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BOUNDS FOR THE AVAILABILITIES OF MULTISTATE
MONOTONE SYSTEMS BASED ON DECOMPOSITION
INTO STOCHASTICALLY INDEPENDENT MODULES

J. GÅSEMYR,∗ University of Oslo

Abstract

Multistate monotone systems are used to describe technological or biological systems
when the system itself and its components can perform at different operationally
meaningful levels. This generalizes the binary monotone systems used in standard
reliability theory. In this paper we consider the availabilities and unavailabilities of the
system in an interval, i.e. the probabilities that the system performs above or below the
different levels throughout the whole interval. In complex systems it is often impossible
to calculate these availabilities and unavailabilities exactly, but it is possible to construct
lower and upper bounds based on the minimal path and cut vectors to the different levels.
In this paper we consider systems which allow a modular decomposition. We analyse
in depth the relationship between the minimal path and cut vectors for the system, the
modules, and the organizing structure. We analyse the extent to which the availability
bounds are improved by taking advantage of the modular decomposition. This problem
was also treated in Butler (1982) and Funnemark and Natvig (1985), but the treatment
was based on an inadequate analysis of the relationship between the different minimal
path and cut vectors involved, and as a result was somewhat inaccurate. We also extend
to interval bounds that have previously only been given for availabilities at a fixed point
of time.
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1. Introduction

A multistate monotone system (MMS) (C, φ) consists of a set C = {1, 2, . . . , n} of compo-
nents and a structure function φ, taking values in the set S = {0, 1, 2, . . . ,M}, where n andM
are arbitrary natural numbers. The state of component i belongs to a subset Si of S, assumed to
contain 0 andM , and the state at time t is denoted byXi(t). The system state is supposed to be a
nondecreasing function of the component states, and is given by φ(X(t)), where, by definition,
X(t) = (X1(t), . . . , Xn(t)). We assume that φ(0, . . . , 0) = 0 and φ(M, . . . ,M) = M . The
concept of an MMS generalizes the concept of a binary monotone system (BMS) as treated in
Barlow and Proschan (1975). It allows a more refined description of a system than the concept
of a BMS, which is often necessary in order to handle complex systems that can perform at
different levels. A thorough treatment of multistate monotone systems is given in the book
Natvig (2011). The following example is taken from this book, where it is treated in depth. It is
presented here in a slightly different form, and will be used to illustrate the different concepts.
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Example 1. (Part (i).) Consider two two-component parallel systems, with binary components
{1, 2} and {3, 4}, respectively, linked together in a series structure. The state space is taken to be
S = {0, 1, 2, 3}. The components are binary; hence, Si = {0, 3}, i = 1, . . . , 4. The structure
function is given by

φ(X) = I (X1 +X2 = 3)I (X3 +X4 = 3)+ 2I (X1 +X2 +X3 +X4 = 9)

+ 3I (X1 +X2 +X3 +X4 = 12),

where I (·) is the indicator function.

We will illustrate the various concepts that are introduced later by means of this example.
The elements of the state spaces S and Si are thought of as representing an ordering of

meaningful performance levels. In specific applications it may be more natural to let S and
Si consist of arbitrary real numbers that are directly interpretable as some kind of measurable
quantities, but we will not use these kinds of state spaces in this paper.

The component performance processes {Xi(t), t ∈ I } are random, possibly stochastically
dependent processes involving repair at fixed or random points of time. A full probabilistic
analysis of a multistate monotone system over an interval I requires the specification of a full
dynamic model of the joint component process {X(t), t ∈ I }. A framework for the specification
of such a parametric model is given in Gåsemyr and Natvig (2005). In all but very simple cases
analytic calculations are intractable. Gåsemyr and Natvig (2005) outlined a procedure for
simulating the process {X(t), t ≥ 0}, and also a data augmentation procedure for using such
simulations in Bayesian estimation of the parameters of the model. A program for simulation
of a binary system with independent component processes is presented in Huseby et al. (2010),
while a similar program for simulation of a multistate system with independent components
has been developed; see Huseby and Natvig (2010).

In complex systems, the abovementioned simulation-based probabilistic analysis of the
system may be prohibitively costly computationally. In many cases there is also insufficient
information to model the dynamic behaviour of the marginal component processes, and even
more so the joint process of dependent components. The analysis then has to be based on
less accurate information of the system. In this paper we will assume that the component
availabilities and unavailabilities to level j ,

p
j
Xi

= P(Xi(t) ≥ j for all t ∈ I ),
q
j
Xi

= P(Xi(t) < j for all t ∈ I ), i = 1, . . . , n, j = 0, 1, . . . ,M,
(1)

are known. The corresponding system availabilities and unavailabilities,

p
j
φ = P(φ(X(t)) ≥ j for all t ∈ I ),

q
j
φ = P(φ(X(t)) < j for all t ∈ I ), j = 1, . . . ,M,

(2)

can then not be calculated, even in the case of independent components, and we have to resort to
upper and lower bounds. In this paper we will focus on lower bounds for the system availabilities
at different levels. Lower bounds for unavailabilities are completely analogous. For the binary
case, such bounds are studied in Bodin (1970), Esary and Proschan (1970), Barlow and Proschan
(1975), and Natvig (1980). The multistate case is considered in Butler (1982), Funnemark and
Natvig (1985), and Natvig (1986), (1993). A comprehensive treatment of the area, based also
on the results of the present paper, is given in Natvig (2011, Chapter 3).
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The basic bounds given in these publications are based on the sets of minimal path vectors
and minimal cut vectors to level j , i.e. vectors y and z that are respectively minimal and
maximal in the natural ordering on S1 × · · · × Sn with respect to the properties that φ(y) ≥ j

and φ(z < j), respectively. Such a vector z is called a minimal rather than a maximal cut
vector to level j for historical reasons.

