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ABSTRACT. We infer the horizontal velocity fields of the ice caps Langjokull and Hofsjokull, central
Iceland, using repeat-pass interferometric synthetic aperture radar (InSAR). NASA’s uninhabited aerial
vehicle synthetic aperture radar (UAVSAR) acquired airborne InSAR data from multiple vantage points
during the early melt season in June 2012. We develop a Bayesian approach for inferring three-
dimensional velocity fields from multiple InSAR acquisitions. The horizontal components generally
agree with available GPS measurements wherever ice motion is well constrained by InSAR
observations. We provide evidence that changes in volumetric moisture content near the glacier
surface induce phase offsets that obfuscate the vertical component of the surface velocity fields, an
effect that could manifest itself on any glacier that experiences surface melt. Spatial patterns in the
InSAR-derived horizontal speeds are broadly consistent with the results of a simple viscous flow model,
and the directionality of the InSAR-derived horizontal flow field is nearly everywhere consistent with
the ice surface gradient. Significant differences between the InSAR-derived horizontal speed and the
speed predicted by the viscous flow model suggest that basal slip accounts for more than half the
observed outlet glacier flow.

KEYWORDS: glacier flow, glaciological instruments and methods, ice cap, ice velocity, remote sensing

INTRODUCTION

Glaciers transport ice from areas of mass accumulation at
high elevation to areas of mass loss at lower elevations
through a combination of internal deformation and slip at the
ice/bed interface. While the constitutive relation for viscous
flow of glacier ice is relatively well known (Glen, 1955; Nye,
1957; MacAyeal, 1989), understanding the mechanics of
basal slip, which includes the sliding of ice relative to a
stationary bed and deformation of the bed, remains an open
problem (e.g. Howat and others, 2008; Schoof, 2010;
Bartholomaus and others, 2011; Hewitt, 2013; Werder and
others, 2013). Slip at the glacier bed is an important
component of velocity fields of many glaciers (e.g. Boulton,
1979; Engelhardt and Kamb, 1998; Tulaczyk and others,
2000; Kamb, 2001), accounting for observed seasonal and
diurnal velocity variations (e.g. Rignot and Kanagaratnam,
2006; Shepherd and others, 2009; Joughin and others, 2012),
and is imperative for erosion to occur (Boulton, 1979; Hallet,
1996; Iverson, 2012). As a result, understanding subglacial
mechanics is crucial for developing predictive models of the
future states of glaciers, estimating the contribution of glacier
melt to sea-level rise, and improving our knowledge of how
glaciers shape the landscape.

Direct observations of glacier beds are often impractical,
whereas surface velocity fields are relatively easy to observe
and are useful for inferring subglacial mechanical and
hydrological properties (e.g. Iken and Bindschadler, 1986;
Kamb, 1987; Tulaczyk and others, 2000; Zwally and others,
2002; Magnusson and others, 2007, 2010, 2011). Repeat-
pass interferometric synthetic aperture radar (InSAR) can
provide synoptic-scale observations of glacier surface
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velocities and has been used to map the velocity fields of
many glaciers (e.g. Joughin and others, 2001; Rignot and
others, 2011), often during winter. To gain a better under-
standing of the subglacial mechanics, and their interdepen-
dence with basal hydrology, it is desirable to observe glaciers
during the melt season, in particular the early melt season
(Schoof, 2010), when surface meltwater flux can induce
variations in basal slip on hourly-to-monthly timescales (e.g.
Zwally and others, 2002; Shepherd and others, 2009;
Joughin and others, 2012). However, the amplitudes of
velocity fluctuations can be small relative to the mean
background velocity (Bartholomew and others, 2010),
necessitating accurate and robust InSAR analysis techniques.

It is difficult to make useful INSAR measurements of
glaciers during the early melt season because the surface
often changes rapidly between SAR acquisitions, inducing
high noise levels in INSAR data. Because most InSAR data
are acquired by spaceborne systems, the time between
repeated acquisitions is fixed and typically on the order of
days to weeks, depending on the radar system. To overcome
these limitations, we acquired repeat-pass InSAR data using
NASA'’s uninhabited aerial vehicle synthetic aperture radar
(UAVSAR), an airborne, L-band (24 cm wavelength) SAR
system that allows us to choose the repeat-pass time interval
and to design custom flight lines (e.g. Hensley and others,
2009a). In June 2012, we collected InSAR data over the ice
caps Langjokull and Hofsjokull, central Iceland (Fig. 1), from
multiple vantage points for six non-continuous days over a
12 day period. We designed the flight lines to provide
complete spatial coverage of both ice caps from at least
three different look directions with 24 hour repeat-pass
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Fig. 1. (a) Shaded relief map of central Iceland showing Langjokull and Hofsjokull. Inset map shows the location of the region of interest.
(b, c) Horizontal transmit, horizontal receive (HH) amplitude images (expressed as normalized radar cross section, o,) with ice divides (cyan
lines) and major outlet glaciers of Langjokull (b) and Hofsjokull (c) (Bjornsson, 1988). Contours indicate surface elevation in 150m
increments. The major outlet glaciers of Langjokull are: Pjéfadalajokull (L)), Leidarjokull (LL), Kirkjujokull (LK), Nordurjokull (LN),
Sudurjokull (LS), Eystri-Hagafellsjokull (LE), Vestari-Hagafellsjokull (LV), Svartarjokull (LT), Flosaskarosjoklar (LF), pristapajokull (LP) and
Baldjokull (LB). The major outlet glaciers of Hofsjokull are: Illvidrajokull (HI), Pjérsarjokull (HP), Mdlajokull (HM), Blautukvislarjokull (HT),
Blagnipujokull (HB), Blondujokull (HL), Kvislajokull (HK) and Satujokull (HS).

times. Short repeat-pass times and L-band radar provided
data with acceptable signal-to-noise ratios (SNR) every-
where on both ice caps.

