
PHOTOCONVECTION 

E.A. SPIESEL 
Astronomy Department 
Columbia University 

New York, New York 10027 U.S.A. 

Convection under the influence of dynamically significant radiation fields 

occurs routinely in hot stars (Underhill 1949 ab) and probably also in a variety of 

other objects near the Eddington limit (Joss, Salpeter, and Ostriker 1973). Yet 

this topic, which is here called photoconvection, has not been actively investigated 

prior to the present decade. Except for limiting cases, the stability condition 

does not seem to have been worked out and only some preliminary notions exist about 

the highly unstable case. This is somewhat surprising since it has long been sus­

pected that some of the vigorous dynamical activity observed in hot stars (Huang and 

Struve 1960, Reimers 1976) is caused by radiative forces (Underhill 1949 ab). In 

the hope that this neglect may be compensated for by the application of some of the 

techniques described at this meeting, I shall sketch some of the main features of 

this topic. Three aspects are considered. First, I list a set of approximate equa­

tions for plane-parallel photoconvection. Then I give a schematic treatment of the 

onset of instability. And finally, I shall outline some of the arguments for be­

lieving that photon bubbles occur in the nonlinear regime. 

I. EQUATIONS OF PHOTOHYDRODYNAMICS 

The interaction of electromagnetic radiation with a plasma is a complicated 

subject with a long and controversial history. However, many of the difficulties 

are avoided if we consider densities and radiation frequencies that keep the index 

of refraction of the medium quite close to unity. In that case, we can describe 

the radiation field by transfer theory if we take due notice of the motion of the 

material medium. The simplest description arises if we simply take the first two 

moments of the transfer equation and supply a constitutive relation for the radia­

tive pressure tensor. For the matter, we shall adopt the model of a perfect gray 
-»-

gas. Then the matter field is described by the velocity u, the density p, and the 
-*• 

pressure p, while the radiation field is characterized by the flux F, the energy 

density E, and the pressure tensor P. 

These variables are expressed in the inertial frame of the system (star), in 

which we will generally be working. It will be useful, however, to make use of the 

expressions for radiative flux and energy density in the local rest frame of the 

matter. These are 
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(1.1a) E' - E - 2u-F/c2 

+ •+ -*• +-*•-• 
(1.1b) F = F - Eu - P-u, 

where c is the speed of light. These expressions are valid only to order |u|/c, 

which is the level of accuracy (at best) aimed for here. Nevertheless, in the 
_2 

equations used below, we shall see some factors of c , because the radiation field 

is relatlvistic. In particular, the quantity F/E qualitatively plays the role of 

a velocity for the radiation field and in the surface layers of stars the magnitude 

of this velocity may be comparable with c. 

In addition to the field variables, we have to specify certain quantities that 

measure the effective interactions between the two fields. These interactions we 

shall take to be Thomson scattering, absorption, and emission. We shall assume that 

the Compton effect can be modeled by a suitable choice of absorption coefficient. 

We shall call K the absorption coefficient and a the scattering coefficient (both 

per unit mass); a will be constant and < may depend on density and temperature. The 

source function (divided by c) is denoted by S and depends only on the matter's 

temperature, as indicated below. 

The equations describing the conservation of matter and the force balance of 

the medium are 

(1.2) ^ = -PV-S 

and 

(1.3) p f&- - V p - g p 2 + ^ l ? 

where gz is the acceleration of gravity, z is a unit vector, and 

d 3
 J. •* n 

dt " 3t + U'V • 

The last term on the right of (1.3) is the usual expression for the radiative force. 

Analagous equations exist for the radiative fluid: 

(1.4) f + V f = PKC(S-E) - -£*22l u".? 
dt C 

and 

(1.5) ig + v.y--£iEl2l? +££(8-8)1. ^ ot C C 
C 

For the pressure tensor of the radiation field a standard form is 

d.6) r = i E r + <tf+-K)/c2-? 

where I is the idemtensor and T is a viscous tensor. In component form, 

d.6a) T i j _ n [ ^ . + ^ . 1 ( V . J ) 6 J 

where 6 is the Kronecker symbol and the viscosity is approximated by 
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8E 
(1-6b) " " 3p(10< + 9a)c * 

Expression (1.6) arises when the radiation pressure tensor is approximated 

in the matter frame by the usual Eddington approximation plus a viscosity tensor. 

