Proceedings of the Edinburgh Mathematical Society (2024) 67, 778-793
doi:10.1017/S0013091524000294

SOME CONGRUENCES FOR 12-COLOURED GENERALIZED
FROBENIUS PARTITIONS

SU-PING CUTI', NANCY S. S. GU? AND DAZHAO TANG?

" School of Mathematical Sciences, Qufu Normal University, Qufu, PR China
* Center for Combinatorics, LPMC, Nankai University, Tianjin, PR China
® School of Mathematical Sciences, Chongqing Normal University, Chongging, PR China

Corresponding author: Dazhao Tang, email: dazhaotang@sina.com

(Received 3 January 2023)

Abstract In his 1984 AMS Memoir, Andrews introduced the family of functions c¢(n), the number of
k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied
the arithmetic properties of C®(g) for 2 < k < 17 by utilizing the theory of modular forms, where
C®y(q) denotes the generating function of c¢y(n). In this paper, we first establish another expression of
C®12(q) with integer coeflicients, then prove some congruences modulo small powers of 3 for c¢12(n) by
using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally,
we conjecture three families of congruences modulo powers of 3 satisfied by c¢12(n).
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1. Introduction

Throughout this paper, we always assume that ¢ is a complex number such that |g| < 1
and adopt the following standard notation:

oo

(@; @)oo == [[ (1 = ag®).

k=0

In his 1984 AMS Memoir, Andrews [2] defined the notion of a generalized Frobenius
partition of n, which is a two-rowed array of nonnegative integers of the form:

a; Qs S .
by by --- b.)’
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wherein each row, which is of the same length, is arranged in weakly decreasing order with
n=r+y ._,(a; +b;). Furthermore, Andrews studied a variant of generalized Frobenius
partitions whose parts are taken from k copies of the nonnegative integers, which is called
k-coloured generalized Frobenius partitions. For any k > 1, let c¢y(n) denote the number
of k-coloured generalized Frobenius partitions of n. Among many other things, Andrews
[2, Corollary 10.1] proved that for any n > 0,

cha2(5n+3) =0 (mod 5).

From then on, many scholars extensively investigated a number of congruence properties
for ¢y (n) with different moduli. Baruah and Sarmah [3, 4] derived some congruences
modulo small powers of 2 for cg4(n) and some congruences modulo small powers of 3
for cgg(n). Congruence properties modulo powers of 5 for cés(n) and co4(n) were subse-
quently considered by Ono [28], Lovejoy [26], Xiong [39], Sellers [31], Xia [38], Hirschhorn
and Sellers [21], Chan, Wang and Yang [7], and Wang and Zhang [34]. Congruence prop-
erties modulo 7 for c¢4(n) were investigated by Lin [25] and Zhang and Wang [41].
Congruence properties of c¢g(n) modulo powers of 3 were successively investigated by
Xia [37], Hirschhorn [16], Gu, Wang and Xia [14] and the third author [32]. The third
author [33] also established congruence properties modulo 5 for cgg(n) and cgg(n). There
are other studies on congruence properties for cdy(n); see, for example, [9-13, 22-24, 27,
29, 30, 36].

In 2019, Chan, Wang and Yang [8] systematically investigated the arithmetic properties
of CPy(q) for 2 < k < 17, where C®j(q) denotes the generating function of c¢x(n). In
particular, they [8, Equation (6.26)] proved that (some typos have been corrected)

1 36207 923091 35829 891
Co = — B _— —B —B
12(q) 0:(0) (@ )2 ( 160 12t + 1000 D124 + 100 D125 + 4 Pr2e
1485 143247 8913 8109 582717
g D121 T e Pies = Bieg = e Bi2io = Feaaa Pz
227691 714249 8109 33
WBH,U + WBU,N, + %0 ——DBi214 §312,15
294109 16503 99 10559
500 1216 T 100 ———Bi217 — 3 — Bi21s + WBHJQ
128807 25647 727
- — —B —B 1.1
100 D220 + 160 122! + 6012 22) (1.1)
where the Bya,; for i € {1,4,5,...,22} are some functions involving the following two
theta functions, given by
- a*4")5%
@ qj+1/2) 72 1/4(
2 ]_Z_:OO (4% %) oo
i W Ul S
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It is easy to see that the coefficients of many terms in (1.1) are not integers. Therefore,
a natural question is whether there is another expression with integral coefficients for
C®13(q). The first purpose of this paper is to establish the following expression for
C®13(q). For the sake of convenience, denote

(oo}

a(q) := Z qm2+m”+”2 and  E(¢") = (¢";¢") - (1.2)

m,n=—o0

Theorem 1.1.

