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1324- and 2143-avoiding Kazhdan–Lusztig
immanants and k-positivity
Sunita Chepuri and Melissa Sherman-Bennett
Abstract. Immanants are functions on square matrices generalizing the determinant and perma-
nent. Kazhdan–Lusztig immanants, which are indexed by permutations, involve q = 1 specializations
of Type A Kazhdan–Lusztig polynomials, and were defined by Rhoades and Skandera (2006, Journal
of Algebra 304, 793–811). Using results of Haiman (1993, Journal of the American Mathematical
Society 6, 569–595) and Stembridge (1991, Bulletin of the London Mathematical Society 23, 422–
428), Rhoades and Skandera showed that Kazhdan–Lusztig immanants are nonnegative on matrices
whose minors are nonnegative. We investigate which Kazhdan–Lusztig immanants are positive on
k-positive matrices (matrices whose minors of size k × k and smaller are positive). The Kazhdan–
Lusztig immanant indexed by v is positive on k-positive matrices if v avoids 1324 and 2143 and for
all noninversions i < j of v, either j − i ≤ k or v j − v i ≤ k. Our main tool is Lewis Carroll’s identity.

1 Introduction

Given a function f ∶ Sn → C, the immanant associated to f, Imm f ∶ Matn×n(C) → C,
is the function

Imm f (M) ∶= ∑
w∈Sn

f (w) m1,w(1)⋯mn ,w(n).(1.1)

Well-studied examples include the determinant, where f (w) = (−1)�(w), the per-
manent, where f (w) = 1, and more generally character immanants, where f is an
irreducible character of Sn .

In this paper, we establish the positivity of certain immanants evaluated on k-
positive matrices; that is, matrices whose minors of size at most k are positive. Interest
in positivity properties of immanants goes back to the early 1990s. Goulden and
Jackson [GJ92] conjectured, and Greene [G92] later proved, that character immanants
of Jacobi–Trudi matrices are monomial-positive. Jacobi–Trudi matrices refer to the
matrices appearing in the famous Jacobi–Trudi identity for skew-Schur functions;
they have entries that are homogeneous symmetric functions and determinants equal
to skew-Schur functions. Greene’s result was followed by a number of positivity
conjectures by Stembridge [S92], including two that were proved shortly thereafter:
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Haiman [H93] showed that character immanants of generalized Jacobi–Trudi matri-
ces (repeated rows and columns allowed) are Schur-positive and Stembridge [S91]
showed that character immanants are nonnegative on totally nonnegative matrices,
matrices with nonnegative minors.

In [S92, Question 2.9], Stembridge also asks about the nonnegativity of certain
immanants evaluated on k-nonnegative matrices, matrices whose minors of size at
most k are nonnegative. (Stembridge’s methods in [S91] do not give insight into this
question, as it relies on a factorization of totally nonnegative matrices which does not
exist for all k-nonnegative matrices.)

Here, we investigate a variant of Stembridge’s question, restricting our attention to
k-positive matrices and Kazhdan–Lusztig immanants, which were defined by Rhoades
and Skandera [RS06].

Definition 1.1 Let v ∈ Sn . The Kazhdan–Lusztig immanant Immv ∶ Matn×n(C) → C

is given by

Immv(M) ∶= ∑
w∈Sn

(−1)�(w)−�(v)Pw0w ,w0v(1) m1,w1⋯mn ,wn ,(1.2)

where Px , y(q) is the Kazhdan–Lusztig polynomial associated to x , y ∈ Sn , w0 ∈ Sn
is the longest permutation, and we write permutations w = w1w2 . . . wn in one-line
notation. (For the definition of Px , y(q) and their basic properties, see, e.g., [BB05].)

For example, letting e denote the identity permutation, Imme(M) = det M and
Immw0(M) = mn ,1mn−1,2⋯m1,n .

Using results of [H93, S91], Rhoades and Skandera [RS06] show that Kazhdan–
Lusztig immanants are nonnegative on totally nonnegative matrices, and are Schur-
positive on generalized Jacobi–Trudi matrices. Furthermore, they show that character
immanants are nonnegative linear combinations of Kazhdan–Lusztig immanants,
so from the perspective of positivity, Kazhdan–Lusztig immanants are the more
fundamental object to study.