For the constitutive relations for the matter we adopt 

(1.7) p = RpT 

and 

(1.8) S - aT4 

where T is the temperature and R and a are constants. (We shall not specify 

K here.) The introduction of the temperature calls for another equation, as in 

normal convection. 

If •* is the specific entropy of the matter, we may write 

(1.9a) p T dt" = -PKC(S-E)> 

or, if we use the expression for the entropy of an ideal gas, 

(1.9b) p C p i I - i £ = - p K C ( S - E ) , 

where C is the specific heat at constant pressure. 

These governing equations are consistent and moderately accurate sets of 

governing equations. I have said little about the basis of them (but see Simon 1963 

or Hsieh and Spiegel 1976) since their physical content is reasonably clear. If 

anything, these equations are, for present purposes, too complete. It appears that 

there are a number of generally small terms which will hinder calculations and ob­

scure meanings. But many of these terms are unfamiliar, and the challenge is to 

discover when we can discard which terms. In what follows, I shall make a number 

of guesses about this; I hope that these are not too misleading. In fact, much 

of the discussion is just aimed at seeing what some of these terms do and in such a 

schematic treatment you would not expect to see boundary conditions. I shall hardly 

disappoint you. But before I commit mayhem on the equations, let us modify the ap­

pearance of the last one by combining it with (1.4). We obtain, with the help of 

(1.2), 

PC dT _ dp. + dE 4 E dp = _v.(? _ 4 -

(1# 1 0 ) P dt dt dt 3 p dt V 3 "•"' 

1 •*• P(K+O) -*• •* 
- ± U'VE - ^ ' u-F. 
3 c 

We may note that the left hand side of this equation is pTd-A /dt where -6 is 
H y tot tot 

the total (matter plus radiation) specific entropy. 
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II. THE HYDROSTATIC STATE 

As background to the problem of photoconvectlon it is useful to know the solu­

tion of the basic equations which describe the state in which the matter is static. 

But note that this solution is not photostatic; the radiation is flowing through mat­

ter like a fluid through a porous medium. 

We consider stationary solutions whose properties are independent of horizon­

tal coordinate. If <f 0, equations (1.9), (1.1), and (1.8) indicate that 

(2.1) E = aT4; 

if K = 0 this relation is not forced and T is an arbitrary function of the ver-

tical coordinate, z. In either case F is constant and is in the z-direction. 

Now (1.2) is identically satisfied and (1.3) gives the hydrostatic equation 

where 

(2.3) g* = g - ̂  F 

is the effective gravity. (In the Eddington limit, gA = 0.) The radiative flow 

equation (1.5) becomes 

and (1.7) is unmodified. Thus all the governing equations are accounted for and we 

have a simple system to solve once K is known. In general the problem is handled 

numerically, but some analytically tractable cases exist. Let us look briefly at 

the simplest: K+C = constant. 

We may introduce the total pressure 

(2.5) P = p + - j E , 

and combine (2.2) and (2.4). We find that 

(2.6) £•-»• 

and, on dividing by (2.4), that 

dP JSC_ 
(2.7) 

dE (K-HJ)F 

The integral of this equation, after some rearrangement, may be written 

(2-8) P - 3(SoT? ( E-V • 
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where E.. is an arbitrary constant. It is often convenient to choose E. as the 

value of E at the top of the "atmosphere ". 

We may now write a simple differential equation for E, or T, and find the 

solution 

(2.9) -z = |£ [T - I v a n - ^ f ) - \ h tanh"1 £ ) ] , 

* 1 

where E1 = aT . If T = 0, this represents a complete polytropic atmosphere. In 

any case, the medium is polytropic for z « 0 and T is proportional to -z 

down there. For z » 0, T - T1 decays exponentially as we move upward and the 

atmosphere extends to infinity for T.. / 0. 

In principle, all the other details could be worked out from this, but 

numerical work is generally needed. However, some things are still simply expres­

sible in terms of the optical depth 
oo 

(2.10) T = (ic+a)pdz. 

z 
In particular, 

(2.11) E - 7 ( T 4 T . ) , 
c x 

where T is a constant of order unity. 