1 E(o®)8E(q'? E(a'2)3 F(g24)2
Cd12(q) = B0 {a( )4 (% ((]2 ) 3 (qE)(QG)(zq ) )

By utilizing a general congruence relation [8, Theorem 5.3], Chan et al. [8, Equations
(6.28) and (6.29)] derived that for any n > 0,

cp12(3n+1)=0 (mod 9),
cp12(3n+2)=0 (mod 9). (1.4)

The other purpose of this paper is to prove the following congruences modulo 27 and 81
enjoyed by cdia(n).

Theorem 1.2. For any n > 0,

cp12(3n+2) =0 (mod 27), (1.5)
cp12(9n +5) =0 (mod 81), (1.6)
cp12(9n +8) =0 (mod 81). (1.7)

Remark 1.3. Obviously, (1.5) is a stronger form of (1.4). By computation, one sees
that cg12(2) = 4644 # 0 (mod 81). From this perspective, the modulus in (1.5) is best
possible. So does (1.6) and (1.7).

Actually, (1.5)—(1.7) appear to be just the tip of the iceberg. With the help of a
computer, we pose the following three families of conjectural congruences modulo powers
of 3 satisfied by c¢12(n).
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Conjecture 1.4. For any n > 0 and a > 0,

32a+1 1 .
ch1o (320‘“71 + 2+> =0 (mod 33*"3),
32a+2 1
ch1a (32(”'271 + — + > =0 (mod 33("*'4)7
5 x 320+l 4 q
chr2 (320‘+2n + 2+> =0 (mod 33*t4).

The rest of this paper is organized as follows. In § 2, we collect some necessary lemmas
which will be utilized to prove the main results later. The proofs of Theorems 1.1 and
1.2 are presented in § 3.

2. Some preliminary results
To prove (1.5)—(1.7), we first collect some necessary identities.

Lemma 2.1.

_ B E(¢°)*E(¢°)*
PO = BrEwy M B 24
1 B(¢Y™ E(¢")’E(¢®)"
E(* ~ E(@)“E(F)* +4q E(@)0 (2.2)
Proof. The identities (2.1) and (2.2) are (2.9) and (2.10) in [40], respectively. O
Lemma 2.2.
E(¢®)° _  E(@"®) E(¢°)’E(¢°)E(¢*)
E@PE@? BB T @) B EG®) 23
E(¢®)? _E@)E(@)? | BE(¢"®)?
Bq) ~ E@EG™ B 24
Proof. The identities (2.3) and (2.4) follow from Corollary (i) and (ii) on page 49 of
Berndt’s book [5], respectively. O
Lemma 2.3.
E(¢®) _ E(¢)*E(¢®)° . E(@)’E(@°)?  , sE(¢°)*E(¢")?
B@? ~ B@PEGS T By M B o P
Bla) _ BE@)E(¢")’  E(@)E@®)* o E@) B(") (2.6)
E@)? B B 1 E@PEP '
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E(q%) E(q'8)° E(¢°)’E(¢"®)?
E(@E(q) ~ E(¢®)2E()3E(¢2)?E(¢%)? " TE(@PE?)?
» E(¢°)'E(¢°)*E(¢*°)?

