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Introduction

This paper is a sequel to T. G. Room’s “‘Self-polar double configurations
in projective geometry, I and IT”’ ([2]). I would like to thank Professor Room
for supervising and inspiring my work, and to acknowledge the financial
assistance of the C.S.I.R.O.

In part I of his paper, Room gives a (sufficient) condition for the self-
polarity of the double —N determined by a X ¢ matrix of linear forms in
the (homogeneous) coordinate variables of a projective space IT,,,_s(over
the field of complex numbers), namely that, of the 2 X 2 minors of the matrix,
no £(p+q)(p+g—3)-1 are linearly independent.

In part II, Room shows how Coble’s self-polar double _(q-;l) of

lines and I7,_,’s in IT, (cf. [3]) may be constructed if we are given a n.r.c.
(normal rational curve) r, a quadric S inpolar to 7, and a pair of lines con-
jugate with respect to S and chordal to 7. S polarizes the constructed double
—=(3").

In the present paper, we define a class of self-polar double —N’s of
I, ,’s and II_,’s associated with pairs of very specially related (% -re-
lated”) n.r.c.’s in IT,,, 5. The matrices defining these double —N’s satisfy
Room’s criterion for self-polarity.

In §1 we define and discuss ““-related” pairs of n.r.c.’s. In §2 we
examine the case p = ¢ = 4, and in §3 indicate how the results obtained
in §2 may be generalized, and find the freedom (except when p = ¢ = 3)
of the locus with which our configuration is associated.

Finally, in §4, we prove that our class of self-polar double —N’s, like

Coble’s class of self-polar double _(q—gl‘):s, includes the general double-
six of lines in I7;.

1. Pairs of & -related normal rational curves in IT,

We say that two n.r.c.’s in II, have “‘contact of the highest order”
at P if they both pass through P and they have the same tangent line,
osculating IT,, - - -, osculating 7, ; at P.
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A pair of n.r.c.’s in I, which have contact of the highest order at some
point P and intersect at »# further points P,,---, P, whose join is a prime
# not incident with P, shall be called an ““%-related” pair. P, P, ---, P,
shall be called the &-simplex?!, P the &-point, and = the &-prime, of the
pair.

It is easily verified that the two n.r.c.’s

xo xl s e e r -1

(1) " =0
Ty Ty "%y |In

and

@) ToZy " Tpo®puq|] 0
Xy Tyt iy Dyl

(by constants, 6 =0,---,#%; 5,50 or 1) are an F-related pair: their
F-point is 4, 2, and their &-prime is given by

baxa =x,.
THEOREM 1. A coordinate-system and a set of constants by can be found

such that a given pair v, p of FP-related n.r.c.’s is represented by equations (1)
and (2).

ProOF. Select as 4, the F-point, and as 4, and the unit point any
other two (distinct) points on ». Then points 4,, -+, 4,_, are uniquely
determined by the condition that equations (1) represent r.

Constants a,; (x, 6 = 0, - - -, ) can be found such that the equations

YoUr1° " " Yna
NlYa: " Ya

where y, = a,;x;, represent p. The I7 _; (s=1, - -+, n) which osculates »
at the #-point may now be represented by either of the two sets of equations

=0,
1

Tg=‘'"=x, ,=0oryy=---=y,_,=0.
Thus
=0, n—1
agy, =0 and apa #0{ y =p+1,---,n,
8=0,",n

so that the equations of p may be reduced to the form

boo%o by - - - bp1,n-1%n-1

=0,
zl 22 "'zn

1

1 For convenience, we shall use the term & -simplex even though the #+1 points need
not be distinct.

* The vertices of the simplex of reference shall be denoted by A5 (§ =0, - - -, n).
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a=1"-"n
where 2y = by, {
y=20,-",a

and b = 0.

Substitute 6% for z, in these equations. Each of the resulting equations
which is of degree less than # in 6 must be an identity in 0, since » and p
intersect at » points, apart from A4, (which is given by 1/ = 0). It fol-
lows from these identities that

e=2 -+ n—l
beg = 0 $=20---,e—1
and that
b _ b bucsine
1 b by, n—l’

so that equations (2), when b; = (bgy/b,_1 n1) Prs (=0, - -+, ), represent
p relative to the chosen coordinate-system.