Langjokull and Hofsjokull are natural laboratories that we
can use to investigate basal mechanics more easily and in
much greater detail than is practical in many other regions.
Both ice caps are land-terminating and cover areas of
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~900 km? with typical ice thicknesses >200m (Bjérnsson
and Pélsson, 2008). The beds of both ice caps have been
near-completely mapped with ice-penetrating radar (Bjorns-
son, 1986), and recently obtained surface digital elevation
models (DEMs) are available, mostly from lidar surveys.
Previous studies of the bedrock lithology show that porous
lavas underlie southern Langjokull, whereas the remainder
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of Langjokull and all of Hofsjokull rest on impermeable
bedrock (Bjérnsson and others, 2003). Both ice caps have
been previously studied using InSAR data acquired with
3 day repeat-pass time by European Remote-sensing Satellite
(ERS) in 1994 (Palmer and others, 2009; Gourmelen and
others, 2011).

In this study, we present a Bayesian approach to inferring
three-dimensional (3-D) velocity fields from multiple INSAR
acquisitions. Our approach incorporates a data correlation
length to reduce large offsets in the velocity field, which
often occur at InSAR scene boundaries. We use this
Bayesian method to infer the horizontal velocity fields of
Langjokull and Hofsjokull from UAVSAR data. We also
present evidence that differential surface moisture content
causes phase offsets that corrupt estimates of the vertical
velocity component but do not cause significant errors in the
inferred horizontal velocity components. We compare the
inferred velocity field with a simple viscous flow model and
co-located GPS data, discuss the observed characteristics of
the outlet glaciers, and show that basal slip is likely to
account for more than half of the observed surface velocities
in many outlet glaciers.

METHODOLOGY

INSAR encompasses commonly used methods for measuring
deformation or topography of an area that has been imaged
at least twice by a SAR system. SAR data are complex-
valued, providing information on both the amplitude and
phase of the radar waves. InSAR processing takes two SAR
scenes and aligns them such that sub-wavelength changes in
the path distance between the radar antenna and a given
target can be calculated using the difference in the phase of
each image (e.g. Rosen and others, 2000). In this study we
consider repeat-pass INSAR, which requires two SAR images
acquired over a given area at different times and from
approximately the same sensor position. The final products,
called interferograms, provide measurements of displace-
ment along the radar line-of-sight (LOS) unit vector, Zi(r, ),
pointing from the sensor position, r';, to a ground position, r.
The InSAR phase per unit time in interferogram i is given as

Li(r,v)) - u(r)
AL (1)

where u;(r) is the displacement vector at r over repeat-pass
time interval At;.
We can write the InSAR measurements in matrix form as

d(r) = G(r,r')v(r) (2)

where V(r) is the mean velocity vector and G(r,¥') is the
design matrix. Rows in G consist of LOS unit vectors
associated with the entries of the INSAR phase vector, d(r),
which we take to be of the form in Egn (1). If G contains
three or more LOS vectors that are sufficiently different from
one another, we can solve Eqn (2) for an estimate of the
mean velocity vector, v.

ir) =

Velocity model

We approach the problem of estimating v using a Bayesian
formulation that follows Tarantola (2005). Inverse methods
are, of course, well known, epitomized by the least-squares
method and its regularized variants. Our motivation for
using a Bayesian formulation is to apply a probabilistic
approach to derive a generalized model of the desired
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quantity, in this case v, and estimates of the uncertainties of
the model parameters. There are three parameters that form
the conceptual basis of this approach: the a posteriori
conditional probability density function (PDF), or posterior,
of the model, m, given the observed data; the a priori PDF,
or likelihood, which relates the observations to the model;
and the a priori PDF of the model, known as the prior, which
incorporates prior expectations of all model parameters. The
basic strategy of Bayesian inversion is then to represent the
posterior, P(m|d), as a combination of the likelihood,
P(dlm), and prior, P(m). Maximizing the posterior yields
an expression for the model that is comparable with
classical regularized least-squares formulations, but in-
cludes prior model estimates and a prior model covariance
matrix. Though we use Bayesian inversion to infer a
relatively simple physical model (3-D velocity fields) we
note that the formulation of the posterior model is general-
ized and can be used to infer almost any linear or nonlinear
model. Because Bayesian inverse methods are well devel-
oped (Tarantola, 2005; Stuart, 2010), the following deriva-
tion of the posterior model for v is concise, meant only as an
overview for readers unfamiliar with Bayesian methods.
Let m be a model for v, such that m € M, where WM is the
set of all realizable models. From Bayes’ theorem, the
posterior probability distribution is given as (Tarantola, 2005)

P(m[d) oc P(d|m)P(m) 3)

Assuming a Gaussian model, the likelihood and prior are
defined as (Tarantola, 2005)

P(djm) x exp [—%(d —Gm)'C;'(d— cm)} (4)

P(m) o< exp|~4(m — mo)'C. (m—mo)| (5

_1
2
respectively, where my is the prior model estimate, and Cp,
and Cy4 are the prior model and data covariance matrices,

respectively. Plugging Eqns (4) and (5) into Eqn (3) yields
P(m|d) oc exp[—(5(m)] (6)

where
()= [(d- Gm)"C'(d~ Gm) + (m — mo)"C, \(m— m)|
7)

The best-fit posterior model, m, maximizes the posterior
probability (i.e. minimizes /) such that (Tarantola, 2005)

m=(G'C;'G+C;) ' (G'C;'d+C'mg) ()

The first term in Eqn (8) is the posterior model covariance
matrix:

Co=(G'C;'G+C;) ! 9)

which provides an estimate of the uncertainties in m
(Tarantola, 2005). Higher amplitudes in the components of

C., indicate higher uncertainty in m. It is often desirable to
encapsulate the error of the posterior model as

Am = \/tr[Cp] (10)

where tr is the trace operator.

