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Approaches such as DeFries-Fulker extremes
regression (LaBuda et al., 1986) are commonly

used in genetically informative studies to assess
whether familial resemblance varies as a function of
the scores of pairs of twins. While useful for detect-
ing such effects, formal modeling of differences in
variance components as a function of pairs’ trait
scores is rarely attempted. We therefore present a
finite mixture model which specifies that the popu-
lation consists of latent groups which may differ in
(i) their means, and (ii) the relative impact of genetic
and environmental factors on within-group variation
and covariation. This model may be considered as a
special case of a factor mixture model, which com-
bines the features of a latent class model with those
of a latent trait model. Various models for the class
membership of twin pairs may be employed, includ-
ing additive genetic, common environment, specific
environment or major locus (QTL) factors.
Simulation results based on variance components
derived from Turkheimer and colleagues (2003), illus-
trate the impact of factors such as the difference in
group means and variance components on the feasi-
bility of correctly estimating the parameters of the
mixture model. Model-fitting analyses estimated
group heritability as .49, which is significantly
greater than heritability for the rest of the population
in early childhood. These results suggest that factor
mixture modeling is sufficiently robust for detecting
heterogeneous populations even when group mean
differences are modest.

The classical twin study yields data which are useful
for decomposing both variance within a trait and the
covariance between traits. Provided that twins are
sampled at random from the population, and that
zygosity is correctly diagnosed (or its uncertainty is
modeled; Neale, 2003), this method is robust to
minor violations in the equal environment assumption
(Vandenberg, 1984). However, the presence of geno-
type by environmental interactions (G × E), genotype
and environmental correlations, and nonrandom
mating can bias parameter estimates. This article will

focus on estimating heritability in the presence of
population heterogeneity.

One popular approach to testing for G × E is to
use a measured environmental variable (Boomsma et
al., 1999; Heath et al., 1998; Purcell & Sham, 2002).
Another is to use a measured genotype (Eaves &
Sullivan, 2001; Martin & Oakeshott, 1983). Other
studies have used both (Caspi et al., 2003; Martin et
al., 1987). G × E interaction is observed if there are
genetic factors which regulate the overall degree of
vulnerability or sensitivity to the pathogenic effects of
environmental stress (Kendler & Eaves, 1986;
Kendler & Karkowski-Shuman, 1997). All these
approaches require that a relevant environmental or
genetic interacting factor has been measured.
However, it seems likely that such interactions may
exist even when the relevant factor has not been mea-
sured. The aim of this article is to examine whether
such interactions can be detected when direct mea-
surement of the salient interacting variable (be it
environmental or genetic or some combination
thereof) has not been made.

The usual variance components model employed in
the analysis of monozygotic (MZ) and dizygotic (DZ)
twin data (see Chapter 8, Neale & Cardon, 1992) par-
titions trait variance into additive genetic (A), common
environment (C) and specific environment (E) compo-
nents. For the sake of simplicity we will ignore genetic
dominance (D) in what follows, although the model we
propose would easily be adapted to D as well. The
standard univariate ACE model does not explicitly
model G × E. If present, G × E may bias variance com-
ponent estimates, and the population heterogeneity
which it implies would likely go undetected. Variance
component estimates are averages across the popula-
tion in question; the utility of this average is lost if the
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population consists of a mixture of subpopulations
with widely varying variance components. Akin to the
case where there exists a measured environmental
factor which affects, for example, the heritability of a
trait, we can imagine that this external factor itself is
not purely of unique individual specific environment
origin, but may be influenced by genetic factors or
shared environmental factors, and therefore may be
correlated between relatives. Thus the interacting
external factor might be binary, ordinal or continuous,
and might be influenced by one or more quantitative
trait loci (QTLs) or environmental factors. We there-
fore denote the variance components of the external
interacting factor by the subscript F: QF, AF, CF or EF.
Since any of these external variance components may
change the size of any one of the trait’s variance com-
ponents, we can envisage 12 possible types of
interaction (QF × A, QF × C, QF × E; AF × A, AF × C, AF

× E; CF × A, CF × C, CF × E; and EF × A, EF × C, EF ×
E). We emphasize that the external factor is not
measured,  that is, latent, and therefore refer to the
model as a latent heterogeneity variance compo-
nents (LHVC) model. When the external factor (QF

AF, CF, or EF) itself generates a mean difference in the
trait of interest, it generates part of the trait variance.
In other words, the variance component may be parti-
tioned into that due to the external factor (albeit
latent) and that due to the residual.

Genetic epidemiologists have shown interest in
testing whether the heritability of a trait varies as a
function of the value of the trait itself. For example,
individuals with extremely high scores on the trait
might have a higher heritability than those with lower
phenotypic scores. The DeFries-Fulker (DF, DeFries &
Fulker, 1985) extremes regression (LaBuda et al., 1986)
provides a method of identifying this type of LHVC. In
practice, the method involves selecting a particular cut-
point on the phenotypic distribution, and testing
whether the regression of the twin’s phenotype on that
of their co-twin differs for subjects above versus below
this cut-point. However, the interpretation of such
observed differences is obscure, because there is no
formal generating model for the observed effect.
Indeed, such effects might be produced by any one of
the 12 interactions described above, but attempts to
identify the particular type of interaction do not appear
common except in the animal populations using geneti-
cally informative data, for example, milk yield in dairy
cows (see Brotherstone & Hill, 1986; Gianola et al.,
1992; Foulley & Quaas, 1995).