We will call an immanant k-positive if it is positive on all k-positive matrices. We
are interested in the following question.

Question 1.1 Let 0 < k < n be an integer. For which v ∈ Sn is Immv(M)k-positive?

Notice that Imme(M) = det M is k-positive only for k = n. On the other hand,
Immw0 is k-positive for all k, because it is positive as long as the entries (i.e., the 1 × 1
minors) of M are positive. So, the answer to Question 1.1 is a nonempty proper subset
of Sn .

Pylyavskyy [Pyly] conjectured the following relationship between Immv(M) being
k-positive and v avoiding certain patterns (see Definition 2.2).

Conjecture 1.2 [Pyly] Let 0 < k < n be an integer, and let v ∈ Sn avoid the pattern
12⋯(k + 1). Then, Immv(M) is k-positive.

Our main result is the following description of some k-positive Kazhdan–Lusztig
immanants, in the spirit of Pylyavskyy’s conjecture.

Theorem 1.3 Let v ∈ Sn be 1324-, 2143-avoiding and suppose that for all i < j with v i <
v j , we have j − i ≤ k or v j − v i ≤ k. Then, Immv(M) is k-positive.
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To prove Theorem 1.3, we first find a determinantal expression for Immv(M)
when v avoids 1324 and 2143. We then use Lewis Carroll’s identity (also known as the
Desnanot–Jacobi identity) to obtain sign information. We also show that Theorem 1.3
supports Conjecture 1.2 (see Proposition 5.1).

Before giving the proof of Theorem 1.3, we point out that it can be rephrased in
terms of Lusztig’s dual canonical basis for the coordinate ring of GLn(C). Indeed,
Skandera [S08] proved that every dual canonical basis element is, up to a power of
det−1, a Kazhdan–Lusztig immanant evaluated on a matrix of indeterminates with
repeated rows and columns. The minors are dual canonical basis elements, so Theorem
1.3 shows that the positivity of certain dual canonical basis elements (minors of size
at most k) guarantees the positivity of others (Immv(N) where N is a matrix of
indeterminates and v satisfies the hypotheses of the theorem). In fact, the positivity of
minors of size at most k guarantees the positivity of a broader class of dual canonical
basis elements, which will be the subject of a forthcoming paper.

The paper is organized as follows. Section 2 gives our conventions and the necessary
definitions on permutations. In Section 3, we obtain a determinantal formula for
Immv(M) when v avoids 1324 and 2143. Section 4 is the proof of our main result,
Theorem 1.3. In Section 5, we consider the condition on v from Theorem 1.3: that for
all i < j with v i < v j , we have j − i ≤ k or v j − v i ≤ k. We discuss how this condition
relates to pattern avoidance and show that our main theorem supports Pylyavskyy’s
conjecture. In Section 6, we give some additional motivation and context for Question
1.1; we state a more general version of Question 1.1 for arbitrary semisimple Lie groups
and discuss connections to cluster algebras. Finally, Sections 7 and 8 provide proofs
of technical lemmas used in Section 4.

2 Definitions

For integers i ≤ j, let [i , j] ∶= {i , i + 1, . . . , j − 1, j}. We abbreviate [1, n] as [n]. For v ∈
Sn , we write v i or v(i) for the image of i under v. We use the notation < for both the
usual order on [n] and the Bruhat order on Sn ; it is clear from context which is meant.
To discuss inversions or noninversion of a permutation v, we will write ⟨i , j⟩ to avoid
confusion with a matrix index or point in the plane. In the notation ⟨i , j⟩, we always
assume i < j.

We are concerned with two notions of positivity, one for matrices and one for
immanants.

Definition 2.1 Let k ≥ 1. A matrix M ∈ Matn×n(C) is k-positive if all minors of size
at most k are positive.

An immanant Imm f ∶ Matn×n(C) → C is k-positive if it is positive on all k-positive
matrices.

Note that k-positive matrices have positive 1 × 1 minors, i.e., entries, and so are real
matrices.

Our results on k-positivity of Kazhdan–Lusztig immanants involve pattern avoid-
ance.

