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Abstract
In this paper, we deal with a weighted eigenvalue problem for the anisotropic (p, q)-Laplacian with Dirichlet bound-
ary conditions. We study the main properties of the first eigenvalue and a reverse Hölder type inequality for the
corresponding eigenfunctions.

1. Introduction

Let � ⊂R
n, n � 2, be an open, bounded, and connected set and let p, q be such that 1 < p, and 1 < q < p∗,

where p∗ = np/(n − p) if p < n and p∗ = ∞ if p � n. In this paper, we study the following variational
problem:

λH
p,q(�) = inf

u∈W1,p
0 (�),

u�=0

∫
�

H(∇u)p dx

( ∫
�

m|u|q dx

) p
q

, (1.1)

where m ∈ L∞(�) is a positive function and H : Rn → [0, +∞] is a C1(Rn \ {0}) convex and positively
1-homogeneous function (see Section 2 for more details).
Obviously, λH

p,q(�) depends also on m, but to simplify the notation we will omit its dependence.
The Euler–Lagrange equation associated with the minimization problem (1.1) is the following

weighted eigenvalue problem for the anisotropic (p, q)−Laplace operator with Dirichlet boundary
condition: ⎧⎨

⎩
−Lp(u) = λm(x)‖u‖p−q

q,m |u|q−2u in �

u = 0 on ∂�,
(1.2)

where ‖u‖q,m = ‖u‖Lq(�,m) is the weighted Lebesgue norm of u and Lp is the so-called anisotropic
p-Laplacian operator defined as follows:

Lp(u) = div(H(∇u)p−1Hξ (∇u)). (1.3)

We stress that when p = q and m(x) ≡ 1, (1.1) is the first eigenvalue λH
p (�) of the anisotropic p-Laplacian,

and it has been studied by many authors (see for instance [9, 19] and the references therein). In particular,
in [9], it is proved that λH

p (�) is simple for any p, the corresponding eigenfunctions have a sign, and that
a suitable Faber–Krahn inequality holds.
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When H = E is the usual Euclidean norm,Lp(u) is the well-known p-Laplace operator and the eigenvalue
problem (1.2) reduces to the following:⎧⎨

⎩
−�pu = λ‖u‖p−q

q,m |u|q−2u in �

u = 0 on ∂�.
(1.4)

The spectrum of (1.4) and the first eigenvalue λE
p,q(�), when p �= q and m ≡ 1, have been studied for

instance in the case p = 2 in [11], for any p in [25, 26, 34, 35] and in [20] where the authors study also
the weighted case. It is known that λE

p,q(�) is not simple, in general, for any 1 < q < p∗. Indeed in [27],
the authors prove the simplicity for any 1 < q � p, while for p < q < p∗, λE

p,q(�) could not be necessary
simple. This fact has been observed for instance in [11], in the case p = 2, and for any p in [32] and
[29], where the authors prove that for every fixed p < q < p∗ the simplicity fails if � is a sufficiently thin
spherical shell.

In this paper, we study the main properties of λH
p,q(�) and of the corresponding eigenfunctions. In

particular, our aim is to prove a reverse Hölder inequality for them.
In the Euclidean case, if p = q = 2 and m ≡ 1, in [15, 16], Chiti proves the following inequality for

the first eigenfunctions v corresponding to the first Dirichlet eigenvalue of the Laplace operator λE
2 (�) ≡

λ(�):

‖v‖Lr (�) � C(r, s, n, λ(�))‖v‖Ls(�), 0 < s < r, (1.5)

and the equality case is achieved if and only if � is a ball and v = v�, where the symbol “�” denotes the
Schwarz symmetral of a function (see [30]). In [3], the authors prove (1.5) for the first eigenfunctions of
the p-Laplacian. Moreover, in [1], the authors extend the result to the weighted case, and the inequality
reads as follows:

‖v‖Lr (�,m) � C(p, r, s, n, λE
p (�))‖v‖Ls(�,m), 0 < s < r. (1.6)

The equality sign holds if and only if � is a ball, v = v� and m = m�, modulo translation. In the general
case p �= q, in the Euclidean case, a Chiti type inequality is proved in the case m ≡ 1 in [14] and [13] when
p = 2 and for any p, respectively. More precisely in [13], the authors prove the following inequality:

‖v‖Lr (�) � C(p, q, r, n, λE
p,q(�))‖v‖Lq(�), q < r. (1.7)

Even in this case, the equality sign holds if and only if � is a ball and v = v�, modulo translation.
The goal of this paper is to prove a Chiti type inequality in the spirit of (1.6) and (1.7) for the first
eigenfunctions of the general weighted eigenvalue problem (1.2). We recall that, when p = q and m ≡ 1,
the result in the anisotropic setting has been proved in [9]. Our main theorem is the following.

