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Introduction

This paper is a sequel to T. G. Room's "Self-polar double configurations
in projective geometry, I and I I " ([2]). I would like to thank Professor Room
for supervising and inspiring my work, and to acknowledge the financial
assistance of the C.S.I.R.O.

In part I of his paper, Room gives a (sufficient) condition for the self-
polarity of the double — N determined by a f X q matrix of linear forms in
the (homogeneous) coordinate variables of a projective space IIv+a_z{ovex
the field of complex numbers), namely that, of the 2 x 2 minors of the matrix,
no2'(/)~r"?)(^)~l~9'~3) + l are linearly independent.

In part II, Room shows how Coble's self-polar double — y% ) of
lines and i7c_2's in IIa (cf. [3]) may be constructed if we are given a n.r.c.
(normal rational curve) r, a quadric S inpolar to r, and a pair of lines con-
jugate with respect to S and chordal to r. S polarizes the constructed double

In the present paper, we define a class of self-polar double — N's of
/7j,_2's and IIq_2's associated with pairs of very specially related ("S^-re-
lated") n.r.c.'s in IIV+Q_Z. The matrices defining these double — N's satisfy
Room's criterion for self-polarity.

In §1 we define and discuss "^-related" pairs of n.r.c.'s. In §2 we
examine the case p = q = 4, and in §3 indicate how the results obtained
in §2 may be generalized, and find the freedom (except when p = q = 3)
of the locus with which our configuration is associated.

Finally, in §4, we prove that our class of self-polar double —N's, like
Coble's class of self-polar double — (?2 )'s, includes the general double-
six of lines in 773.

1. Pairs of ^-related normal rational curves in J7n

We say that two n.r.c.'s in 77n have "contact of the highest order"
at P if they both pass through P and they have the same tangent line,
osculating i72, • • •, osculating IIn_1 at P.
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[2] Self-polar double-JV's 211

A pair of n.r.c.'s in 77n which have contact of the highest order at some
point P and intersect at n further points Pt, • • •, Pn whose join is a prime
n not incident with P, shall be called an "^"-related" pair. P, Plt • • •, Pn

shall be called the ^-simplex1, P the ^-point, and n the ^-prime, of the
pair.

It is easily verified that the two n.r.c.'s

x0(1)

and

(2)

(bt constants, 6 = 0, • • •, n;

= 0

or 1) are an ^-related pair: their
•5^-point is A n

 2, and their ^-prime is given by

bsxs = xn.

THEOREM 1. A coordinate-system and a set of constants bs can be found
such that a given pair r, p of Sf-related n.r.c.'s is represented by equations (1)
and (2).

PROOF. Select as An the y-point, and as Ao and the unit point any
other two (distinct) points on r. Then points Ax, • • •, An_l are uniquely
determined by the condition that equations (1) represent r.

Constants aaS (a, d = 0, • • •, n) can be found such that the equations

• • • 2 / n - i = 0,
: * * * Vn

where ya = aaSxt, represent p. The TT _t (s = 1, • • •, n) which osculates r
at the y-point may now be represented by either of the two sets of equations

Thus
* „ = • • • = x n _ , = 0 or yo = ••• = y n _ , = 0 .

= 0,---,n-l
afiy = 0 a n d aM ^ 0

so that the equations of p may be reduced to the form

"OÔ O "lla'l ' ' ' "n-l .n-l^n-l

1̂ 2̂ • • • *n

1 For convenience, we shall use the term y-simplex even though the n + 1 points need
not be distinct.

1 The vertices of the simplex of reference shall be denoted by As (8 «= 0, • • •, n).
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212 P. Kirkpatrick [3]

where z. = bayxv

I y = 0, • • •, a
and b10 = 0.