Definition 2.2 Let v ∈ Sn , and let w ∈ Sm . Suppose v = v1⋯vn and w = w1⋯wm in
one-line notation. The pattern w1⋯wm occurs in v if there exists 1 ≤ i1 < ⋅ ⋅ ⋅ < im ≤ n
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such that v i1⋯v im are in the same relative order as w1⋯wm . In addition, v avoids the
pattern w1⋯wm if it does not occur in v.

In the following section, we will show that certain immanants have a very simple
determinantal formula, which involves the graph of an interval.

Definition 2.3 For v ∈ Sn , the graph of v, denoted Γ(v), refers to its graph as a
function. That is, Γ(v) ∶= {(1, v1), . . . , (n, vn)}. For v , w ∈ Sn , the graph of the Bruhat
interval [v , w] is the subset of [n]2 defined as Γ[v , w] ∶= {(i , u i) ∶ u ∈ [v , w], i =
1, . . . , n}.

We think of an element (i , j) ∈ Γ[v , w] as a point in row i and column j of an n × n
grid, indexed so that row indices increase going down and column indices increase
going right (see Example 2.1). A square or square region in Γ[v , w] is a subset of Γ[v , w]
which forms a square when drawn in the grid.

The following example illustrates the above concepts, as well as Theorem 1.3.

Example 2.1 Consider v = 2413 in S4. We have [v , w0] = {2413, 4213, 3412, 2431,
4312, 4231, 3421}, and so Γ[v , w0] is as follows:

1 4

1

4

Notice that v avoids the patterns 1324 and 2143. Its noninversions are
⟨1, 2⟩, ⟨1, 4⟩, ⟨3, 4⟩. For each of these noninversions ⟨i , j⟩, we have that j − i ≤ 2 or
v j − v i ≤ 2. So, Theorem 1.3 guarantees that

Immv(M) = m12m24m31m43 − m14m22m31m43 − m13m24m31m42 + m14m23m31m42

− m12m24m33m41 + m14m22m33m41 + m13m24m32m41 − m14m23m32m41

is positive on all 2-positive 4 × 4 matrices.

3 Determinantal formulas for 4231- and 3412-avoiding
Kazhdan–Lusztig immanants

We first note that (1.2) has a much simpler form when v is 1324- and 2143-avoiding.
In general, computing Px , y(q), or even Px , y(1), is quite difficult, and there are no
explicit combinatorial formulas for arbitrary x , y (see, e.g., [BW01] for formulas in
special cases). As a result, Kazhdan–Lusztig immanants are also difficult to compute.
However, when v avoids 1324 and 2143, we can write a simple formula for them
(Corollary 3.4).

By [KL80], Px , y(q) is the Poincaré polynomial of the local intersection cohomology
of the Schubert variety indexed by y at any point in the Schubert variety indexed by x;
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by [LS90], the Schubert variety indexed by y is smooth precisely when y avoids 4231
and 3412. These results imply that Px , y(q) = 1 for y avoiding 4231 and 3412. Together
with the fact that Px , y(q) = 0 for x ≰ y in the Bruhat order, this gives the following
lemma.

Lemma 3.1 Let v ∈ Sn be 1324- and 2143-avoiding. Then,

Immv(M) = (−1)�(v) ∑
w≥v

(−1)�(w) m1,w(1)⋯mn ,w(n).(3.1)

The coefficients in the formula in Lemma 3.1 suggest a strategy for analyzing
Immv(M) for v ∈ Sn avoiding 1324 and 2143: find some matrix N such that det(N) =
± Immv(M). If such a matrix N exists, the sign of Immv(M) is the sign of some
determinant, which we have tools (e.g., Lewis Carroll’s identity) to analyze. The most
straightforward candidate for N is a matrix obtained from M by replacing some entries
with 0.

Definition 3.1 Let Q ⊆ [n]2, and let M = (m i j) be in Matn×n(C). The restriction of
M to Q, denoted M∣Q , is the matrix with entries

n i j =
⎧⎪⎪⎨⎪⎪⎩

m i j if (i , j) ∈ Q ,
0 else.

