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Abstract

The importance of habitat-forming species, particularly cold-water corals like Dendrophyllia
ramea, cannot be overstated as they provide crucial physical structures that offer shelter,
food, and breeding habitat for a range of other species. We studied the spatial distribution
and abundance of D. ramea, its associated species and the impact of human activities in a
population of the Herradura, Granada in the western Mediterranean. Video transects were
conducted at different depths, and epibiont samples were collected to describe the coral
assemblage and the diversity of associated organisms. Dendrophyllia ramea presented high
abundances at an unusually shallow depth in the Mediterranean, ranging from 30 to 48 m,
despite typically being found between 50 and 500m, with recordings indicating occurrences
as deep as 1000 m, and hosting a high number of epibionts and macro-benthic organisms
associated with coral reefs. Bryozoans showed a close relationship with D. ramea as they
are important components of both the reef and the epibiont community. This study identified
63 new species and 15 new genera associated with cold-water corals. This study showed the
importance of D. ramea as a nursery site, even for other habitat-forming species. The
major threat to this community is human activity (fishing, littering and free anchoring),
with the most abundant types of waste being rubber, glass/ceramics, and plastic polymers,
and many fishing lines and nets damaging the corals. Overall, this study emphasises the
urgent need to protect cold-water corals and their associated species and reduce the impact
of human activities on marine ecosystems.

Introduction

Habitat-forming species (HFS) play a crucial role in shaping communities by creating stable
conditions for other species and influencing the processes within those ecosystems (Dayton,
1972; Stachowicz, 2001; Crain and Bertness, 2006). Therefore, they are of great environmental
importance due to their contribution in maintaining biodiversity and ecosystem function
(Bulleri et al., 2018). The loss of these species can have a dramatic effect on natural habitats
with consequences on associated biota, ecosystem function and stability (Ellison et al., 2005).

Cold-water corals (CWC) are considered HFS because they exhibit complex branching
morphology and sufficient size to provide substrate and/or shelter for other species
(Freiwald and Roberts, 2005). Indeed, coral systems have a wide ecological relevance, given
the large number of interactions that occur in them (Díaz et al., 1996). CWC play an import-
ant structural and functional role (Wildish and Kristmanson, 1997), as they are engineers of
deep-water ecosystems (Jones et al., 1994) and are found in all oceans (Freiwald et al.,
2004). In addition, organisms provide structurally complex that allows for greater diversity
than in areas where they are not found (Buhl-Mortensen et al., 2010).

The distribution and abundance of CWC in the marine benthos is the result of evolution-
ary processes, environmental conditions, the extent of the ecological niche of each species and
the dynamics of each coral population, which, in turn, are determined by the ecological rela-
tionships between the species that coexist in that environment (Brown, 1995; Lo Iacono et al.,
2019). These parameters are defined by the specific bathymetric range in which each group of
organisms is distributed, which in turn depends on the geomorphology of the location
(Chimienti et al., 2019).

Several CWC species have inhabited the Mediterranean Sea since the Miocene epoch,
experienced significant changes over time (Altuna and Poliseno, 2019). Seabed complexity,
determined by the physical and chemical properties of the water column, is an important fac-
tor contributing to the distribution and development of CWC communities in this Sea (Hayes
et al., 2019). However, few studies provide a spatial context for CWC habitats in the
Mediterranean and more data from less explored areas are needed to better define their overall
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regional distribution and relate them to environmental factors (Lo
Iacono et al., 2019). In some parts of the Mediterranean and adja-
cent areas (e.g. Strait of Gibraltar, Gulf of Cadiz) the
CWC-associated fauna is not well known (Lastras et al., 2019).
As a consequence, the lack of knowledge about the ecology of
these species undermines conservation efforts (Enrichetti et al.,
2023).

Dendrophyllia ramea (Linnaeus 1758), is an anthozoan of the
order Scleractinia, belonging to the family Dendrophylliidae. This
species is distributed in most of the Mediterranean Sea and in the
Atlantic Ocean (Zibrowius, 1980). The presence of D. ramea has
been recorded mainly in the Western Mediterranean basin, on the
Italian coasts from the Sea of Sicily (Salvati et al., 2021; Angiolillo
et al., 2022) to the Gulf of Naples (Zibrowius, 1980), on the
Catalan coasts of the Balearic Sea (Sánchez et al., 2004) and the
Gulf of León (Zibrowius, 1980); as well as in the Alborán Sea
(Zibrowius, 1980; Ocaña et al., 2000; Cebrián and Ballesteros,
2004). Recently, this species was found attached to soft sediments
(Salomidi et al., 2010; Orejas et al., 2017), though usually D.
ramea in the Mediterranean was considered to be associated
with rocky substrates. This suggests that its distribution could
be wider than considered so far. In the Atlantic Ocean, it is pre-
sent in Portugal (Zibrowius, 1980), on the Atlantic coast of
Morocco (Patriti, 1970; Zibrowius, 1981), the Canary Islands
(Brito and Ocaña, 2004), Western Sahara, Senegal (Chevalier,
1966), the Azores, Cape Verde, Ghana, the Gulf of Guinea and
Nigeria (Zibrowius, 1980).