Substitute 0* for xs in these equations. Each of the resulting equations
which is of degree less than n in 0 must be an identity in 0, since r and p
intersect at n points, apart from An (which is given by 1/0 = 0). It fol-
lows from these identities that

. „ = 2, • • • , « - l
6 « = ° 1 ^ = 0 , . • - , £ - !

and that

5
^00 "11 "n—2,n-2

XX ^ 2 2 " j , ^ ^ . !

so that equations (2), when bs = (boo/6B_i>B_i) bnS (d = 0, • • -, n), represent
p relative to the chosen coordinate-system.

Such a system of coordinates shall be called an ^-system for r, />;
and the constants bs determined by an ^-system shall be called a set of
^-constants for r, p.

We now find the freedom of ^-related pairs in IIn and establish
some important relations between 5^-related pairs and tangential quadrics
in nn.

THEOREM 2. The freedom of ^-related pairs in ITn is n2-\-3n—l.

PROOF. The freedom of n.r.c.'s in II„ is (« - l ) (»+3) (cf. [1], p. 220).
The freedom of simplexes inscribed in a given n.r.c. is n-\-l.

Given a simplex inscribed in a n.r.c, r, let p and a be any two n.r.c.'s
^-related to r such that the given simplex is the ^-simplex of the pairs r,
p and r, a and these two pairs have the same ^-point. Then, if bs are the
^-constants of r, p and cs the ^-constants of r, a in an ^-system for r, p
(and r, a), the two equations

= xn and CiX* = xn

represent the same prime.
The freedom of ^-related pairs in 77n is therefore

Until §4, r and p shall always be understood to be the members of a given
=$^related pair, P its ^-point, n its i^-prime; and the coordinates shall be
an ^-system, the constants bs a set of ^-constants for r, p, and b's the same
constants except that b'n = bn—\.
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[4] Self-polar double-iV's 213

THEOREM 3. The ^-simplex of r, p is self-polar3 with respect to a (tan-
gential) quadric S if and only if S is inpolar to r, p and the (point) quadric

' *-i = 0.

PROOF. If the .^-simplex is self-polar with respect to a tangential
quadric then the latter is inpolar to r and p since the ^-simplex is inscribed
in both.

So let S be any quadric inpolar to both r and p. Then S is given by a
matrix K = (kp+a_2) where

= 0, • • -,n—2.

= 0, • • • , » .

5 will be inpolar to b\xsxn_1 = 0 if and only if b'sks+n_1 = 0.
But the ^-simplex will be self-polar with respect to S if and only if P

is the pole of n (cf. [1], pp. 225-228), i.e. each of the primes xy = 0 (y = 0,
• • •, w—1) is conjugate to n, i.e.

b'sh+y = 0 Y = °. ' - "» n—1.

A IIm (0 < m < n—1), chordal to r, whose polar space with respect
to a quadric S is a chordal i7n_TO_1 of p, shall be called a space §m (relative
toS) .

THEOREM 4. / / S is inpolar to both r and p then there exists a space § m ,
such that neither §m nor its polar space is incident with P, if and only if the
^-simplex is self-polar. If the ^-simplex is self-polar then there are at least
oo1 spaces § m .

PROOF. 5 is given by a matrix K = (kp+(r_2) where

A I7m, chordal to r, is given by equations

fa = 0, •••, tn+l
Lxa,e = 0 {

while a 77n_m_1, chordal to p, is given by equations

= 0,--;n-tn

(where x'y = xv, v # n; x'n = bsxs).
i

3 Here, and in similar situations, we assume that the vertices of the y-simplex are
distinct.

4 x's is used with this meaning throughout this paper.
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214 P. Kirkpatrick [5]

These spaces are polars if and only if each prime Aaxtt+e = 0 is conjugate
to each prime fiffx'fi+^ = 0, i.e.

(4) KK+fi+rPfi = 0 T = 0, • • -, « - 2

and

(5) kK+e+vPfi+Wiks+a+v-mPn-m = 0 O = ftt, • • •, M— 1.