Such a system of coordinates shall be called an &-system for 7, p;
and the constants b; determined by an & -system shall be called a set of
& -constants for 7, p.

We now find the freedom of #-related pairs in I7, and establish
some important relations between & -related pairs and tangential quadrics
in I7,.

THEOREM 2. The freedom of F-velated pairs in II, is n*+3n—1.

Proor. The freedom of n.r.c.’s in IT, is (n—1)(n+3) (cf. [1], p. 220).
The freedom of simplexes inscribed in a given n.r.c. is #--1.

Given a simplex inscribed in a n.r.c., 7, let p and ¢ be any two n.r.c.’s
& -related to 7 such that the given simplex is the &-simplex of the pairs 7,
p and 7, o and these two pairs have the same %-point. Then, if b; are the
&-constants of 7, p and ¢; the F-constants of 7, ¢ in an &-system for 7, p
(and 7, o), the two equations

byxs = x, and csxy = x,

represent the same prime.
The freedom of &-related pairs in I7, is therefore

(n—1)(n+3)+(n+1)+1 = n243n—1.

Until §4, » and p shall always be understood to be the members of a given
S~related pair, P its &-point, z its & -prime; and the coordinates shall be
an &-systcm, the constants b, a set of &-constants for 7, p, and b; the same
constants except that &, = b,—1.
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THEOREM 3. The & -simplex of », p is self-polar ® with respect to a (tan-
gential) quadric S if and only if S is inpolar to r, p and the (point) quadric
by %32,y = O.

Proor. If the #-simplex is self-polar with respect to a tangential
quadric then the latter is inpolar to » and p since the #-simplex is inscribed
in both.

So let S be any quadric inpolar to both » and p. Then S is given by a
matrix K = (k,,,_,) where

a:O,..-,n_..2.

b;k6+a=0 {6=0---n

S will be inpolar to b;2sz,_, = 0 if and only if b3 %5, ,_, = O.

But the &-simplex will be self-polar with respect to S if and only if P
is the pole of = (cf. [1], pp. 225-228), i.e. each of the primes z, =0 (y = 0,
.-+, m—1) is conjugate to =, i.e.

byksy, =0 y =0+, n—1.
A I, (0 <m < n—1), chordal to », whose polar space with respect

to a quadric S is a chordal I7,_,,_; of p, shall be called a space 9,, (relative
to S).

THEOREM 4. If S is inpolar to both v and p then there exists a space H,,,
such that neither $,, nor its polar space is incident with P, if and only if the
F-simplex is self-polar. If the F-simplex is self-polar then there are at least
ool spaces 9, .

Proor. S is given by a matrix K = (& where

p+¢r-2)
’ '}’=0:"';7"—2

3 byks,, = 0

(3) oy (oo

A I, chordal to 7, is given by equations

a=0,-,mtl

AgZyoe =0
aat€ {8'——-0,"'; n—m—1,
while a IT,_,,_,, chordal to p, is given by equations

' =0+ n—m
HpTpeg =0 {¢=0...m

(where z, =z, v % n; x, = byx,).4

3 Here, and in similar situations, we assume that the vertices of the &-simplex are
distinct.
¢ z3 is used with this meaning throughout this paper.
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These spaces are polars if and only, if each prime 2,%,,. = 0 is conjugate
to each prime uzzp, 4 = 0, i.e.

(4) J'ak¢+ﬂ+r.uﬂ =0 T=0,-"",n—-2
and
(5) )'aka+ﬁ+o'.”'p+}‘ab; Rararo—mbin-m =0 c=m, -, n—l

It is easily shown that (3), (4) and (5) are together equivalent to (3),

(6) j'ak«:z-i-ﬁ-!—x:“ﬂ—{_;‘ab,Jkt’+a-§-7¢—m:un—m =0 1= 0,:-+,n—1
and
() Ami1 b; Kt in-1bn-m = 0.

(7) reduces to byksinq =0 if A, ptn_m# 0, ie. if neither space is
incident with P. So P is the pole of = if there exists a space 9,, satisfying
the given conditions.