Due to the size of most INSAR data, iterative approaches,
which do not explicitly invert the parenthetical term on the
right-hand side of Eqn (9), may be the only computationally
tractable way to estimate m. Therefore, when calculating C,,
it may be more practical to consider the case where


https://doi.org/10.3189/2015JoG14J023

256

C.! < G'C;'G, when Eqn (9) simplifies to
Cn~ (G'C;'G)”" (11)

whose elements can be estimated for each independent
pixel, assuming Cq is diagonal (see next subsection), instead
of as an ensemble of interdependent pixels as required in

Eqn (9). From Egn (11), we can see that Em is a function of the

viewing geometries (via G) and interferometric noise (via Cy).
Estimates of the uncertainty attributable to non-ideal

viewing geometries are contained in the sensitivity matrix:

s=(G'G)”" (12)

The diagonal terms of S are the sums of the squares of the
components of the LOS vector, and the off-diagonal terms
are the sums of the cross products of the LOS vector
components. The off-diagonal components indicate the
coupling between the respective inferred velocity field
components that result from a non-ideal set of viewing
geometries, while the diagonal components quantify how
INSAR measurement errors propagate into the components
of m. An ideal set of viewing geometries can be generally
described as having a constant, oblique incidence angle and
full azimuthal coverage, with constant azimuthal spacing
between flight lines. Differential incidence angles, incon-
sistent azimuthal spacing or incomplete azimuthal coverage
in the viewing geometries leads to nonzero off-diagonal
components and increased sensitivity to measurement
noise. Sensitivity to measurement noise decreases with
increasing amounts of data. To characterize the contribution
of the LOS geometry to the model uncertainty, we define the
variance term:

Ag = V] (13)

Readers familiar with GPS analysis might recognize A; as
the position dilution of precision (PDOP), the spatial
component of the geometric dilution of precision (GDOP)
(Misra and Enge, 2006).

We can glean some idea about the sensitivity of A, to the
number of independent data points and a constant
incidence angle by considering an idealized set of p > 3
viewing geometries. Let the members of a set of p LOS unit
vectors be defined in a spherical coordinate system
described by equispaced azimuth angles (¢ = 27k/p, for
k=1, ...,p) and a constant incidence angle, 6, measured
relative to vertical. These simplifications yield

1 4 1
Ag—\/,s (g3 * o) a9

Therefore, A; decreases as the square root of the number of
observations for a given 6 and is approximately constant, for
a given p, over the range of incidence angles common in
InSAR data.

Data covariance matrix

The data covariance matrix, C4, can have contributions from
atmospheric phase delay (e.g. Hanssen, 2001; Emardson
and others, 2003; Lohman and Simons, 2005), interfero-
metric decorrelation (e.g. Rodriguez and Martin, 1992;
Zebker and Villasenor, 1992; Hanssen, 2001) and spatial
dependences within the InSAR data. Because the spatial
scales of our study areas are no more than a few kilometers,
while the spatial wavelengths of atmospheric phase delays
are ~10km (Emardson and others, 2003) and we do not
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know the a priori spatial dependencies in the InSAR data,
we assume that the data covariance matrix Cq is a function
of only the interferometric SNR and is defined as

Y (15)

2
_ ) 7y
Cdv‘{ 0 i#j

where o3 is the phase variance for a given pixel in scene i. If

any of the interferograms considered in the estimation share
a common SAR scene (i.e. acquisition), the data covariance
matrix will have off-diagonal components (Emardson and
others, 2003).

The phase variance can be estimated as a function of the
interferometric correlation, 4;, and N;, the number of pixels
in the incoherent averaging window (i.e. the number of
independent looks) for scene i, using the Cramer—Rao bound
(Rodriguez and Martin, 1992):

11—yl

A (16)
2N; Wi|2

The interferometric correlation, -;, is defined as (e.g. Rosen
and others, 2000)
S8t ).
gm0 o<t a7
(sas3) (b5}

where s, is the complex scattered signal in SAR image z, -)
indicates averaging over numerous realizations of the
argument and * represents the complex conjugate. The
phase in Eqn (17) is the interferometric phase, and the
complement of the amplitude (G =1 —|v]) is commonly
called the interferometric decorrelation.

The correlation amplitude, sometimes called the coher-
ency, provides an estimate of the interferometric noise in a
given interferogram. Values near unity indicate a small
amount of interferometric noise, whereas correlation values
near zero mean the data are dominated by noise. The
interferometric correlation is generally defined as a product,
% = [¥n w7 1l; where the four independent components
are due to noise, viewing geometry (perpendicular baseline),
volumetric effects and temporal variations in the scatterers,
respectively (e.g. Rosen and others, 2000).

Prior model covariance matrix

We define the prior model covariance matrix for a given
study area based on the physical processes being studied.
Choosing C,,! = 0 reduces Eqn (8) to the classical weighted
least-squares problem, the least computationally demanding
approach. This choice implicitly assumes that points within
the prior model are independent of all other points, which is
not necessarily true for many geophysical problems.

In this study, we expect the surface velocity to vary
smoothly in space, such that VZmg = 0. Therefore, we
define the model prior covariance matrix as (Ortega
Culaciati, 2013)

C.! = k(VH)'QV? (18)

where & is a scalar weighting parameter, whose value can
be chosen to reduce high-frequency variations in the
posterior model, and

Te-T L
Q. = { [6'ci'ql; = (19)
’ 0 i#]

Because we assume mg to be smoothly varying, it follows
that C,,'my =~ 0. We note that applying Eqn (18) to Eqn (8)
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reduces Eqn (8) to a form similar to Tikhonov-regularized
least-squares.