E(q*)*E(q"?)*E(q"%)%

+q (2.7)

Proof. The identity (2.5) was derived by Hirschhorn and Sellers [19, Theorem 1.1]. The
identity (2.6) is equivalent to Lemma 2.2 due to Hirschhorn and Sellers [20]. Moreover,
replacing ¢ by —¢ in (2.6) and utilizing the fact

upon simplification, we obtain (2.7). O

Lemma 2.4. If a(q) is defined by (1.2), then

E(¢°)?
E(q®)

a(q) = a(q®) + 6q (2.8)

and

1 E(qg)s 312 312 3 3 9\3 2 96
E@?  E@)" (a(@’)*E(@%)* + 3qa(a®)E(¢°)E(¢°)° + 94°E(¢")°).  (2.9)

Proof. The identity (2.8) was established by Hirschhorn, Garvan and Borwein
[18, Equation (1.3)]. The identity (2.9) was proved by Wang [35, Equation (2.28)]. O

Hirschhorn et al. [18, Equation (1.5)] also proved that

-1
q
_1+62< g3n—2 Z g3n— 1)
from which we find that
a(g) =1 (mod 3) and a(g)*=1 (mod 9). (2.10)

According to the binomial theorem, one can easily establish the following congruence,
which will be used frequently in the sequel.

Lemma 2.5. For any k > 1,

E(¢")? = E(¢**) (mod 3). (2.11)

3. Proofs of the main results

To prove Theorem 1.1, we require the following two related lemmas.
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Lemma 3.1.

0 618 12 123 24\2
Z q3 E?:l ri2+321§i<j§3 Ty E(q ) E(q ) + ngE(q ) E(q ) (31)
E(q*)*E(¢**)? E(¢®)?

r1,72,r3=—00

o0

Z ¢ S8 I3 Y i<icj<3 T T+ +2rs
A
_ B@EW@)EW) , B E(¢) E(a?)Eg*) (3.2)
E(¢?)?E(q**) E(q?E(¢®)E(¢®) '
i 7 S P8 <icj<g iTj 3T +3r 423
Pl T — o0
_ B@)EW@)E()’E@™) |, E(¢°)EG)Eq?)? (3.3)
E(q)E(¢*)E(q®)E(q'?)? E(@®)E(¢Y) 7 '
i 7 33 r243r rg—3r r3—3rgr3+2r) +2ry
Pl T —o0
__B@PEOVEGY | E@)EQR) (3.4)
E(¢*)E(¢®)*E(q®)E(q"?)° E(¢*)E(¢°)?E(¢**) '

Proof. The main ingredient in proofs of (3.1)—(3.4) is the integer matrix exact covering
systems, developed by Cao [6]. Similar treatments were used for deriving the generating
functions of four- and six-coloured generalized Frobenius partitions; see [3, 4] for a detailed
account of such applications.

We only present the proof of (3.1), and the remaining cases can be demonstrated in a
similar manner.

First, we adopt the matrix

-1 1 0
By = 1 0 1
1 0 -1

Then, the congruences Bir = 0 (mod 2) satisty that
—r1+re=0 (mod 2),

r14+r3=0 (mod 2),
ri—r3=0 (mod 2).
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0 1
Then, the above congruences contain two solutions. Namely, | 0 | and | 1 | modulo 2.
0 1

Therefore, we get the following integer matrix exact covering systems

T1 -1 1 0 nq

T2 - 1 0 1 N9 5

T3 1 0 -1 ns

T -1 1 0 ny 0
=11 0 1 no | + |1
T3 1 0 -1 ng 0

Using the above integer matrix exact covering systems, we obtain that

oo
Z q3 >3, Ti2+321§i<j§3 TiTj
7‘1,7‘2,7”3:700
- 6n243n243n2 = 612 16n74+3n2 41 3n9+3n2 430543
= Z gfritanatang 4 Z OO +3ny+3ng+3ns+3ng
n1,n9,n3=—00 n1,n9,n3=—00

_ E(°)*E(¢") 48 s B(¢"?)°E(¢*)?
TE@@EE? T E@)?

which is nothing but (3.1). For (3.2) and (3.3), we also adopt the matrix B; and utilizing
a similar strategy. However, for (3.4), we need the following matrix

By=1[1 0 -1

This completes the proof of Lemma 3.1. g

oy 12
Lemma 3.2. The constant term of (ZOO a"q" ) i8

. 12
CT, (Z arqr2>

r=—00
o
3 2
_ 2\4 § : 6> 1T H6d> 1 <ici<3 i
= a(q ) q i=1"1 1<i<yj<3"i"y
r{,r9,r3=—00