Example 2. (Example 1 continued. Part (ii).) To level 3, (3, 3, 3, 3) is the only minimal
path vector. There are four minimal cut vectors to level 3, each having 0 in one place and 3
elsewhere. We use the notation (0i , 3C−{i}), i = 1, . . . , 4, for these vectors. These coincide
with the minimal path vectors to level 2. With similar notation, the six minimal cut vectors to
level 2 are of the form (0i1 , 0i2 , 3C−{i1,i2}). Out of these six vectors, the two vectors (3, 3, 0, 0)
and (0, 0, 3, 3) are minimal cut vectors also to level 1, while the other four are minimal path
vectors to level 1.

Often the system (C, φ) allows a modular decomposition of the form

φ(x) = ψ(χ(x)) = ψ(χ1(xA1), . . . , χr(xAr )), (3)

where A1, . . . , Ar is a partition of C, xAk is the vector with components xi, i ∈ Ak, k =
1, . . . , r , ψ is a structure function called the organizing structure function, and χ1, . . . , χr are
structure functions called the modular structure functions.

Example 3. (Example 1 continued. Part (iii).) Define the modular structure functions

χ1(X1, X2) = I (X1 +X2 = 3)+ 3I (X1 +X2 = 6),

χ2(X3, X4) = I (X3 +X4 = 3)+ 3I (X3 +X4 = 6).

We can then write
φ(X) = ψ(χ1(X1, X2), χ2(X3, X4)),

where
ψ(W1,W2) = I (W1W2 = 1)+ 2I (W1W2 = 3)+ 3I (W1W2 = 9).

With a modular decomposition as given by (3), it is possible to construct bounds for pjφ
by combining bounds for the availabilities of the organizing structure and bounds for the
availabilities of the modules, based on the sets of minimal path and cut vectors for ψ and
χ1, . . . , χr , respectively. This problem has been considered in Bodin (1970) in the binary
case, and in Butler (1982) and Funnemark and Natvig (1985) in the multistate case, with some
refinements in Natvig (1986), (1993). All the bounds constructed in these papers build on the
common assumption that the processes {XAk (t), t ∈ I } are stochastically independent in I ,
and we will stick to this assumption throughout this paper. For such bounds to be useful, they
must be shown to be advantageous in comparison with the basic bounds based on minimal path
and cut vectors for φ, as given in Funnemark and Natvig (1985). A proper understanding of
the relationship between the minimal path and cut vectors for the structure functions φ, ψ , and
χ1, . . . , χr is a necessary basis for such a comparison. It turns out that the comparisons made
in Butler (1982) are based on an inadequate analysis of this relationship. These shortcomings
are inherited in Funnemark and Natvig (1985), who build on the work of Butler (1982). As a
result, we have found it necessary to consider some of the results of these papers again.

In this paper we start out in Section 2 by introducing some necessary notation and reviewing
the bounds that are relevant to our analysis. In Section 3 we analyse in depth the relationship
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between the minimal path and cut vectors for the different structure functions involved in a
modular decomposition. Based on this analysis, we establish assumptions which are shown
in Section 5 to ensure that the results of Butler (1982) on lower bounds based on minimal
cut vectors are valid. In addition, we extend one of these results, valid when the component
processes are independent in I , from the availability at a fixed point of time to the availability
in an interval. In Section 4 we reprove the results on lower bounds based on minimal path
vectors whose proofs in Funnemark and Natvig (1985) rest on the inaccurate results of Butler
(1982). An improved bound is obtained in Funnemark and Natvig (1985) by combining the
bounds based on minimal path vectors and minimal cut vectors, and in Section 5 we extend to
a general interval I a result on this bound stated in the latter paper for the case I = [t, t], again
without appropriate sufficient conditions being given.

2. Notation and basic bounds

For the sake of readability, we will try to keep the notation as simple as possible, and, hence,
deviate to some extent from the notation used in Funnemark and Natvig (1985) and Natvig
(2011).

The full notation for the modular decomposition defined by (3) is

(ψ, (A1, χ1), . . . , (Ar, χr)),

but with the partitionA1, . . . , Ar implicitly understood; this will often be referred to as (ψ,χ).
The range of the structure functions χk may be proper subsets of S, denoted by Sχk , always
assumed to contain 0 andM . For any j ∈ Sχk , j < M , we define j+(Sχk ) = min{j ′ | j ′ ∈ Sχk ,
j ′ > j}. When the state space Sχk is clear from the context, we often simplify this, and write
j+(Sχk ) = j+. We arbitrarily let M+ = M + 1.

We consider availabilities and unavailabilities in a fixed interval I , and do not refer to this
interval in the notation for the bounds, or in the formulation of the results, unless explicit
mention of the interval is needed. This is so in Theorem 3, in which we deal with two different
intervals simultaneously. It is also referred to as the interval in the special case I = [t, t] in the
formulation of Theorem 4.

The system availabilities to the different levels are defined in (2) and are collected in the
vector

pφ = (p1
φ, . . . , p

M
φ ).

We use the same notation for the availabilities of the structure functions of the modules and
for vectors whose components are these availabilities. These vectors are collected to form the
vector

pχ = (pχ1 , . . . ,pχr ).

This notation is extended down through an increasingly refined hierarchy of modular decompo-
sitions to end up at the component level, with the component availabilities pjXi to the different
levels j ∈ Si , defined in (1), collected in the vectors pXi , again collected in

pX = (pX1 , . . . ,pXn).

Unavailabilities, defined by replacingp byq and ‘≥’by ‘<’in the definitions of the availabilities,
are treated similarly.

In order to minimize the notation, throughout this paper, we consider availabilities and
unavailabilities for φ and ψ to a fixed level j , representative of any level of interest, and
we often drop this j in the notation, especially in the notation related to minimal path and
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cut vectors. For the modules, availabilities and unavailabilities to every level are relevant, but
are implicitly included by the notation pχk and pχ .