Applying this form of Q4 results in a spatially varying
damping factor and weights the elements of the Laplacian in
terms of the interferometric phase variances, through Cy',
and the viewing geometry, via G. A key advantage in using
the Laplacian form of C..! is that we do not impose specific
values for our prior model, mg, as would be the case if we
assumed C,' = 0. In other words, we implicitly apply a
correlation length to mg that effectively makes velocity
models with unphysical discrete jumps less likely in areas
with non-ideal data coverage.

Limitations of the Bayesian method

The primary limitations of the Bayesian method discussed
above are attributable to limitations of the chosen form of the
prior model, mg, its associated prior covariance, Cy,, and
incomplete representations of errors described by the data
covariance matrix, C4. These limitations are consistent with
any inverse problem, but we discuss them here in the context
of our formulation of m. For this study, we chose a posterior
model that contains only an average velocity vector field,
because the temporal sampling of our dataset negates the
possibility of resolving other model components. This model
implicitly assumes that there is no acceleration. However,
our data were collected over a finite time during the early
melt season, when diurnal variations in velocity driven by
variable surface meltwater flux might be present. As a result,
a time-invariant average velocity does not perfectly represent
glacier motion and this shortcoming in the model introduces
a prediction error (Duputel and others, 2014) for which we
currently cannot account. Though beyond the scope of this
study, we note that, in general, a model could be composed
of a mean velocity, a secular acceleration, a series of
harmonic functions and any number of transient functions
(Hetland and others, 2012; Riel and others, 2014).

The most appropriate form of the prior data covariance
matrix must be based on a number of factors. As previously
discussed, we assume that the data covariance matrix used
in this study is diagonal and thereby neglect off-diagonal
components. Our main motivations for this assumption are
simplicity and computational tractability. We recognize that
the resulting posterior model covariance matrix does not
fully capture the total, or true, errors, but we expect it to
capture most of the formal errors because the off-diagonal
components of C4 are small relative to the diagonal
components, for the reasons discussed above. It is important
to note that formal errors are not necessarily a complete or
accurate representation of total errors. In the model defined
in Egqn (8), formal errors are described by the posterior
model covariance matrix, a function of viewing geometry
and InSAR correlation only. Any noise sources that do not
impact either of these parameters are unaccounted for in the
formal error. The classic example of such a noise source is
tropospheric delay (e.g. Lohman and Simons, 2005). Phase
shifts caused by differences in the volumetric moisture
content at or near the surface of the glacier between radar
acquisitions will also introduce errors that are not fully
manifest in our current error estimation.

Moisture-induced error

Just as propagation through water vapor in the troposphere
can cause erroneous deformation signals in interferograms
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(e.g. Zebker and others, 1997; Hanssen, 2001; Emardson
and others, 2003; Lohman and Simons, 2005), moisture
contained in a volume through which the signal propagates
can cause phase offsets. There is even evidence to suggest
changes in the moisture content of natural media that are
typically thought of as purely surface scatterers, such as bare
agricultural fields, can cause phase shifts (Nolan and
Fatland, 2003; Nolan and others, 2003; Khankhoje and
others, 2012). Our interest is in accurate estimates of surface
velocity during the early melt season, so it is important to
consider the potential influence of moisture content on the
radar signal in order to properly understand how InSAR
phase estimates relate to actual glacier motion. Hereafter,
when discussing moisture content or surface moisture in the
context of INSAR measurements and as they relate to
moisture-induced errors, we are referring to the volumetric
concentration of liquid water in the uppermost region of the
glacier that extends down to at least the penetration depth of
the radar signal.

Whenever air temperatures exceed the melting tempera-
ture, snow at or near a glacier’s surface will be infused with
liquid water and exhibit variations in moisture content over
timescales shorter than repeat-pass time intervals. Changes
in moisture content in the near-surface influence SAR phase
values via the permittivity of the media. The real component
of the permittivity of liquid water is ~80, which differs
markedly from the real permittivity for dry snow, which is
~1 (Ulaby and others, 1986). As a result, even small
changes in surface moisture content can significantly
influence the electromagnetic properties of media observed
with shallow-penetrating radar.

We use a simple empirical model to show the depend-
ence of permittivity on the moisture content. Based on
laboratory measurements of the scattered electric fields for
snow samples with various moisture contents, Hallikainen
and others (1986) modeled the relative permittivity of wet
snow, ¢, as

e=¢ —ie" (20)
e =14 Cpps + 20m + ¢ (21)
" = (fo/f)y (22)

3003
=—"n = 23
YT oy =

where f; is the radar frequency in free-space, f; = 9 GHz is
the relaxation frequency of liquid water in snow, c, is a
constant (1.83 x 107> m3 kg™"), ps is the density of dry snow
and v, is the dimensionless volumetric concentration of
liquid water. Eqns (20-23) show that, while both the real
and imaginary permittivity components increase with the
liquid water content, the real component is more sensitive to
changes in moisture content over the range of standard SAR
frequencies (Fig. 2a and b). Increasing permittivity can:
(1) reduce the penetration depth, &, of the radar signal

(6p ~ V' /(koe"), where ko is the radar wavenumber in free
space; Fig. 2c); (2) increase the wavenumber of the
penetrating radar signal (k = ko4/¢); and (3) increase the
power scattered by the free surface due to increased surface
reflectivity, which scales with permittivity and local
incidence angle. (Ulaby and others (1986) offer a more
thorough treatment of the electromagnetic properties of
various media, as it pertains to radar remote sensing.)