Theorem 1.1. Let � ⊂R
n be an open, bounded, and connected set. Let 1 < q � p, and let u be an

eigenfunction corresponding to the first eigenvalue (1.1). Then the following statements hold

i) There exists a constant C = C(p, q, r, n, λH
p,q(�)) such that

‖u‖Lr (�,m) � C ‖u‖Lq(�,m), q � r; (1.8)

ii) There exists a constant C = C(p, q, r, n, λH
p,q(�)) such that

‖u‖L∞(�) � C‖u‖Lr (�,m) 1 � r < ∞. (1.9)

The equality cases hold if and only if � is a Wulff shape and u and m coincide, that is, in � with their
convex symmetrization, modulo translation.

We stress that this result gives, in particular, a Chiti type inequality for the eigenfunctions corresponding
to the first weighted eigenvalue of the anisotropic p-Laplacian and extend (1.7) to the weighted case.

https://doi.org/10.1017/S0017089524000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000235


Glasgow Mathematical Journal 3

The proof is based on symmetrization techniques and a comparison between the eigenfunctions corre-
sponding to the first eigenvalue (1.1) and the first eigenfunctions of a suitable symmetrical eigenvalue
problem.
The structure of the paper is the following. In Section 2, we fix some notation, recall some basic prop-
erties of the Finsler norms, and give a brief overview about convex symmetrization. In Section 3, we
study the main properties of λH

p,q(�) and a Faber–Krahn type inequality. In the last section, we prove
Theorem 1.1 by using symmetrization arguments.

2. Notations and preliminaries

Throughout this article, | · | denotes the Euclidean norm in R
n, while · is the standard Euclidean scalar

product for n � 2. Moreover, we denote by |�| the Lebesgue measure of � ⊆R
n, by BR the Euclidean

ball centered at the origin with radius R and by ωn the measure of the unit ball.
Let E ⊆R

n be a bounded, open set and � ⊆R
n be a measurable set. We recall now the definition of the

perimeter of � in E in the sense of De Giorgi, that is,

P(�; E) = sup

{∫
�

divϕ dx : ϕ ∈ C∞
c (E; Rn), ||ϕ||∞ ≤ 1

}
.

The perimeter of � in R
n will be denoted by P(�) and, if P(�) < ∞, we say that � is a set of finite

perimeter. Some results relative to the sets of finite perimeter are contained, for instance, in [31].
Moreover, if � has Lipschitz boundary, we have that

P(�) =Hn−1(∂�).

2.1. The anisotropic norm

Let H : Rn −→ [0, +∞[, n � 2, be a C1(Rn \ {0}) convex function which is positively 1-homogeneous,
that is,

H(tξ ) = |t|H(ξ ) ∀ξ ∈R
n , ∀t ∈R. (2.1)

Moreover, let 0 < γ � δ be positive constants such that

γ |ξ |� H(ξ ) � δ|ξ |. (2.2)

These properties guarantee that H is a norm in R
n. Indeed by (2.2), we have that H(ξ ) = 0 if and only if

ξ = 0. It is homogeneous by (2.1) and the triangular inequality is a consequence of the convexity of the
function H: if ξ , η ∈R

n, then
H(x + y)

2
= H

(
x

2
+ y

2

)
� H(x)

2
+ H(y)

2
.

Because of (2.1), we can assume that the set

K = {ξ ∈R
n : H(ξ ) � 1}

is such that |K| = ωn, where ωn is the measure of the unit sphere inRn. We can define the support function
of K as:

H◦(x) = sup
ξ∈K

〈x, ξ 〉 , (2.3)

where 〈·, ·〉 denotes the scalar product in R
n. H◦ : Rn −→ [0, +∞] is a convex, homogeneous function

in the sense of (2.1). Moreover, H and H◦ are polar to each other, in the sense that

H◦(x) = sup
ξ �=0

〈x, ξ 〉
H(ξ )
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and

H(x) = sup
ξ �=0

〈x, ξ 〉
H◦(ξ )

.

H is the support function of the set:

K◦ = {x ∈R
n : H◦(x) � 1}.