Unfortunately, in human populations formal mod-
eling of differences in variance components purely as a
function of trait scores via mixture distributions is
challenging. Even if the technical obstacles to fitting
such models have largely been overcome, there remain
issues with the possibly large sample sizes required,
the statistical properties of tests and the distributional
assumptions (see Lubke & Muthén, 2005). For
example, nonnormality is known to produce spurious

evidence for multiple classes in the context of growth
curves (Bauer & Curran, 2003). Our simulations here
assume that there are no scaling issues, though we
return to this issue in the discussion.

To our knowledge, variance component mixture
modeling has never been attempted within the classi-
cal twin study design. In the case of the DF extremes
regression method, there is an a priori classification
into high and low groups, either based on the trait
value itself, or on a variable closely related to it. When
there are systematic changes in variance components
across the scale, it implies that the grouping factor
(whose own variance components are AF, CF, and so
on) itself has an effect on the trait mean. Therefore,
we confine our treatment here to grouping variables
which also influence the trait mean, even though it is
possible that grouping factors may exist which are not
related to the trait under study. The work we present
here is intended simply as a first investigation into
whether LHVC models are ever identified with uni-
variate data collected from twins, rather than a
comprehensive study of the necessary and sufficient
conditions and sample sizes that may be required. To
illustrate the approach, we consider the results of
Turkheimer and colleagues (2003) who reported that
the variance components in a measure of cognitive
ability differ between high and low socioeconomic
status (SES) groups. In particular, shared environmen-
tal factors account for a larger proportion of variance
among impoverished families. Here we investigate
whether this pattern of differences might be detected
in the absence of the external interacting SES variable.

Aim
We present a biometrical factor mixture approach
which models the population as consisting of two
classes which differ in their means as well as the rela-
tive impact of genetic and environmental factors on
within-group variation and covariation. We also
model the genetic and environmental etiology of the
latent class membership, or grouping mechanisms.
The estimated variance components obtained by
Turkheimer and colleagues (2003) for high and low
SES groups were used as the basis for the simulation
study described below. Using only twins’ trait scores
from the simulated data, our aims are to determine if
biometrical factor mixture modeling (FMM) can accu-
rately recover the following features: (i) the variance
components within each class; (ii) the latent class
membership probabilities; and (iii) the etiological
mechanism for class membership.

Materials and Methods
Model for Class Membership

Throughout this study, only two classes are consid-
ered, ‘high’ and ‘low’, according to the mean
phenotypic value. Although not exhaustive, five mech-
anisms for an individual’s class membership were
tested: random effects (nonshared environment ‘E’);
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cultural effects (shared environment ‘C’); additive
genetic differences (additive genetic ‘A’); combined
genetic and environmental effects (ACE); and a hypo-
thetical major locus effect caused by differences in
allele frequency (QTL dominant).

Under the A, C and dominant QTL class member-
ship models, all MZ twin pairs are concordant for
class membership (i.e., there exist only high–high or
low–low pairs). DZ pairs are more complicated.
Under the purely A class membership model, the pair-
wise membership probabilities (high–high, high–low,
low–high and low–low) for each of the 2 × 2 cells
were calculated using a bivariate normal distribution
with the correlation equal to one-half. Threshold cut-
points on the normal distribution were chosen to
obtain the appropriate probability of class member-
ship (e.g., a threshold of 1.282 would be used to give
a .9 probability of membership in class 1). Under the
purely C model for class membership, DZ twin pairs
are always concordant, like the MZ pairs. When class
membership is due to E factors, both MZ and DZ
twin pairs may be concordant high, concordant low,
discordant high–low or low–high. Furthermore, the
probabilities that MZ pairs belong to these classes are
equal to those for the DZ pairs. Under the QTL
model, the class membership probabilities for the DZ
pairs were calculated according a simple diallelic dom-
inant locus (e.g., Neale et al., 1999, see Table 1).

Within-Class Model

Within-class variance components were held constant
across all conditions such that in class 1, the standard-
ized variance components were ahi

2 = .72, chi
2 = .15, and

ehi
2 = .13 for additive genetic, shared and nonshared

environmental effects respectively. In class 2, the same
parameters were alow

2 = .10, clow
2 = .58 and elow

2 = .30.
These correspond directly to the variance components
for high and low SES groups estimated by Turkheimer
and colleagues (2003). Our simulation is based on the
assumption that the same genetic and environmental
factors operate in the two classes, but their magnitude
differs. That is to say, the model parallels the ‘scalar
sex-limitation’ model as opposed to the ‘nonscalar sex-
limitation’ model (Neale & Cardon, 1992). Therefore,
the expected covariance between MZ pairs concordant

for the high class membership is ahi
2 + chi

2; that for the
low class is alow

2 + clow
2; and that for discordant pairs is

ahi × alow + chi × clow. The DZ within class covariances are
similar, but have only one-half the additive genetic con-
tribution to pair covariance.