For a fixed v ∈ Sn that avoids 1324 and 2143, suppose there exists Q ⊆ [n]2 such that
Immv(M) = ±det M∣Q . Given the terms appearing in (3.1), Q must contain Γ(w) for
all w in [v , w0], and so must contain Γ[v , w0]. In fact, the minimal choice of Q suffices.
Before proving this, we give a characterization of Γ[v , w0] as a subset of [n]2.

Definition 3.2 Let v ∈ Sn and (i , j) ∈ [n]2/Γ(v). Then, (i , j) is sandwiched by a
noninversion (respectively, inversion) ⟨k, l⟩ if k ≤ i ≤ l and vk ≤ j ≤ v l (respectively,
vk ≥ j ≥ v l ). We also say ⟨k, l⟩ sandwiches (i , j).

That is to say, (i , j) is sandwiched by ⟨k, l⟩ if and only if, in the plane, (i , j) lies
inside the rectangle with opposite corners (k, vk) and (l , v l).

Lemma 3.2 Let v ∈ Sn . Then, Γ[v , w0] = Γ(v) ∪ {(i , j) ∶ (i , j) is sandwiched by a
noninversion of v}.

Proof Clearly (i , v i) ∈ Γ[v , w0] for all i, so suppose (i , j) is sandwiched by a nonin-
version ⟨k, l⟩ of v. We will produce a permutation w > v sending i to j, which shows
that (i , j) ∈ Γ[v , w0]. Let a = v−1( j). If a, i form a noninversion of v, then v ⋅ (a i) > v
(where (a i) is the transposition sending a to i and vice versa) and v ⋅ (a i) sends i to
j. If a, i is an inversion, then v ⋅ (i k) ⋅ (i a) > v if i < a and v ⋅ (i l) ⋅ (i a) > v if i > a.
These permutations send i to j, so we are done.

To show that the above description gives all elements of Γ[v , w0], suppose that
⟨a, b⟩ is a noninversion of v such that �(v ⋅ (a b)) = �(v) + 1. The graph of v ⋅ (a b)
can be obtained from Γ(v) by applying the following move: look at the rectangle
bounded by (a, va) and (b, vb), and replace (a, va) and (b, vb)with the other corners
of the rectangle, (a, vb) and (b, va). Notice that (a, vb) and (b, va) are sandwiched
by the noninversion ⟨a, b⟩. Furthermore, if (i , j) is sandwiched by a noninversion of
v ⋅ (a b), then it is also sandwiched by a noninversion of v. Thus, repeating this move
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Figure 1: An example of Γ[v , w0] for v = 14253. Crosses mark the positions (i , v i), and dots
mark all other elements of Γ[v , w0].

produces graphs whose points are sandwiched by some noninversion of v. Because,
for arbitrary u > v, the graph of u can be obtained from that of v by a sequence of
these moves, we are done. ∎

See Figure 1 for an example of Lemma 3.2. Note that Lemma 3.2 implies Γ[v , w0]
is always a skew-shape.

We are now ready to prove the following proposition, which follows from the work
of Sjöstrand [S07].

Proposition 3.3 Let v ∈ Sn avoid 1324, 24153, 31524, and 426153, and let M ∈
Matn×n(C). Then,

det(M∣Γ[v ,w0]) = ∑
w≥v

(−1)�(w) m1,w(1)⋯mn ,w(n).

Proof Notice that, by definition,

det(M∣Γ[v ,w0]) = ∑
w∈Sn

Γ(w)⊆Γ[v ,w0]

(−1)�(w) m1,w(1)⋯mn ,w(n).(3.2)

We show that this sum is in fact over [v , w0]. Lemma 3.2 shows that for arbitrary v ∈
Sn , {w ∶ Γ(w) ⊆ Γ[v , w0]} are the permutations in what Sjöstrand calls the “left convex
hull” of v. Applying [S07, Theorem 4], we obtain that {w ∈ Sn ∶ Γ(w) ⊆ Γ[v , w0]} =
[v , w0] as desired. ∎

Combining Lemma 3.1 and Proposition 3.3, we obtain an expression for certain
immanants as determinants (up to sign).