The set W = {x ∈R
n : H◦(x) < 1} is the so-called Wulff shape centered at the origin. We set kn = |W|.

More generally, we will denote by WR(x0) the Wulff shape centered in x0 ∈R
n the set RW + x0, and

WR(0) =WR.
The following properties hold for H and H◦:

Hξ (ξ ) · ξ = H(ξ ), H◦
ξ
(ξ ) · ξ = H◦(ξ ), (2.4)

H(H◦
ξ
(ξ )) = H◦(Hξ (ξ )) = 1 ∀ξ ∈R

n \ {0}, (2.5)

H◦(ξ )Hξ (H◦
ξ
(ξ )) = H(ξ )H◦

ξ
(Hξ (ξ )) = ξ ∀ξ ∈R

n \ {0}. (2.6)

An example of an anisotropic norm that satisfies the above-mentioned properties is the following. Let
r ∈ (1, +∞) and let us consider

H(ξ ) =
( n∑

i=1

|ξi|r

) 1
r

,

known in literature also as r-norm. With this choice, the highly nonlinear operator Lp(u), defined in
(1.3), becomes

Lp(u) =
n∑

k=1

∂

∂xk

(( n∑
i=1

∣∣∣∣ ∂u

∂xi

∣∣∣∣
r ) p−r

r
∣∣∣∣ ∂u

∂xk

∣∣∣∣
r−2

∂u

∂xk

)
.

We stress that for r = p, Lp(u) is the so called pseudo-p-Laplace operator. Examples of non-smooth
anisotropic norm can be found in [8] and references therein, where the authors consider a crystalline
anisotropy and the associated Wulff shape is a polyhedron.

If E ⊂R
n is an open, bounded set with Lipschitz boundary and � is an open subset of Rn, we can

give a generalized definition of perimeter of � with respect to the anisotropic norm as follows (see for
instance [6]):

PH(�, E) =
∫

∂∗�∩E

H(ν) dHn−1,

where ∂∗� is the reduced boundary of � (for the definition see [21]), ν is its Euclidean outer normal, and
Hn−1 is the (n − 1)−dimensional Hausdorff measure in R

n. Clearly, if E is open, bounded and Lipschitz,
then the outer unit normal exists almost everywhere and

PH(E, Rn) := PH(E) =
∫

∂E

H(ν) dHn−1. (2.7)

By (2.2), we have that

γ P(E) � PH(E) � δP(E).

In [5], it is shown that if u ∈ W1,1(�), then for, that is, t > 0

− d

dt

∫
{u>t}

H(∇u) dx = PH({u > t}, �) =
∫

∂∗{u>t}∩�

H(∇u)

|∇u| dHn−1. (2.8)

Moreover, an isoperimetric inequality for the anisotropic perimeter holds (for instance see [2, 12, 18,
23, 24])

PH(E) � nk
1
n
n |E|1− 1

n . (2.9)
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2.2. Convex symmetrization

Let � ⊂R
n be an open, bounded, and connected set. Let f :� −→ [0, +∞] be a measurable function.

The decreasing rearrangement f ∗ of f is defined as follows:

f ∗(s) = inf{t � 0 : μ(t) < s} s ∈ [0, |�|],
where

μ(t) = |{x ∈ � : |f (x)| > t}|,
is the distribution function of f . We recall that the Schwarz symmetrand of f is a radially spherically
function defined as follows:

f �(x) = f ∗(ωn|x|n) x ∈ ��.

where �� is the ball centered at the origin such that |��| = |�|. The convex symmetrization f � of f ,
instead, is a function symmetric with respect to H◦ defined as follows:

f �(x) = f ∗(kn(H◦(x))n) x ∈ ��,

where �� is a Wulff shape centered at the origin and such that |��| = |�| (see [2]). We stress that both
f � and f � are defined by means the decreasing rearrangement f ∗, but they have different symmetry. In
particular, it is well known that the functions f , f ∗, f �, and f � are equimeasurable, that is,

|{f > t}| = |{f � > t}| = |{f ∗ > t}| = |{f � > t}| t � 0.

As a consequence, if f ∈ Lp(�), p � 1, then

‖f ‖Lp(�)‖ = ‖f �‖Lp(��) = ‖f ∗‖Lp([0,|�|]) = ‖f �‖Lp(��). (2.10)

Regarding the norm of the gradient, a generalized version of the well-known Pólya–Szegö inequality
holds and it states (see for instance [2])

Theorem 2.1. (Pólya–Szegö principle). If w ∈ W1,p
0 (�) for p � 1, then we have that∫

�

H(∇u)p dx �
∫

��

H(∇u�)p dx.

where �� is the Wulff Shape such that |��| = |�|.
For the sake of completeness, we will state the result concerning the equality case of the Pólya–Szegö
inequality, whose proof is contained in [22] for the generic anisotropic case and in [38] for the Euclidean
case.