An idealized, heuristic model of INSAR phase shows the
effect of changing permittivity between two SAR scenes.
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Fig. 2. (a) Real and (b) imaginary components of the permittivity of snow as a function of liquid water content, v, calculated from Eqns (20—
23) (solid curves) using ps = 500 kg mm~—3 (Hallikainen and others, 1986), f, = 1.25 GHz for L-band and f, = 9.65 GHz for X-band. Dashed
curves show the square root of the like-colored solid curve. (c) The penetration depth, é,, of a homogeneous medium with a constant
permittivity profile dictated by the liquid-water content.

This conceptual model is concerned only with changes in
moisture that occur over short (hourly-to-daily) timescales,
because InSAR is generally ineffective at longer timescales,
particularly in areas that experience surface melt. We adopt
a basic two-layer model, one thin layer overlying a half-
space, to describe moisture changes. Over the timescales of
interest, we assume vy, is a function of only depth z and
varies only in the uppermost layer extending to depth h; vy,
is constant for z > h. If h < é,, 6, will be approximately
constant between SAR acquisitions. If we neglect the surface
scattered component of the received radar signal, a reason-
able approximation when vy, is small (Matzler, 1998;
Oveisgharan and Zebker, 2007), we can write a simple
model for the INSAR phase, ¢, of a unit-amplitude incident

electric field scattered from a stationary volume as

h

6~ 2ko / (i [Va@] - mR[Va@| b dz  (24)

0

where subscripts a and b indicate the two SAR scenes
used to generate the interferogram, R[] indicates the
real component of the complex argument and u;

\/[54(0)/(4(0) —sin®6;)], where 6 is the local radar inci-

1

dence angle. By comparing Eqns (20-23) and Eqn (24) and
the permittivity values shown in Figure 2a, we see that even
small changes in vy for h >0 will influence the InSAR
phase. (More in-depth descriptions of the salient physics are

given by Ishimaru (1978) and Ulaby and others (1986).)

DATA

In June 2012, we collected GPS and InSAR data over
Langjokull and Hofsjokull. NASA’s UAVSAR system col-
lected InSAR data for 6 days beginning 3 June. Ten GPS
stations deployed on Vestari-Hagafellsjokull collected 155
dual-frequency data during the InSAR campaign. Two of
these GPS stations, at elevations relative to mean sea level
of ~490 and 1100m, were co-located with automatic
weather stations that recorded air temperatures throughout

the campaign.

https://doi.org/10.3189/2015J0G14)J023 Published online by Cambridge University Press

UAVSAR acquisitions

The data used in this study were collected as part of a
UAVSAR campaign in which we collected data for six non-
continuous days over the course of 12 days. At the time of
data acquisition, UAVSAR was being flown aboard a NASA
Gulfstream Il aircraft that cruises at ~12.5km altitude,
providing an incidence angle range of 22-65°, which we
trim to ~40-65°. Data were collected along 15 unique flight
lines that were designed to image Langjokull and Hofsjokull
(Fig. 1) from at least three different LOS vectors during each
data collection. The flights were scheduled such that the first
3 days of data were collected in the afternoon, a few hours
after the expected maximum daily melt based on tempera-
ture, and the final 3 days of data were collected in the early
morning, ~12 hours offset from the afternoon data collec-
tion. The viewing geometries of the flight lines provide good
constraints on the ice flow over most areas (Fig. 3).

UAVSAR is a fully polarimetric, L-band (1.25 GHz) SAR
system, whose integrated autopilot system, inertial naviga-
tion unit (INU) and real-time GPS system are capable of
piloting the aircraft through a 10m diameter tube that
encases the proposed flight line. This aerial precision
facilitates repeat-pass interferometric observations whose
temporal baseline and LOS vectors can be programmed.
High bandwidth (80 MHz) and a large along-track antenna
length give UAVSAR a raw spatial resolution of 1.9m in
range (cross-track) and 0.8 m in azimuth (along-track)
(Hensley and others, 2009a).

Random aircraft motions complicate the INSAR processing
task for UAVSAR data relative to data acquired by satellite-
based SAR systems. During processing, these random
motions are largely accounted for using data from the INU
and GPS system. Centimeter-scale motion between aircraft
repeat passes (i.e. the residual interferometric baseline) that
is not accounted for using the INU and GPS data is estimated
by calculating the amplitude cross-correlation of the two
scenes and considering only the range-correlated signals to
be artifacts of aircraft motion (Hensley and others, 2009b).
Small residuals can remain after this process, but because
UAVSAR maintains very small perpendicular baselines
(typically <2 m), the baseline correlation component, ,, is
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Fig. 3. A; and (inset) number of SAR scenes collected each day by UAVSAR in June 2012 for (a) Langjékull and (b) Hofsjokull. Black

contours denote UAVSAR scene boundaries.

~1. Small perpendicular baselines and UAVSAR’s high SNR
help ensure that the majority of decorrelation in the repeat-
pass interferograms is due to temporal variations in the
scatterers and volumetric decorrelation.

InSAR post-processing

After most of the random motion components were removed
from the phase, along with estimates of Earth’s curvature
and local topography provided by a DEM, we further
processed the data to retrieve interferograms that are useful
for inferring the velocity field. We employ a custom DEM
that combines data from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER; version 1) with
DEMs for Langjokull, derived from a GPS survey conducted
in 1997 (Palmer and others, 2009), and Hofsjokull, derived
from lidar surveys conducted in 2008 and 2010 (J6hannes-
son and others, 2013). Post-processing includes:

Averaging and decimating each interferogram using a
3 pixels x 12 pixels (range x azimuth) averaging window
(a process commonly called ‘looking’), which yields
5m x 7.2 m pixels in radar coordinates;

Filtering the interferogram using a 10 x 10 pixel equi-
weighted moving average, or low-pass, filter;

Unwrapping the filtered interferogram using the stat-
istical cost, network flow algorithm for phase unwrap-
ping (SNAPHU) (Chen and Zebker, 2000, 2001, 2002).
During unwrapping, we do not distinguish between
pixels that image the glaciers and those that image the
bare ground surrounding the glaciers, so InSAR phase is
continuous when transitioning between rock and ice;

Geolocating the unwrapped interferograms;
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Flattening the geolocated interferograms by fitting and
removing a phase surface from the bare ground
surrounding the glaciers. We assume the ground around
the glaciers was stationary during the 24 hour period
between data acquisitions and that this flattening process
removes the majority of tropospheric delay (Zebker and
others, 1997).