Example scatterplots of the simulated data are
shown for each of the five class membership models.
In these figures, the mean difference between classes
was set at 3.0, and the within-class variation was set
according to the within-class model just described.

Note that, except for the cases including E as part
of the mechanism for group membership, the MZ
twin pairs consist of only two classes, leading to a
phenotypic mixture distribution consisting of two
bivariate normal distributions with different means.
In the class with the higher means, the dispersion of
the points is slightly closer to the regression line than
is the case for the class with the lower mean, reflect-
ing the higher within-class correlation for the high
mean group (.87 vs. .68). This pattern is the same
regardless of the group membership mechanism. In
the E and ACE mechanisms, two additional mixture
components are generated, corresponding to cases
where the MZ twin pairs are discordant for group
membership. The dispersion of the MZ pairs discor-
dant for class membership around their regression
line is greater than for concordant pairs, reflecting
the lower within-class correlation (.56) for this
group. Overall, the pattern of the scatterplots for the
DZ data is similar to that of the MZ pairs, except
that for the DZ pairs the correlation for pairs con-
cordant for the higher mean group is less than that
for the lower mean group (.51 vs. .63) which is
opposite to the MZ pattern. Again, the class-discor-
dant pairs have a lower correlation than either of the
same-class groups. Note that this pattern is not due
to different genetic or environmental factors operat-
ing in the high versus low mean groups, but simply
due to the dramatic contrast between the variance
components (high A and low C vs. low A and high
C) in the two groups. Clearly, given a purely AE
model for one group, and a purely CE for the other,
the prediction would be of zero correlation between
twins (either MZ or DZ) for pairs discordant for
group membership.

Table 1
Standardized Components of Variance Within Each Latent Class Based on Turkheimer and Colleagues (2003)

Class 1 Class 2

Standardized variance components A1 C1 E1 A2 C2 E2

.72 .15 .13 .10 .58 .32
rMZ rDZ

Class 1 concordant .72 + .15 .5 × .72 + .15
Discordant √(.72 × .10) + √(.15 × .58) 1/2 × √(.72 × .10) +  √(.15 × .58)
Class 2 concordant .10 + .58 .5 × .10 + .58

Note: Also included are the expected twin pair correlations by zygosity and level of class membership concordance.
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Simulation Design Parameters

Each mechanism consisted of six levels of varying
group membership probability (or allele frequency):
.60, .65, .70, .75, .80, and .85. For each level we sim-
ulated data for 20,000 twin pairs (10,000 MZ, 10,000
DZ) using SAS software (Version 8 of the SAS System
for Unix). Throughout the simulation we used a two
class model with simulated mean differences of 11/2
and 3 standard deviations. The simulation exercise
was repeated 1000 times for each of these conditions,
so in total 5 × 6 × 20,000 × 2 × 1000 = 1.2 × 106

scores were simulated.

Biometrical Factor Mixture Modeling

With increases in computing power, the last decade
has seen a growing interest in FMM. FMM combines
the features of latent class with those of latent trait

modeling. Latent class analysis identifies subtypes, or
mixture components, of related cases from multivariate
categorical data. Latent trait, or structure analysis (see
Lazarsfeld & Henry, 1968), is a form of factor analysis
which may be used for binary or categorical data. In the
case of continuous data, as considered here, the latent
profile model is the homologue of latent class analysis.
The name factor model is commonly used regardless of
whether the input data are continuous, ordinal or
binary. Thus latent profile models are mixture models
with zero common factors but differing group means
and/or variances, while factor models have common
factors but consider the population to be homogeneous
(i.e., only one component in the mixture). Factor
mixture models are a generalization of both model
types, including both factors and mixture components
(Lubke & Muthén, 2005).

Figure 1a
Distribution of simulated data under an additive genetic (A) class
membership mechanism for MZ twin pairs (above) and DZ twin pairs
(below).
Note: Simulated data of 10,000 MZ and 10,000 DZ twin pairs, with a 3 SD mean differ-

ence. Class membership probability of .60 and DZ twin pair correlation of .50.

Figure 1b
Distribution of simulated data under a shared environmental (C) class
membership mechanism for MZ twin pairs (above) and DZ twin pairs
(below).
Note: Simulated data of 10,000 MZ and 10,000 DZ twin pairs with a mean difference 

of 3 SD class membership probability of .60.
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We implemented FMM which employed the standard
biometrical genetic variance components to account for
within-class covariation between relatives (Neale &
Cardon, 1992). Thus the total variance in the simulated
trait scores is decomposed into additive (A) genetic, as
well as common (C) and unique (E) environmental vari-
ance. MZ co-twins are genetically identical, so additive
genetic effects correlate 1.0 in MZ twin pairs but only .5
in DZ twin pairs. An important assumption of this bio-
metrical model is that shared environmental effects
correlate to an equal extent in MZ and DZ twin pairs
(Kendler et al., 1994). Nonshared environmental effects
are by definition uncorrelated and also reflect measure-
ment error including short-term fluctuations.