It is easily shown that (3), (4) and (5) are together equivalent to (3),

and

(7) reduces to b^k^,,^ = 0 if Am+lyaB_m ^ 0, i.e. if neither space is
incident with P. So P is the pole of n if there exists a space Qm satisfying
the given conditions.

Suppose now that P is the pole of n, so that &i&j+n_1 = 0. The sets of
Aa's for which there is a set of fifi's which satisfy the n equations (6) generate
a determinantal locus (cf. [1], p. 33) of type [\n—m-\-\, n\, [w+1]) in the
IIm+1 whose points represent the chordal ITm's of r in the natural way.

The dimension of the general locus

(\n-m+l,n\, [wt-fl]) is ( »»+ l )—»+(»—m+l ) - l = 1

(cf. [1], p. 34), so that the dimension of our special locus is not less than
one. If S is non-singular, the dimension is certainly only one, since there
are then only n points of p conjugate to any given point of r.

THEOREM 5. If S is any non-singular quadric which polarizes the Sf-
simplex of r, p then there is a linear series g"+1 on r such that the m-edges
(0 < tn < n—1) of the simplexes defined by the series are spaces § m [relative
to S).

PROOF. Since the order of an (\n, n\, [2]) is n, there are n spaces ^
through any point Ln+1 on r. These define n more points Lx, • • •, Ln on r.
We show that every 1-edge of the simplex Llt • • •, Ln+1 is a space § x .

The polar prime of Lnhl meets p in n points Mx, • • •, Mn. The order of a
(|3,»|, [»—1]) is (2) (cf- t 1 ] . P- 42)> s o t h a t . through any Mit there are
I2) chordal nn_2's of p whose polar lines are chords of r. Each of
these (g) spaces § x lies in the polar prime of Mt, namely the prime
through I : , • • •, Ln+1(Lt omitted). LaLfi (a, fi^i) are the only chords of
r irij this prime, so they are all spaces § x .

Now the polar spaces of the 1-edges of any simplex Llt- • •, Ln+l
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(determined by Ln+1 as above) are the (tt— 2)-edges of a simplex inscribed
in p, so that the w-edges of the simplex Llt • • •, Ln+1 must be spaces § m .
Since the order of an (|n—w+1, n\, [m-\-l]) is L * m ) = (^), there are
only PM spaces § m through any point of r, i.e. the linear series gives all the
spaces § m .

2. A class of self-polar double-twenties of planes in 775

If r, p is any ^-related pair in 775, then in an ^-system for r, p the
equation

x0 xx

x*

represents, for each choice of a set of constants c{, a determinantal quartic
primal D\ e on which both r and p are components of the double curve. 5

It is easily verified that every 2x2 minor of X* „ is linearly dependent
upon the set of 20 forms consisting of:

= 0, where

(A) the 10 2 x 2 minors of

x1cixs—x3xi

(B) the 4 forms " 4 a = 0, • • •, 3;

and

(C) x2ctx,—x3xs

Thus, by Room's criterion,

THEOREM 1. The double-twenty of planes on D\ c is self-polar.
We denote this self-polar double-twenty by CD\ „. It is polarized by a

quadric S (generally unique) inpolar to each of the 20 quadrics represented
by the vanishing of the above forms (cf. [2], p. 68). Since it is inpolar to the
quadrics determined by (A) and (B), S is inpolar to both r and p. S is also
inpolar to the quadric b'jXjX^ = 0, so that (by Theorem 3 of §1) the Sf-
simplex is self-polar.

If S is non-singular, there are (by Theorem 4 of §1) oo1 chordal planes
of r whose polar planes are chordal to p. By Theorem 5 of §1, they are the

5 cf. [1], pp. 429—433 for a treatment of the determinantal quartic primal in 775.
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2-edges of the simplexes defined by a g\ on r. We shall prove that they may
also be characterized in terms of the double-twenties associated with the pri-
mals Die of a pencil containing D\ c.