Theorem 2.2. Let u be a non-negative function in W1,p(Rn), for 1 < p < +∞, such that

|{|∇u�| = 0} ∩ {0 < u� < ess sup u}| = 0.

Then ∫
Rn

H(∇u)p dx =
∫
Rn

H(∇u�)p dx

if and only if u = u� a.e. in R
n, up to translations.

Obviously, Theorem 2.2 can holds true in the case of a W1,p
0 (�) function.

We conclude this section by recalling some known properties about rearrangements that we will use in
the proof of the main theorem. The following result is the well-known Hardy–Littlewood inequality (see
[30]): ∫

�

|f (x)g(x)| dx �
∫ |�|

0

f ∗(s)g∗(s) ds. (2.11)
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So, if we consider g as the characteristic function of the set {x ∈ � : u(x) > t}, for some measurable
function u : � →R and t � 0, then we get

∫
{u>t}

f (x) dx �
∫ μ(t)

0

f ∗(s) ds, (2.12)

where, again, μ(t) is the distribution function of u. Finally, we recall the definition of dominated
rearrangements (see for instance [4] and [17]).

Definition 2.3. Let f , g ∈ L1(�) be nonnegative functions. We say that g is dominated by f and write
g ≺ f if the following two statements hold

(i)
∫ s

0

g∗(t) dt �
∫ s

0

f ∗(t) dt;

(ii)
∫ |�|

0

g∗(t) dt =
∫ |�|

0

f ∗(t) dt.

In [4], the authors prove the following result:

Proposition 2.4. Let f , g, h be positive and such that hf , hg ∈ L1(�). Let F be a convex, nonnegative
function such that F(0) = 0. If hg ≺ hf Then

∫ |�|

0

h∗F(g∗) dt �
∫ |�|

0

h∗F(f ∗) dt.

Moreover, if F is strictly convex, the equality holds if and only if f ∗ ≡ g∗, that is, in [0, |�|].

3. The (p,q)-anisotropic Laplacian

In this section, we study the main properties of (1.1) and the corresponding minimizers. Let � ⊂R
n,

n � 2 be an open, bounded, and connected set. Let m ∈ L∞(�) be a positive function and p, q be such that
1 < p < ∞ and 1 < q < p∗, where p∗ = np/(n − p), if p < n, and p∗ = ∞, if p � n. A function v ∈ W1,p

0 (�)
is a weak solution to the problem (1.2) corresponding to λ if

∫
�

(H(∇v))p−1Hξ (∇v) · ∇ϕ dx = λ‖v‖p−q
q,m

∫
�

m(x) |v|q−2 v ϕ dx, (3.1)

for every ϕ ∈ W1,p
0 (�). By standard argument of calculus of variations, it is not difficult to prove the

following result:

Theorem 3.1. Let n � 2 and � ⊂R
n, be an open, bounded set and let p, q and m be as above. Then

λH
p,q(�), defined in (1.1), is strictly positive and actually a minimum. Moreover, any minimizer is a weak

solution to the problem (1.2), with λ = λH
p,q(�), and has constant sign on every connected component.

As regard the simplicity, we have

Theorem 3.2. Let n � 2 and � ⊂R
n, be an open, bounded, and connected set and let p and m be as

above and let 1 < q � p. Then λH
p,q(�) is simple, that is, there exists a unique corresponding eigenfunction

up to multiplicative constants.
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The proof of the previous result is contained in [29], where the authors consider a more general class of
quasilinear operators. We stress that this result was already proved when H = E and m ≡ 1 in the paper
[28] and in the case of a positive and essentially bounded weight in [33]. Finally, we have the following:

Theorem 3.3. Let n � 2 and let � ⊂R
n be an open, bounded, and connected set. Let p and m be as

above and let 1 < q � p. Any nonnegative function v ∈ W1,p
0 (�), which is a weak solution to the problem

(1.2), for some λ > 0, is a first eigenfunction, that is λ = λH
p,q(�).