An assumption of the usual biometrical model is that
the entire population is homogeneous with respect to
variance components. This assumption was relaxed in

the biometric FMM. Thus the model represents a hybrid
latent class model for group membership (the mixture
component) and a latent trait model for covariance
between twins within group. This model was imple-
mented in Mx (Neale, 1999) using its mixture
distribution features NModel and Weight. NModel con-
trols the number of hypothetical models for the twin
pairs, which was set to four: low–low; low–high;
high–low; and high–high. Per Mx syntax for mixture
distributions, the user supplies predicted means and
covariance matrix formulae which vertically stack the
components of the mixture. In this case a 1 × 2 vector of
means (for twin 1 and twin 2) and a 2 × 2 predicted

Figure 1c
Distribution of simulated data under a nonshared environmental (E)
class membership mechanism for MZ twin pairs (above) and DZ twin
pairs (below). 
Note: Simulated data of 10,000 MZ and 10,000 DZ twin pairs with a mean difference 

of 3 SD, and class membership probability of .60.

Figure 1d
Distribution of simulated data under an additive genetic, shared 
and nonshared environmental (ACE) class membership mechanism for
MZ twin pairs (above) and DZ twin pairs (below).
Note: Simulated data of 10,000 MZ and 10,000 DZ twin pairs with a mean difference of 

3 SD, MZ twin pair correlation of .50, and class membership probability of .65.
This corresponds to multivariate cell probabilities of .4964 (High–High), 
.1536 (Low–High), .1536, (High–Low), and .1964 (Low–Low). The DZ twin pair
correlation and the probability of class membership were fixed at .40 and .65
respectively. This corresponds to multivariate cell probabilities of .4803
(High–High), .1697 (Low–High), .1697, (High–Low), and .1803 (Low–Low).
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covariance is provided for each of the four components
of the mixture distribution (low–low, low–high,
high–low, high–high), which resulted in a 4 × 2 predicted
mean vector and 8 × 2 predicted covariance matrix. The
Weight command provides a vector (4 × 1 in this case) of
probabilities of pairwise class membership. In general,
the likelihood of an observed data vector under a
mixture distribution can be written:

ln LNmodel =
Nmodel

∑
i=1   

ln (wiLi)

where wi is the weight, and Li is the likelihood for the ith

model. In the present case, the weights are free parame-
ters which estimate the class membership probabilities.
However, in the case of the dominant QTL model of
class membership, the obtained weights are a function of
the QTL allele frequency which have been calculated
elsewhere (see Neale et al., 1999).

All models were fitted to the simulated raw con-
tinuous data by full information maximum
likelihood (FIML). Departure of parameter estimates
from the values used for the simulation was assessed
by comparing the likelihood of the model with para-
meters freely estimated to that of a nested submodel
in which the variance components and class member-
ship probabilities (or QTL frequencies) under the
simulated conditions were fixed to the values used to
simulate the data. Twice the negative difference in
log-likelihoods between these models is, under
certain regularity conditions, asymptotically distrib-
uted as a chi-square statistic with degrees of freedom
equal to the number of parameters in the model (9).
p values and change in the log-likelihood were aver-
aged across the entire simulated data to evaluate
overall model fit under each of the five conditions.
This exercise was repeated for the simulations and
examined, via QQ-plot, for departure from the
expected distribution of statistics (these plots are not
shown but are available on request from the first
author). Posterior class membership probabilities for
each pair can also be obtained from Mx. Column 11
from the individual likelihood file (generated using
the command Option Mx%P = filename) contains
the weighted likelihood wiLi for twin pair j under
each of the i = 1…4 models. The posterior class
probability that a twin pair belongs to class i is given
by wiLi / Σi=1 (wiLi)

Typically, it is better to conduct hypothesis testing
and data analysis via model fitting, which retains the
uncertainty about twin pair class membership. However,
there may be occasions — such as the attempt to locate a
QTL or an environmental factor which gives rise to
group membership — where classification of the twin
pairs may prove useful.

Results
Regardless of the class membership mechanism, bio-
metrical FMM reliably recovered the simulated
population parameters. This was true even for
smaller group differences of 1.5 standard devia-
tions, as well as with diminishing probabilities of
class membership, that is, p approaching .85.
Maximum and minimum ranges in the population
parameters were only marginally wider under the
condition of smaller mean separation. However, the
statistical tests for the difference between the recov-
ered parameters and those used for the simulation
did not perform accurately under several of the sim-
ulation conditions. Typically, the proportion of tests
reaching the .05 significance level exceeded that
nominal expected proportion. On the whole, the
test performed better for the larger than the smaller
class differences. These results suggest that care
should be used when drawing conclusions about the
statistical significance of empirical findings obtained
with this method.

Figure 1e.
Distribution of simulated data under a QTL (dominant) class 
membership mechanism for MZ twin pairs (above) and DZ twin pairs
(below).
Note: Simulated data of 10,000 MZ and 10,000 DZ twin pairs with a 3 SD mean difference.