Each plane if, of one row of CD\ e is a space on D* e of exceptional di-
mension in the oo3 family of generating spaces h given by the four equations.

a = 0, • • •, 3

= 0

as the Xa's vary. The general space h is a line. The first three equations al-
ways represent a plane chordal to r. Thus each plane Ht is chordal to r.

Similarly, operating on the columns rather than the rows of X\ c, it
can be seen that each plane K{ of the other row of CD* c is chordal to p.

A tangential quadric in I7S with matrix K = (kp+a_2) polarizes CD* a

if and only if

(1)

b',k,+T = 0
I T = 0, • • -, 4

<x = 0 ,

So, if S polarizes CD\ e, it also polarizes all the double-twenties
where

cg = cs-\-kb't for some k.

The primals D\^ are all the primals, except that given by fj, = 0, of the
pencil

•"2 ^8 ^4

We have proved:

THEOREM 2. TTte planes of one row of each CD*? are spaces | )2 rela-
tive to the quadric S which polarizes CD* c.

In fact, if 5 is non-singular, then it polarizes no configurations CD\tt

except the oo1 configurations CD*^. For the complete solution of equations
(1) is then

as = cs-\-kb'} k an arbitrary constant.

Finally, we prove:

THEOREM 3. / / the quadric S which polarizes CD* c is non-singular then
each space § 2 {relative to S) is either paired with its polar space in some
or is a 2-edge of the Sf-simplex.
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PROOF. Let Aaxa+E = 0 be a given §2> whose polar plane is, say,
^A+E = 0. Then, by the proof of Theorem 4 of §1,

(2) KK+fi+T/ifi + ^b$kS+r+l/i3 = ° T = 0, •••, 4.

If ^ f t ^ 0> the given § 2 and its polar plane are paired in the CD* a

given by the a/s such that the following is an identity (in the xs's):

l f a a + l ^ a c H 2 + h ( ^ 0 3 + / l i + ^ 2 5 + ^ 3 S s ) = 0 .

We derive:

2 ^•a/ilfi^~{^2bsJr^3as)/J'3 = 0 (a, (5 Sa 3).

Thus

P 1 I 1 7 T ^ 2 7 ' 7 T = 0, • • •, 4

and so, by (2),

Hence
a*k»+* = k6+a a = 0, • • •, 3

and

If Xz/iz = 0 elementary considerations show that, by virtue of the self-
polarity of the ^-simplex and the non-singularity of S, the given § 2 must
be a 2-edge of the ^"-simplex.

3. A class of self-polar double-N's in J7p+9_3

The results obtained in §2 may be generalized to apply to double-iV's
of i7p_2's and / T ^ ' s in /7j,+a_3, where 3 ^ p ^ q.

Let r, p be any ^"-related pair in /7J>+a_3. Then each set of constants
ct determines a locus Z)£;* represented by the equations

= 0, where X™ = [xa/)] ( " = ]' " "' P

{ p = 1, • • •, q

and xaP = a;a+/?_2, except that xv_ha = i,a;f and xp(, =
Simple calculations show that the family of loci thus defined depends

only on the ordered pair r, p and not on the particular ^-system chosen.
Examination of the 2 x 2 minors of XI'I shows that Room's criterion is
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218 P. Kirkpatrick [9]

satisfied, so that the double-iV, say CD\'\, 6 associated with D\'\ is polarized
by a tangential quadric S. S is given by a matrix K = (kp+ir_2), where the
ky's satisfy:

= 0, • • •, p^-q-Z

T = 0, • • -, p+q-4
ciks+a = K+Q-2+* a = 0, • • •, p+q—5

b'6ks+T = 0 {

_i — b)k}+p+Q_3.

S is inpolar to both r and p. The ^-simplex is self-polar, so that there
exist oo1 chordal /7j,_2's of r whose polar i7a_2's are chordal to p. If S is
non-singular there are only oo1 such I7v_2's and they are the (p—2)-edges
of the simplexes defined by a gf4"~2 on r; each is paired with its polar /7,_2

in one of the oo1 configurations CD%-'± (where cs = cs-\-kb's for some k) or
else is a (p~2)-edge of the ^-simplex.