Another quantity of interest in the static atmosphere is the temperature 

gradient. In the present instance this is most simply expressed in the familiar 

nondimensional form 

(2i2i v=^al Ldr= r±j.dT 
( ' ' ~ dlnP gS dz " y gB dz * 

where 

(2.13) B = P • 

For the atmosphere with K+O constant we find 

(2.i4) v - i i E f ' 

where 

8* 
(2.15) a . 

g 
III. THE ONSET OF CONVECTION 

The action of radiative forces under suitable conditions may promote wave 

amplification (Hearn 1972, 1973; Berthomleu, Provost, and Rocca 1976) and possibly 

overstablllty (e.g., Spiegel 1976). The nature of this overstability seems to place 
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it more in the domain of stellar pulsation theory than convection theory, though the 

two may become enmeshed in the nonlinear regime. On the other hand, monotonic in­

stability, that is exponential growth without oscillation, is more clearly linked to 

the development of convection when the time scales are dynamic, and 1 shall confine 

myself here to discussing that topic. 

The procedure for deciding whether convective instability arises is straight­

forward in principle, especially when we are not trying to study overstability or 

finite-amplitude instability. We decompose each dependent variable into a hydro­

static part and small perturbation. Here we shall indicate the latter type of 

quantity by a prime, except in the case of velocity. We restrict ourselves to the 

situation where 3/3t = 0. Then, on linearizing in the usual way, we find from 

(1.10) that 

(3.1) pC b,w = V'F\ 
P 1 

where 

(3.2) pcb, --(pC i I - i E + iS.ASi£)# v p i p dz dz dz 3 p dz 

But we may also proceed in this way on the basis of (1.9b) and in that case we ob­

tain the equation 

(3.3) Pcpb2w = PKC(S'-E'), 

where 

p 2 p dz dz 

Now in a full treatment of the problem it would not matter which of these two 

routes is taken since the final answer would be the same. But the stability criteria 

that are normally used are obtained with approximations and the two approaches may 

differ in that case since they have suggested different approximations to dif­

ferent people. In particular, people have simply written down criteria for in­

stability with respect to adiabatic disturbances with differing notions of what they 

mean by adiabatic. Thus, the commonly encountered criterion results from equating 

V*F to zero. If we do this we find that b w must vanish at marginal stability. 

Since w in that case has small but arbitrary amplitude, we obtain the critical 

condition b, = 0, which is the conventional one (Chandrasekhar 1939). On the other 

hand, if we set the right hand side of (3.4) equal to zero (e.g., Wentzel 1970, 

Spiegel 1976) we obtain b. = 0 as the condition for marginal stability. This cri­

terion holds strictly when absorption and Compton scattering are omitted and its use 

otherwise is dangerous. 

The two criteria represent valid approximations under certain circumstances 

and P. Vitello (private communication) has recently investigated what these are. 
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The discussion of this question shows that the conditions under which one or 

other neutral stability criterion holds depends on the perturbation being made. 

This is a common situation and we expect that the correct instability criterion is 

to be found by choosing the most unstable mode. 

To see how the problem goes let us begin to do the stability calculation. 

From (1.5) we find for marginal linear perturbations that 

<-̂  
o 5) F' » -— V'P' - r — - — i v-p 
u , 3 ; p(K-w) L p(K+a) J e 

with 

(3.6) P* = | E ' T + (U£ + £U)-F/C2 - T . 

Also from (1.9b) we obtain 

C b, 
(3.7) E' - S1 - -E-^- w. 

Kc 

If we combine these results with (3.1), making use of other equations as needed, we 

find an equation of the form 

(3.8) PC [B„V2w + pKA !"- - 3p2K(K+0)BlW] = 3p
2K(K+a)V-(KVT)', 

P £. OZ 1 

where 

(3.9) - - - ^ -
3p(K+a) 

and 8., B , and A are quantities whose dimensions are temperature over length. 

If r| - 0 and C is constant, 

(3.10a) 3p (K+<J) d z 

.lir^irl. 1 d2lnp 
c dz l(K™' dz J p(K+a)c djj2 ' 

(3.10b) B2 - b2 

and 

b 
<3'10C> A " i - t [if] " i 4 [lnp(K^)] + ^ ^ [lnp2(K4c)] . 

Now consider the case in which the right hand side of (3.8) is set equal to 

zero. That is, instead of trying to speak of an adiabatic disturbance, let us sim­

ply ask what happens to a perturbation when radiative conductivity is suppressed. 