Corollary 3.4 Let v ∈ Sn avoid 1324 and 2143. Then,

Immv(M) = (−1)�(v) det(M∣Γ[v ,w0]).(3.3)

Proof By Lemma 3.1, we have

Immv(M) = (−1)�(v) ∑
w≥v

(−1)�(w) m1,w(1)⋯mn ,w(n).(3.4)
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Notice that v also avoids 24153, 31524, and 426153, because the occurrence of any
of those patterns would imply an occurrence of 2143. So, by Proposition 3.3, the right-
hand side of (3.4) is equal to (−1)�(v) det(M∣Γ[v ,w0]). ∎

Remark 3.5 Corollary 3.4 implies that Immv(M) can be efficiently computed when
v avoids 1324 and 2143, because it is a determinant.

We will use Lewis Carroll’s identity to determine the sign of (3.3) in Section 4, using
some results on the structure of Γ[v , w0].

4 Dodgson condensation

We are now ready to prove Theorem 1.3. We first note a useful lemma that will allow
us to rephrase the theorem in terms of Γ[v , w0] instead of noninversions.
Lemma 4.1 Let v ∈ Sn . The graph Γ[v , w0] has a square of size k + 1 if and only if for
some noninversion ⟨i , j⟩ of v, we have j − i ≥ k and v j − v i ≥ k.
Proof Let Q be a square of size k + 1 in Γ[v , w0]. Note that Q is sandwiched by
some noninversion ⟨i , j⟩ of v. Indeed, let (r1 , c1) be the northwest corner of Q, and let
(r2 , c2) be the southeast corner. Then, (r1 , c1) is either sandwiched by a noninversion
⟨i , �⟩ or is equal to (i , v i) for some i. In particular, (i , v i) is weakly northwest of
(r1 , c1). Similarly, we can find j, so that ( j, v j) is weakly southeast of (r2 , c2). So, the
noninversion ⟨i , j⟩ sandwiches every point in Q. On the other hand, the rectangle
with corners (i , v i), ( j, v i), (i , v j), ( j, v j) uses j − i + 1 columns and v j − v i + 1 rows.
So, both j − i + 1 and v j − v i + 1 must be at least k + 1, which shows one direction. The
other direction is straightforward. ∎

Using this lemma, Theorem 1.3 can be rephrased as follows.
Theorem 4.2 Let v ∈ Sn be 1324-, 2143-avoiding, and suppose the largest square region
in Γ[v , w0] has size at most k. Then, Immv(M) is k-positive.

The main technique we will use to prove Theorem 1.3 is application of the following
proposition.
Proposition 4.3 (Lewis Carroll’s identity) If M is an n × n square matrix and MB

A is
M with the rows indexed by A ⊂ [n] and columns indexed by B ⊂ [n] removed, then

det(M)det(Mb ,b′
a ,a′) = det(Mb

a)det(Mb′
a′) − det(Mb′

a )det(Mb
a′),

where 1 ≤ a < a′ ≤ n and 1 ≤ b < b′ ≤ n.

4.1 Young diagrams

We begin by considering the cases where Γ[v , w0] is a Young diagram or the comple-
ment of a Young diagram (using English notation). Recall that the Durfee square of a
Young diagram λ is the largest square contained in λ.
Proposition 4.4 Let λ ⊆ nn be a Young diagram with Durfee square of size k and μ ∶=
nn/λ. Let M be an n × n k-positive matrix. Then,

(−1)∣μ∣ det(M∣λ) ≥ 0,

and equality holds only if (n, n − 1, . . . , 1) ⊈ λ.
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Proof Let A = M∣λ = {a i j}. For σ ∈ Sn , let aσ ∶= a1,σ(1)⋯an ,σ(n). Note that if
λn− j+1 < j, then the last j rows of λ are contained in a j × ( j − 1) rectangle. There is no
way to choose j boxes in the last j rows of λ, so that each box is in a different column
and row. This means at least one of the matrix entries in aσ is zero. So, det A = 0 if
(n, n − 1, . . . , 1) ⊈ λ.