Proof. The proof is similar to the one contained in [10, Theorem 5.1], and it follows standard argu-
ments and a general Picone inequality. For the reader convenience and sake of completeness, we write the
main steps. Let v be a non-negative weak solution to the problem (1.2) corresponding to λ. By the strong
maximum principle, we have that v > 0 in �. Let u be the first positive eigenfunction corresponding to
λH

p,q(�) such that

‖u‖Lq(�,m) = ‖v‖Lq(�,m). (3.2)

Then,
∫

�

(H(∇u))p dx = λH
p,q(�)

(∫
�

m(x) uq dx

) p
q

. (3.3)

Being v a weak positive solution to (1.2) corresponding to λ, we can chose ϕ = uq

vq−1
as test function in

(3.1) obtaining ∫
�

((H(∇v))p−1 Hξ (∇v) · ∇
(

uq

vq−1

)
dx = λ‖m

1
q v‖p−q

q

∫
�

m(x) uq dx

= λ

(∫
�

m(x) uq dx

) p
q

, (3.4)

where last equality follows by (3.2). In the left-hand side, we can apply the general Picone inequality
(see Proposition 2.9 in [10]) and we have

∫
�

(H(∇v))q
(H(∇u))p−q dx � λ

(∫
�

m(x) uq dx

) p
q

.

By the Hölder inequality, the normalization (3.2) and (3.3) we get that λH
p,q(�) � λ, that implies

u = v.

3.1. The case � =WR

In this subsection, we study the problem (1.2) when � is a Wulff shape. In this case, the eigenfunctions
inherit some symmetry properties. Let be � =WR and let m ∈ L∞(WR) be a positive function such that
m(x) = m�(x). Then problem (1.2) becomes⎧⎨

⎩
−Lp(v) = λm�(x)‖v‖p−q

q,m� |v|q−2v in WR

v = 0 on ∂WR.
(3.5)

The following result holds

Proposition 3.4. Let 1 < p < ∞ and 1 < q � p. Let v ∈ C1(�) ∩ C1,α(�) be a first positive eigenfunction
to the problem (3.5). Then there exists a decreasing function ρ(r), r ∈ [0, R], such that ρ ∈ C∞((0, R)) ∩
C1([0, R]), ρ ′(0) = 0, and v(x) = ρ(Ho(x)).
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Proof. By the simplicity, we can assume that ‖v‖Lq(WR ,m�) = 1. Let BR be the ball centered at the origin
with radius R > 0, and let us consider the weighted p-Laplace eigenvalue problem in BR:⎧⎨

⎩
−�pz = λm̃(|x|)‖z‖p−q

q,m� |z|q−2z in BR

z = 0 on ∂BR,
(3.6)

where m̃(r) = m∗(knrn), 0 � r � R. Let z be the positive eigenfunction corresponding to the first eigen-
value λE

p,q(BR) to the problem (3.6), such that ‖z‖Lq(BR ,m̃) = ‖v‖Lq(WR ,m�) = 1. Then uniqueness guarantees
that z is radially symmetric, which means that there exists a positive one-dimensional function ρp : r ∈
[0, R] →R

+ such that z(x) = ρp(|x|), and ρp solves the following problem:⎧⎨
⎩

−(p − 1)|ρ ′
p|p−2ρ ′′

p + n−1
r

|ρ ′
p|p−1 = λE

p,q(BR)m̃|ρp|q−2ρp, r ∈ (0, R)

ρ ′
p(0) = ρp(R) = 0.

(3.7)

In particular, integrating equation (3.7), it is possible to see that ρ ′
p is zero only when r = 0 and conse-

quently that ρp is strictly decreasing in [0, R]. Now we can come back to the anisotropy. Indeed if we
consider w = ρp(H◦(x)), then using properties (2.4)-(2.6) and the regularity of H, by construction, we
obtain that w(x) is a solution to problem (3.5), which is positive and radial with respect to the anisotropic
norm. The simplicity and Theorem 3.3 imply that v = w, and this concludes the proof.

Remark 3.5. We stress that the proof of the previous result shows that the first eigenvalue λH
p,q(WR)

coincides with the first eigenvalue of problem (3.6).

3.2. A Faber–Krahn type inequality

Theorem 3.6. Let � ∈R
n, n � 2, be an open, bounded, and connected set and let 1 < q � p. Then

λH
p,q(�) � λH

p,q(��), (3.8)
where �� is the Wulff shape such that |��| = |�|. The equality case holds if and only if � = �� and
m = m�, that is, in �, up to translations, where m� is the convex symmetrization of m.