If geometrically small horizontal scales are the most unstable, as they are in 
2 2 

ordinary inviscld, non-conducting convection, we may replace V by -k where k 

is the horizontal wave number. For qualitative purposes, we may also omit the term 
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with coefficient A since this is not important in the limiting cases we wish to 

consider. Also, for the present argument, I shall set B - b., since this discus­

sion is merely schematic. The approximate condition then becomes 

(3.11) k2b2 + 3p
2K(K+a)b1 = 0, 

and in terms of the quantities defined in (2.12) and (2.15) we find the instability 

criterion 

( 3 . 1 2 ) v > (Y-i)r^2(4-3?)i , 
B[Yg+4(Y-l)(l-B)] + S C Y B +4(Y-D(1-B)(4+B)] 

where 

(3.13) e - 3 p H K - K ? ) • 

This criterion holds approximately in the limit of zero viscosity and with the omis-
2 

sion of radiative conduction terms as indicated. The dimensionless quantity £ , 

which arises in radiative cooling problems (Unno and Spiegel 1966), should be cho­

sen so as to minimize the right hand side of (3.12). The resulting value of £ is 

then inserted to give the local stability criterion. Of course, if we are led to 

extreme values of E, we should worry about the possible violation of physical con­

straints that have been removed in this simplified analysis. (In extremis, we could 

just solve the problem properly.) 

To make the appropriate choice we observe that for y > 4/3 the right side 

of (3.12) increases as £ decreases. In that case, the instability criterion is 

obtained with the largest possible values of ?, hence with modes of large horizon-
2 —1/2 

tal scale in the length unit [3p K(K+0)] . In stellar interiors most scales of 

interest satisfy this condition and the conventional criterion would apply. In 

transparent regions, however, it may be that geometrical constraints intervene and 

large £ cannot be achieved. In that case, the maximum values allowed for £ 

should be taken, and here we should note that once Z, exceeds unity there is not a 

large difference from the results at very large £. 
4 

In cases where y < — , the situation is reversed and the right hand side of 

(3.12) decreases as £ decreases. The preferred value of £ i s now the smallest 

one possible; that is we want the largest allowed value of k. If the particle mean 

free path is much less than the photon mean free path we can choose small E, with­

out worrying about the breakdown of fluid dynamics. But we do have to make sure 

that we don't choose a k which is so large that diffusive effects wipe out the in­

stability. In fact this amounts to finding the preferred mode in the usual way, but 

here the choice determines not just diffusive corrections to the critical gradient, 

but also the effective adiabatic gradient itself. Unfortunately, there is a compli­

cation that arises in this situation. 
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The case y < -~ will normally occur in ionization :n-.i6 and therefore has to 

be treated with some care. In fact, Underhill (1949b) Has evaluated the "adiabatic" 

temperature gradient with partial ionization and in the presence of an important 

radiation field. But that calculation was what I have been calling the conventional 

criterion. That is, she has applied the condition of zero total (matter plus radia­

tion) entropy gradient which corresponds to the marginal stability conditions with 

£ = ». However, the possibility exists that finite values of £ may be more correct 

since the zones of partial ionization tend to occur in stellar envelopes. We could 

then have a somewhat increased convective instability but the modes involved, being 

radiatively leaky, might not carry heat effectively. It appears therefore that for 

most purposes the standard convection criterion is good. However, It would be more 

comfortable to have a detailed treatment of this problem, and I predict that there 

soon will be one. 

IV. PHOTON BUBBLES 

In thinking about ordinary stellar convection we may be guided by solar ob­

servations, but we have not such direct experience to guide us in photoconvection. 

Instead, we may appeal to observations of a laboratory flow that is analogous to 

photoconvection. We have already seen that the radiation in this problem behaves 

(in the Eddington approximation) like a fluid flowing through a deformable porous 

medium. This closely resembles the situation in a fluidized bed (Thome 1973, 

Prendergast and Spiegel 1973). Though the analogy is not a perfect one (Spiegel 

1976), it can be used to suggest the qualitative nature of nonlinear photoconvection. 

And one of the most striking implications of this analogy is that instead of convec­

tive thermals having relatively low densities, we should expect real bubbles 

in photoconvection. These are filled with radiation and contain virtually no 

matter. How this modification of the normal convective process may influence the 

heat flux can only be crudely estimated (Thorne 1973), but there are also other 

features of convection which are strongly affected. In particular, bubbles feel 

the full effect of gravity rather than the reduced gravity of ordinary convection, 

hence large (that is, sonic) convective speeds may be anticipated. 

In this section, I shall sketch an approach to the treatment of photon bubbles 

borrowing heavily from the literature on fluidized beds (Jackson 1970, Rowe 1971). 

In comparison to fluidization, this theory suffers from the disadvantage that we 

have not yet seen a photon bubble. However, John Lin at Columbia is looking serious­

ly at the prospects for removing this drawback experimentally. 

We wish then to study a photon bubble of radius r rising at speed V. We 

shall assume that r « H^, where Hi= RT/g^, and that the bubble may be taken to be 

quasi-steady when described in its own reference frame. We may nevertheless intro­

duce the dynamical time scale r /V. Let us assume that this time is much shorter 
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than the thermal time of a region of size r and then presume from this that 

there is validity in neglecting thermal effects. Then we may tentatively set K » 0 

in the basic equations. 

Now let E and F be representative values for the ambient radiant energy 

density and flux and let p be a representative ambient matter density. The fol­

lowing dimensionless parameters are of interest: 

V EV 2 V 

(4.1) e = f,6=-f .f^-^-.r^p^. 
We assume that e « 1 and, from the analogy to fluidization, we anticipate that 
2 
f is of order unity. If E and F may be estimated from their static values 

(see (1.11)), we have E/F <v C / T , for T » 1, where T is the optical depth. Hence 

6 *x« ET. Then, when the bubble is only a few radii below the surface, T^ ^ T and 

we have that 6 <\« ET^, which is the regime we shall study here. A further restric­

tion to be used in the following analysis is S « 1, but I shall mention at the 

end what may happen at larger depths when 6 becomes of order unity. 

If we nondimensionalize the basic equations and make use of the foregoing 

approximations, we obtain a greatly reduced set of equations. In dimensionful form 

these are 

(4.2) pd"- + u"-Vu) = -Vp-gpz + ss- F 
Ot C 

(4.3) |2-+ V-(pu) = 0 

(4.4) £ (p/pY) + u-V(p/pY) = 0 

(4.5) V-? = 0 

(4.6) I V E = -^ F. 
j c 

This description is about as primitive as it can be while still involving the ele­

ments of photohydrodynamics. Let us now seek approximate solutions for a bubble 

rising at constant speed V. We presume that the medium is unstable, which is 

true if a < 0.2. 

Suppose, in first approximation, that the bubble is a spherical hole of 

radius r . If the bubble does not greatly disturb the ambient density, we see that 

equations (4.5) and (4.6) are simply the transfer equations for a static medium with 

a hole in it. This results because in the present approximation the radiation field 

adjusts quickly to the state of the medium (e « 1); also the motion is so slow 

that the difference between F and F may be neglected (<5 « 1). We have also 

assumed that the bubble radius is much less than the local scale height, hence p 

in (4.6) is approximately constant outside the hole. Equations (4.5) and (4.6) may 

then be solved separately with p = 0 inside the spherical cavity. 
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Let us Introduce a spherical coordinate system with origin at the center of 

the hole and with 8 = 0 at the top of the hole. Far from the hole, the flux is 

F z, where F is a constant given by the static solution and we have the condition 
o o 

3pOF A 

(4.7) VE •+ z as r •+• <". 
c 

•+ 

Moreover, E and the component of F normal to the bubble surface are continuous 

across the surface. Since (4.6) implies that E is constant inside the hole, we 

have the boundary condition 

(4.8) E - E on r - r , 
o o 

where E is the constant value of E inside the hole. Now (4.5) and (4.6) show 
o 

that E is a harmonic function and, with conditions (4.7) and (4.8), we find 

2 

(4.9) E - E - ^ F r (JL.Iaco, 9 . 
o c o o *T V 

o r 

Since cE/(3pa) is a potential for F, we have 

,r„. 2 
(4.10) F - V'{F r [— - f-2.) ]cos 6} 

o or v r ' 

Alternatively, we can express F in terms of a Stokes stream function: 

( 4 * U ) Fr 2~— 39 ' F6 r sin 6 3r ' 
r sin 6 

where 

(4.12) * " _ i V^1 + 2 (-^)3>i n 2e • 

The flux consists of the original uniform part plus a dipole generated by the hole, 

a result familiar from analogous problems in, for example, electrostatics. The 

radiative flow Is shown in the neighborhood of the bubble in the figure on the 

following page. Inside the bubble, the flux is 3F , if equation (4.6) may be used. 

This last point is a delicate one as we have used the Eddington approximation 

for the transfer theory. However, this approximation holds if the radiation is iso­

tropic and, when por » 1, it probably is. The reason is that for T^ » 1 indi­

vidual photons will scatter off the bubble surface (actually a layer of thickness 

(pa) ) many times before escaping, hence the radiation field inside the bubble 

should be reasonably isotropic. 

The deformation in the radiation field produces an additional force on the 

matter. The total external force density is 

-gpz + &• F = -gjfcpz - gĵ pvl-l- cos 6j , 
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Streamlines for the radiative flux around a hole, according to (4.12). The solid 
circle shows the original hole. The dotted curve indicates the estimated deforma­
tion of the hole obtained by setting h = 0 in (4.22) with a - 0 and V chosen 
as in (4.24). 
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where g. " g~8,, an<* 8D = F /c- The additional dipole force produces a fluid 

circulation which causes the hole to rise and, in general, to deform. Let us study 

these effects. 

If we work in the bubble's frame and assume a stationary situation we have 

the equations 

(4.13) vVv - -Vh-ĝ z-Vij) , 

(4.14) v'V(p/pY) - 0, 

(4.15) V-(pv) - 0, 

where 
3 

ro-F r 
(4.16) 

and 

(4.17) 

for r > 
o o z 

" { c J 3 

(dp 

J P 
I have not changed notation to indicate the coordinate transformation except to 

call v = u - V z the new velocity. The correction to F due to the motion of 

the bubble is of order 6 and is neglected. 

First we shall determine V on the assumption that the bubble remains 

spherical. This we do with the approximation p = const, whence 

(4.18) V-v - 0. 

We may therefore take v to be the incompressible flow around a spherical ob­

stacle. Such a flow has a vanishing normal component on the bubble boundary and 

it approaches -V z as r •+ ". Solutions of this problem are well known and if 

we also set 

(4.19) V x v = 0 , 

we find 
r3 

(4.20) v - -VV[r cos e[l +—^-l]. 

Moreover, because of (4.19) we may rewrite (4.13) as 

(4.21) V[h+<H-g^z+J2/2] = 0; 

hence for r > r , — o 
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,2 
cos 6} 

o' 
h-«rott-[.(i) + (1.. .0(f)] 

- | v 2 { l + {^-)3(l-3 cos2 6) + \ ( ^ ) b ( l + 3 cos2 9 )} ; 

( 4 > 2 2 ) » 13 , .. , ̂ 6 

on r - r 
o 

where a = g./g and an arbitrary constant has been chosen so that h(r ,0,0) - 0. 

On r ~ r we have 
o 

(4.23) h = gr [l - cos 6 - f f2(l-cos2 6)]. 
o o 

For p = const, h « p. Alternatively, the choice p/p • const, which satisfies 
(Y-l)/v 

(4.14), gives h « p . In either case we would like to have h » 0 

since p = 0 inside the bubble (and E is continuous across the interface). But 

(4.23) shows this to be impossible with the present approximate treatment. However, 
2 

we do have the freedom to choose f to match the pressure boundary conditions as 

well as possible. In fluidization theory the procedure used by Davies and Taylor 

(1950) for ordinary bubbles is usually adopted. In the present Instance this comes 
2 2 2 

down to setting 3 h/38 = 0 at r = r , 6 = 0, whence f = 4/9 (see also 

Batchelor 1967). The argument for this is that h and 3h/38 are already zero at 

r = r , 6 = 0 , and we would like to extend the region where h is very small as 

far as possible. Let us adopt this choice. (Any other choice of this type would 

also give a value of f of order unity. For example we might minimize the inte-

gral of h over the surface r = r .) Thus we have an estimate of the speed of 

rise of the bubble which can also be used to see the magnitude of the distortion of 

the spherical hole by the dipole force. For the latter purpose we may simply com­

pute the surface on which h = 0 with 

(4.24) V - - | ( g r ) 1 / 2 . 
3 o 

For a = 0 this surface is the dotted line indicated in the Figure above. The 

distortion of the hole is caused by the need to balance the fluid-dynamical pressure 
+2 

v /2 and it represents a problem which is also encountered in the theory of ordi­

nary gas bubbles in liquids (Moore 1959). As long as appreciable speeds occur next 

to the bubble this difficulty arises. In an actual fluidization bubble the problem 

is resolved by the formation of an indentation at the rear of the bubble. The in­

dentation fills with particles which effectively move with the bubble. This feature 

has to be built into the theory in a self-consistent way. 

With the present estimates a second problem arises, namely that for r » r 

and 6 > 0 we encounter a region of negative h when a > 0. This difficulty does 

not arise in fluidization theory since that subject is confined to a = 0. We 

therefore have no experimental guide to the meaning of this result. There are some 

speculations that might be offered here but perhaps the message is simply that bub­

bles only occur when a is very close to zero. 
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Now it is evident that the foregoing discussion does not really provide an 

acceptable theory. It might be different if photon bubbles were an observed phen­

omenon that we were trying to understand qualitatively. But the real question is 

whether photon bubbles actually exist and the answer will almost surely have to be 

given experimentally. In spite of these worries, I would like to close this 

theoretical discussion of bubbles with one further qualitative remark about what 

may happen at very large optical depths. 

The total radiant energy density includes the usual energy density plus the 
4 

pressure, hence it is i> — E. The energy flux divided by this energy density gives 

a speed to be associated with the radiant fluid. 

4E 

24/g r*_«l4/9 
T <\. 10 ' 

3 
When 6 exceeds some critical value ^-r , V exceeds v , and the bubble is 

moving faster than the radiative fluid. In that case, the radiation does not ad­

just quickly to the matter. Rather, we may expect the radiation associated with 

the bubble to be swept along with the bubble, much as in the corresponding case 

of fluidization where one sees a trapped cloud of fluid circulating in and around 

the bubble. When this occurs, I expect that photoconvective transport should be­

come very efficient. The optical depth at which this occurs is given approximately 

by 

V. CONCLUSION 

The main questions considered here have to do with the nature of photoconvec-

tion and the conclusion which is tentatively adopted is that the two-fluid nature of 

the process may make for some qualitative differences from basic Boussinesq convec­

tion. I have tried to sketch how photon bubbles may behave in analogy with fluidi­

zation bubbles. The analysis is sufficiently simple that one can easily see what 

is going on, but there is one point about the results that I want to emphasize. 

The bubble is not simply held open by an excess of radiation pressure inside it. 

The radiative force is vital to the process and this is proportional to the flux. 

The figure in HIV is helpful in seeing how this works: flux converges onto the 

bubble from below and diverges upward from the bubble. This forces the fluid 

flowing by the bubble to go around it which in turn causes the hole which produced 

the flux pattern in the first place. This seems to be a dynamically consistent 

situation, whether or not the equations have been completely solved. Whether the 

thermodynamics of radiation interacting with matter (and which has not been dis­

cussed at all properly here) can spoil the picture, seems difficult to decide, and 

that is, to me, the biggest question to be faced at present. But if we put doubts 

https://doi.org/10.1017/S0252921100112497 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100112497


282 

aside for now we may imagine some astrophysically interesting aspects of photon 

bubbles. 

The generation of large amplitude, complicated velocity fields in hot 

stellar atmosphere is one of these. Another is suggested by the rapid separation 

of particles of differing properties in bubbling, fluidized beds. In this process, 

called elutriation, particles of relatively large drag are carried up through the 

bed by the bubbles. Similarly we can imagine that particles with large scattering 

cross section may be carried swiftly through stellar material by photon bubbles. 

Moreover, there are some interesting consequences involved when bubbles collapse 

near a stellar surface. The heating may cause hot bursts of radiation (as 

J. Pringle has suggested) or radiation of acoustic and shock noise. Also, non-

spherical collapse could squirt matter off the stellar surface at high speed,as a 

preliminary computation by J. Theys confirms. 

But these are presently speculative topics and more immediate aims should 

also command attention in this subject. 

We need a more complete stability theory, a study of finite-amplitude 

stability, and some numerical simulation. In this respect, we should be aware of 

related work on high density plasmas (Estabrook, Valeo, and Kruer, 1975), though 

much of what I have said here leaves out plasma kinetic effects and assumes rela­

tively low density, such as is encountered in stars. 

I should like to conclude by acknowledging my indebtedness to the many 

people whose remarks have influenced aspects of the presentation and to list just 

a few of them: S. Childress, L.B. Lucy, K.H. Prendergast, and J.C. Theys. I am 

grateful to G. Baran for running his contour routine. And finally, I thank the 

National Science Foundation for supporting the work reported here under Grant 

NSF PHY-7505660. 
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