An allele frequency of .50/.50 corresponds to DZ twin pair multivariate cell probabili-
ties of .5625 (High–High), .1875 (Low–High), .1875 (High–Low), and .0625 (Low–Low).
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Table 2a

Comparison of Simulated and Recovered Parameter Estimates Under the Additive Genetic (A) Class Membership Mixture Model 

Class membership probabilities and corresponding thresholds for class membership (�)*

.60, � = –.2533 .65, � = –.3853 .70, � = –.5244 .75, � = –.6745 .80, � = –.8416 .85, � = –1.036

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7179 .0213 .7183 .0220 .7193 .0159 .7182 .0234 .7184 .0257 .7179 .0289
C1 .15 .1520 .0207 .1516 .0213 .1507 .0155 .1518 .0228 .1517 .0251 .1521 .0281
E1 .13 .1301 .0035 .1301 .0038 .1300 .0029 .1300 .0045 .1299 .0050 .1300 .0058
A2 .10 .1002 .0230 .0999 .0217 .1002 .0146 .0991 .0191 .0989 .0185 .0988 .0175
C2 .58 .5795 .0207 .5797 .0194 .5799 .0129 .5805 .0167 .5807 .0159 .5808 .0150
E2 .32 .3203 .0062 .3203 .0059 .3200 .0041 .3204 .0056 .3204 .0055 .3204 .0053
µ1 .00 .0001 .0142 .0001 .0149 –.0001 .0082 –.0003 .0170 –.0007 .0189 –.0001 .0219
µ2 3.00 2.9998 .0117 2.9998 .0115 3.0001 .0112 2.9999 .0109 2.9998 .0107 2.9999 .0107
� –.2531 .0099 –.3852 .0099 .5245 .0070 –.6744 .0103 –.8414 .0109 –1.0359 .0121
p1 .5653 .5648 .4823 .5729 .5637 .5558
p < .05 .08 .09 .08 .08 .08 .08

.60, � = –.2533 .65, � = –.3853 .70, � = –.5244 .75, � = –.6745 .80, � = –.8416 .85, � = –1.036

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7166 .0286 .7173 .0289 .7178 .0304 .7178 .0307 .7175 .0337 .7192 .0264
C1 .15 .1533 .0273 .1526 .0275 .1521 .0290 .1521 .0291 .1523 .0319 .1508 .0246
E1 .13 .1301 .0049 .1301 .0055 .1301 .0061 .1302 .0070 .1302 .0081 .1300 .0069
A2 .10 .1000 .0283 .0998 .0275 .0996 .0255 .0990 .0245 .0986 .0236 .0991 .0158
C2 .58 .5796 .0255 .5799 .0246 .5800 .0225 .5806 .0213 .5810 .0202 .5815 .0143
E2 .32 .3204 .0069 .3203 .0067 .3204 .0065 .3204 .0063 .3204 .0061 .3194 .0064
µ1 .00 .0000 .0250 –.0002 .0270 –.0002 .0292 –.0001 .0334 –.0003 .0381 –.0143 .0927
µ2 1.50 1.4998 .0188 1.4996 .0178 1.4998 .0167 1.5000 .0158 1.5000 .0148 1.5155 .0869
� –.2531 .0304 –.3855 .0311 –.5245 .0317 –.6742 .0341 –.8410 .0367 –1.0341 .0311
p1 .5486 .5479 .5464 .5547 .5513 .4785
p < .05 .09 .09 .09 .10 .09 .09

Note: Shaded areas are simulated population parameters.

A1, C1, and E1 additive genetic, shared and nonshared environmental standardized variance components for class 1.

A2, C2, and E2 additive genetic, shared and nonshared environmental standardized variance components for class 2.

µ1 and µ2 class 1 and 2 means.
1 Average p value based on 9 df.

p < .05 Proportion of sample with p values less than .05.
* The Mx \allint function was used to estimate the 2 x 2 cell frequencies for DZ twin pairs using group membership probabilities (ranging .60 to .85 by .05) to estimate 
standardized thresholds, while assuming a twin pair correlation of .5.

Discussion
When based simply on twins’ trait scores, it was uncer-
tain a priori whether biometrical factor mixture model
would be able to detect population heterogeneity reli-
ably, regardless of the mechanism of class membership.
The results presented here suggest that under certain
conditions this is possible. Biometrical FMM thus
offers a practical means of inferring population hetero-
geneity when analysing genetically informative data.
We simulated models of random, shared environmen-
tal, additive genetic, combined genetic and
environmental, as well as a dominant QTL mechanisms
responsible for class membership. We also varied the
mean group difference from 1.5 to 3 standard devia-
tions. However, even a 1.5 SD difference between
groups is quite substantial. Latent heterogeneity with

less dramatic group differences would likely be more
difficult to detect and estimate accurately.