Additionally, D. ramea has been classified as ‘Vulnerable’ in
the Red List of Threatened Species of the Mediterranean by the
International Union for Conservation of Nature (IUCN) and
has also been included in the list of endangered or threatened spe-
cies in Annex II of the Mediterranean Action Plan (MAP) of the
Barcelona Convention. Because of its scarcity and deep bathymet-
ric distribution, this coral is listed as ‘Vulnerable’ to extinction by
the Red Data Book of Invertebrates in Andalusia, which is
included in Appendix II of the CITES Convention. However, it
is not included in the National Catalogue of Endangered
Species because there is no scientific basis on the status of its
populations to justify the necessity of protection. This fact high-
lights the urgent importance of carrying out this type of study
to characterise its populations.

The Special Conservation Zone of Seabeds and Cliffs of Punta
de la Mona is an area located in La Herradura (Granada, Spain),
where the presence of cliffs and seabed form a favourable habitat
for the growth of D. ramea (Cebrián and Ballesteros, 2004) and it
constitutes one of the westernmost points of distribution for this
species in the Mediterranean Sea (Salvati et al., 2021). The cover-
age of these corals hosts a high biodiversity (Longo et al., 2005;
Mastrototaro et al., 2010), providing shelter for other species, as
well as suitable substrate for the recruitment and adults settlement
of associated species (Baillon et al., 2012; Rueda et al., 2019).
Therefore, the environmental and biological complexity provided
by D. ramea is fundamental for the development of a hotspot.
From this, it is inferred that the study of the structure and distri-
bution of this assemblage is of utmost importance to develop
assertive management and conservation plans. However, in the
Alboran Sea, the species associated with CWC are still not well
characterised (Rueda et al., 2019).

Due to this, it is important to understand what role D. ramea
plays in the ecosystem, its bathymetric distribution and density
patterns. Additionally, the size ranges could provide information
on the abundance of juveniles or adults, which, if studied at dif-
ferent depths, would help to infer the colonisation processes
that this species undergoes (Guzmán and Guevara, 1998).
Although this cnidarian is a dominant species in the study area
below depths of 20 m (Cebrián and Ballesteros, 2004), the

distribution patterns of this assemblage and the size structure
are not yet well described in this area.

For several years now, anthropogenic pressure on a global scale
has been causing the deterioration of CWC habitats and, as a con-
sequence, the decline of entire biological communities (Haapkylä
et al., 2007; Hoegh-Guldberg, 2011; Eakin et al., 2019). The envir-
onments inhabited by D. ramea harbour high biodiversity and
biomass, so fishing pressure is significantly higher compared to
adjacent areas (Buhl-Mortensen et al., 2010). Trawling particu-
larly affects these populations, both in their size structure, age
composition, abundance and structural complexity (Clark and
Koslow, 2007).

Due to the current lack of information on this species (Salvati
et al., 2021) and its importance for marine biodiversity locally and
regionally, the aims of this study were: (1) to survey the bathymet-
ric distribution, abundance and size ranges of the coral species
D. ramea in the coast of Granada; (2) to study the non-epibiotic
communities (hereafter, macro-benthonic communities) asso-
ciated with this HFS; (3) to assess the epibionts on D. ramea;
(4) to evaluate the marine litter and possible threats to the
D. ramea assemblage; and (5) to provide information to help in
the development of an appropriate management and conservation
plan.

Materials and Methods

Study area

The study area was the Special Conservation Zone of Seabeds and
Cliffs of Punta de la Mona (PM hereafter), on the Northern coast
of the Alboran Sea (Figure 1). In terms of its ecosystem import-
ance, this place was catalogued among the ‘Zonas Especiales
de Conservación con Hábitats Marinos del Litoral Andaluz’
(Special Conservation Zones with Marine Habitats on the
Andalusian Coast), a Marine Protected Figure recognised by the
Spanish government, and has been included in the ‘Red
Natura’, classified as a site of community interest.

Dendrophyllia ramea assemblage description

The seabed of Punta de la Mona hosts a wide variety of habitats.
In the deeper regions, a reef dominates the landscape, extending
through three southeast-oriented underwater canyons with verti-
cal limestone walls. These walls descend to a soft sandy substrate
at depths reaching −48 m. The rocky substrate is continuous
throughout the area, but marine currents and upwellings resus-
pend the soft substrate in the deep zone, creating small, mobile
sandbanks on the canyon floors.

In the study area, a survey was carried out by SCUBA diving
rebreather and videos. Video transects, 50 m long and 1.5 m
wide, were performed at a constant speed, 1 m above the seabed
parallel to the coastline, every 6 m in depth from 30 to 48 m.
Three random video transects were recorded per depth (see
Figure 1). The survey took place in April 2021. To estimate the
abundance, size and distribution of D. ramea in the study area,
the number of colonies and branches were counted, as well as the
coverage of each colony by analysing the images obtained from
the videos with ImageJ software (version 1.4.3.67). For the scale
reference, a special system was designed with a scooter support,
consisting of two lasers pointing at a known distance of 1.5 m.

To study the D. ramea assemblage, the number of colonies and
branches per transect were analysed using a generalised-linear
model (GLM). The cover of colonies per transect was analysed
using a linear model analysis (LM). These variables were consid-
ered a response variable and ‘Depth’ was a fixed factor with four
levels: 30, 36, 42 and 48 m.
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Macro-benthic communities

Visual identification of the macro-species associated with the D.
ramea reef was determined from the sampling videos (see
Figure 1). To study the composition, structure, and diversity of
these benthic communities at each depth, the abundance of the
individuals was estimated by frequency of occurrence (Bianchi
et al., 2004).

The number of species of the macro-benthic community per
transect was analysed using GLM. To study the multivariate struc-
ture of the community of macro-benthic organisms associated to
D. ramea reef, a Permuted Multivariate Analysis of Variance
(PERMANOVA) (Anderson, 2001; McArdle and Anderson,
2001) was used, where the data were organised into species/abun-
dance matrices, considering the experimental design previously
explained. Abundance values were square-root transformed to
prevent highly abundant species from overly influencing the ana-
lyses and causing the contribution of less abundant species to be
insignificant (Clarke and Warwick, 2001). To determine the per-
centage contribution of each taxon or species to the similarity
measures within the ‘Depth’ factor levels, the SIMPER
(Similarity Percentage; Clarke, 1993) similarity partitioning ana-
lysis was used. The homogeneity of variances was also tested
with the PERMDISP test (Anderson, 2006).

Epibiont community

Epibiont samples were taken using a scraping technique, where a
scalpel blade was arranged perpendicular to the surface of the
coral, so as not to damage its living tissue and, with a sample bot-
tle, the mass of epibiont dragged in each scraping was collected.
It’s important to note that mobile species might have had the
chance to escape during this process. Due to the time needed to
sample epibionts without damaging the D. ramea colonies and
the difficulty of diving deeper than 40 m, the number of transects
were reduced. The depths for sampling were selected to be inter-
mediate to those of the video transects (see Figure 1). Eight sam-
ples were collected along each three 100 m long transects at three
different depths: 34, 40, and 45 m (making a total of 24 samples).
The samples were fixed in 96% ethanol and subsequently analysed
in the laboratory under binocular magnification and optical

microscopy. Organisms were identified to the highest possible
taxonomic resolution, in most cases to the species level.

The number of species of epibionts per depth was analysed
using GLM and the multivariate structure of the epibiont commu-
nity was tested using PERMANOVA. In this case, the experimen-
tal design considered the presence/absence of organisms at
‘Depth’ with three levels (34, 40, and 45 m). The homogeneity
of variances was also tested with the PERMDISP analysis.

Threats to the integrity of the CWC habitat: marine litter on the
seafloor

In addition, the recognition and description of the types of litter
according to each category, according to Fleet et al., 2021, and the
debris coverage present in the area, were used to estimate the
anthropogenic impact suffered by these communities of organ-
isms. The litter was classified on Rubber, Glass/Ceramic, Cloth/
Textile, Artificial Plastic Polymers (predominantly originating
from fishing activities) and Metals, considering five main categor-
ies of materials (Fleet et al., 2021). The litter coverage per transect
was analysed using LM and considering two fixed factors: ‘Depth’
with four levels (30, 36, 42, and 48 m) and ‘Type of litter’ with five
levels (the categories previously named). The normality and
homogeneity of the residuals were checked with a Shapiro–Wilk
and Bartlett’s tests, respectively. The coverage of each of these cat-
egories was plotted in a bar chart separated by depth.

Univariate analyses (LM and GLM) were carried out with the
R software version v4.1.1 (CoreTeam R, 2021). To make the
graphs, the ‘ggplot2’ package (Wickham, 2016) was used. All
multivariate analyses were carried out with PRIMER-E v6.1.11
and PERMANOVA+ v1.0.1 software (Clarke and Gorley, 2006).

Results

D. ramea assemblage at PM

In the study area, a total of 311 colonies of D. ramea were iden-
tified and distributed as follows: 25 colonies at a depth of 30 m,
178 at a depth of 36 m, 93 at 42 m, and 15 colonies at a depth
of 48 m. The mean number of colonies per transect showed the
existence of two groups of depths: one formed by the intermediate

Figure 1. Study area: (A) Mediterranean Sea; (B) northern coast of the Alboran Sea; (C) bathymetry of the seabed at Punta de la Mona showing the locations of the
video transects and epibiont sampling sites.
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(36 and 42 m) depths and the other formed by the extreme depths
(30 and 48 m), which showed significant differences between
them (Table 1). Colonies exhibit variable coverage, ranging
from 2300 cm2 to some individuals of only 3 cm2, consisting of
a single polyp. There was a greater number of individuals with
smaller coverage than with larger coverage, a pattern that is fol-
lowed throughout the depth gradient studied (Figure 2A). In add-
ition, coral abundance at 36 and 42 m was higher than the
remaining depths, which is consistent with the zone with the
greater number of colonies. However, these differences were not
statistically significant. Furthermore, it can be observed that the
colonies contain a lower number of branches at 30 and 48 m
(Figure 2B), although the differences between depths were also
not significant.

Macro-benthic community

A total of 47 species belonging to 9 taxonomic groups were iden-
tified in the study area, which characterised the organisms asso-
ciated to D. ramea reef (Table S1). According to the nMDS
graph, there is a transition in this benthic community with a zon-
ation pattern as a function of depth gradient. The composition and
abundance of species associated with the coral assemblage at 48m
deep is clearly different from the other depths (Figure 3) and fol-
lows a gradient determined by the bottom depth. The multivariate
PERMANOVA analysis showed that there are significant differ-
ences in the composition and abundance of the species at the ana-
lysed depths [Pseudo-F3 = 6.30; P(perm) = 0.001].

The a posteriori PERMANOVA analysis showed the existence of
three groups: one composed of the depths of 30 and 36m together,
another with a depth of 42m and the last group with a depth of 48
m (Table 2). No dispersion problems were found in the study
[PERMDISP: F3 = 2.97; P(perm) = 0.1].

From the SIMPER analysis, it was found that 17 species are the
ones that contribute the most to the differences found between
depth groups, with 13 of them corresponding to the group of 30
and 36m, 14 to 42 m, and 10 to 48 m (Table S2). Among these
species, those that were common at all depth groups with similar
abundances were: the gorgonia Eunicella verrucosa (Pallas, 1766),
the porifera Aplysina aerophoba (Nardo, 1833), Crambe crambe
(Schmidt, 1862), and Timea sp. The most abundant species that
characterised the depth groups of 30 and 36m were: the algae
Mesophyllum alternans (Foslie), Cabioch and M. L., Mendoza,
1998 or the bryozoans Myriapora truncata (Pallas, 1766) and
Pentapora fascialis (Pallas, 1766); at 42m: Axinella damicornis
(Esper, 1794) or Parazoanthus axinellae (Schmidt, 1862); and at
the 48m level: the sponges Cliona viridis (Schmidt, 1862) or
Haliclona (Reniera) mediterranea Griessinger, 1971.

When analysing the variation in the number of species that
make up the community macro-benthic organisms the number
of species did not differ significantly between the different
depth groups. In any case, it can be observed that the number

of species is lower at 48 m with respect to the other depth groups.
However, the depths of 30 and 36 m showed similar values of
diversity, the 42 depth showed the higher number of species
and the 48 m depth the lower values of diversity (Figure 4).

Epibiont community

A total of 88 epibiont taxa associated with D. ramea, belonging to
12 different taxonomic groups, were identified (Table S1). The
nMDS graphical representation shows that the composition of
the epibiont community varies according to the depth gradient.
It seems that the species composition corresponding to the
extreme depths are different from each other, while at the inter-
mediate zone the communities are in a transitional position,
with no differences in the other two depths (Figure 5). The
PERMANOVA analysis showed that there are significant differ-
ences in the composition of the species of epibiont at the analysed
depths [Pseudo-F2 = 1.72; P(perm) = 0.017]. The a posteriori ana-
lysis confirmed that there are differences in the composition of
this community in the shallowest zone (34 m) in relation to the
deep zone (45 m), while the intermediate depth (40 m) showed
no difference to the previous ones (Table 3). No dispersion pro-
blems were noted in the study [PERMDISP: F2 = 1.64; P(perm)
= 0.276].

In accordance with the SIMPER analysis (Table S3), 20 species
of epibionts contributed to the differences between the depths of 34
and 45m. Of these species, 11 were those that characterised the first
depth, and 12 species characterised the second. The only organism
common to all depths analysed (34, 40, and 45m), with analogous
similarities, was the bryozoan Cellepora pumicosa (Pallas, 1766).
The species that characterised the depth of 34m, with higher simi-
larities, were juveniles and recruits of the bivalve Gregariella semi-
granata (Reeve, 1858), the bryozoan of genus Bugula Oken, 1815 or
the echinoderm of genus Ophiura Lamarck, 1801. For the depth of
45m, the hydrozoans Campanularia hincksii Alder, 1856 and
Clytia linearis (Thorneley, 1900) or the sponge Hymedesmia sp.
were characteristic. Finally, the species that presented analogous
similarities and that contributed to the fact that the depth of 40
m is not different from that of 34m were: the amphipods from
the families Caprellidae, Ischyroceridae, Aoridae, Sthenothoidae,
Dexaminidae, and Corophiidae, alongside the hydrozoan
Laomedea sp.; and at the depth of 45m: the bryozoan Pentapora
fascialis and the poriferous Timea sp.

In congruence with the multivariate analysis, the number of
species of epibionts showed similar results. It is lower in the shal-
lowest zone (34 m) compared to the deepest area studied (45 m)
and the intermediate depth (40 m) showed no significant differ-
ence with any of the previous ones (Figure 6).

Threats to the integrity of the CWC habitat: marine litter on the
seafloor

The anthropogenic impact on the study area was evaluated by
analysing the coverage of litter, which showed the highest average
coverage at a depth of 42 m and a lowest coverage at 48 m.
Artificial polymers (plastics from fishing waste, such as nets,
ropes, fishing lines and to a lesser extent, and plastic bags) had
the largest average litter coverage (cm2), but high amounts of
glass (bottles) and ceramic debris, fabric and textile debris, metals
(from free anchorages) and rubber were also identified (Figure 7).
In our video observations, we noted that a significant portion of
marine litter originated from longlines and other gears used in
fishing activities. The results of the LM analyses showed signifi-
cant interactions between the factors ‘Depth’ and ‘Type of litter’
(F12 = 2.99; P = 0.004), indicating that the differences in cover of
each type of litter were not homogeneous across levels of the

Table 1. Generalised Linear Model for the mean number of Dendrophyllia ramea
colonies per depth (m).

Estimated SE z value P value

Intercept 21.20 0.20 10.60 <0.001a

36 19.63 0.21 9.19 <0.001a

42 13.14 0.22 5.83 <0.001a

48 −0.51 0.33 −1.56 0.118

SE, standard errors.
For the categorical variable ‘Depth’, 30 m was used as reference level.
aSignificant differences at P < 0.05.
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factor ‘Depth’. The transects spanned a total length of 100 m at
each depth of 30, 36, 42, and 48 m, positioned at distances from
the coastline as shown in the map (Figure 1). Given the significant
interactions, the analyses were conducted by type of litter. Only
artificial plastic polymer showed significant differences among
depths. The lowest abundance of artificial plastic polymers was
recorded at 48 m, the highest at 42 m, and its coverage at 36 m
was also significantly different from that at 48 m, although this
result was only marginally significant (Table 4). Furthermore, it

was found that 73% of the total colonies were entangled in
ropes or human debris, resulting in various types of harm or
impairment.

Discussion

The present study quantitatively describes Dendrophyllia ramea
assemblage in Western Mediterranean area, at the locality of
PM, considering abundance, colony size range, and distribution

Figure 2. Dendrophyllia ramea assemblage in Punta de la Mona: (A) coverage values (cm2); (B) number of branches per depth (m).
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patterns, as well as the diversity of organisms associated with it
and the anthropogenic impact. In this area, the 311 colonies sur-
veyed (representing only a fraction of a much larger population,
pers. obs.) exhibited a greater abundance at a depth unusually
shallow in relation to that recorded so far (40–400 m) in the
Mediterranean Sea (Bonfitto et al., 1994; Kružić et al., 2002;
Requena and Gili, 2014).

The D. ramea assemblage in the four depths selected in this
study seems to be conditioned by the mixing of water masses
from the Atlantic Ocean with those from the Mediterranean
Sea. The Alboran Sea is highly influenced, on one hand by the
inflowing Atlantic waters (Candela, 1991), which presents an
asymmetric circulation through the Strait and through the
Alboran Sea (Echevarría et al., 2002; Skliris and Beckers, 2009).
The Atlantic water passes eastward along the northern part of
the Alboran Sea (the Atlantic Jet) and forms 2 anticyclonic
gyres (Western Alboran Gyre and Eastern Alboran Gyre) which
reach the African Coast (Millot, 1992; Vargas-Yáñez et al.,
2002). On the other hand, the northern coast of the Alboran
Sea, is also influenced by Mediterranean Water (Northern
Current), coming from the Catalan Sea, and running down the
Spanish Mediterranean Coast towards the Strait of Gibraltar
(Bouzinac et al., 2003). This water mass loses its influence close
to the Strait (there, the Atlantic Jet blocks it; Sarhan et al.,
2000), and it seems to give a typical Mediterranean character to
the northern coast. Thus, Alboran Sea presents intermediate con-
dition between Atlantic and Mediterranean in regard to dissolved
nutrients and plankton biomass (Gómez et al., 2000), sea surface
temperature, and sea level (Bouzinac et al., 2003; Nykjaer, 2009).

Dendrophyllia ramea reaches shallower depths in the Atlantic
Ocean where, for example, a colony of this species was recorded in
the Sagres Caves (Portugal – North Atlantic) at a depth of only 14
m (Boury-Esnault et al., 2001). While in the Mediterranean Sea,
its assemblages are mainly distributed below 40 m. In the eastern
Basin it is distributed in Greece from 39 m (Salomidi et al., 2010),
in Turkey 40 m (pers. comm. Dr Mehmet Baki Yokes), in Croatia
43 m (Kružić, 2002), in the Ionian Sea at Sicily 70 m (Angiolillo
et al., 2022), while in Cyprus it starts at 125 m (Orejas et al.,
2017). In the western Basin it is distributed in Nicotera (Italy)
at 80 m (Arpacal, 2017), reaching up to 173 m in eastern
Sardinia (Bonfitto et al., 1994) and up to 161 m in Menorca –
Spain (Requena and Gili, 2014).

The Alboran Sea is strongly influenced by the Atlantic Ocean
(Candela, 1991), where the denser and saltier Mediterranean
water mass flows under the Atlantic water mass westward through
the Strait of Gibraltar (Bormans et al., 1986). Upon entering the
Mediterranean, the Atlantic water masses flow eastward along the
northern part of the Alboran Sea (generating the Atlantic Jet) and
form two anticyclonic gyres (Western Alboran Gyre and Eastern
Alboran Gyre), which reach the southern coast of Morocco
(Vargas-Yáñez et al., 2002). The multivariate structure of various
species assemblages in the Strait of Gibraltar region, such as
opisthobranchs, anthozoans, tunicates and cnidarians, has been
observed to possess intermediate characteristics between the
Atlantic and central or eastern Mediterranean, potentially extend-
ing to the Alboran Sea area (Naranjo, 1995; Naranjo et al., 1998;
Cervera et al., 2004, González-Duarte et al., 2013). The assem-
blage of D. ramea in the study area also shows these intermediate
bathymetric distribution characteristics, since this area has an
average bathymetric distribution between that of the Portuguese
and Western Mediterranean populations, reaching depths of
between 25 and 30 m at PM (Cebrián et al., 2000; Ocaña et al.,
2000; Cebrián and Ballesteros, 2004), 24 m in Morocco (Salvati
et al., 2004) and 30 m in Chafarinas Islands (Pers. Obs.
González-Duarte). Based on the quantitative sampling of the
video transects and multivariate analyses, we distinguished three
depth zones defined by the composition and abundance of
macro-benthic organisms associated with the D. ramea reef.
This variation appears to be primarily driven by the bathymetry
of the area, aligning with the depth gradient of the seabed,
while additionally being influenced by the presence of D. ramea.

Figure 3. nMDS representing the differences in the community of macro-benthic organisms associated with Dendrophyllia ramea per depth (m). Stress = 0.05.

Table 2. A posteriori pair-wise permutation multivariate analysis of the variance
comparison for the different levels of the factor ‘Depth’ for macro-benthic
organisms associated with Dendrophyllia ramea.

Depth (m) Homogeneous groups

30 ***

36 ***

42 ***

48 ***
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CWC are generally associated with other HFS of lower frame-
building potential (Zibrowius, 1980; Roberts et al., 2009). This fea-
ture produces a high biodiversity in the areas where they are pre-
sent because they can often be explored by other organisms due
to their shelter, nursery or feeding interest (D’Onghia, 2019;
Otero and Marín, 2019; Rueda et al., 2019). Some of these are
bryozoans of the species Myriapora truncata and Pentapora fascia-
lis, which are recognised as both primary structure builders (i.e.
they build structures alone) or in combination with other organ-
isms, and secondary structure builders. These organisms are
important in providing habitat for diverse species and assemblages,
playing an important role in promoting biodiversity and habitat
heterogeneity (Lombardi et al., 2014). Both species characterised
the shallowest community (30m) groups and seem to be condi-
tioned by the availability of hard substrates for settlement.

We have also observed the presence of Parazoanthus axinellae
and Axinella damicornis at a depth of 42 m, where they are typic-
ally found in a symbiotic relationship with D. ramea as described
by Cachet et al. (2009). This association between the cnidarian
and sponge species is characteristic of the intermediate depth
group studied in the community structure of species at PM,

highlighting the important role of symbiosis in shaping the ecol-
ogy of marine communities.

As previously mentioned, the result of the PERMANOVA
showed that species appear to be conditioned by the availability
of rocky substrates. Below 48 m depth, algae are not relevant
and suspensivorous organisms become more abundant, such as
the sponges Cliona viridis or Haliclona (Reniera) mediterranea.
The exception is the invasive alga Rugulopteryx okamurae
(E. Y. Dawson) I. K. Hwang, W. J. Lee y H. S. Kim, 2009,
which is more abundant at greater depths, probably due to algal
downwellings where it is mostly detached from the rocky bottom
and dragged by marine currents (Estévez et al., 2022;
Mateo-Ramírez et al., 2023).

The present study adds 63 new species and 15 genera to the list
of CWC associated fauna of Rueda et al. (2019). The species we
identified as most abundant include: Rugulopteryx okamurae
(Algae), Crambe crambe and Axinella damicornis (Porifera),
Cerianthus membranaceus (Gmelin, 1791) and Parazoanthus axi-
nellae (Cnidaria), Pentapora fascialis and Cellepora pumicosa
(Bryozoa), Octopus vulgaris Cuvier, 1797 and Flabellina sp.
(Mollusca), Spirobranchus triqueter (Linnaeus, 1758) (Annelida),

Figure 4. Number of species associated with
Dendrophyllia ramea reef per depth (m).

Figure 5. nMDS representing the differences in
the epibiont community on Dendrophyllia
ramea per depth (m). Stress = 0.22.
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Balanus trigonus Darwin, 1854 (Arthropoda), Arbacia lixula
(Linnaeus, 1758) (Echinodermata), Aplidium punctum (Giard,
1873) (Chordata). In the description of the deep-sea communities
of the Mediterranean Sea, hydrozoans are a group that are gener-
ally not described at the species level and are often grouped
together as ‘hydroids’ (Rueda et al., 2019). This study is one of
the few that has identified 15 species of these cnidarians, contrib-
uting unique information to previous descriptions of organisms

present in the studied ecosystem (Cebrián and Ballesteros, 2004;
González-Duarte et al., 2013, 2014). Among them, Clytia linearis,
Campanularia hincksii, Obelia dichotoma, Laomedea sp.,
Sertularia sp., and Antennella secundaria (Gmelin, 1791) were
the most abundant.

In regard to the epibiont community, in the Eastern
Mediterranean Sea, bryozoans are the most abundant collected
group of epibionts living on the coral D. ramea (Jiménez et al.,
2016). In concordance with these results, bryozoans were also
the most characteristic epibionts of the coral at all depths studied,
particularly the species Cellepora pumicosa. This could be evi-
dence of a close relationship between bryozoans and D. ramea;
however, the difficult access to CWC communities limits the
extension of our knowledge about their associated species.

Moreover, another significant group of epibionts associated
with deep-sea corals in the Mediterranean are the mobile pera-
carid species (Cartes et al., 2022). In our study, we identified six
different families of peracarids: Caprellidae, Ischyroceridae,
Aoridae, Sthenothoidae, Dexaminidae, and Corophiidae.
Although we did not find representatives of the Pontogeneiidae
family, which is noted to be highly abundant along the coasts
of Mallorca in the western Mediterranean, near Punta de la
Mona, it is worth mentioning that these findings pertain to
much greater depths, exceeding 1000 m (Cartes et al., 2022).

The result of the SIMPER analysis on the epibiont community
showed that the shallower depth groups are important as nursery

Figure 6. Number of epibiont species on Dendrophyllia ramea per depth (m), showing
the results of the Generalised Linear Model.

Table 3. A posteriori pair-wise permutation multivariate analysis of the variance
comparison for the different levels of the factor ‘Depth’ for epibionts growing
on Dendrophyllia ramea.

Depth (m) Homogeneous groups

34 ***

40 *** ***

45 ***

Figure 7. Average coverage of litter (cm2) for each depth (m) level according to the category.

Table 4. Linear model for the mean average coverage of artificial polymer per
depth (m).

Estimated SE z value P value

Intercept 0.14 0.10 1.39 0.202

30 0.13 0.14 0.95 0.372

36 0.28 0.14 2.03 0.076a

42 0.45 0.14 3.17 0.013b

SE, standard errors.
For the categorical variable ‘Depth’, 48 m was used as reference level.
aMarginally significant.
bSignificant differences at P < 0.05.
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sites (many recruits and juveniles were observed, including
ophiuroids like Ophiothrix fragilis and Ophiura sp., and crabs
like Pisidia longicornis and Inachus sp.), including for other
HFS such as P. fascialis, especially in the deeper zone (40 and
45 m). The importance of D. ramea as a substrate for many spe-
cies is reflected in the fact that the number of epibionts increases
with depth (Figure 6), where rocky substrates are less frequent. At
45 m, species like Clytia linearis and Campanularia hincksii seem
to contribute significantly to the observed differences, while at
shallower depths, species such as Antennella secundaria and
Cellepora pumicosa play important roles. In addition, in the dee-
per zone, corals are largely fractured and wounded due to high
anthropogenic impact, especially when compared to the low col-
ony abundance, which also promotes the growth of epibionts on
their calcareous skeleton. The combination of both conditions,
substrate scarcity and coral injury, explains the increase in the
presence of epibionts with depth.

Although D. ramea is a HFS hosting community of native
associated organisms (Dayton, 1972), this species also serves as
a substrate for non-native species, which can be one of the
main threats to biodiversity in marine environments (Galil
et al., 2014). In the studied population, two non-native species
were found as epibionts of D. ramea. One of these was the bar-
nacle Balanus trigonus Darwin, 1854, a species introduced into
the Mediterranean Sea, probably before 1850 (Zullo, 1992). The
other species is the brown seaweed R. okamurae, which could
be a risk for the coral due to its highly competitive capacity
(Estévez et al., 2022).

Our findings describe how D. ramea colonies are negatively
affected by human activity in the PM area, mainly by artisanal fish-
ery, even though it has been listed as a Special Area of
Conservation. In particular, fishing lines and ropes may damage
or cut coral branches and nets may completely uproot large col-
onies from the substrate. As a result, urgent action is required to
implement a conservation management plan to prevent these det-
rimental activities in the region. Although marine litter on the sea-
floor may originate from river discharge (González-Fernández
et al., 2021) or depend on the hydrodynamic regimen that causes
the deposition of plastics and debris in the ocean (Zambianchi
et al., 2014), fishing line and entagled nets are the results of unregu-
lated fishing activities for this reason, actions are required to imple-
ment plans to prevent these detrimental activities.

Other studies have shown that in the Mediterranean Sea, the
main types of waste found are, plastics, glass, metal and clinker
(Ramirez-Llodra et al., 2013). Among the most abundant types
of waste, we have identified debris made of rubber, glass/ceramics,
and artificial plastic polymers, with a large number of fishing lines
and nets which pluck the branches off the corals. In addition,
plastics are of particular importance given they eventually frag-
ment into small particles (microplastics, <5 mm) (Andrady,
2011), which may accumulate in scleractinian corals when mis-
taken for food particles (Saliu et al., 2019), causing coral disease
(Nama et al., 2023). Furthermore, artificial plastic polymers
were found to be more abundant at depths of 36 and 42 m, posing
a risk to the D. ramea communities as these depths coincide with
the highest coral abundance. The proximity of Marina del Este
port suggests it as a primary source of marine debris impacting
Punta de la Mona’s marine environment. Despite this, there are
so far no adequate management plans in the area to prevent
waste from reaching the marine environment, although it has
long been known that once deposited on the seabed it can modify
the surrounding habitat (Saldanha et al., 2003). Therefore, the
particular and unique coral reef living in PM requires protection
given the great anthropogenic impact suffered by the area.

In conclusion, this study emphasises the importance of D.
ramea and the necessity of implementing management plans to

regulate relevant activities. It provides a quantitative description
of the D. ramea assemblage in the Western Mediterranean, on
its abundance, distribution patterns, associated biodiversity and
the impact from human activities. Notably, the species exhibits
higher abundance at shallower depths than typical, which is likely
influenced by water mass mixing between the Atlantic Ocean and
Mediterranean Sea. Despite the ecological importance of this eco-
system, coral colonies in the study area are under significant
threats from fishing and the accumulation of waste and plastics.
Urgent conservation management plans are crucial to safeguard
this ecologically crucial coral reef and effectively address the nega-
tive effects of human impact. Taking prompt action is essential to
preserve this valuable coral ecosystem and uphold its vital eco-
logical role in the region.
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