Now, assume that (n, n − 1, . . . , 1) ⊆ λ. We proceed by induction on n to show that
det(A) has sign (−1)∣μ∣. The base cases for n = 1, 2 are clear.

We would like to apply Lewis Carroll’s identity to find the sign of det(A). Let
λJ

I denote the Young diagram obtained from λ by removing rows indexed by I and
columns indexed by J. Note that AJ

I = M J
I ∣λ J

I
. The submatrices M J

I are k-positive, and
the Durfee square of λJ

I is no bigger than the Durfee square of λ, so, by the inductive
hypothesis, we know the signs of det AJ

I for ∣I∣ = ∣J∣ ≥ 1.
We will analyze the following Lewis Carroll identity:

det(A)det(A1,n
1,n) = det(A1

1)det(An
n) − det(An

1 )det(A1
n).(4.1)

Note that λ1,n
1,n contains (n − 2, n − 3, . . . , 1) and λn

n , λn
1 , λ1

n contain (n − 1, n −
2, . . . , 1), so the determinants of A1,n

1,n , An
n , An

1 , and A1
n are nonzero.

Suppose the last row of μ contains r boxes and the last column contains c (so that
the union of the last column and row contains r + c − 1 boxes). Note that r, c < n.
Then, det(A1,n

1,n) and det(An
n) have sign (−1)∣μ∣−(r+c−1), det(An

1 ) has sign (−1)∣μ∣−c ,
and det(A1

n) has sign (−1)∣μ∣−r . Notice that det(A1
1) is either zero or it has sign (−1)∣μ∣,

because μ1
1 = μ. In both of these cases, the right-hand side of (4.1) is nonzero and has

sign (−1)−r−c+1; the left-hand side has sign sgn(det(A)) ⋅ (−1)∣μ∣−r−c+1, which gives
the proposition. ∎

Corollary 4.5 Let μ ⊆ nn be a Young diagram and let λ ∶= nn/μ. Suppose λ has Durfee
square of size k, and M is a k-positive n × n matrix. Then,

(−1)∣μ∣ det(M∣λ) ≥ 0,

and equality holds if and only if (nn/(n − 1, n − 2, . . . , 1, 0)) ⊆ λ (or equivalently, μ ⊆
(n − 1, n − 2, . . . , 1, 0)).

Proof If we transpose M∣λ across the antidiagonal, we obtain the scenario of Propo-
sition 4.4. Transposition across the antidiagonal is the same as reversing columns,
taking transpose, and reversing columns again, which does not effect the sign of
minors. ∎

Proposition 4.4 and Corollary 4.5 give us the following results about immanants.

Corollary 4.6 Let v ∈ Sn avoid 1324 and 2143. Suppose Γ[v , w0] is a Young diagram λ
with Durfee square of size k. Then, Immv(M) is k-positive.

Proof Suppose M is k-positive. Note that Γ(w0) ⊆ Γ[v , w0] implies λ contains
the partition (n, n − 1, . . . , 1). Let μ = nn/λ. By Proposition 4.4, we know that
(−1)∣μ∣ det M∣Γ[v ,w0] > 0.

In fact, there is a bijection between boxes of μ and inversions of v. If a box of μ is
in row r and column c, then v(r) < c and v−1(c) < r; otherwise, that box would be in
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Γ[v , w0]. This means exactly that (v−1(c), r) is an inversion. If (a, b)was an inversion
of v and the box in row b and column v(a) was not in μ, then for some j, the box in
row j and column v( j) is southeast of the box in row b and column v(a). But then
1 v(a) v(b) v( j) would be an occurrence of the pattern 1324, a contradiction.

So, we know (−1)∣μ∣ det M∣Γ[v ,w0] = (−1)�(v) det M∣Γ[v ,w0] > 0. By Corollary 3.4,
this means Immv(M) > 0. ∎

Corollary 4.7 Let v ∈ Sn avoid 1324 and 2143. Suppose Γ[v , w0] is λ = nn/μ for some
partition μ and the largest square in λ is of size k. Then, Immv(M) is k-positive.

Proof Suppose M is k-positive. Note that Γ(w0) ⊆ Γ[v , w0] implies λ con-
tains the partition (nn/(n − 1, n − 2, . . . , 1, 0)). By Corollary 4.5, we know that
(−1)∣μ∣ det M∣Γ[v ,w0] > 0.