Hereafter, we refer to the flattened, unwrapped, geolocated
interferograms simply as interferograms.

We calculated the LOS unit vectors for each inter-
ferogram from the geometry of the flight track and the
platform position. We reference the LOS vectors to a local
east-north—up coordinate system, whose origin is coincident
with the pixel location in the geolocated image and
referenced to the WGS84 spheroid. The modeled velocity
field is referenced to the same coordinate system.

GPS collection and processing

We deployed ten GPS stations on Vestari-Hagafellsjokull, an
outlet glacier chosen for logistical simplicity and safety of
the field crew. Data were continuously collected every 15s
for ~2 weeks. The GPS collection window began 2 days
prior to the first UAVSAR acquisition. Eight of the GPS
stations operated throughout the 2 week deployment period
while the other two stations lost power and stopped
collecting data after ~1 week. All GPS receivers were
mounted on poles sunk several meters into the ice so that
the GPS data capture the kinematics of the underlying ice,
not the free surface.

We processed the raw GPS data using kinematic Precise
Point Positioning (PPP) methods available as part of GNSS
Inferred Positioning System and Orbit Analysis Simulation
Software (GIPSY-OASIS) (e.g. Bertiger and others, 2010).
PPP eliminates the need for a ground reference station by
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using precise clocks along with predetermined satellite
orbits (Zumberge and others, 1997), and kinematic proces-
sing allows for higher-frequency position updates during
processing, which is most suitable for continuously deform-
ing areas. We smoothed the processed positions over a
6 hour window and referenced all motions to the same
reference frame as the InSAR-derived velocity fields.

RESULTS
Inferred velocity field

We present examples of the inferred horizontal component
of ice flow for Langjokull and Hofsjokull, along with
estimates of the viscous component of ice flow (Fig. 4).
Arrows in Figure 4a and c indicate the direction of horizontal
flow, and the color map represents the horizontal speed,
which we smoothed using a 200 m x 200 m low-pass filter.
The InSAR data were collected in the early mornings of
13 and 14 June 2012 (At =~ 24 hours), ~14 hours after the
maximum daily melt. Unusually warm weather over much of
Iceland in early June 2012 caused the atmospheric tempera-
ture over central Iceland to peak above freezing in the late
afternoon for several days prior to and during data collection.
Juxtaposed with the horizontal velocity fields are velocity
fields estimated from a simple ice-flow model that accounts
for only the internal viscous deformation in the ice,
neglecting all sliding along the glacier bed (Fig. 4b and d).
Assuming surface-parallel flow and a linear depth-depend-
ent driving stress profile, it can be shown that the viscous
component of the ice flow has a power-law relation to ice
thickness and surface slope and is given as (Cuffey and
Paterson, 2010)
A
Vg = nzﬁ H (25)
where 7, is basal shear stress and H is ice thickness. We
assume 7, = picegHcy, the gravitational driving stress, where
a is the ice surface slope and pice = 900 kgm~3 is the depth-
averaged density of glacier ice. Over broad areas, basal
stress cannot exceed gravitational driving stress, meaning
that our results for Eqn (25) approximate the maximum
viscous deformation rate. The variables n and A arise from
Glen’s flow law, the nonlinear constitutive relationship
between the effective strain rate, g, and the effective stress,
7, within the ice (ég = Arf), and are taken to be 3 and
2.4 x 10724 Pa—3s71, respectively (Cuffey and Paterson,
2010). We averaged slope and thickness over a window
that is ~10 times the average ice thickness in all directions.
Arrows in Figure 4b and d, which are co-located with
arrows in Figure 4a and c, respectively, indicate the free
surface gradient, and the color map represents the speed
calculated from Egn (25). Because the surface slopes are
small (<20°) and the viscous flow model is a simple model,
we do not convert the surface-parallel values from Eqn (25)
to true horizontal motion.

InSAR and GPS results

GPS data collected on Vestari-Hagafellsjokull allow us to
validate a portion of the InSAR-derived velocity field (Fig. 5).
Horizontal speeds calculated from GPS data represent the
mean velocity over the same time window as the UAVSAR
data. Black, white and red arrows in Figure 5a indicate the
GPS-measured flow vector, the mean surface gradient vector
and the InSAR-derived flow vector, respectively, and are not
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drawn to scale. Co-located GPS and InSAR-derived hori-
zontal speeds are shown in Figure 5b, where the solid gray
curve is the one-to-one regression line and the vertical error
bars are derived from An. Horizontal speeds along a
transect that runs from the black X in Figure 5a through
GPS stations LO4-LOT are shown in Figure 5c, along with A,
and A, for the same transect.

Posterior model covariance

East and north variances from C,, provide estimates of the
reliability of the respective inferred velocity component
(Fig. 6a and b for Hofsjokull and Fig. 6d and e for
Langjokull), while A, indicates the total error in the
posterior model (Fig. 6¢ and f). Hofsjokull and, to a lesser
extent, Langjokull have low expected errors over most of
their surface. High variance values occur in areas where the
ice motion is poorly constrained by InSAR observations
(Fig. 3). High-frequency features in Figure 6 are attributable
to variations in interferometric correlation.