We use the corresponding notation for bounds, e.g.

l∗jχk , l
∗
χk

= (l∗1
χk
, . . . , l∗Mχk ) and l∗χ = (l∗χ1

, . . . , l∗χr ).
Here we refer to the lower bound that, for the system (C, φ), is defined in terms of the minimal
cut vectors zm, m = 1, . . . ,Mc, to level j (see Butler (1982) for the case I = [t, t] and
Funnemark and Natvig (1985) for the general case) by

l
∗j
φ =

Mc∏
m=1

P

(( n⋃
i=1

(Xi(t) > zmi )

)
for all t ∈ I

)

=
Mc∏
m=1

P
([

max
1≤i≤n(Xi(t)− zmi )

]
> 0 for all t ∈ I

)
. (4)

This is a lower bound for pjφ if the component processes are associated in I ; see Esary and
Proschan (1970) for a definition of the concept of association in I .

The basic lower bound using the minimal path vectors ym, m = 1, . . . ,Mp, to level j is
given in Funnemark and Natvig (1985) as

l
′′j
φ = max

1≤m≤Mp

P

( n⋂
i=1

(Xi(t) ≥ ymi for all t ∈ I )
)

= max
1≤m≤Mp

(
P

( n⋂
i=1

(X̌i ≥ ymi )

))
, (5)

where, by definition,
X̌i = min

t∈I (Xi(t)). (6)

This lower bound is valid regardless of the joint distribution of the component processes.
Bounds (4) and (5) are not determined by the component availabilities (1) alone. Bound (5)

is determined by the specification of the joint distribution of X̌ = (X̌1, . . . , X̌n), and requires
the calculation of joint probabilities in this distribution. The calculation of (4) is even more
demanding. Such calculations are unrealistic in many cases, and we are then left with simplified
versions. Bound (4) takes the form, based on independent component processes (see Butler
(1982) and Funnemark and Natvig (1985)),

l
∗∗j
φ (pX) =

Mc∏
m=1

n∐
i=1

P(X̌i > zmi ) =
Mc∏
m=1

n∐
i=1

p
zmi +1
i , (7)

where we have used the ‘ip’ operator
∐

defined by
n∐
i=1

pi = 1 −
n∏
i=1

(1 − pi).

Note that if I is reduced to a single point [t, t], and if the component states are independent
at t , then (4) and (7) coincide.

By Funnemark and Natvig (1985), a correspondingly simplified version of (5) gives a valid
lower bound under the assumption of associated component processes in I :

l
′j
φ (pX) = max

1≤m≤Mp

( n∏
i=1

P(X̌i ≥ ymi )

)
= max

1≤m≤Mp

( n∏
i=1

p
ymi
i

)
. (8)

If the component processes are independent in I then (8) is identical to (5).
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Example 4. (Example 1 continued. Part (iv).) Suppose that the components have a common
availability p3

i = p to level 3, i = 1, . . . , 4. Since there is only one minimal path vector
(3, 3, 3, 3) to level 3, we have l′3φ (px) = p4. This is also the value of p3

φ if the components
are independent. Since all minimal path vectors to level 2 have three functioning components,
we have l′2φ (px) = p3. Similarly, all minimal path vectors to level 1 have two functioning
components, and, accordingly, l′1φ (px) = p2.

Turning to the l∗∗
φ bounds, we see that, for each minimal cut vector z to level 3, we have

p
zi+1
i = p for one value of i, corresponding to zi = 0, and pzi+1

i = 0 for the other three values
of i. Hence,

∐4
i=1 p

zi+1
i = p. Since there are four such minimal cut vectors, we have

l∗∗3
φ (px) = p4 = l′3φ (px).

Similarly, for a minimal cut vector z to level 2, we have

4∐
i=1

p
zi+1
i = 1 − (1 − p)2 = 2p − p2.

Since there are six such vectors, we have

l∗∗2
φ (px) = (2p − p2)6.

The ordering of this bound and l′2φ (px) depends on the value of p. By solving the equation
p3 = (2p − p2)6 we see that p3 ≥ (2p − p2)6 if and only if p ∈ [0, (3 − √

5)/2]. Since the
value of p decreases with the length of the interval I , the ordering may therefore also depend
on the choice of I .

There are two cut vectors (0, 0, 3, 3) and (3, 3, 0, 0) to level 1. This gives l∗∗1
φ (px) =

(2p − p2)2. This always exceeds l′1φ (px) = p2, and, hence, provides a better bound.

Corresponding to these bounds for availabilities, there are bounds for unavailabilities. To
present two examples, which also indicate what kind of notation is used in general, we have,
parallel to (5) and (8),

l̄
′′j
φ = max

1≤m≤Mc

P

( n⋂
i=1

(Xi(t) ≤ zmi ) for all t ∈ I
)

= max
1≤m≤Mc

(
P

( n⋂
i=1

(X̂i ≤ zmi )

))
(9)

and

l̄
′j
φ (qX) = max

1≤m≤Mc

( n∏
i=1

P(X̂i ≤ zmi )

)
= max

1≤m≤Mc

( n∏
i=1

q
zmi +1
i

)
,

where, similar to (6),
X̂i = max

t∈I (Xi(t)).

Our main focus in this paper is on the availability bounds (7) and (8), which are explicit
functions of the vector pX. However, we will also treat bounds (4) and (5), both for the sake
of completeness and because this is a natural part of the mathematical development.

The principle behind using modular decompositions in connection with availability bounds
is that we replace the usually unknown vector of availabilities for modules by a corresponding
vector of bounds. For instance, we replace pχ in the lower bound l∗∗j

ψ (pχ ) for pjψ = p
j
φ by l∗∗

χ .

Example 5. (Example 1 continued. Part (v).) For the modular structure functionsχk, k = 1, 2,
we have one minimal cut vector (0, 0) to level 1, and, hence,

l∗∗1
χk
(px) = 1 − (1 − p)2 = 2p − p2 =: l1.
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To level 3, there are two minimal cut vectors (3, 0) and (0, 3), and, hence,

l∗∗3
χk
(px) = p2 =: l3.

Focusing now on the functioning level j = 2 for the system, the minimal cut vectors for the
organizing structure function ψ to level 2 are (3, 0), (0, 3), and (1, 1). Consequently,

l∗∗2
ψ (l∗∗

χ (px)) = l1 × l1 × (1 − (1 − l3)2)

= (2p − p2)2(1 − (1 − p2)2)

= (2p − p2)2(2p2 − p4).

The corresponding bound based on minimal path vectors are easier to derive. There are two
minimal path vectors (3, 1) and (1, 3) for ψ to level 2, both giving rise to the same bound

l′2ψ (l′χ (px)) = l′3χ1
(px)× l′1χ2

(px) = p2 × p = p3.

Note that this coincides with l′2φ (px).

In Section 4 we will prove (see Theorem 2), as stated in Funnemark and Natvig (1985), that
in fact

l
′j
ψ (l

′
χ (pX)) = l

′j
φ (pX) (10)

in general, and use this to prove an equality concerning upper bounds (see Theorem 3), stated
in Funnemark and Natvig (1985) and Natvig (1986).

For the bounds based on minimal cut vectors, it is easy to see that in Example 1 a corre-
sponding equality holds for functioning levels j = 1 and j = 3. However, for j = 2, the
bound (2p − p2)2(2p2 − p4) that is based on modular decomposition differs from the bound
(2p − p2)6 that is not. It is an elementary but quite tricky piece of calculus to show that the
former is better than the latter. In Section 5 we will prove (see Theorem 5) that, under certain
additional assumptions, which are formulated in Theorem 1 and are satisfied in Example 1,

l
∗∗j
ψ (l∗∗

χ (pX)) ≥ l
∗∗j
φ (pX). (11)

This inequality was claimed to hold in Butler (1982) and Funnemark and Natvig (1985), but only
for the case of I = [t, t], and without realising the need for additional assumptions. In Natvig
and Mørch (2003) the Norwegian offshore gas pipeline system, as of the 1980s, was analysed as
an MMS. It was found that (11) is satisfied for I = [0.5, 0.5], where time is measured in years.
But, for certain functioning levels, the opposite inequality holds with I = [0.5, 0.6]. Hence,
the additional assumptions are in fact needed, and are apparently not satisfied in this case.

3. Minimal path vectors and cut vectors for the system, the organizing structure,
and the modules

From now on we use the abbreviations MPV for ‘minimal path vector’and MCV for ‘minimal
cut vector’. For MPVs u = (u1, . . . , ur ) and MCVs v = (v1, . . . , vr ) for ψ to level j , we will
have to consider MPVs forχk to leveluk and MCVs forχk to level v+

k (Sχk ), k = 1, . . . , r . Since
we may have uk = 0 and vk = M , we must deal with path vectors for χk to level 0, (0, . . . , 0)
obviously being the only minimal one, and cut vectors for χk to level M + 1, (M, . . . ,M)
obviously being the only minimal one.

The following lemma is a key result for the analysis of the availability bounds based on
modular decomposition.
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Lemma 1. Let (ψ,χ) be a modular decomposition of (C, φ), defined as in (3).

(a) The MPVs for φ, ψ , and χ are related as follows.

(i) Let y be an MPV for φ to level j . For each k = 1, . . . , r , let jk = χk(yAk ). Then
there exists an MPV u for ψ to level j with u ≤ (j1, . . . , jr ), and, for each such
u and each k = 1, . . . , r , yAk is an MPV for χk to level uk .

(ii) Suppose that, for each k = 1, . . . , r and each uk ∈ Sχk , every MPV yAk to level
uk satisfies χk(yAk ) = uk . Then the vector u of (i) is unique.

(iii) Make the same assumption as in (ii). Let u be an MPV for ψ to level j . For each
k = 1, . . . , r , let yAk be an MPV for χk to level uk . Then y = (yA1 , . . . , yAr ) is
an MPV for φ to level j .

(b) The MCVs for φ, ψ , and χ are related as follows.

(i) Let z be an MCV for φ to level j . For each k = 1, . . . , r , let jk = χk(zAk ). Then
there exists an MCV v for ψ to level j with v ≥ (j1, . . . , jr ), and, for each such v

and each k = 1, . . . , r , zAk is an MCV for χk to level v+
k = v+

k (Sχk ).

(ii) Suppose that, for each k = 1, . . . , r and vk ∈ Sχk , every MCV zAk to level v+
k

satisfies χk(zAk ) = vk . Then the vector v of (i) is unique.

(iii) Make the same assumption as in (ii). Let v be an MCV for ψ to level j . For each
k = 1, . . . , r , let zAk be an MCV for χk to level v+

k . Then z = (zA1 , . . . , zAr ) is
an MCV for φ to level j .

Proof. To prove (a)(i), note that, clearly, (j1, . . . , jr ) is a path vector for ψ to level j . If
it is not minimal, we may successively replace the components jk by lower values uk until no
further reduction is possible without causing ψ(u) < j . Then u is an MPV. Let u be any MPV
to level j for ψ , satisfying u ≤ (j1, . . . , jr ). Then, for each k = 1, . . . , r , yAk is a path vector
for χk to level uk , being in fact a path vector to level jk ≥ uk . We claim that it is in fact an
MPV. To see this, assume for simplicity that k = 1. If yA1 = (0, . . . , 0) then u1 = 0, and the
claim is satisfied. Otherwise, choose an arbitrary i ∈ A1 for which yi > 0. Let yi be replaced
by some y′

i < yi , to give rise to the modified vectors y′
A1

and y′, leaving all components except
yi unchanged. By the minimality of y we then have

ψ(u) ≥ j > φ(y′) = ψ(χ1(y
′
A1
), χ2(yA2), . . . , χr(yAr )) ≥ ψ(χ1(y

′
A1
), u2, . . . , ur ).

This means that we must have u1 > χ1(y
′
A1
), proving that yA1 is an MPV for χ1 to level u1.

Under the assumption of (a)(ii), the vector u satisfies uk = χk(yAk ) = jk . Hence, u =
(j1, . . . , jr ). To prove (a)(iii), let u and y be as stated therein. Then, clearly, y is a path
vector for φ to level j . Choose y′

i < yi for some i. For simplicity, we may assume that
i ∈ A1. Let y′ and y′

A1
represent the corresponding adjustments of y and yA1 , as above. Then

χ1(y
′
A1
) = u′

1 < u1. For k �= 1, by assumption, χk(yAk ) = uk . Hence,

φ(y′) = ψ(χ1(y
′
A1
), χ2(yA2), . . . , χr(yAr )) = ψ(u′

1, u2, . . . , ur ) < j,

proving that y is an MPV to level j . The proof of part (b) is similar and thus omitted.

Remark 1. Lemma 1(a)(ii) is sufficient to obtain uniqueness in the determination of an appro-
priate u, but the vector u may be uniquely determined without it. An example is provided by
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assuming that χk satisfies the condition for k = 2, . . . , r , while χ1 does not. Then we have
uk = jk for k = 2, . . . , r , and it follows that u1 is uniquely determined, i.e. the conclusion of
Lemma 1(a)(ii) holds. However, we are not able to prove that the conclusion of Lemma 1(a)(iii)
holds in these circumstances.

Example 6. (Example 1 continued. Part (vi).) Recall that, for the modular structure functions
χk, k = 1, 2, the state space is Sχk = {0, 1, 3}. For the MPVs (3, 0) and (0, 3) to level 1,
we have χk(3, 0) = χk(0, 3) = 1. For the single MPV (3, 3) to level 3, we obviously have
χk(3, 3) = 3. Hence, the condition in Lemma 1(a)(ii) is satisfied. For the single MCV (0, 0)
for χk to level 1 = 0+, we have χk(0, 0) = 0. Also, for the MCVs (3, 0) and (0, 3) to level
3 = 1+, we have χk(3, 0) = χk(0, 3) = 1. Hence, the condition in Lemma 1(b)(ii) is also
satisfied. It is a tedious exercise to verify directly that the conclusions of parts (ii) and (iii) of
Lemma 1(a) and (b) are also satisfied.

Butler (1982) tried to characterize the MCVs for φ by means of binary structure functions
related to the MCVs for ψ . In our notation, the set of vectors that he claimed to be the distinct
MCVs for φ, without any additional assumption on the structure functionsχk , is in fact identical
to the set that arises from the construction in Lemma 1(b)(iii). The following example shows
that this set may in fact contain replicates of certain cut vectors, and also cut vectors that are
not minimal. We demonstrate by this example that, without the assumptions of part (ii) of
Lemma 1(a) and (b), the construction in (i) is not necessarily unique, and vectors y and z

of the form given in part (iii) of Lemma 1(a) and (b) are not necessarily MPVs and MCVs,
respectively.

Example 7. Let C = {1, 2, 3, 4}, A1 = {1, 2}, A2 = {3, 4}, S = {0, . . . , 3}, and Si =
{0, 1, 3}, i = 1, . . . , 4. Let the MPVs for ψ be (3, 3) to level 3, (3, 1), (1, 3), and (2, 2) to
level 2, and (1, 1) to level 1. Let the MPVs for χ1 = χ2 be (3, 1) and (1, 3) to level 3, (3, 1)
and (0, 3) to level 2, and (1, 1) and (3, 0) to level 1. Hence, (3, 1) is an MPV both to level 3
and level 2 for χk, k = 1, 2. Following the procedure of Lemma 1(a)(iii), with u = (2, 2), we
obtain a vector (3, 1, 3, 1)which is not an MPV to level 2, since, e.g. (3, 1, 1, 1) is a path vector
to level 2. Hence, the procedure of Lemma 1(a)(iii) does not always give an MPV. On the other
hand, (1, 1, 1, 1) is an MCV to level 2 for φ. Following the procedure of Lemma 1(b)(i), we
see that χ1((1, 1)) = χ2((1, 1)) = 1. We seek an MCV v ≥ (1, 1) forψ to level 2, and observe
that both (2, 1) and (1, 2) meet this requirement. Hence, the procedure of Lemma 1(b)(i) does
not always give a unique MCV v.

By duality, this example also shows that in general the procedure of Lemma 1(a)(i) does not
necessarily give a unique MPV u for ψ , and that a vector z constructed as in Lemma 1(b)(iii)
is not necessarily an MCV for φ.

It is convenient to enumerate the different sets of MPVs and MCVs. This is done in the
following definition, in which we also introduce some more useful notation.

Definition 1. Let the MPVs to level j for ψ and φ respectively be

{ul : l = 1, . . . , Lp} and {ym : m = 1, . . . ,Mp}.
Also, for each ul = (ul1, . . . , u

l
r ) and each k = 1, . . . , r , let the MPVs for χk to level ulk be

{yl,sAk : s ∈ {1, 2, . . . , el,k} = El,k}.
We denote the components of y

l,s
Ak

by yl,k,si , i ∈ Ak .
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Similarly, let the MCVs to level j for ψ and φ respectively be

{vl : l = 1, . . . , Lc} and {zm : m = 1, . . . ,Mc}.
Also, for each vl = (vl1, . . . , v

l
r ) and each k = 1, . . . , r , let the MCVs for χk to level vl +

k be

{zl,sAk : s ∈ {1, 2, . . . , bl,k} = Bl,k}.
We denote the components of z

l,s
Ak

by zl,k,si , i ∈ Ak .
With these definitions we can now rephrase in the following theorem the main content of

Lemma 1, providing a sufficient, operational condition which ensures that there is a one-to-one
correspondence between, on the one hand, MPVs y for φ to level j , and, on the other hand,
MPVs u for ψ to level j and corresponding MPVs yAk for χk to level uk, k = 1, . . . , r . The
theorem also provides a sufficient, operational condition ensuring that there is a one-to-one
correspondence between, on the one hand, MCVs z for φ to level j , and, on the other hand,
MCVs v for ψ to level j and corresponding MCVs zAk for χk to level v+

k , k = 1, . . . , r . In
turn, this one-to-one correspondence is used in Section 5 to prove inequality (11).

Theorem 1. Let (ψ,χ) be a modular decomposition of (C, φ), as defined by (3). Suppose that
the following condition is satisfied.

(i) For each k = 1, . . . , r and uk ∈ Sχk , every MPV yAk to level uk satisfies χk(yAk ) = uk .

Then, with the notation of Definition 1, we have the following property.

(ii) For each l ∈ {1, 2, . . . , Lp} and each s ∈ El,1 × · · · × El,r , there exists m ∈ {1, 2, . . . ,
Mp} such that

ym = (y
l,s1
A1
, . . . , y

l,sr
Ar
).

Conversely, each ym can be written uniquely in this way.

Similarly, suppose that the following condition is satisfied.

(iii) For each k = 1, . . . , r and vk ∈ Sχk , every MCV zAk to level v+
k satisfies χk(zAk ) = vk .

Then, with the notation of Definition 1, we have the following property.

(iv) For each l ∈ {1, 2, . . . , Lc} and each s ∈ Bl,1×· · ·×Bl,r , there existsm ∈ {1, 2, . . . ,Mc}
such that

zm = (z
l,s1
A1
, . . . , z

l,sr
Ar
).

Conversely, each zm can be written uniquely in this way.

Example 8. (Example 1 continued. Part (vii).) Again, we focus on functioning level 2. The
MPV (3, 1) forψ to level 2 corresponds to the MPVs (3, 3, 3, 0) and (3, 3, 0, 3) for φ to level 2.
The MPV (1, 3) corresponds to (3, 0, 3, 3) and (0, 3, 3, 3). The MCV (3, 0) for ψ to level 2
corresponds to the MCV (3, 3, 0, 0) for φ to level 2. Similarly, (0, 3) corresponds to (0, 0, 3, 3).
Finally, the MCV (1, 1) forψ corresponds to the four MCVs (3, 0, 3, 0), (3, 0, 0, 3), (0, 3, 3, 0),
and (0, 3, 0, 3).

With the notation of Definition 1 we can now also write the lower bound based on a modular
decomposition introduced in (10) as

l
′j
ψ (l

′
χ (pX)) = max

1≤l≤Lp

r∏
k=1

[
max
s∈El,k

∏
i∈Ak

p
y
l,k,s
i

i

]
.
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The lower bound based on a modular decomposition introduced in (11) can be written as

l
∗∗j
ψ (l∗∗

χ (pX)) =
Lc∏
l=1

r∐
k=1

∏
s∈Bl,k

∐
i∈Ak

p
z
l,k,s
i +1
i . (12)

4. Lower bounds for availabilities based on minimal path vectors and for
unavailabilities based on minimal cut vectors, and corresponding upper bounds

The following theorem shows that the lower bounds (5) and (8) are unchanged under a
modular decomposition.

Theorem 2. Let (ψ,χ) be a modular decomposition of (C, φ) as in (3). Let the joint distri-
butions of the independent performance processes XAk be arbitrary, k = 1, . . . , r . Let j ∈ S
be arbitrary. Comparing lower bounds for the system availability pjφ in an interval I based on
MPVs, we then have

l′′φ = l′ψ(l′′χ ) ≤ p
j
φ. (13)

Moreover, with an arbitrary joint distribution for the performance process X = (X1, . . . , Xn),
we also have the identity

l′φ(pX) = l′ψ(l′χ (pX)), (14)

representing a lower bound if the component processes are associated in I . Analogous results
are valid for the corresponding lower unavailability bounds.

Proof. Let y be an MPV for φ to level j for which the maximum in the definition of l′′φ
is obtained. By Lemma 1(a)(i), choose an MPV ul for ψ to level j such that χk(yAk ) ≥
ulk, k = 1, . . . , r . Again, by Lemma 1(a)(i), using the notation of Definition 1, y is of the form
y = (y

l,s1
A1
, . . . , y

l,sr
Ar
) for some s = (s1, . . . , sr ) ∈ El,1×· · ·×El,r . Owing to the independence

of the modules we have

l′′φ =
r∏
k=1

P(Xi(t) ≥ y
l,k,sk
i for all i ∈ Ak, t ∈ I )

≤ max
1≤l≤Lp

r∏
k=1

[
max
sk∈El,k

P(Xi(t) ≥ y
l,k,sk
i for all i ∈ Ak, t ∈ I )

]

= l′ψ(l′′χ ). (15)

To prove the opposite inequality, choose ul and (yl,s1A1
, . . . , y

l,sr
Ar
) for which the right-hand

side of (15) is attained. Then y = (y
l,s1
A1
, . . . , y

l,sr
Ar
) is a path vector for φ to level j . In case it

is not minimal, choose an MPV y′ ≤ y. Then

l′′φ ≥ P(Xi(t) ≥ y′
i for all i = 1, . . . , n, t ∈ I )

=
r∏
k=1

P(Xi(t) ≥ y′
i for all i ∈ Ak, t ∈ I )

≥
r∏
k=1

P(Xi(t) ≥ y
l,k,sk
i for all i ∈ Ak, t ∈ I )

= l′ψ(l′′χ ),
where the last inequality follows since yl,k,ski ≥ y′

i for all i ∈ Ak, k = 1, . . . , r . Hence, (13) is
proved.
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If the component processes Xi, i = 1, . . . , n, are independent in I then, as noted after
(8), l′′jφ and l′jφ (px) coincide. Also, l′′sχk and l′sχk (px) coincide for each k = 1, . . . , r and each
s ∈ Sχk . Hence, l′′χ = l′χ (px) also. It follows that (17) holds in the case of independent
component processes. Now let the performance process X = (X1, . . . , Xn) have an arbitrary
joint distribution. According to (8), applied to φ,ψ , and each χk, k = 1, . . . , r , we can express
the left- and right-hand sides of (14) explicitly in terms of the component availability vector
px = {psi , s ∈ Si, i = 1, . . . , n} as

l′φ(px) = max
1≤m≤Mp

n∏
i=1

p
ymi
i =: f (px),

l′ψ(l′χ (px)) = max
1≤l≤Lp

r∏
k=1

[
max
s∈El,k

∏
i∈Ak

p
y
l,k,s
i

i

]
=: g(px).

(16)

We claim that the two functions f and g defined by (16) agree for any vector p′
x = {p′s

i , s ∈ Si,
i = 1, . . . , n} that satisfies the requirement that p′s

i is nonincreasing in s for each i = 1, . . . , n.
To see this, choose an arbitrary time point t , and define independent component state variables
X′

1(t), . . . , X
′
n(t), whose availabilities at t are given by p′

x , i.e. P(X′
i (t) ≥ s) = p′s

i for each s
and i. Since the variables X′

i (t) are independent, we can apply the theorem with I replaced by
[t, t], and with the process X replaced by X′(t). The conclusion is that f (p′

x) = g(p′
x), proving

our claim. However, it is obvious that the availabilities psi of the arbitrarily chosen process
X also satisfy the requirement that psi is nonincreasing in s. It follows that f (px) = g(px),
and (14) is proved. The fact that (14) represents a lower bound if the component processes
are associated in I is, as already mentioned, proved in Funnemark and Natvig (1985). This
completes the proof.

Theorem 2 shows that nothing is either gained or lost by using a modular decomposition in
connection with the l′ and l′′ bounds in terms of the closeness to pjφ . However, the modular
decomposition may be advantageous from the computational point of view. Theorem 2 is also
stated in Funnemark and Natvig (1985), but the proof uses the inadequate characterization of
the MPVs of φ given in Butler (1982). The same holds for the comparison of upper availability
bounds, originally presented in Funnemark and Natvig (1985) and Natvig (1986), given in
Theorem 3 below. Although our main focus is on lower bounds, we include a corrected proof
of this result here for the sake of completeness. Note that the upper bound u′′

φ(I ) appearing in
the theorem is based on taking the minimum over the factors appearing in the lower bound (4)
rather than their product.

Theorem 3. Let (ψ,χ) be a modular decomposition of (C, φ) as in (3). Let j ∈ S be arbitrary,
and consider the following upper bound for pjφ:

u′′
φ(I ) = min

1≤m≤Mc

P
([

max
1≤i≤n(Xi(t)− zmi )

]
> 0 for all t ∈ I

)
.

We then have

u′′
φ(I ) ≤ inf

t∈I (1 − l̄′′φ([t, t])) = inf
t∈I (1 − l̄′ψ(l̄′′χ ([t, t]))).

The corresponding result is valid for the upper bounds for unavailabilities to level j based on
MPVs.
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Proof. Choose an arbitrary t ∈ I . For any MCV z of φ to level j , we have

P
([

max
1≤i≤n(Xi(t)− zi)

]
> 0

)
= P

( n⋃
i=1

(Xi(t) > zi)

)
= 1 − P

( n⋂
i=1

(Xi(t) ≤ zi)

)
.

Minimizing this over MCVs z on both sides and using (9) yields

u′′
φ([t, t]) = 1 − l̄′′φ([t, t]).

We obviously have u′′
φ(I ) ≤ u′′

φ([t, t]). Hence, the stated inequality follows by taking the
infimum over all t ∈ I . The subsequent equality follows by using the unavailability part of
Theorem 2.

5. Lower availability bounds based on minimal cut vectors

In order to deal with the l∗ and l∗∗ bounds of (4) and (7), we need the following lemma.

Lemma 2. Let P k,s, k = 1, . . . , r, s ∈ Bk = {1, . . . , bk} be real numbers between 0 and 1.
Then ∏

s∈B1×···×Br

r∐
k=1

P k,sk ≤
r∐
k=1

∏
s∈Bk

P k,s .

Proof. If bk = 1 for each k = 1, . . . , r , the lemma is obviously true, since then both sides
equal

∐r
k=1 P

k,1. Hence, the lemma is true whenN = ∑r
k=1 bk − r = 0. We prove the lemma

by induction on N . We need the following inequality, valid for p, q,w ∈ [0, 1]:

(pq)
∐

w −
(
p

∐
w

)(
q

∐
w

)
≥ 0. (17)

Here, by definition, p
∐
q = 1 − (1 − p)(1 − q) = p + q − pq. The inequality follows since

pq
∐

w −
(
p

∐
w

)(
q

∐
w

)

= (pq + w − pqw)− q(p + w − pw)− w(1 − q)
(
p

∐
w

)

= w(1 − q)− w(1 − q)
(
p

∐
w

)
≥ 0.

With obvious interpretations of p, q, and w, this covers the special case r = 2, b1 = 2, and
b2 = 1 of the lemma. With the interpretation

w = p2,1
∐

· · ·
∐

pr,1,

(17) also covers the case b1 = 2, b2 = · · · = br = 1, and arbitrary r . By symmetry, the lemma
is true for N = 1. Now assume that the lemma holds for some N ≥ 1, and consider the case
N + 1. We may assume that b1 ≥ 2. Define

p =
b1−1∏
s=1

P 1,s , q = P 1,b1 , and w =
r∐
k=2

∏
s∈Bk

P k,s .
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Using (17) and the induction hypothesis, we then have

r∐
k=1

∏
s∈Bk

P k,s = pq
∐

w

≥
(
p

∐
w

)(
q

∐
w

)

≥
( ∏

s∈(B1−{b1})×B2×···×Br

r∐
k=1

P k,sk
)( ∏

s∈B2×···×Br
P 1,b1

∐( r∐
k=2

P k,sk
))

=
∏

s∈B1×···×Br

r∐
k=1

P k,sk ,

proving the lemma.

In our analysis of the behaviour of the l∗ and l∗∗ bounds, we have to start with the special
case of an interval of the form [t, t] for an arbitrary t ∈ I . For this special case, we introduce the
following notation, which simplifies the mathematical expressions. Recalling from Definition 1
that the zl,k,si are the components of the MCVs z

l,s
Ak
, s ∈ Bl,k , of χk to level vl +

k , define

P l,k,s = P

( ⋃
i∈Ak

(Xi(t) > z
l,k,s
i )

)
, l = 1, . . . , Lc, k = 1, . . . , r, s ∈ Bl,k. (18)

Using this notation and replacing φ by χk in (4), we then have

l
∗(vl +

k )
χk =

∏
s∈Bl,k

P l,k,s , (19)

which is a component in the vector l∗χ .

Theorem 4. Let t ∈ I . If the modular decomposition (ψ,χ) of (C, φ) has the property
described in Theorem 1(iv), and, in particular, if the modular structure functions χk, k =
1, . . . , r , satisfy Theorem 1(iii) then

l∗φ([t, t]) ≤ l∗∗
ψ (l

∗
χ )([t, t]).

Proof. Using the property described in Theorem 1(iv), and then the independence of the
modules and the simplifying notation (18), we have

l∗φ([t, t]) =
Lc∏
l=1

∏
s∈Bl,1×···×Bl,r

P

( r⋃
k=1

⋃
i∈Ak

(Xi(t) > z
l,k,sk
i )

)

=
Lc∏
l=1

∏
s∈Bl,1×···×Bl,r

r∐
k=1

P l,k,sk . (20)

We now use Lemma 2 to each

∏
s∈Bl,1×···×Bl,r

r∐
k=1

P l,k,sk , l = 1, . . . , Lc,
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of (20), and then use (19) to obtain

l∗φ([t, t]) ≤
Lc∏
l=1

r∐
k=1

∏
s∈Bl,k

P l,k,s =
Lc∏
l=1

r∐
k=1

l
∗(vl +

k )
χk = l∗∗

ψ (l
∗
χ ([t, t])), (21)

where the last equality follows by replacing φ by ψ in (7). This completes the proof.

By Funnemark and Natvig (1985), Theorem 4 provides valid lower bounds for pjφ if the
component states of each module, and, hence, all component states, at time t are sets of
associated random variables.

Attempting to extend (20) to the case of a general interval I in place of [t, t] leads to the
inequality (cf. (4))

P
([

max
1≤k≤r max

i∈Ak
(Xi(t)− z

l,k,s
i )

]
> 0 for all t ∈ I

)

≥ P

( r⋃
k=1

([
max
i∈Ak

(Xi(t)− z
l,k,s
i )

]
> 0 for all t ∈ I

))

=
r∐
k=1

P
([

max
i∈Ak

(Xi(t)− z
l,k,s
i )

]
> 0 for all t ∈ I

)
.

Since this inequality has the wrong direction, we are not able to generalize Theorem 4 to the
case of a general interval. Roughly speaking, the explanation for this is that the expression
on the left-hand side of the above inequality allows different components to prevent the cut
vector from sabotaging the system at different times, while the expression on the right-hand
side only allows different components within a single module to do so. However, specializing
to the bounds based on independent components, we are finally able to obtain an extension to
an arbitrary interval I .

Theorem 5. Let I be an arbitrary interval, and assume that the component processes are
independent in I . If the modular decomposition (ψ,χ) of (C, φ) has the property described in
Theorem 1(iv), and, in particular, if the modular structure functions χk, k = 1, . . . , r , satisfy
Theorem 1(iii) then

l∗∗
φ (pX) ≤ l∗∗

ψ (l
∗∗
χ (pX)).

Proof. Consider first the case of a degenerate interval [t, t]. Since we are considering
availabilities at a single point of time, and since the component states at this point of time
are independent, the l∗ and l∗∗ bounds coincide. Hence, the result follows by Theorem 4.
Comparing (20) and (21), this means that

Lc∏
l=1

∏
s∈Bl,1×···×Bl,r

r∐
k=1

∐
i∈Ak

p
l,k,sk
i ≤

Lc∏
l=1

r∐
k=1

∏
s∈Bl,k

∐
i∈Ak

p
l,k,s
i , (22)

where we have defined
p
l,k,s
i = P(Xi(t) > z

l,k,s
i ).

But inequality (22) remains valid if pl,k,si is redefined as

p
l,k,s
i = P(Xi(t) > z

l,k,s
i for all t ∈ I ) = p

z
l,k,s
i +1
i .
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Using the property described in Theorem 1(iv) and (7), the left-hand side of inequality (22) then
becomes l∗∗j

φ (pX), while the right-hand side equals l∗∗j
ψ (l∗∗

χ (pX)) by (12). This completes the
proof.

The bounds of Theorems 2 and 5 can be combined to obtain a common improvement.
Contrary to intuition, it is also the case that l∗∗j

φ (px) is not necessarily nonincreasing in j
(consider for instance small values of p in the cases j = 2 and j = 3 in Example 1). This
motivates the maximization over j ′ ≥ j in the definition of the lower bound

B
∗j
φ (pX) = max

j ′≥j
max(l∗∗j ′

φ (pX), l
′j ′
φ (pX)),

introduced in Funnemark and Natvig (1985). As in Theorem 5, this bound may also be improved
by modular decomposition. Applying Theorems 2 and 5, as well as the facts that B∗j

ψ (·) is
nondecreasing in each argument and that pjφ is nonincreasing in j , it is straightforward to prove
the first inequality in the following corollary. For the second inequality, we also need the fact
that pjφ = p

j
ψ .

Corollary 1. Let I be an arbitrary interval, and assume that the component processes are
independent in I . If the modular decomposition (ψ,χ) of (C, φ) has the property described in
Theorem 1(iv), and, in particular, if the modular structure functions χk, k = 1, . . . , r , satisfy
Theorem 1(iii) then

B∗
φ(pX) ≤ B∗

ψ(B
∗
χ (pX)) ≤ p

j
φ.

This result was given in Funnemark and Natvig (1985) for the case of I = [t, t], but without
realising the need for assumptions like those given in Theorem 1.

In this section, for simplicity, we have considered only lower availability bounds, although
corresponding results for unavailability bounds, involving condition (i) and property (ii) of
Theorem 1, can be given.
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