Proof. We argue as in [9]. We observe that λH
p,q(�

�) has the following variational characterization:

λH
p,q(�

�) = inf
w∈W1,p

0 (��),
w �=0

∫
��

H(∇w)p dx

( ∫
��

m�|w|q dx

) p
q

. (3.9)

The Faber–Krahn inequality is a straightforward application of the Pólya–Szegö principle and the
Hardy–Littlewood inequality. Indeed if u is a positive eigenfunction corresponding to λH

p,q(�), then

λH
p,q(�) =

∫
�

H(∇u)p dx

( ∫
�

muq dx

) p
q
�

∫
��

H(∇u�)p dx

( ∫
��

m�(u�)q dx

) p
q
� λH

p,q(�
�). (3.10)

Let us now consider the equality case. From (3.10), Pólya–Szegö principle and Hardy–Littlewood
inequality, we get

1 �

∫
�

H(∇u)p dx
∫

��

H(∇u�)p dx
=

( ∫
��

m�(u�)q dx

) p
q

( ∫
�

muq dx

) p
q

� 1.

https://doi.org/10.1017/S0017089524000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000235


Glasgow Mathematical Journal 9

It follows that ∫
�

H(∇u)p dx dx =
∫

��

H(∇u�)p dx, (3.11)

and ( ∫
�

muq dx

) p
q

=
( ∫

��

m�(u�)q dx

) p
q

. (3.12)

The thesis follows from (3.11), Theorem 2.2 and (3.12).

4. A Chiti type inequality

In this section, we prove a reverse Hölder inequality for the eigenfunctions corresponding to λH
p,q(�). We

first prove the following proposition as in the spirit of the Talenti result contained in [37] (see also [1–3,
7, 36]).

Proposition 4.1. Let � ⊂R
n, n � 2, be an open, bounded, and connected set, 1 < q � p, and let m ∈

L∞(�) be a positive function. Let u be a positive eigenfunction corresponding to λH
p,q(�). Then we have

that

( − u∗′(s))p−1 � n−pk− p
n

n λH
p,q(�)‖u‖p−q

q,m

∫ s

0

m∗u∗(r)q−1 dr, s ∈ [0, |�|]. (4.1)

In particular, the equality case holds if and only if � = �� and m = m�, that is, in �, up to translations,
where m� is the convex symmetrization of m.

Proof. We argue exactly as in the proof of [9, Lemma 3.6]. Let u be a weak solution to the problem
(1.2) corresponding to the first eigenvalue λH

p,q(�), that is,⎧⎨
⎩

−Lp(u) = λH
p,q(�)m‖u‖p−q

q,m uq−1 in �

u = 0 on ∂�.

Let t, h > 0 and let us choose as a test function in (3.1) the following function in W1,p
0 (�):

ϕh =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 u � t

u − t t < u � t + h

h u > t + h.

By standard arguments, we have

− d

dt

∫
{u>t}

H(∇u)p dHn−1 = λH
p,q(�)‖u‖p−q

q,m

∫
{u>t}

muq−1 dx. (4.2)

Recalling that the anisotropic perimeter can be written as follows:

− d

dt

∫
{u>t}

H(∇u) dHn−1 = PH({u > t}),
by Hölder inequality, we get

PH({u > t}) �
(

− d

dt

∫
{u>t}

H(∇u)p dHn−1

) 1
p

( − μ′(t))1− 1
p .

Therefore, the isoperimetric inequality (2.9) gives

( − μ′(t))1−p

(
− d

dt

∫
{u>t}

H(∇u)p dHn−1

)
� npk

p
n
n μ(t)p− p

n
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Since μ′(t) = 1
u∗′(μ(t))

and (4.2) holds true, we have

( − u∗′(μ(t)))p−1 � n−pk− p
n

n λH
p,q(�)‖u‖p−q

q,m μ(t)
p
n −p

∫
{u>t}

m(x)uq−1 dHn−1.

Using (2.12) and calling s = μ(t), we have

( − u∗′(s))p−1 � n−pk− p
n

n λH
p,q(�)‖u‖p−q

q,m s
p
n −p

∫ s

0

m∗(u∗)q−1 dr.

An application of the Hardy–Littlewood inequality gives the desired result.