Moisture-induced error

The interferograms used to derive the velocity fields contain
phase offsets that we attribute to differential volumetric
moisture content in the glacier near-surface. Examples of
these offsets are shown, along with estimates of ambient air
temperature, in Figure 7. We present interferograms col-
lected from two different flight lines that image Hofsjokull on
different days (Fig. 7b-e), along with double-differenced
interferograms, i.e. the differences of the respective inter-
ferograms (Fig. 7f-h). Because Hofsjokull is roughly dome-
shaped and we designed the flight lines to look up the surface
slope as much as possible, these lines are representative of all
flight lines. Data used to derive the velocity field in Figure 4a
are shown in Figure 7e. Interferograms and double-differ-
enced interferograms corresponding to data collected in the
afternoon (Fig. 7b—c and f), when surface moisture content
should be highest, show a more distinct phase offset relative
to data collected in the morning at higher elevations. The
differential phase sign change in Figure 7f occurs at an
elevation where temperatures are ~0°C on 5 June.

Differential surface moisture content is the only plausible
explanation for the residual phase offsets shown in Figure 7.
All InSAR data used in this study have perpendicular
baselines, B, < 10m, and most data have B, <5m.
Because topographic sensitivity scales with B, the InSAR
data shown here have virtually no sensitivity to DEM errors.
Furthermore, the residual phase increases from near-zero
over the bare ground to >1 rad over ~10 m near the edge of
the ice. The troposphere is not capable of supporting
moisture gradients steep enough to account for such steep
phase gradients. Instead, atmospheric phase offsets should
smoothly vary from the ice to bare ground over length scales
that are at least an order of magnitude larger than observed
in Figure 7.

DISCUSSION

Our derived horizontal velocity fields on both ice caps
qualitatively agree with previously published results that
used ERS data collected in February 1994. Over Hofsjokull,
Gourmelen and others (2011) show the same outlet glaciers
and general flow pattern, but flow velocities on Illvidra-
jokull, Pjorsarjokull and Blautukvislarjokull are markedly
higher in February 1994 relative to our results. Because the
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Fig. 4. (a) Horizontal velocity field for Hofsjokull, inferred from InSAR data collected on 13 and 14 June 2012 (At = 24 hours). Arrows
indicate the direction of the ice flow, and the color map indicates the horizontal speed. (b) Velocity estimated from a simple viscous flow
model that does not account for basal slip (Eqn (25)). The color map indicates the speed of viscous flow, and arrows indicate the ice surface
gradient. The difference between the estimated viscous flow speed and the measured speed in the outlet glaciers is indicative of slip at the
glacier bed. Black contours are the same as in Figure 1, and tan-colored areas surrounding the glacier show ground elevation. (c, d) Same as
(a, b), but for Langjokull.
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earlier data were collected in winter and show higher
velocities, it is likely that these three glaciers were surging in
February 1994. bjérsarjokull is known to have surged in
1994 (Bjornsson and others, 2003), but these observations
mark the first recorded surges on lllviorajokull and
Blautukvislarjokull. Our results on Langjokull generally
agree with Gourmelen and others (2011) and Palmer and
others (2009). Lower flow velocities on Sudurjokull in our
study relative to 1994 lend credence to the postulate by
Palmer and others (2009) that this glacier was surging in
1994. Unlike Palmer and others (2009), we do not observe
elevated velocities at the edges of the ice cap.

Spatial patterns in the horizontal velocity fields of
Hofsjokull and Langjokull are broadly consistent with the
models of viscous ice flow, and the directionality of the
measured ice flow is generally along the ice surface slope on
both ice caps. Areas of low velocity not located near the
edge of the glacier indicate ice divides, and areas of high
velocity correspond to known outlet glaciers (Fig. 1;
Bjornsson, 1988; Bjornsson and Palsson, 2008; Gourmelen
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and others, 2011). Significant differences between the
magnitude of estimated viscous flow and measured velocity
fields indicate that basal slip is likely to be an important
component of the ice flow. Basal slip rates may be greater
on Hofsjokull, which typically has higher driving stresses
than Langjokull and comparable mechanical properties
at the bed (Bjornsson, 1986, 1988; )J6éhannesson and
Seemundsson, 1998). It remains an open question for future
work to ascertain the extent to which surface meltwater flux
may be influencing basal slip on each glacier.

On Vestari-Hagafellsjokull, southwest Langjokull, the
InSAR-derived velocities agree with co-located GPS velocity
measurements. Expected errors in the InSAR-derived vel-
ocity field near the upstream GPS stations, L04 and M02, are
relatively low and the errors increase by more than a factor
of five downstream. Stations L0O3, LO4 and MO03, whose
locations have small A, values, are in close agreement with
the InSAR-derived horizontal velocities. High noise in the
east component of the InSAR-derived velocity field causes a
significant eastward shift in the inferred velocity vector at
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MO5 but not the velocity magnitude, which matches the
GPS-measured speed. GPS-derived horizontal speed is
higher at station M02 than the InSAR-derived velocity field.
Because MO02 is located in an area with a steep velocity
gradient, spatial filtering of the InSAR data is likely to
account for the discrepancy between GPS and InSAR
speeds. The InSAR-derived velocity near station LO1 should
be considered unreliable, due to high noise caused by
suboptimal viewing geometries and low correlation. During
fieldwork, we observed significant surface lowering in the
vicinity of LO2 and postulate that surface dynamics are the
source of the disparate InNSAR and GPS velocities. We
secured the GPS antenna poles several meters into the ice,
making GPS measurements largely independent of changes
in the local free-surface height. By contrast, radar waves
incident on the area around L0O2, where the surface was
either wet snow or exposed ice throughout the data
collection window, are likely to be influenced by free-
surface dynamics because of high radar reflectivity at the
surface. The generally good agreement between InSAR-
derived and GPS velocities at most station locations suggests
that the InSAR-derived velocity fields of both ice caps are
reliable enough to allow for analysis of the ice flow.