6\6 o0
+ 108qa(q2)2E(q ) Z ¢ S 6 T < jag mirH2r +2r0H4rg

71,72,73=—00
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+216¢%a( 2)E<q6)9 i 6ZZ 1761 <ic < rinj+6ry F6ra Harg
q alq 33
E(q ) 71,79,r3=—00
6\12 e
+ 486q4 ‘Z((q 2))4 Z qG 223:1 7‘1-2-‘1-67“1T2—6T1T3—6T2T3+4’r‘1+47‘2. (35)
71,79,73=—00

Proof. Hirschhorn [15] proved the following identity

0o 3
2
Z arqr> _ Z adr 3r2
(r_—oo r=—00
%)
( Z a3r 3r2y2r CL71 Z a3rq3r2+2r>7 (36)

rT=—00 r=—0oo

+3

where a(q) is defined as in (1.2). With the help of (3.6), we obtain that

. 12
r=—o00

:a(q2)4 Z 621 1 ,+621<z<g<3

7‘177‘2,7‘3:—00

o0

E(q°)° S e Sigicisa iy ety rang
E(q?)?

+108¢a(q”)?

T1,79,73=—00

E 6 T T
+ 216q4a(q2)EEZ3;3 Z 621 1756 1 <icj<a TirjTOr H6ra

7”1,7”2,7”3:700
E( 6)12 0
+486 4 q 621 1 z+6’r’1r2 61”17’3 6’)"27’3+4T1+47‘2
B
r1,79,r3=—00

which is nothing but (3.5).
We therefore complete the proof of Lemma 3.2. O

Now, it is time to prove Theorem 1.1.

Proof of Theorem 1.1. In view of (3.5), we deduce that

o 12
()
r=—00

o0

- S gZizimi

mq+mo+---+mq9=0
my,mg;...,M12=—00
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11 2
_ E q2 =1 ™y +221§i<j§11 m;mg
my,..., M1 =—00
%)
2N Z 62 24630 r
ia(q ) =174 1<i<j<3 ™"y
r1,79,rg3=—00

66 e
+108q2a(q2)2§ég2;2 Z 621 1 z+621<z<j<3 riTj+2r]+2rgt+dry

T17T2,T3:700

619 &
—|—216q4a(q2)E(q ) Z 621 1 Z+621<1<]<37”17’]+67"1+6T2+47’3
7"1,7"2,7‘3:—00

6\12 e
2))4 § : 621 1 Z+6r1r2 6r1r3—G6rorg+dry+iry (37)

71,72 77'3:—00

E
486¢*
+ qE

Moreover, Andrews [2, Theorem 5.2] established the following expression for C®y(q),
namely,

oo

1 k=1, 2 o o
Ck(q) = B(g)* Z qzizl M+ 1<i<j<k—1MiMmj (3.8)

ml,mQ,...,'rrkal:—oo

The identity (1.3) follows from (3.1)—(3.4), (3.7) and (3.8).
This finishes the proof of Theorem 1.1. a

Next, we are in a position to prove Theorem 1.2.
In what follows, all congruences are modulo 81 unless otherwise specified.

Proof of Theorem 1.2. According to (2.10) and (2.11), we find that

a 4 EGSE 12 E123E 24\2
C‘D”(q)‘E<(Z>)12<E<(qq3>)4E<(qq24>)2*8‘13 (qE)q6>(2q )>
E(¢*)?( E(¢")E(¢®)* = E(¢*)*F
B(q)? <E<q2>2E< 2 TR )

2 avaf E(@E(G")E(®)°E(q? ) E(q VE(¢®)E(q'?)?
T84 E(T) <E<q>E<q3>E<q8>E(q 7 T BB ) (3.9)

+27q

Next, we consider the following three auxiliary functions, defined by

o) a 4 E68E 12 E123E 24\2
;ﬁ(n)q” = E(((l]]))lz (E(%){LE(((]%4))2 +8¢° (q E)(q6)(2q ) )) (3.10)

_ o E(@®)? ( E(d)E@®)* | E(¢*)’E(¢"*)E(¢*)
292 = 27q E(Q)Z <E(q2)2E(q8)2 +4q E(q)QE(qg) )7 (3.11)
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i g3(n)q" == 54q2E(q3)4 (E(q2)E(q4)E(q6)5E(q24) n 2E((]6)E(q8)E(q12)3

E(qQ)E(¢®)E(q®)E(q'2)? E(¢®)E(¢*%) ) (3.12)

Substituting (2.8) and (2.9) into (3.10), extracting all the terms of the form ¢3"*2, after
simplification, we deduce that

s 2\8 1/ 3118 (4 3V18 77/, 4\3 (482
Zgl(3n+2)qn = 27a(q)10E(qE)(q‘>E4(6qE)(q8?2(q ) +54qa(q)10 E(q‘E;(q-)E;ngquE)éq ) )

Thanks to (2.10) and (2.11),

> g1(3n+2)¢" = 27E(¢%)*

n=0

(E(qQ)SE(q“) (3.13)

E(q)*E(¢%)?

The congruence (1.5) follows from (3.9) and (3.13) immediately.
Moreover, it follows from (3.13) that

o0
> 1(3n+2)q
n=0

_ E(g*)'° E(q*)® E(¢")" E(¢%)?
- 27E(q3)4(E(Q)4E(q4)4 "E(@2E)? " B2 B ) (3.14)

Substituting (2.3) and (2.4) into (3.14), after some tedious but straightforward calcula-
tions, we deduce that

& 2\8 4\11 2\10 4
Zgl(gn+5)qn = 27{ E(q‘;(ggg ) _ E(qE)(qS?Q(q ) _E(q)4

—qE(¢")*E(®)? - (E(@)")’ + E(¢®)?E(¢") E(¢®)° - E(q)4}

and

oo B(a*)10 E(¢®)*?E(q 1
Zgl(gn+ 8)¢" = 27{E(q2§g£@8)6 . (E(q)4)2 B (¢ E)(q )1(3 ®)? <E )

n=0
E 4\17 E 10E
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Substituting (2.1) and (2.2) into (31.5) and (3.16), upon simplification, we further obtain

that
e E(q%)23 E(a®)12E(g8)2 E(a®)2E(g3)10
D onon-+ 90" = 21{ gy + o g+ )
(3.17)
> E(g%)39 E(a2)E(g*)15 2E 415 pr(18)2
S+ =27 s — S g o ) @19

Now, we recall Horschhorn’s version of parameterized identities (see [17, Chapter 35,
Equations (35.1.1)—(35.1.6)]), whose idea comes from [1].

E(q) = 2241 — 2¢t) Y2 (1 4 qt) V3 (1 4 2¢t) Y6 (1 + 4qt) /8, (3.19)

E(q?) = sY2Y12(1 — 2¢t) Y4 (1 + qt) /4 (1 + 2qt) /2 (1 4 4qt) V4, (3.20)

E(q®) = sY2Y8(1 — 2qt) YO (1 + qt)V/** (1 + 2qt) /2 (1 + 4qt) Y/, (3.21)

E(qh) = sY2Y0(1 — 2¢t)Y8(1 + qt)V/2(1 + 2qt)V/?* (1 + 4qt) /8, (3.22)

E(q5) = sY2Y4 (1 — 2¢t) Y2 (1 + qt) Y/ 2(1 4 2¢t)V/4(1 + 4qt) /12, (3.23)

E(q*?) = sY211/2(1 — 2gt) Y24 (1 + qt) /O (1 + 2qt) /81 + 4qt)V/**, (3.24)

where
2 4\2 6\15 2\3 3\3 12\6
-0~ EEE ™ 0=

It follows immediately from the parameterized identities (3.19)—(3.24) that

< E(@)* | E(@YE(")’ 4 2 )'E(g")! ) E(q)*E(¢*)*E(¢)"
E(¢?)

 E(9)*E(q")° E(q?) E(q*)"E(q®)°E(q"?)*
= —15¢s"t*(1 — 2qt)*(1 + qt)°(1 + 2qt)(1 + 4qt) =0 (mod 3)

and
E(q*)* E(¢)*E(¢*)" 15E ¢*E(¢%)"
<E<q>12E<q4>14 T TOBE@Y)Y - ) ¢PE(q1?)
= 15¢s"t(1 — 2qt)*(1 4 qt)*(1 + 2qt)(1 + 4qt =0 mod 3)
Since
E(q)*E(q*)*E(¢°)*? and E(q)°E(q*)*E(¢%)"
E(@?)"E(¢®)>E(q12)4 E(¢?)8E(¢®)°E(q'2)7
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are invertible in the ring Z/3Z[[g]], we deduce that

E(q2)23 E(q)12E(q4)2 E(q)4E(q4)10

TE@iBE@Y T B T B (mod 3), (3.25)
E(¢*)™ E(@'E@)®  E(@)°B@)? _,
E(QRE(@®E ~ E(gH)S q Blg)? =0 (mod 3). (3.26)

The congruences (3.17) and (3.18), together with (3.25) and (3.26), imply that for any
n >0,

g1(9n +5) = g1(In +8) = 0. (3.27)

Similarly, from (3.11), we find that

EQQ(n)qn - 27<qE(q3)E(qG)4 CE(®)? E(g5)?

+ qu(qg)BE(qm)E(qM) .

With the help of (2.6) and (2.7), we further obtain that

igz(3n+2)q" 527( Elq )4E(‘(1 E@)Y E(((J

— q®)° E(q)*E(¢®)"°
E(¢*)*E(q")’  E(@)'"E(¢")’E(¢®)®
TR E(¢?)?
2\14 (/8110
+3*E(0)°E(q")E(¢*)° +¢° Eéq(q)) ) 5(2{1))5 > (3.28)
Plugging (2.1) and (2.2) into (3.28), after simplification, we obtain that
N n E(g")" E(¢*)'E(¢")* E(¢")*
2, oe(in + 2" = R e e
2\8 o ( ,4)9 4321
— qE(qE)(qE)(gq ) _ q2 E((]Ez‘gz‘;(qg)z _ QBE(q4)9E(q8)6). (3.29)
According to the parameterized identities (3.19)—(3.24), we find that
< E(q2)45 B E(q)4E(q2)2 E(q2) ) . E(q)SE(q4)4E(q6)13
E(q)?E(¢")" E(q*)'° E(q)*E(q*)*) E(¢*)*E(¢*)°E(¢"?)°
= 15gs5t(1 — 2qt)*(1 + qt)*(1 + 2qt)(1 + 4gt)* =0 (mod 3)
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and
(Frastas = B 92076 ) iy
= 15¢s5t(1 — 2qt)*(1 + qt)°(1 4+ 2¢t)(1 + 4gt)* =0 (mod 3).
Since
E(°E(")’B@)"? E(9)E(¢°)"
E(q?)E(q®)°E(q'?)° E(¢?)*E(¢®)°E(q'?)?
are invertible in the ring Z/3Z[[¢]], we obtain that
BT R0 gy =) % 00
) - PO EY  mE =0 Gmods). (2
According to (3.29)-(3.31), we find that for any n > 0,
92(3n+2) = 0. (3.32)

Finally, from (3.12), we find that

S w_ oo 2BEW@)PEW)E@) E@®)’  E(d)
>~ g = 7 M B@) BB

n=0

o E(q*%)  B(q?) 'E(q“)z)'

Thanks to (2.4), (2.5), (2.7) and (2.11), we further arrive at

E(Q)*E(¢*)°E(¢")""  E(q)®E(¢")*
< E(q®)° E(q?)3E(g®)°

> gs(3n+2)q" =27

n=0
_ E(@)PE()? L E@)'E(¢")'E(¢*)?
TEEE T @R ) (3:33)

Substituting (2.1) into (3.33), upon simplification, we obtain that

oS . E(q4)45 E(q2)4E(q4)21 ) E(q4)21
;93(3” +2)¢" = 27(_ E(?)2E(¢5)8 + E(¢)10 +4q E(q2)4E(q8)2)
4133 28 1/ 4\9
+27q (_ E(qf)(gE)(qS)lo E(QE)(qE)(Qq ) 4 qu(q4)9E(q8)6).
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According to (3.30) and (3.31), we conclude that for any n > 0,
g3(3n+2) = 0. (3.34)

The congruences (1.6) and (1.7) follow from (3.9)-(3.12), (3.27), (3.32) and (3.34).
We therefore complete the proof of Theorem 1.2. O
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