Suppose now that P is the pole of x, so that byks,,_, = 0. The sets of
A,'s for which there is a set of u,’s which satisfy the # equations (6) generate
a determinantal locus (cf. [1], p. 33) of type (jn—m+1, #|, [m+1]) in the
11, ., whose points represent the chordal I7,,’s of 7 in the natural way.

The dimension of the general locus

(In—m+1, n|, (m+1]) is (m+1)—nt+n—m+1)—1 =1

(cf. [1], p. 34), so that the dimension of our special locus is not less than
one. If S is non-singular, the dimension is certainly only one, since there
are then only » points of p conjugate to any given point of 7.

THEOREM 5. If S is any non-singular quadric which polarizes the &-
simplex of 7, p then there is a linear series gi** on » such that the m-edges
(0 < m < n—1) of the simplexes defined by the series are spaces 9,, (relative
to S).

ProoF. Since the order of an (|n, n|, [2]) is #, there are # spaces 9,
through any point L, ,, on r. These define # more points L,, -+, L, on 7.
We show that every 1-edge of the simplex L,, -+, L,,, is a space 9;.

The polar prime of L, ,, meets p in # points M,, - - -, M ,. The order of a
(13, n], [n—1]) is (’2’) (cf. [1], p. 42), so that, through any M,, there are

'2‘ chordal I7,_,’s of p whose polar lines are chords of r. Each of

these (’2‘) spaces 9, lies in the polar prime of M,, namely the prime
through L, -, L, (L, omitted). L,L; («, B #1) are the only chords of
r ingthis prime, so they are all spaces 9, .

Now the polar spaces of the l-edges of any simplex L., -+, L,y
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(determined by L, ., as above) are the (#—2)-edges of a simplex inscribed

in p, so that the m-edges of the simplex L,, - - -, L,,, must be spaces §,,.
Since the order of an ([n—m-+1, n|, [m+1]) is (”fm) = (::‘), there are
only (::l) spaces 9,, through any point of 7, i.e. the linear series gives all the

spaces 9,,.

2. A class of self-polar double-twenties of planes in II;

If 7, p is any F-related pair in I7;, then in an &-system for 7, p the
equation
Ty T, Ty T
Z, X, Ty X
X4, =0, where X}, =|* 727 ™
’ ’ Ty Ty Ty Ds%s

Ty Xy Ty Cs%s

represents, for each choice of a set of constants ¢;, a determinantal quartic
primal Dj , on which both 7 and p are components of the double curve. 3

It is easily verified that every 2 X 2 minor of Xj , is linearly dependent
upon the set of 20 forms consisting of:

. Lnls *** X
(A) the 10 2 X2 minors of [ 01 j ;
xlxz o x
z x
(B) the 4 forms | * 4 «=20,+:+3;
Topr  Da%s
and
ToCaLy—x2 T, Cy Ty — Ty %y
(€) T C3s—TL3%5 X3CpTs—T4 %5

:vsc,,x,,—x.,b,,xa %c,x,,—xsb,xa.
Thus, by Room’s criterion,

THEOREM 1. The double-twenty of planes on Dy . is self-polar.

We denote this self-polar double-twenty by CD} ,. It is polarized by a
quadric S (generally unique) inpolar to each of the 20 quadrics represented
by the vanishing of the above forms (cf. [2], p. 68). Since it is inpolar to the
quadrics determined by (A) and (B), S is inpolar to both » and p. S is also
inpolar to the quadric 232, = 0, so that (by Theorem 3 of §1) the &-
simplex is self-polar.

If S is non-singular, there are (by Theorem 4 of §1) co! chordal planes
of » whose polar planes are chordal to p. By Theorem 5 of §1, they are the

8 cf. [1], pp. 429—433 for a treatment of the determinantal quartic primal in ITy.
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2-edges of the simplexes defined by a g¢ on . We shall prove that they may
also be characterized in terms of the double-twenties associated with the pri-
mals Dj ; of a pencil containing Dj ,.

Each plane H, of one row of CDj , is a space on Dj , of exceptional di-
mension in the oo® family of generating spaces % given by the four equations.

€=0,-+-,3
e=20,1,2
Ao2gtA1 4+ Ay bys+Agcs®y = O

as the 4,’s vary. The general space % is a line. The first three equations al-
ways represent a plane chordal to 7. Thus each plane H; is chordal to 7.
Similarly, operating on the columns rather than the rows of X}, it
can be seen that each plane K| of the other row of CDj , is chordal to p.
A tangential quadric in I7; with matrix K = (k,,,.,) polarizes CD} ,
if and only if

AZoie =0

, 6:0,...’5
bakﬁ-}.r:O :T=O...4
(1) aak‘y_,_a:ke_*_a a=0,-°',3

askay = bskas .

So, if S polarizes CDj ,, it also polarizes all the double-twenties CDj 5,
where
iy = Cp+kby for some k.

The primals D} ; are all the primals, except that given by u = 0, of the

pencil
To ¥ T
Abyxs |2y @y | + .“'X:,cl = 0.
z, 3 %,

We have proved:

THEOREM 2. The planes of one row of each CDj are spaces D, rela-
tive to the quadric S which polarizes CD; .

In fact, if S is non-singular, then it polarizes no configurations CDj ,
except the oo! configurations CD; ;. For the complete solution of equations
(1) is then

as = c3+kby kan arbitrary constant.

Finally, we prove:

THEOREM 3. If the quadric S which polarizes CD;, , is non-singular then
each space O, (relative to S) is either paired with its polar space in some CDj 5
or is a 2-edge of the S -simplex.
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Proor. Let A,x,, .= 0 be a given ,, whose polar plane is, say,
ta®ere = 0. Then, by the proof of Theorem 4 of §1,

(2) z’aka+ﬂ+1'luﬂ+2'3b; Rsiri1tis =0 T=0,---4

If 23u; 0, the given 9, and its polar plane are paired in the CDj ,
given by the a,’s such that the following is an identity (in the z,’s):

20;%%+21ﬂaxa+1+lzﬂax;+2+}*3(Nox3+/‘114+ﬂ2‘”5+/‘3“6%) =0.

We derive:
% alaﬂp+(lzb3+laas)ua =0 (x,B=3).
d+ =
Thus
Ay o,
a6k8+1 =T [}‘aka+ﬂ+‘r:uﬂ_)'3:u3k6+1] — 2 baka+r =204
Ayt A3

and so, by (2},
asRss, = b;k3+r+1+k6+1_ = b;k6+r

A3
= b;k6+1+1+k6+1
Hence
Ayksie = Reya «a=0,--+,3
and

@yksia = boksys.

If A3u5 = 0 elementary considerations show that, by virtue of the self-
polarity of the &-simplex and the non-singularity of S, the given , must
be a 2-edge of the F-simplex.

3. A class of self-polar double-N’s in I 43

The results obtained in §2 may be generalized to apply to double-N’s
of IT, ,’s and II,_,’s in I, , 5, where 3 < p < gq.

Let 7, p be any &-related pair in IT,,, ;. Then each set of constants
¢s determines a locus D}’ represented by the equations

a=1-""7
X lps = O, where X3t = [o] | I
and x,5 = %,,5_,, except that x,_, , = b;%, and x,, = ¢, ;.
Simple calculations show that the family of loci thus defined depends
only on the ordered pair 7, p and not on the particular #-system chosen.
Examination of the 2x 2 minors of X3¢ shows that Room’s criterion is
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satisfied, so that the double-N, say CD}'¢, 8 associated with Dj:? is polarized
by a tangential quadric S. S is given by a matrix K = (k,,,_,), Where the
k,’s satisfy:

’ 6=0,"',ﬁ+q_3
bak6+r=0 {1=0---1§+q—4
Cﬁk5‘+a = kp+a—2+¢ a=20,---,p+9—5

Cs ks +p+e—4 T bs ks +p+¢-3°

S is inpolar to both » and p. The &-simplex is self-polar, so that there
exist oo! chordal I7,_,’s of » whose polar I1,_,’s are chordal to p. If S'is
non-singular there are only co! such I7,_,’s and they are the (p—2)-edges
of the simplexes defined by a g?**~* on r; each is paired with its polar I7,_,
in one of the oo! configurations CD?} (where &y = cy-kby for some k) or
else is a (p—2)-edge of the F-simplex.

The freedom of the double-N (of I7,_,’s and I7,_,’s in IT,, ,_,) associated
with a general $ X ¢ matrix of linear forms is (p—1)(¢—1) (p+qg+1)—pg
(cf. [1], p. 74).

THEOREM. The freedom of loci of type Dy in IT,,, . 5 is

(6+9)*—2(p+9)—-3
(except when p = q = 3).

Proor. The freedom of S-related pairs in I7,,,_3 is

(+9—-3)*+3(p+9—3)—1,
by Theorem 2 of §1.

Each S-related pair 7, p defines at most co?+?-2 loci of type Dj'q,
since there are co?+¢-2 sets of constants c,. But it can be easily shown that,
given a general chordal IT,_, of r and a general chordal I7,_, of p (not in-
cident with the II, ,), there is a CD}'{ defined by 7, p in which these spaces
are paired. It follows that each & -related pair defines co?+?-2 ]oci of type
Dye-

The result is established if we prove that a general D}:¢ can be defined
by only finitely many & -related pairs (except when p = ¢ = 3). When
P > 3, this follows from the (easily proved) fact that the dimension of the
locus || X3¢]|;= 0 is one. Now D}-¢ is a special surface of type Fg (cf. [2],
P- 70). Suppose ¢ > 3. Then the plane representation of Fg (cf. [1], p. 392)
shows that the curve 7 is uniquely defined by D} (two irreducible plane

(¢-+2)-ics cannot share (q;'l) double points), and that each point of 7 is the

¢ If p = g we abbreviate X3¢, D2, CD}'% to X7 ., D} ., CDj .
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&-point for at most one suitable & -related pair 7, p (a suitable p is repre-
sented by a line tangent to the (g+42)-ic, which represents 7, at the point
representing the #-point). The &-point of any suitable &-related pair is
represented by one of the g4 2 points at which the contact conic touches the
(g+2)-ic. So there are at most ¢g4-2 suitable &-related pairs.

The above formula is not valid when p = ¢ = 3. The work in §4 will
show that the freedom of D , is 19.

4. The double-six of lines

It is well known that the general double-six of lines in [T, is self-polar;
we can in fact prove that it is a CD} ,.

The general double-six of lines a,, -, a4, by - -, bg lies on a non-
singular cubic surface F3, which may be represented by cubic curves y’
through six points A4; in a plane (cf. [4], pp. 189-192).

Let P be a point on F? (but not on any of the lines of F3), represented
by P'. There is a curve 9’, say I, which has a double point at P’. Let p’ be
the tangent line to one of the two branches of I'” at P’. The intersection mul-
tiplicity of p’ and I’ at P’ is three.

There is a rational quintic #” which has a double point at each 4 and
passes through P’, having p’ as tangent line at P’. The intersection multi-
plicity of I" and »* at P’ is easily computed to be three.

I represents the curve I' in which the tangent plane u to F2 at P meets
F3. p’ represents a twisted cubic p on F3. p passes through P and meets each
b, twice. 7' represents another twisted cubic 7 on F3. r passes through P and
meets each a4, twice. r meets p at three points apart from P.

Since I'" meets p’ nowhere except at P’, and 7' nowhere except at P’
and at the base points Ay, u osculates both p and  at P. Furthermore, since
p’ is tangent to 7’ at P’, p touches » at P. Thus 7, p is an &-related pair on
F3,

By Theorem 1 of §1, a coordinate-system and a set of constants b,
can be found such that r is represented by
To %y T —0.
1

Lo Xy Lo
z

=0and p b
oY 1 %y byws

1

11 T2 T3

Now the cubic surfaces which pass through both r and p form a linear
family of freedom four. But the surfaces

To o Ty T, Ty To ¥ Ty
o | %y Ty bsxp| A o tag |2y Ty bay| g (% Xy by =0
0 0 Z, 0 0 x5 Ty, T, 0
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all pass through both 7 and p, so that every cubic surface through both 7
and p is one of these. Those given by «, = 0 are composite, so that F3? must
be a Df ..
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