A variety of characteristic features are evident in the
outlet glaciers on both ice caps. Approximately one-third of
the outlet glaciers, Mdlajokull (HM), Blautukvislarjokull
(HT), Blagnipujokull (HB), Kvislajokull (HK), Vestari-Haga-
fellsjokull (LV), Pristapajokull (LP) and Sudurjokull (LS), form
concentrated ice streams that have distinct regions of
considerably higher velocity than the surrounding ice. Most
of these glaciers occur in areas with high driving stress,
though the viscous flow model is a poor indicator of the
location and magnitude of the fastest-moving ice, further
supporting the idea that basal slip is an important
contributor to the total ice flux. The remaining outlet
glaciers tend to transport ice more diffusively across their
widths, having lower shear rates at their margins relative to
the more stream-like glaciers. The general characteristics of
these sheet-like outlet glaciers are represented, for the most
part, in the simple viscous flow models, though their
inferred horizontal speeds can be more than a factor of
two larger than the model predicts.

The fastest glaciers on Hofsjokull are Mualajokull,
Blagnipujokull and Kvislajokull, with Mdalajokull having
the highest transport of the three. These three fast glaciers,
along with Satujokull (HS) in the north, Pjérsarjokull in the
east and Blondujokull in the west, are known to surge
(Bjornsson and others, 2003). It is worth noting that only the
high-velocity area of Kvislajokull correlates with an ex-
pected high in viscous ice flow, based on the simple viscous
model, indicating that a large amount of basal slip may be
present beneath these glaciers.

Fast glaciers on Langjokull include Pristapajokull, Nord-
urjokull, and Vestari-Hagafellsjokull, the deployment site for
the GPS stations used in this study. The highest-velocity
areas in these fast glaciers generally correlate with areas that
have higher predicted rates of viscous flow, though the
measured velocity is a factor of 1.5-2 times higher than the
viscous deformation component, likely indicating significant
basal slip in these areas. Vestari-Hagafellsjokull and its
eastern neighbor, Eystri-Hagafellsjokull, are known surge-
type glaciers (Bjornsson and others, 2003).

We omit results for the vertical component of the
InSAR-derived velocity field from this study because

https://doi.org/10.3189/2015J0G14)J023 Published online by Cambridge University Press

Minchew and others: Langjékull and Hofsjékull velocity fields

moisture-induced phase offsets make the true vertical
component of the ice velocity inaccessible. For example,
inferred vertical velocity components corresponding to the
horizontal velocity fields given in Figure 4 have a median
value of ~20ma~" in the up direction, with higher values
manifested in the southeast quadrant, which receives
relatively high levels of solar radiation during the early
melt season, and few areas that indicate downslope flow.
None of the glaciers that are apparent in the horizontal field
are manifested in the vertical velocity component. These
results are not physically justifiable. We note that phase
offsets occur along the radar LOS and are approximately
constant on given days, meaning that the vertical com-
ponent of the velocity field is particularly sensitive to
moisture-induced phase offsets. Future work should focus
on methods to decouple the moisture-induced phase offsets
from ice motion, to allow for accurate estimates of the
surface-normal component of the velocity field, an import-
ant quantity for ice-flow modeling and studies of basal slip.

Moisture-induced phase offsets in InSAR data have the
potential to pose problems for high-precision InSAR
applications in areas where liquid water is present at the
glacier surface. These areas include southern Greenland,
the Canadian Arctic Archipelago, the Antarctic Peninsula
and peripheral zones, and many mountain glaciers. Here
we have shown examples of moisture-induced phase offsets
in repeat-pass interferograms, but we note that the depend-
ence of phase on the radar incidence angle (Eqn (24))
suggests that INSAR-derived DEMSs, which utilize SAR data
collected from different antenna positions at approximately
the same time, may also contain biases that can be linked
to volumetric surface moisture content. As a result, InSAR-
based studies of glacial mass balance as well as kinematics
will benefit from careful scrutiny of the data and
consideration of the possible presence of moisture-induced
phase offsets.

CONCLUSION

We have presented a new Bayesian approach for inferring
3-D velocity fields from multiple InSAR acquisitions, and
use the new method to infer the horizontal velocity fields for
two temperate ice caps, Langjokull and Hofsjokull, from
airborne, L-band, repeat-pass InSAR scenes collected in June
2012. The flow directions of the horizontal fields on both ice
caps closely agree with the free surface slope, and patterns
in the horizontal speed are broadly consistent with estimates
of viscous flow calculated from surface and bedrock DEMs
using a simple model. InSAR-derived horizontal velocities
correspond to co-located GPS velocities for the same time
period on Vestari-Hagafellsjokull, except in areas where the
ice motion is not well constrained by the INSAR data.

The InSAR-derived horizontal speeds differ markedly
from the predicted viscous flow speeds, likely indicating the
importance of basal slip to total ice flow on Langjékull and
Hofsjokull. Both ice caps contain numerous outlet glaciers
with various flow characteristics. These characteristics range
from stream-like outlet glaciers, which flow significantly
faster than the surrounding ice, to sheet-like glaciers, which
transport ice over broad regions with little internal strain and
low strain rates at the margins. Due to the variety of outlet
glaciers, similar bed properties, and consistent climate
forcing, these ice caps offer a valuable natural laboratory
with which to study the mechanics of basal slip.
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Differential surface moisture content on the glaciers
prevented reliable estimates of the vertical component of
the velocity fields. Because moisture-induced phase offsets
are approximately constant across all interferograms and are
small relative to the phase offsets over the flowing ice, the
error is manifested primarily in the vertical velocity field and

has little influence on horizontal velocities.
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