As in the proof of Corollary 4.6, there is a bijection between boxes of μ and inver-
sions of v. So, we know (−1)∣μ∣ det M∣Γ[v ,w0] = (−1)�(v) det M∣Γ[v ,w0] > 0. By Corollary
3.4, this means Immv(M) > 0. ∎

4.2 General case

To prove Theorem 1.3, we need to show that if v avoids 1324 and 2143, then det M∣Γ[v ,w0]

has sign (−1)�(v) for M satisfying the given positivity assumptions.
We first reduce to the case when Γ[v , w0] is not block-antidiagonal. We will

temporarily denote the longest element of S j by w( j).

Lemma 4.8 Suppose Γ[v , w0] is block-antidiagonal. Let v1 ∈ S j and v2 ∈ Sn− j be
permutations such that upper-right antidiagonal block of Γ[v , w0] is equal to Γ[v1 , w( j)]
and the other antidiagonal block is equal to Γ[v2 , w(n− j)]. If M is an n × n matrix, then

(−1)�(v) det M∣Γ[v ,w0] = (−1)�(v1) det M1∣Γ[v1 ,]w( j)
⋅ (−1)�(v2) det M2∣Γ[v2 ,]w(n− j)

,

where M1 (resp., M2) is the square submatrix of M using columns n − j + 1 through n
and rows 1 through j (resp., columns 1 through n − j and rows j + 1 through n).

See Figure 2 for an example of v1 and v2.

Proof of Lemma 4.8 Notice that v is the permutation

v ∶ i ↦
⎧⎪⎪⎨⎪⎪⎩

v1(i) + n − j if 1 ≤ i ≤ j,
v2(i − j) if j < i ≤ n.

For a block-antidiagonal matrix A with blocks A1 , A2 of size j and n − j, respec-
tively, we have

det(A) = (−1)�(w0) det(Aw0)

= (−1)�(w0) det(A1w( j)) det(A2w(n− j))

= (−1)�(w0)+�(w( j))+�(w(n− j) det(A1)det(A2)

= (−1)(
n
2)+(

j
2)+(

n− j
2 ) det(A1)det(A2).
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1 8

1

8

Figure 2: An example where Γ[v , w0] is block-antidiagonal. Here, v = 74586132. In the notation
of Lemma 4.8, j = 3, v1 = 41253, and v2 = 132.

From the above description of v, �(v) = j(n − j) + �(v1) + �(v2). This, together
with the fact that (n

2) = (
j
2) + (

n− j
2 ) + j(n − j) and the formula for the determinant

of a block-antidiagonal matrix, gives the desired equality. ∎

From Corollary 3.4 and Lemma 4.8, we have the following corollary.

Corollary 4.9 Let v ∈ Sn avoid 1324 and 2143, let M be an n × n matrix, and let v i and
M i be as in Lemma 4.8. Then,

Immv(M) = Immv1(M1) Immv2(M2).

We now introduce two propositions we will need for the proof of the general case.

Definition 4.1 Let v ∈ Sn . Define Bi ,v i to be the square region of [n]2 with corners
(i , v i), (i , n − i + 1), (n − v i + 1, v i), and (n − v i + 1, n − i + 1). In other words, Bi ,v i

is the square region of [n]2 with a corner at (i , v i) and two corners on the antidiagonal
of [n]2. We say Bi ,v i is a bounding box of Γ[v , w0] if there does not exist some j such
that Bi ,v i ⊊ B j,v j . If Bi ,v i is a bounding box of Γ[v , w0], we call (i , v i) a spanning corner
of Γ[v , w0]. We denote the set of spanning corners of Γ[v , w0] by S. (See Figure 3 for
an example.)

Remark 4.10 To justify the name “spanning corners,” notice that if (i , v i) is not
sandwiched by any noninversion of v, then (i , v i) is a corner of Γ[v , w0] (i.e., there are
either no elements of Γ[v , w0] weakly northwest of (i , v i) or no elements of Γ[v , w0]
weakly southeast of (i , v i)). