begin to intersect with each other and form
Dnon-inflect,Bu,I on Sθ=θs after θs reaches 27.75◦.
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Figure 22. Critical surfaces (solid lines) and their shock opposite (dotted lines) on Sθ=θs . The relevant
subdomains on the critical slice are filled with different colours. The dashed arrows indicate the direction
the intersection curves move as θ increases. Panels show (a) θs = 23.41◦, (b) θs = 27.8◦, (c) θs = 55.35◦,
(d) θs = 58.92◦, (e) θs = 63.77◦, ( f ) θs = 66.85◦.

The critical slices related to Ssym, the dividing surface between DECF,II and DIECF for
θ ∈ (0,π/2], are illustrated in figure 23. After θs reaches 69.69◦, D′

super,ECF,II emerges
and intersects with Dnon-inflect,Bu,I on Sθ=θs (cf. figure 23a). As θs increases further,
D′

super,ECF,II intersects with the other three subdomains in Dpre,I , DBu,I , i.e. Dinflect,div,I and
Dnon-inflect,div,I , subsequently at θs = 74.25◦, 77.60◦, 77.86◦ (cf. figure 23b,c). In contrast,
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Figure 23. Critical surfaces related to the symmetry bound (solid lines) and their shock opposite (dotted lines)
on Sθ=θs . The relevant subdomains on the critical slice are filled with different colours. The dashed arrows
indicate the direction in which the intersection curves move as θ increases. Panels show (a) θs = 66.69◦,
(b) θs = 74.25◦, (c) θs = 77.7◦, (d) θs = 80.0◦.

D′
super,IECF intersects with the four pre-shock subdomains until θs reaches approximately

80◦ (cf. figure 23d). Specifically, D′
super,IECF retreats from Dnon-inflect,Bu,I at θs = 79.98◦

and DBu,I at θs = 80.10◦.

3.2.2. Classification of supersonic shock-connected solutions
The critical cases analysed above are summarized in table 1, together with the
associated polar angles θs. Those critical cases, as manifesting topological changes
on the corresponding slices, are utilized to clarify the θs ranges compatible with the
shock-connected solutions. In other words, the pre-shock subdomains can be connected
to the post-shock subdomains in the specific θs ranges shown in figure 24. Leaving out the
transonic solutions, there are 16 types of supersonic shock-connected solutions identified
for θs ∈ (0, 90◦). The 4 subdomains contained in Dpre,II (Dnon-inflect/inflect,II ∩ Dconv/div,II)
intersect with only D′

ECF,I for θs ∈ (0, 90◦), while the 4 subdomains in Dpre,I may be
connected to DECF,II and DIECF with a total of 8 solutions under different θs ranges. Here,
DBu,I and Dinflect,div,I can also be connected to DECF,I and DDCF with 4 solutions. Note
that DECF,I and DECF,II are shown on the same track. The dashed line near 66.85◦ indicates
that the larger portion of Dsuper,ECF,I cannot be connected to DBu,I for θs ≥ 66.85◦, while
the smaller portion can.
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Figure θs Intersection on slice Topological changes

22(a) 23.41◦ S′
inflect,I, Ssonic, ∂S′

equ + D′
inflect,div,I ∩ Dsuper,IECF /= ∅

22(b) 27.75◦ Sdiv,I, Sinflect,I, SMa + Dnon-inflect,Bu,I /= ∅

22(b) 27.87◦ S′
div,I, Ssonic, Sdegen − D′

inflect,div,I ∩ DDCF = ∅

22(c) 55.35◦ Sdiv,I, Ssonic, SMa + D′
non-inflect,Bu,I ∩ Dsuper,IECF /= ∅

22(d) 58.92◦ Ssonic, SMa + Dsuper,ECF,I becomes separated
22(e) 63.77◦ Sdiv,I, Sinflect,I, S′

sonic + D′
Bu,I ∩ Dsuper,IECF /= ∅

22( f ) 66.85◦ Sdiv, Sequ, S′
sonic − D′

inflect,div,I ∩ Dsuper,ECF,I = ∅

23(a) 69.69◦ Ssonic, Ssym, SMa + D′
non-inflect,Bu,I ∩ Dsuper,ECF,II /= ∅

23(b) 74.25◦ Sinflect,I, Ssonic, S′
sym + D′

Bu,I ∩ Dsuper,ECF,II /= ∅

23(c) 77.60◦ S′
div,I, Ssym, SMa + D′

non-inflect,div,I ∩ Dsuper,ECF,II /= ∅

23(c) 77.86◦ S′
div,I, Ssonic, Ssym + D′

inflect,div,I ∩ Dsuper,ECF,II /= ∅

23(d) 79.98◦ Sdiv,I, Sinflect,I, S′
sym − D′

non-inflect,Bu,I ∩ Dsuper,IECF = ∅

23(d) 80.10◦ Sdiv,I, S′
sym − D′

Bu,I ∩ Dsuper,IECF = ∅

Table 1. Critical θs values for γ = 1.4, where the topology on the slice changes. Here, +/− indicate that
something appears or disappears, respectively, as θ increases.

Bu, I × ECF, I/II

Bu, I × IECF

Bu, I × DCF

Non-inflect, Bu, I × IECF

Non-inflect, div, I × IECF

Inflect, div, I × ECF, I/II

Inflect, div, I × IECF

Inflect, div, I × DCF

Pre, II × ECF, I

Non-inflect, Bu, I × ECF, II

Non-inflect, div, I × ECF, II
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Figure 24. The θs ranges for typical supersonic shock-connected solutions.

The previous discussions focus on the topological relations between pre- and post-shock
subdomains, or in other words, the connection of pre- and post-shock elementary solutions.
For a pair of pre- and post-shock elementary solutions, the upper/lower branches of the
pre-shock solution can be connected to the lower/upper branches of the post-shock one,
respectively, and thus form two different shock-connected solutions. Recall that, in § 3.1.3,
the elementary solutions in DBu can be defined as a combination of the Busemann branch
and the ICFB branch, while those in DECF are composed of the ECF branch and the
ICFA branch. Similarly, the elementary solutions in Dnon-inflect,Bu can also be split into
the Busemann branch and the ICFB branch, while the divergent solutions in Dinflect,div ,
Dnon-inflect,div only have the ICFB branches. Further, the branch of the elementary solution
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Figure 25. (a) Shock-connected elementary solutions across DBu,I and DECF,I , and shock-connected solution
branches (b) BuI–ECFI, (c) ICFBI–ICFAI.
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BusemannICFA

ECFICFB

Pre-shock Post-shock

λ2
0 = 5.0
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θs = θ0 = 15°
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(c)

Figure 26. (a) Shock-connected elementary solutions across DBu,II and DECF,I , and shock-connected
solution branches (b) BuII–ICFAI, (c) ICFBII–ECFI.

in DDCF with uniform inflow is a conical expansion flow and can be denoted as the CEF
branch, while the opposite one is a conical compression flow denoted as the CCF branch.

Apart from the solutions relating to Ddiv , four types of shock-connected solutions are
allowed for θs < 55.35◦ (cf. figure 24), i.e. solutions across the domains DBu,I × DECF,I ,
DBu,I × DDCF, DBu,II × DECF,I , Dnon-inflect,Bu,II × DECF,I . As an example, four typical
shock-connected solutions at θs = 15◦ are presented in figure 25–28. Among which,
the elementary solutions across DBu,I and DECF,I are depicted in figure 25(a). The
combination of the pre-shock upper branch with the post-shock lower branch forms a
solution of Busemann–ECF type, which is a compression flow from the inlet to the outlet.
On the other hand, the combination of the pre-shock lower branch with the post-shock
upper branch forms an ICFB–ICFA solution. Here, the branches are expansion flow
while strong compression occurs across the shock due to the flow deflection between the
branches.

For the elementary solutions across DBu,II and DECF,I (cf. figure 26), the combination
of the pre-shock lower branch and post-shock upper branch forms a Busemann–ICFA
solution, which is a compression–expansion flow. The combination of the pre-shock upper
branch and post-shock lower branch forms a solution of ICFB–ECF type, revealing an
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Figure 27. (a) Shock-connected elementary solutions across Dnon-inflectBu,II and DECF,I , and shock-connected
solution branches (b) non-inflectBuII–ICFAI, (c) non-inflectICFBII–ECFI.
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Figure 28. (a) Shock-connected elementary solutions across DBu,I and DDCF , and shock-connected solution
branches (b) BuI–CEF, (c) ICFBI–CCF.

expansion–compression flow. In accordance with the symmetry property of the T–M
solutions, the shock-connected solution BuII–ECFI at θs = 15◦ will be the same as the
BuI–ECFII solution at θs = 165◦.

The elementary solutions across Dnon-inflect,Bu,II and DECF,I (cf. figure 27) are
similar to those across DBu,II and DECF,I . The structures of the Busemann–ICFA-type
solutions, constructed by the Busemann branches in DBu,II and Dnon-inflect,Bu,II ,
respectively, are basically the same. However, due to the inflection point located on the
ICFB branch, significant discrepancies can be observed between the inflectional and
non-inflectional ICFB branches under slight changes of the initial values (�ϕ0 = 0.2◦).
The non-inflectional ICFB branch is terminated quickly, while the inflectional ICFB
branch covers a wider range of polar angles.

For the elementary solutions across DBu,I and DDCF (cf. figure 28), the combination
of the pre-shock upper branch and post-shock lower branch forms a solution of
Busemann–CEF type, which is a compression–expansion flow in nature. On the other
hand, the combination of the pre-shock lower branch and post-shock upper branch forms
an expansion–compression flow of ICFB–CCF type.
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(a)

Busemann-ICFA ICFB-ECF

λ2 1.0 2.0 3.0 4.0 5.0
Busemann

ICFA

ECF

ICFB

Pre-shock Post-shock

λ2
0 = 3.0
ϕ0 = –123°
θs = θ0 = 75°

λ2
0 = 3.0
ϕ0 = 57°
θs = θ0 = 75°

θslip = 90.35°

(b) (c)

Figure 29. (a) Shock-connected elementary solutions across DBu,I × DECF,II and shock-connected solution
branches (b) BuI–ICFAII, (c) ICFBI–ECFII.

There are four additional types of shock-connected solutions for θs ≥ 69.69◦, i.e. the
solutions across the domains DBu,I × DECF,II , DBu,I × DIECF, Dnon-inflect,Bu,I × DECF,II ,
Dnon-inflect,Bu,I × DIECF. The inflection point is now located on the Busemann branch and
behaves similarly to the inflection point in Dpre,II . However, since the inflection point
in the present case is close to the shock, the differences between the inflectional and
non-inflectional branches are not as significant as those in the previous cases for small
θs. This implies that there is little influence of the inflection point on the behaviour of
the connected solution, and it suffices to investigate simply the nature of the solutions
across DBu,I × DECF,II and DBu,I × DIECF. The solution across DBu,I × DECF,II with the
pre-shock initial value (λ2

0, ϕ0, θ0) = (3.0,−123◦, 75◦) is illustrated in figure 29. The
types of the shock-connected solution branches across DBu,I × DECF,II are the same as
those across DBu,II × DECF,I , i.e. the Busemann–ICFA type and the ICFB–ECF type.
When the initial value becomes (λ2

0, ϕ0, θ0) = (3.1,−123◦, 75◦), the post-shock solution
moves to DIECF. However, the location of the slipstream is close to 90◦. Specifically,
θslip = 89.87◦ for the IECF solution and θslip = 90.35◦ for the ECFII solution. Thus,
the ECF and IECF solutions here are almost the same, and so are the shock-connected
solutions.

4. Results and discussion

Discussion on all the T–M solutions is beyond the scope of this work. Two new elementary
solutions, DCF and IECF, given in § 2.3, together with the shock-connected solution,
Busemann–ECF, presented in § 3.2, are selected in this section for further discussion. The
Busemann and DCF solutions are the only two elementary T–M solutions with uniform
inflows or outflows. Note that the boundary where the flow turns uniform is located
at the terminal point of one solution branch, which is not possible to specify a priori.
Nevertheless, a trivial solution will be yielded if the T–M equations are integrated from
exactly the terminal point, while the elementary solutions integrated from initial points
in the neighbourhood of the terminal point are sensitive to the initial points. Thus, the
Busemann and DCF solutions are usually obtained by iterating over a series of elementary
solutions with given outlet properties for the target inlet Mach number. In this work, the
T–M equations are integrated by the ‘DifferentialEquations’ package of the programming
language Julia. The Euler equations are solved with the commercial software Fluent.
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Figure 30. Projection on the (a) (λ, ϕ) plane and the (b) (λ, θ) plane and the (c) Mach number contour of the
DCF solutions with varying initial values.

4.1. Conical expansion flow based on the elementary solution DCF
The CEF expanding from nominally Min = 2.5 to Mout = 3.0 is taken as the reference
throughout this section. Three DCF solutions integrated from points close together are
illustrated in figure 30. The initial points are chosen in the vicinity of the upper terminal
point of the reference CEF, approximately, (3.334, −23.558◦, 23.548◦). Here, solution 1 is
integrated from an initial state almost the same as the upper terminal point, which is taken
as the baseline solution. The initial point of solution 2 is offset by�ϕ0 = 0.001◦, 0.004 %
larger than that of the baseline, while that of solution 3 is offset by�λ2

0 = −0.001, 0.03 %
less than that of the baseline. The relative differences with respect to the baseline values on
M and ϕ are accumulated, respectively, to approximately 0.43 % and 0.47 % for solution
2 and 1.07 % and 1.12 % for solution 3 at the lower terminal point, while those on θ reach
−70.21 % for solution 2 and −82.32 % for solution 3. Viewing from the λ2 distributions
on the (λ2, ϕ) plane and the (λ2, θ) plane, solutions 2 and 3 differ significantly from the
baseline solution 1. However, the difference between solutions 2 and 3 is relatively small
because their initial points are distant from the upper terminal point.

The features of the DCF solutions can further be clarified by comparing them with
the numerical results. The numerical results of the CEF acquired by solving the Euler
equations with different set-ups are illustrated in figure 31(a,b). The corresponding
theoretical DCF solution 1 is depicted in both panels (c,d) to serve as the reference. The
wall consists of three parts, where the upstream segment is parallel to the axis, and the
middle one is conformal to the DCF solution, accompanied by an arbitrary downstream
segment. Since the flow downstream of the trailing singular line is undefined in the DCF
solution, here, the downstream wall segment is set to be parallel to the axis in figure 31(a),
and tangent to the DCF solution in figure 31(b).

Correspondingly, the flow pattern can be divided into three portions according to the
leading and trailing characteristic curves. The flow upstream of the leading characteristics
pertains to a uniform flow, followed by the CEF. Since the lower branch of the
DCF solution is terminated by the singular line, the flow downstream of the trailing
characteristics does not follow the DCF solution, but is determined by conditions of the
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Wall
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Shock & trailing characteristics
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Trailing characteristics
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(b)(a)

(c) (d )

Figure 31. (a,b) Numerical and (c,d) theoretical results of the DCF solution 1 in figure 30. The wall
downstream is (a) parallel to the axis or (b) tangent to the streamline.

downstream wall. For the CEF followed by a cylinder, a shock emerges exactly at the
trailing characteristics, as shown in figure 31(a). The Mach number reaches its minimum at
the back surface of the shock and recovers gradually along with the expansion downstream.
Regarding the CEF ending with a cone, figure 31(b) shows that the Mach number remains
maximal at the trailing point and drops along with the compression downstream. Then, a
shock emerges at the turning point on the axis, and the pre-shock compression flow turns
into a post-shock expansion flow.

4.2. Slip-connected solution ECF–IECF
As discussed in § 2.3, the elementary solution in the non-degenerate domain goes across
the slip discontinuity and can be split into the ECF and IECF branches by it. The ECF
branch represents the supersonic flow over an effective cone surface, while the IECF
branch behaves as the mass injection flow supporting the effective cone surface. The ECF
and IECF branches that share the same effective cone surface can be joined together to
form a T–M solution with a slipstream called the slip-connected solution.

4.2.1. Theoretical remarks
If the initial point is located on the slip discontinuity Sslip for θ ∈ (0, 90◦), the upper and
lower branches will be ECF and IECF, respectively. The elementary solutions in § 2.3 are
special cases of slip-connected solutions, where the ECF and IECF branches share the
same initial point and the flow velocity on both sides of their interface is the same. In
general, if two distinct points on the slip discontinuity with different λ2

0 but the same θ0
are selected as the initial points, various connected solutions of ECF–IECF type can be
attained by combining the ECF and IECF branches extracted from different elementary
solutions.

For example, the initial points of two elementary solutions are given as (0.5, 0, 15◦) and
(2.0, 0, 15◦), respectively, as illustrated in figure 32. The connection of the supersonic
upper branch (λ2

0 = 2.0) and the transonic lower branch (λ2
0 = 0.5) may form an

ECF–IECF solution with a velocity jump over the slipstream.

4.2.2. Computational set-ups
In order to verify further the validity of the slip-connected solution, a parametric study
on ECF–IECF flows with different injection conditions is performed. The numerical
simulation is conducted by solving the axisymmetric Euler equations. The theoretical
ECF–IECF solution taken as the reference is illustrated in figure 33(a). The ECF branch
corresponds to a classic ECF with free-stream Mach number M∞ = 10 and effective
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Figure 32. (a) The ECF and IECF branches of two elementary solutions. (b) Slip-connected solution
ECF–IECF.
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IECF branch
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Inviscid wall

Leading shell

Simple cone surface

φj

(b)

(a)

Figure 33. (a) Theoretical solution of ECF–IECF with free-stream Mach number M∞ = 10 and
(b) corresponding computational set-ups.

cone half-angle θc,eff = 15◦. The free-stream pressure is set to be p∞ = 90.22 Pa and
temperature T∞ = 47.62 K, so that the pressure above the effective cone surface (or
the slipstream) pc,eff = 1000 Pa and temperature Tc,eff = 1000 K. The IECF branch is
integrated from the slipstream with approximately λ2 = 0.0522 (1 % of λ2 above the
slipstream) and the same pressure and temperature ( pc,eff = 1000 Pa, Tc,eff = 1000 K).

As illustrated in figure 33(b), the cone surface is divided into three portions. The leading
portion is a shell with its outer wall being the effective cone surface and its inner wall
a streamline integrated from the cone surface at the station r = rroot to the station r =
rtrim. The shell is closed by an arc conformal to the station r = rtrim. This shell geometry
aims to preserve the ECF and interfere less with the IECF. The second portion is gas
injection with conically uniform distributions of Mach number, flow inclination, pressure
and temperature that are interpolated from the theoretical IECF branch at a specific cone
half-angle θc. The gas injected is assumed to be the same as the free stream. The trailing
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No. θc/
◦ rroot/m rtrim/m rinj/m Mj ϕj/

◦ pj/Pa Tj/K

1 10 0 0 1.0 0.2126 12.35 999.1 999.7
2 10 0 0 0.5 0.2126 12.35 999.1 999.7
3 13 0 0 1.0 0.2098 4.30 999.9 1000.0
4 13 0 0 0.5 0.2098 4.30 999.9 1000.0
5 13 0.05 0.2 1.0 0.2098 4.30 999.9 1000.0
6 13 0.05 0.2 0.5 0.2098 4.30 999.9 1000.0

Table 2. Computational set-ups for the numerical cases.

portion is a simple cone surface with the same cone half-angle θc as the injection surface.
Injection coverage is defined as η = rinj/rref . Here, the reference length rref = 1 m.

Six cases with varying injections and geometries are considered for evaluating the
validity of the theoretical ECF–IECF solution (cf. table 2). The outlet conditions are
specified as pout = 100 Pa and temperature Tout = 1000 K. The injection conditions are
selected at cone half-angles θc = 10◦, 13◦. The geometries include a simple cone surface
with half or full injection coverage (rroot = rtrim = 0, rinj = 0.5, 1 m), and a shelled cone
with half or full injection coverage (rroot = 0.05 m, rtrim = 0.2 m, rinj = 0.5, 1.0 m).

4.2.3. Discussion
A parametric study is performed to observe the influences of the cone half-angle and the
geometry on the ECF–IECF flow. The Mach number contours obtained numerically for a
simple cone surface with cone half-angles θc = 10◦, 13◦ are depicted in figure 34(a–d),
respectively. Numerical results for the flow over a cone of θc = 13◦ with a cone-shaped
leading shell of θc,eff = 15◦ are presented in figure 34(e, f ). The results with full injection
coverages are shown in the left column, while those with half injection coverages are
grouped in the right column. For all the six cases, the slipstream is evaluated close
to θ = 15◦, and the shock position is close to θ = 17.4◦, which is consistent with the
theoretical results. The deviations of the slipstream and the shock near the tip are due to the
imperfect grid, while those near the outlet are influenced by the downstream properties.
Figure 35 demonstrates the slices on the stations r = 0.3 and r = 0.7 m for cases with
full injection coverage (cases 1,3,5), together with their comparisons with the theoretical
solutions. The Mach number and pressure distributions for cases 3 and 5 are almost in
coincidence with the theoretical solution. Thus, the injection at the tip can be avoided
with the help of a conformal leading shell, so that the flow downstream of the shell
remains self-similar. For the case with a smaller cone half-angle (case 1, θc = 10◦), the
distributions on the station r = 0.7 m are more influenced by the outlet properties and
show distinguishable deviations. For the case with half injection coverage (e.g. case 6
in figure 36), numerical results upstream of the station r = rinj are still consistent with
theoretical results. An immediate implication for this outcome is that the wall downstream
of the injection has limited influence on the injection flow upstream.

4.3. Shock-connected solution Busemann–ECF
Among the shock-connected solutions discussed in § 3.2, the Busemann–ECF solution
happens to be the only one that exhibits an overall compression flow, which would be
potentially applicable to the design of supersonic intakes. Taking the classic Busemann
solution as the baseline, different connected solutions can be furnished by altering the
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Figure 34. Mach number contour of ECF–IECF numerical results for cases 1(a)–6( f ) in (r, θ) coordinates
(insets) and (x, y) coordinates (main panels). The insets show the region [0, 1 m] × [13◦, 18◦].
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Figure 35. (a) Mach number and (b) pressure distribution at the stations r = 0.3, 0.7 m for cases 1,3,5.

shock angle θs. By retaining the pre-shock branch of the classic Busemann solution intact,
the increase of θs will lead to the transition from the baseline to Busemann–ECF solution.
Alternatively, Busemann–CEF solution can be attained by decreasing θs. Usually, the
change of the shock angle θs can be realized either geometrically or aerodynamically.

To verify the shock-connected solutions based on the Busemann flow, a numerical study
is also performed by solving the axisymmetric Euler equations. The general geometry
is similar to the conjunction of a Busemann intake and a central cone, as illustrated in
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Figure 36. (a) Mach number and (b) pressure distribution at varying stations for case 6.
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Figure 37. Computational set-ups of Busemann–ECF flow.

figure 37. The geometry upstream of the shock is the same as a Busemann intake. For the
downstream geometry, the upper wall is conformal to the streamline of the ECF, and the
lower wall is a simple cone surface. If a compatible injection is set on the cone surface,
then the IECF emerges between the ECF and the cone surface, and the slipstream becomes
the effective cone surface.

The classic Busemann solution with inlet Mach number Min = 5.46, outlet Mach
number Mout = 3.16 and shock angle θs = 15◦ is taken as the baseline, as illustrated in
figures 38(a), 39. If a cone with half-angle of 9.3894◦ is set at the origin, then θs increases
to 18◦ and the flow becomes the Busemann–ECF (cf. figures 38(b), 39). The pre-shock
flow remains the same, while the post-shock Mach number decreases to 2.92 and the Mach
number at the cone surface Mc = 2.85. If a uniformly distributed injection compatible with
the ECF is placed on the cone surface, then the flow turns to be Busemann–ECF–IECF
type (cf. figures 38(c), 39). Here, the IECF is the injection flow resembling an air cushion
beneath the ECF. As a result of the injection, the effective cone half-angle is increased
from θc = 9.3894◦ to θc,eff = 14.314◦ and the shock angle θs from 18◦ to 22◦. Thence, the
post-shock Mach number decreases to 2.78, and the Mach number on the effective cone
surface Mc,eff = 2.71, while the pre-shock flow remains unchanged. Clearly, the numerical
results are consistent with the theoretical results.

5. Conclusion

In this work, the T–M equations are reformulated based on (λ2, ψ). The concept of the
elementary solution is proposed according to the termination of T–M integration at the
infinite discontinuity. Besides the Mach discontinuity, slip discontinuity and equilibria,
several critical surfaces are found by analysing the features of elementary solutions,
including the divergence bound, inflection bound, symmetry bound, degeneration bound
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Figure 38. Mach number contours of (a) classic Busemann solution with θs = 15◦, (b) Busemann–ECF
solution with θs = 18◦, (c) Busemann–ECF–IECF solution with θs = 20◦ and their zoomed views (d–f ).
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Figure 39. Mach number distribution at station r = 0.3 m. The numerical results are marked with dashed
lines, while the theoretical results are marked with solid lines.

and sonic bound. The (λ2, ϕ, θ) space is divided into four basic domains, pre-shock
domain, ECF domain, IECF domain and DCF domain. The four classic solutions exist in
the pre-shock and ECF domains, while two new solutions, the IECF and DCF, are found
in their corresponding domains.

The connection between pre- and post-shock solutions is built from the reformulated
shock relations. The intrinsic relations among the four classic T–M solutions are found by
analysing the pre- and post-shock solution branches. Specifically, the classic Busemann
and ICFB solutions are different solution branches of the same elementary solution
in the pre-shock domain, while the classic ECF and ICFA share the same elementary
solution in the ECF domain. The analyses on the topological relations among the
critical surfaces clarify the possible combinations of pre-shock solutions and supersonic
post-shock solutions. Sixteen types of shock-connected solutions are identified along with
the permitted shock locations, among which four representative ones are discussed.
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In addition, numerical analyses are conducted to verify the validity of the two
new solutions DCF, IECF and one shock-connected solution Busemann–ECF. The
DCF is another solution with uniform inflow besides the Busemann solution. The
ECF–IECF solution is a slip-connected solution of the ECF branch and the IECF branch
extracted from two post-shock solutions. Based on the Busemann solution, the solution
Busemann–ECF can be obtained by geometric change of the streamtube. Further, the
solution Busemann–ECF–IECF can be obtained by aerodynamic change using mass
injection.
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Appendix A. Taylor–Maccoll equations based on (λ2, ψ)

We start with the steady axisymmetric mass conservation equation in spherical coordinates

1
r2
∂

∂r
(ρurr2)+ 1

r sin θ
∂

∂θ
(ρuθ sin θ) = 0, (A1)

where (r, θ) are polar coordinates, ur,θ are r, θ -components of flow velocity, ρ is density.
For the velocity components, ur = u cosϕ, uθ = u sinϕ, u is the flow speed, ϕ is the
relative flow inclination, ψ = θ + ϕ is the (absolute) flow inclination. For a conical flow,
∂/∂r = 0, then we get

d(u sin ϕ)
dθ

+ u sin ϕ
ρ

dρ
dθ

+ 2u cosϕ + u sinϕ cot θ = 0, (A2)

where ∂/∂θ is replaced by d/dθ . Combining the inviscid, irrotational Euler equations

udu = −dp
p

= −a2 dρ
ρ
, (A3)

and the conservation of total enthalpy for calorically perfect gas

h0 = a2

γ − 1
+ u2

2
= a2∗
γ − 1

+ a2∗
2
, (A4)

we have

dρ
ρ

= −udu
γ + 1

2
a2∗ − γ − 1

2
u2

= −λdλ
γ + 1

2
− γ − 1

2
λ2
, (A5)

where p is pressure, a is sonic speed, h0 is total enthalpy, γ is the specific heat ratio, a∗ is
the characteristic sonic speed, λ = u/a∗ is the characteristic Mach number.
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Substitute (A5) into (A2) and divide the equation by a∗

dλ
λdθ

⎛
⎜⎜⎝ 1 − λ2

1 − γ − 1
γ + 1

λ2

⎞
⎟⎟⎠ sinϕ + dϕ

dθ
cosϕ = −(2 cosϕ + sinϕ cot θ). (A6)

For irrotational flow, uθ = dur/dθ , or

dλ
λdθ

cosϕ − dϕ
dθ

sinϕ = sinϕ. (A7)

Solve the equations (A6) and (A7) for the derivatives dλ2/dθ and dϕ/dθ

dλ2

2λ2dθ
(1 − M2 sin2 ϕ) = −sinψ

sin θ
sinϕ, (A8a)(

dϕ
dθ

+ 1
)
(1 − M2 sin2 ϕ) = −sinψ

sin θ
cosϕ, (A8b)

where M2 is the square of the Mach number, satisfying

λ2 = γ + 1
2/M2 + (γ − 1)

,M2 = 2λ2

γ + 1 − (γ − 1)λ2 . (A9)

If M2 sin2 ϕ = 1, then (A8) become

sinψ sinϕ = 0, (A10a)

sinψ cosϕ = 0, (A10b)

and yield the trivial solution sinψ = 0. Provided M2 sin2 ϕ /= 1, the (λ2, ψ)-based T–M
equations are obtained

dx(θ)
dθ

= f (x, θ) =

⎛
⎜⎜⎝

−2λ2 sinψ
sin θ

sinϕ

1 − M2 sin2 ϕ

−sinψ
sin θ

cosϕ

1 − M2 sin2 ϕ

⎞
⎟⎟⎠ , x(θ) =

(
λ2(θ)
ψ(θ)

)
. (A11a,b)

Appendix B. Shock relations based on (M, ϕ)

For the flow pass an oblique shock (cf. figure 40)

tanβ
tan(β − δ)

= (γ + 1)M2
1 sin2 β

2 + (γ − 1)M2
1 sin2 β

, (B1)

M2
2 sin2(β − δ) = 2 + (γ − 1)M2

1 sin2 β

2γM2
1 sin2 β − (γ − 1)

, (B2)

where β is the shock angle, δ is the deflection angle, subscripts 1, 2 denote values on
the opposite sides of the shock. For the straight shock on θ = θs, β = −ϕ1, δ = ϕ2 − ϕ1.
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Basic solutions to Taylor–Maccoll equations

δ

β

M1

ϕ2
M2

ϕ1

θ

Figure 40. Scheme for shock relations based on (M, ϕ).

Substitute β, δ with ϕ1,2 in (B1), (B2)

tanϕ1

tanϕ2
= (γ + 1)M2

1 sin2 ϕ1

2 + (γ − 1)M2
1 sin2 ϕ1

= 2 + (γ − 1)M2
2 sin2 ϕ2

(γ + 1)M2
2 sin2 ϕ2

, (B3)

M2
2 sin2 ϕ2 = 2 + (γ − 1)M2

1 sin2 ϕ1

2γM2
1 sin2 ϕ1 − (γ − 1)

, M2
1 sin2 ϕ1 = 2 + (γ − 1)M2

2 sin2 ϕ2

2γM2
2 sin2 ϕ2 − (γ − 1)

.

(B4a,b)

The shock relations (B3) and (B4a,b) are symmetric on the opposite sides. It depends
on the normal Mach number which side is pre-shock or post-shock: M2 sin2 ϕ > 1 for
pre-shock, M2 sin2 ϕ < 1 for post-shock.

The shock detachment condition

sin2 β = 1
γM2

1

(
γ + 1

4
M2

1 − 1 +
√
(γ + 1)

(
1 + γ − 1

2
M2

1 + γ + 1
16

M4
1

))
, (B5)

is transformed into,

sin2 ϕ1 = γ + 1
γ

(
3γ − 1

4(γ + 1)
− 1

2λ2
1

+
√
(γ + 1)− (γ − 1)λ2

1

4λ4
1

+ 1
16

)
. (B6)

Appendix C. Nomenclature

The acronyms, ECF, ICFA and ICFB, are adopted from the classic solutions. The
abbreviation, Bu, is shortened from the classic Busemann flow. Together with the
acronyms for the new solutions (IECF and DCF), these symbols are extended to represent
elementary solutions, solution branches and the domains for corresponding elementary
solutions. The combined solutions, both shock-connected solutions and slip-connected
solutions, are represented by symbols of solution branches with a dash in between.

For example, the shock-connected solution, non-inflectBuII–ICFAI, is the combination
of a Busemann branch and an ICFA branch. Here, the Busemann branch is split from
an elementary solution in Dnon-inflect,Bu,II (non-inflectBuII solution) and the ICFA branch
is split from an elementary solution in DECF,I (ECFI solution). Here, Dnon-inflect,Bu,II =
Dnon-inflect ∩ Dconv ∩ Dpre,II and DECF,I = DECF ∩ Dpost,I .
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List of symbols

Acronyms
Bu Busemann flow
CCF Conical compression flow
CEF Conical expansion flow
DCF Degenerate conical flow
ECF External conical flow
ICFA Internal conical flow of type A
ICFB Internal conical flow of type B
IECF Inner flow of ECF

Surfaces
∂Sequ boundary of S′

equ
Sdegen degeneration bound
Sdiv divergence bound
Sequ equilibria
Sinflect inflection bound
SMa Mach discontinuity
Sslip slip discontinuity
Ssonic sonic bound
Ssym symmetry bound

Domains
Dpre pre-shock domain
Dconv convergent domain
Ddiv divergent domain
Dinflect inflectional domain
Dnon-inflect non-inflectional domain
DBu Dinflect ∩ Dconv
Dinflect,div Dinflect ∩ Ddiv
Dnon-inflect,Bu Dnon-inflect ∩ Dconv
Dnon-inflect,div Dnon-inflect ∩ Ddiv
Dpost post-shock domain
DECF ECF domain
DIECF IECF domain
DCF DECF ∪ DIECF
DDCF degenerate domain
Dsuper Supersonic domain
Dtrans Transonic domain
Dsuper,ECF Dsuper ∩ DECF
Dsuper,IECF Dsuper ∩ DIECF

Other Symbols
κ streamline curvature
λ characteristic Mach number
μ Mach angle
ψ absolute flow inclination
ϕ relative flow inclination
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Basic solutions to Taylor–Maccoll equations

M Mach number
r, θ polar coordinates

Superscripts
D′ shock-opposite of domain D
S′ shock-opposite of surface S
S±

Ma left-/right-running SMa

Subscripts
0 value at initial point
l value at lower terminal point
u value at upper terminal point
I entity in Dpre,I or Dpost,I
II entity in Dpre,II or Dpost,II
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