The main tool we use in order to prove Theorem 1.1 is a suitable comparison result between u and
an eigenfunction z of a suitable eigenvalue problem. More precisely, let ��

λ
be the Wulff shape centered

at the origin such that λH
p,q(�) is the first eigenvalue to the following symmetric problem:⎧⎨

⎩
−Lp(z) = μm�‖z‖p−q

q,m�zq−1 in ��
λ

z = 0 on ∂��
λ
,

(4.3)

We stress that the Faber–Krahn inequality (3.8) implies that

|�|� |��

λ
|, (4.4)

and hence m� is well defined in ��
λ
.

Let z be a positive eigenfunction for the problem (4.3) corresponding to the first eigenvalue λH
p,q(�),

and we observe that repeating the same argument as before, by Proposition 3.4, for any 1 < q � p we
have

( − z∗′(s))p−1 = n−pk− p
n

n λH
p,q(�)‖z∗‖p−q

q,m∗

∫ s

0

m∗z∗(r)q−1 dr. (4.5)

The following proposition gives a comparison result between the eigenfunctions u and z when they
are normalized with respect to the L∞ norm.

Proposition 4.2. Let � ⊂R
n, n � 2, be an open, bounded, and connected set, 1 < q � p and let m ∈

L∞(�) be a positive function. Let u be a positive solution to the problem (1.2) corresponding to λH
p,q(�)

and let z be a positive eigenfunction to the problem (4.3) corresponding to λH
p,q(�) such that

‖u‖L∞(�) = ‖z‖L∞(��
λ)

Then

u∗(s) � z∗(s), ∀s ∈ [0, |��

λ
|],

where u∗ and z∗ are, respectively, the decreasing rearrangements of u and z. The equality case holds if
and only if � = ��

λ
and m = m�, that is, in �, up to translations, where m� is the convex symmetrization

of m.

Proof. First of all we stress that, if |�| = |��
λ
|, then there is nothing to prove, since Faber–Krahn

inequality implies that u∗(s) = z∗(s).
Moreover, we have u∗(|��

λ
|) > z∗(|��

λ
|) = 0. Then, the following definition is well posed:

s0 = inf{s ∈ [0, |��

λ
|] : u∗(t) � z∗(t), ∀t ∈ [s, |��

λ
|]}.

By definition, u∗(s0) = z∗(s0), and we want to prove that s0 = 0. We proceed by contradiction supposing
that s0 > 0. Then under this assumption, u∗ and z∗ coincide in 0 and s0 and we have⎧⎨

⎩
u∗(s) < z∗(s) s ∈ (0, s0)

u∗(s) � z∗(s) s ∈ (s0, |��
λ
|).

(4.6)
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By (4.1), (4.5), and (4.6), we have that

−u∗′(t) � − z∗′(t), for every t ∈ (0, s0).

Integrating between (0, s), with s ∈ (0, s0), being u∗(0) = z∗(0), we get

u∗(s) � z∗(s), ∀s ∈ (0, s0),

which is in contradiction with the definition of s0. Hence, s0 = 0, and the proof is completed.

As an immediately consequence of the previous result, we get the following scale-invariant inequality
for any r > 0:

‖u‖Lr (�,m)

‖u‖L∞(�)

�
‖z‖Lr (��

λ ,m�)

‖z‖L∞(��
λ)

. (4.7)

When the functions u and z are normalized with respect to the weighted Lq-norm, we get the following
comparison result.

Theorem 4.3. Let � ⊂R
n be an open, bounded, and connected set, 1 < q � p and let m ∈ L∞(�) be a

positive function. Let u be a positive solution to the problem (1.2) corresponding to λH
p,q(�) and let z be

a positive eigenfunction to the problem (4.3) corresponding to λH
p,q(�) such that∫

�

m uq dx =
∫

��
λ

m�zq dx. (4.8)

Then we have ∫ s

0

m∗ (u∗)r dt �
∫ s

0

m∗ (z∗)r dt, s ∈ [0, |��

λ
|], q � r (4.9)

where u∗, m∗, and z∗ are, respectively, the decreasing rearrangements of u, m, and z, and m� is the convex
symmetrization of m. The equality case holds if and only if � = ��, z = u = u∗, and m = m�, that is, �,
up to translations.

Proof. If |�| = |��
λ
|, the conclusion is trivial. Let be |�| > |��

λ
|, since u and z verify (4.8), by (4.7)

it holds that

u∗(0) = ‖u‖L∞(�) � ‖z‖L∞(��
λ) = z∗(0),

If u∗(0) = z∗(0), then Proposition 4.2 and the normalization (4.8) imply that u∗(s) = z∗(s) for every s ∈
[0, |��

λ
|] and than the claim follows trivially.

Let u∗(0) < z∗(0). Since u∗(|��
λ
|) > z∗(|��

λ
|), we can consider

s0 = sup{s ∈ (0, |��

λ
|) : u∗(t) � z∗(t) for t ∈ [0, s]}.

Obviously, 0 < s0 < |��
λ
|, u∗(s0) = z∗(s0) and u∗ � z∗ in [0, s0]. We want to show that u∗ > z∗ in [s0, |��

λ
|].

Indeed, if we suppose by contradiction that there exists s1 > s0 such that u∗(s1) = z∗(s1) and u∗(s) > z∗(s)
for s ∈ (s0, s1), we can construct the following function:

w∗(s) =
⎧⎨
⎩

z∗(s) s ∈ [0, s0] ∪ [s1, |��
λ
|]

u∗(s) s ∈ [s0, s1].

It is straightforward to check that∫
�

H(∇w)p dx = npkp
n

∫
�

( − w∗′(knH
◦(x)n))pH◦(x)p(n−1) dx.

Applying Coarea Formula and considering the change of variables s = kntn, we get∫
�

H(∇w)p dx = npk
p
n
n

∫ |��
λ|

0

sp− p
n ( − w∗′(t))p dt.
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Thanks to the normalization (4.8) and the definition of w, we have that

‖u‖Lq(�,m) = ‖z‖Lq(��
λ ,m�) � ‖w‖Lq(��

λ ,m�),

then by (4.1) and (4.5), we have that

( − w∗′(s))p−1 � n−pk− p
n

n λH
p,q(�)‖w∗‖p−q

q,m∗s
p
n −p

∫ s

0

m∗(r)(w∗)q−1(r) dr. (4.10)

Multiplying (4.10) by −w′, rearranging the terms and integrating between 0 and |��
λ
|, we get

npk
p
n
n

∫ |��
λ|

0

sp− p
n ( − w∗′(s))p ds �

� λH
p,q(�)‖w∗‖p−q

q,m∗

∫ |��
λ|

0

( − w∗′(s))
∫ s

0

m∗(r)(w∗)q−1(r) dr ds.

An integration by parts allows us to conclude that∫
��

λ

H(∇w)p dx

( ∫
��

λ

m�wq dx

) p
q

=
npk

p
n
n

∫ |��
λ|

0

sp− p
n ( − w′(s))p ds

( ∫ |��
λ|

0

m∗(s)(w∗)q(s) ds

) p
q

� λH
p,q(�) = λH

p,q(�
�

λ
).

By the minimality and the simplicity of λH
p,q, and the definition of w∗, it must be w∗(s) = z∗(s) for

every s ∈ [0, |��
λ
|], but this is a contradiction since in (s0, s1) we have that u∗(s) > z∗(s).

In this way, we have proved that there exists a unique point s0 where u∗ and z∗ can cross each other, and
such that ⎧⎨

⎩
u∗(s) � z∗(s) s ∈ [0, s0]

u∗(s) � z∗(s) s ∈ [s0, |��
λ
|].

(4.11)

If we extend z∗ to be zero in [|��
λ
|, |�|], by (4.8) and (4.11) then we have that for every s ∈ [0, |�|]∫ s

0

m∗(t)(u∗(t))q dt �
∫ s

0

m∗(t)(z∗(t))q dt. (4.12)

Indeed (4.11) implies that the function:

G(s) =
∫ s

0

m∗(t)((z∗))q − (u∗)q dt, s ∈ [0, |�|]
has a maximum in s0 and cannot be negative in any point. This proves (4.12). Finally, inequality (4.9)
follows easily by (4.12) by using Proposition 2.4 being m�(u�)q ≺ m�zq.

Proof of Theorem 1.1. The proof of statement i) follows directly from (4.8) and (4.9), indeed we
have

( ∫
�

mur dx

) 1
r

�
( ∫

��
λ

m�zr dx

) 1
r

=

( ∫
��

λ

m�zr dx

) 1
r

( ∫
��

λ

m�zq dx

) 1
q

( ∫
�

muq dx

) 1
q

.

Therefore, we have

‖u‖Lr (�,m) � C ‖u‖Lq(�,m), q � r < +∞;

with

C = ‖z‖Lr (��
λ ,m�)

‖z‖Lq(��
λ ,m�)

.
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The proof of statement ii) follows immediately by Proposition 4.2 with C = ‖z‖∞
‖z‖Lr (�� ,m�)

and the theorem
is completely proved.
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