The freedom of the double-iV (of /7j,_2's and I7a_2's in I7v+<1_3) associated
with a general pxq matrix of linear forms is (p—l)(q—l) (p+q+l)—pq
(cf. [1], p. 74).

THEOREM. The freedom of loci of type DJ;* in np+q_3 is

{except when p = q = 3).

PROOF. The freedom of ^"-related pairs in np+(l_3 is

by Theorem 2 of §1.
Each ^-related pair r, p defines at most ao1'+Q~2 loci of type Df'l,

since there are oo"+<'-2 sets of constants c3. But it can be easily shown that,
given a general chordal 77j,_2 of r and a general chordal IJQ_2 of p (not in-
cident with the /7j,_2), there is a CD£;|! defined by r, p in which these spaces
are paired. It follows that each ^-related pair defines oop+('~2 loci of type

The result is established if we prove that a general DJ-* can be defined
by only finitely many ^"-related pairs (except when p = q = 3). When
p > 3, this follows from the (easily proved) fact that the dimension of the
locus ||.X|;J||g= 0 is one. Now D$l is a special surface of type Fs (cf. [2],
p. 70). Suppose q > 3. Then the plane representation of Fs (cf. [1], p. 392)
shows that the curve r is uniquely defined by -Dj['* (two irreducible plane

cs cannot share y \ ) double points), and that each point of risthe

I f p = g w e a b b r e v i a t e * » ; • . D ^ . C D ™ t o X \ _ „ . D \ _ c . C D \t o X \ _ „ . D\_c. CD\ , .
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.S^-point for at most one suitable ^"-related pair r, p (a suitable p is repre-
sented by a line tangent to the {q-\-2)-\c, which represents r, at the point
representing the ^"-point). The ^-point of any suitable ^"-related pair is
represented by one of the q-\-2 points at which the contact conic touches the
(q-\-2)-ic. So there are at most q+2 suitable ^-related pairs.

The above formula is not valid when p = q = 3. The work in §4 will
show that the freedom of is 19.

4. The double-six of lines

It is well known that the general double-six of lines in IJ3 is self-polar;
we can in fact prove that it is a CD\ c.

The general double-six of lines ar, • • •, a6, bt- • -,b6 lies on a non-
singular cubic surface F3, which may be represented by cubic curves y'
through six points A\ in a plane (cf. [4], pp. 189-192).

Let P be a point on F3 (but not on any of the lines of F3), represented
by P'. There is a curve y', say F', which has a double point at P'. Let p be
the tangent line to one of the two branches of F' at P'. The intersection mul-
tiplicity of p and F' at P' is three.

There is a rational quintic r' which has a double point at each A\ and
passes through P', having p as tangent line at P'. The intersection multi-
plicity of F' and r' at P' is easily computed to be three.

F' represents the curve F in which the tangent plane fi to F3 at P meets
F3. p represents a twisted cubic p on F3. p passes through P and meets each
b{ twice, r' represents another twisted cubic r on F3. r passes through P and
meets each a{ twice, r meets p at three points apart from P.

Since F' meets p nowhere except at P', and r' nowhere except at P'
and at the base points A't, (i osculates both p and r at P. Furthermore, since
p' is tangent to r' at P', p touches r at P. Thus r, p is an y-related pair on
F*.

By Theorem 1 of §1, a coordinate-system and a set of constants bt

can be found such that r is represented by

* 1

= 0 and p by
x, x,

= 0.

Now the cubic surfaces which pass through both r and p form a linear
family of freedom four. But the surfaces

Xn X,

xi xi

0 0 xn

Xn

0 0 X,

Xn X-i

x9
= 0
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all pass through both r and p, so that every cubic surface through both r
and p is one of these. Those given by a4 = 0 are composite, so that F3 must
be a £>»„.
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