Part of FMM’s ability to recover population parame-
ters derives from the fact that we imposed a mixture
constraint such that the variance components within
each class were constrained to equal one. When we
relaxed this equality of variance constraint, optimization
still managed to recover parameter estimates in all
instances. As a further test, we simulated variance com-
ponents exceeding 1 by augmenting the genetic variance
in group one (previously a2 = .72) by increments of 5%.
Under these conditions, Mx did not recover the popula-
tion parameters reliably. This behavior, though
disappointing, is not surprising, because the likelihood
surface over parameters of a mixture distribution is
known to contain strong local minima (McLachlan &
Basford, 1988; Redner & Walker, 1984). However, by
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using the THard option in Mx to generate random start-
ing values for all parameters before refitting the model,
we were able to obtain estimates consistent with those
used to generate the data, simply by selecting the solu-
tion with the lowest log-likelihood.

Limitations
Our findings must be interpreted in the context of at
least three potential limitations. First, our data were sim-
ulated under a standard normal distribution. Likewise,
our probabilities of class membership were generated
from random numbers between 0 and 1 with a uniform
distribution. FMMs are capable of modeling skewed dis-
tributions (Bauer & Curran, 2003; Pearson, 1895;
Titterington et al., 1985). However, unlike DF regression
which is robust in the face of severe skewing of the data
(Bishop, 2005; Lubke & Muthén, 2005), in such

instances it is possible that the observed ‘mixtures’ are
simply capturing the skew rather than classes per se
within a population.

Second, we also did not vary the size of the simu-
lated data sets. It is quite likely that our ability to infer
latent classes when based on smaller sample sizes, or
with smaller group differences, will decline. Preliminary
analyses suggest that this is likely especially with
sample sizes less than 1000. Additional work is
required to provide power estimates which are simulta-
neously a function of sample size, mean differences
between classes, varying heterogeneity and class mem-
bership mechanisms. Lubke and Muthén (2005) have
reported that multivariate Mahalanobis distances of
1.5 to 2 are required to obtain proportions of recov-
ered parameters above .90. In the current study, the
Mahalanobis distance is not a sufficient statistic to

Table 2b

Comparison of Simulated and Recovered Parameter Estimates Under the Shared Environmental (C) Class Membership Mixture Model 

Class membership probabilities

.60 .65 .70 .75 .80 .85

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7201 .0206 .7203 .0197 .7201 .0188 .7204 .0181 .7204 .0174 .7203 .0165
C1 .15 .1496 .0206 .1494 .0196 .1497 .0187 .1494 .0179 .1494 .0171 .1495 .0161
E1 .13 .1303 .0032 .1302 .0030 .1302 .0028 .1303 .0027 .1303 .0026 .1302 .0025
A2 .10 .0994 .0230 .0988 .0248 .0992 .0275 .0987 .0302 .0987 .0342 .0987 .0386
C2 .58 .5806 .0198 .5810 .0214 .5806 .0239 .5813 .0260 .5814 .0295 .5813 .0344
E2 .32 .3200 .0096 .3202 .0106 .3202 .0116 .3200 .0131 .3200 .0149 .3200 .0175
µ1 .00 –.0007 .0141 –.0006 .0135 –.0005 .0128 –.0005 .0123 –.0006 .0118 –.0006 .0114
µ2 3.00 2.9990 .0177 2.9989 .0196 2.9986 .0215 2.9985 .0241 2.9979 .0277 2.9973 .0342
P(g) .5998 .0049 .6499 .0048 .6999 .0046 .7500 .0045 .7999 .0042 .8499 .0039
p1 .3551 .3535 .3465 .3467 .3482 .3502
p < .05 .16 .17 .16 .16 .15 .16

.60 .65 .70 .75 .80 .85

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7216 .0313 .7209 .0209 .7204 .0189 .7214 .0261 .7210 .0169 .7214 .0224
C1 .15 .1483 .0314 .1491 .0209 .1497 .0187 .1485 .0258 .1489 .0167 .1487 .0219
E1 .13 .1301 .0043 .1301 .0029 .1299 .0027 .1301 .0036 .1301 .0024 .1299 .0032
A2 .10 .0991 .0333 .0992 .0264 .0993 .0299 .0982 .0457 .1000 .0369 .0978 .0608
C2 .58 .5807 .0270 .5806 .0213 .5801 .0241 .5814 .0374 .5795 .0314 .5804 .0523
E2 .32 .3202 .0161 .3202 .0128 .3206 .0143 .3204 .0226 .3205 .0179 .3218 .0306
µ1 .00 –.0021 .0350 –.0010 .0230 –.0004 .0206 –.0014 .0270 –.0008 .0172 –.0079 .0631
µ2 1.50 1.4976 .0462 1.4987 .0370 1.4999 .0414 1.4969 .0667 1.5000 .0537 1.5058 .1119
P(g) .5985 .0241 .6492 .0171 .6997 .0164 .7485 .0226 .7993 .0146 .8365 .1025
p1 .3493 .3465 .3936 .3425 .3383 .3480
p < .05 .16 .17 .14 .18 .18 .17

Note: Shaded areas are simulated population parameters.

A1, C1, and E1 additive genetic, shared and nonshared environmental standardized variance components for class 1.

A2, C2, and E2 additive genetic, shared and nonshared environmental standardized variance components for class 2.

µ1 and µ2 class 1 and 2 means.

P(g) probability of group (class) membership.
1 Average p value based on 9 df.

p < .05 proportion of sample with p values less than .05.
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describe the distance between the population means
because the population covariance structures differ
between the groups, and because there are effectively
four groups (twins concordant high, concordant low, or
discordant for group membership). However, under
conditions of independence and assuming identical
components of variance, which yields the maximum
Mahalanobis distance for nonnegatively correlated
traits, our mean differences of 1.5 for both twin pairs
would yield a distance of 2.12; in practice the correla-
tions are closer to .5 which gives a Mahalanobis
distance of 1.73 between the concordant pair groups.
This distance is therefore close to that in the Lubke and
Muthén study. It is interesting to note that twin pairs
may be more informative than singletons for identify-
ing subgroups in the population.

Third, although our parameter coverage was good,
it was not exhaustive. For example, under the ACE
class membership, we held the probability of group
membership constant while only adjusting the differ-
ence between the MZ and DZ twin pair correlations.
With the QTL model, we only considered the case of a
single dominant locus. Nevertheless, we modeled a
likely range of class membership mechanisms, which
provides a good starting point for further exploration
of the parameter space.

Conclusion
Under certain conditions, it is possible to identify popu-
lation heterogeneity based only on the observed trait
scores of twin pairs. This heterogeneity may consist of
mean differences between groups, and may feature dif-
ferent variance components as a function of group

Table 2c

Comparison of Simulated and Recovered Parameter Estimates Under the Nonshared Environmental (E) Class Membership Mixture Model 

Class membership probabilities

.60 .65 .70 .75 .80 .85

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7198 .0153 .7193 .0143 .7194 .0138 .7202 .0138 .7195 .0130 .7195 .0126
C1 .15 .1501 .0149 .1506 .0138 .1504 .0133 .1498 .0134 .1504 .0126 .1504 .0121
E1 .13 .1301 .0029 .1301 .0026 .1302 .0024 .1300 .0022 .1301 .0020 .1301 .0019
A2 .10 .1003 .0131 .1000 .0125 .1003 .0123 .1008 .0131 .1003 .0129 .1009 .0143
C2 .58 .5798 .0144 .5798 .0154 .5794 .0171 .5793 .0201 .5790 .0247 .5770 .0355
E2 .32 .3200 .0096 .3202 .0106 .3203 .0124 .3199 .0150 .3206 .0190 .3221 .0277
µ1 .00 .0001 .0086 –.0002 .0082 –.0002 .0079 –.0002 .0077 –.0001 .0073 –.0001 .0072
µ2 3.00 3.0000 .0098 2.9996 .0098 2.9996 .0104 2.9997 .0114 2.9997 .0117 2.9997 .0129
P(g) .6000 .0029 .6500 .0028 .7000 .0027 .7500 .0025 .8001 .0022 .8501 .0020
p1 .2867 .3035 .3019 .2855 .2994 .2983
p < .05 .24 .22 .21 .24 .21 .22

.60 .65 .70 .75 .80 .85

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7189 .0193 .7203 .0183 .7201 .0177 .7199 .7496 .7196 .0163 .7195 .0152
C1 .15 .1509 .0182 .1497 .0175 .1500 .0170 .1501 .0164 .1505 .0156 .1506 .0146
E1 .13 .1302 .0055 .1300 .0047 .1300 .0042 .1300 .0037 .1299 .0033 .1299 .0029
A2 .10 .1003 .0156 .1010 .0155 .1008 .0154 .1010 .0157 .1023 .0176 .1039 .0241
C2 .58 .5799 .0203 .5789 .0237 .5789 .0294 .5792 .0380 .5728 .0534 .5703 .0761
E2 .32 .3199 .0176 .3201 .0209 .3202 .0265 .3199 .0335 .3249 .0463 .3258 .0631
µ1 .00 –.0001 .0138 –.0002 .0127 –.0002 .0113 –.0002 .0102 .0000 .0091 .0001 .0085
µ2 1.50 1.5000 .0235 1.4990 .0250 1.4988 .0270 1.4988 .0298 1.4983 .0334 1.4989 .0396
P(g) .6000 .0104 .6496 .0097 .6996 .0090 .7496 .0081 .7997 .0072 .8498 .0062
p1 .3225 .3783 .3752 .3077 .3053 .3033
p < .05 .20 .13 .13 .18 .20 .21

Note: Shaded areas are simulated population parameters.

A1, C1, and E1 additive genetic, shared and nonshared environmental standardized variance components for class 1.

A2, C2, and E2 additive genetic, shared and nonshared environmental standardized variance components for class 2.

µ1 and µ2 class 1 and 2 means.

P(g) probability of group (class) membership.
1 Average p value based on 9 df.

p < .05 proportion of sample with p values less than .05.
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membership. Depending on the mechanism that deter-
mines group membership, this change of the effect of the
variance components may reflect G × G, G × C, G × E or
G × QTL interaction. Although we have confined our
exploration to a fairly narrow region of the parameter
space, and only to continuous data, the method shows
some potential to detect latent G × E effects.

The practical utility of FMM for the quantitative
genetic analysis of twin data remains open to question.
On the whole, we would not envisage a standard
approach to test for heterogeneity by FMM, and then
only proceeding to the nonmixture (i.e., standard) vari-
ance component analysis when the hypothesis of a
mixture is not supported. Rather, these methods would
seem most appropriate when there exists an a priori
hypothesis that the population is not homogeneous —
as was the case for the Turkheimer et al. situation. In

other cases, distributional evidence might make the
method attractive. Such evidence does, however, raise
the issue of scaling. It is well known that, for example,
skewness can be interpreted as a mixture distribution
(Bauer & Curran, 2003; Pearson, 1895) — and indeed
vice versa. This source of potential bias is problematic
for measurement of behavioral traits or other traits
where observed scores consist of summaries of items
assessed at the ordinal level. In this case, it would seem
more appropriate to attempt mixture distribution mod-
eling at the level of the latent trait (or factor), while
modeling the relationship between the factor and the
items at their original level of measurement. Although
presently, such modeling would present some practical
difficulties, it seems likely that these will be overcome
in the near future.

Table 2d

Comparison of Simulated and Recovered Parameter Estimates Under the Genetic and Environmental (ACE) Class Membership Mixture Model

MZ twin pair correlations and thresholds for class membership (�)

.60, � = .3853 .65, � = .3853 .70, � = .3853 .75, � = .3853 .80, � = .3853 .85, � = .3853

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7199 .0196 .7199 .0196 .7199 .0195 .7199 .0195 .7202 .0200 .7198 .0206
C1 .15 .1502 .0190 .1502 .0190 .1502 .0189 .1502 .0189 .1500 .0196 .1503 .0199
E1 .13 .1299 .0034 .1299 .0033 .1299 .0033 .1299 .0032 .1299 .0031 .1299 .0030
A2 .10 .1013 .0183 .1014 .0185 .1015 .0187 .1014 .0191 .1009 .0198 .1005 .0209
C2 .58 .5785 .0196 .5784 .0197 .5783 .0199 .5784 .0200 .5794 .0206 .5799 .0210
E2 .32 .3202 .0112 .3202 .0110 .3202 .0107 .3202 .0104 .3196 .0103 .3196 .0100
µ1 .00 –.0001 .0114 –.0001 .0114 .0000 .0114 .0000 .0114 –.0002 .0115 .0000 .0118
µ2 3.00 3.0000 .0137 3.0001 .0139 3.0000 .0139 3.0001 .0141 2.9994 .0144 3.0001 .0142
� .3855 .0088 .3855 .0089 .3856 .0090 .3856 .0090 .3852 .0091 .3853 .0091
p1 .5527 .5520 .5544 .5530 .5524 .5613
p < .05 .05 .04 .04 .04 .04 .04

.60, � = .3853 .65, � = .3853 .70, � = .3853 .75, � = .3853 .80, � = .3853 .85, � = .3853

True values µ SD µ SD µ SD µ SD µ SD µ SD

A1 .72 .7189 .0384 .7189 .0384 .7189 .0385 .7188 .0387 .7187 .0390 .7185 .0400
C1 .15 .1508 .0378 .1509 .0377 .1509 .0378 .1510 .0381 .1511 .0384 .1514 .0395
E1 .13 .1302 .0047 .1302 .0046 .1302 .0045 .1302 .0044 .1302 .0043 .1301 .0042
A2 .10 .1026 .0349 .1028 .0353 .1028 .0356 .1028 .0367 .1031 .0386 .1033 .0406
C2 .58 .5763 .0392 .5761 .0389 .5763 .0384 .5765 .0388 .5763 .0401 .5768 .0415
E2 .32 .3212 .0219 .3211 .0209 .3209 .0198 .3207 .0189 .3206 .0181 .3198 .0175
µ1 .00 –.0001 .0171 –.0003 .0171 –.0002 .0172 –.0001 .0171 –.0002 .0171 –.0001 .0176
µ2 1.50 1.5002 .0244 1.5000 .0246 1.5001 .0246 1.5001 .0248 1.4999 .0248 1.4997 .0251
� .3851 .0283 .3849 .0286 .3851 .0288 .3852 .0289 .3850 .0293 .3851 .0295
p1 .3835 .3874 .3932 .3946 .3975 .4006
p < .05 .15 .14 .14 .15 .15 .15

Note: Shaded areas are simulated population parameters.

A1, C1, and E1 additive genetic, shared and nonshared environmental standardized variance components for class 1.

A2, C2, and E2 additive genetic, shared and nonshared environmental standardized variance components for class 2.

µ1 and µ2 class 1 and 2 means.
1 Average p value based on 9 df.

p < .05 Proportion of sample with p values less than .05.
* The ALLINT function was used to estimate cell frequencies for MZ twin pairs using twin pair correlations (ranging .60 to .85 by .05) each with a group membership probability
of .65 (� = .3853). The DZ twin pair correlations was held constant at .40 with a class membership probability of .65 (� = .3853).
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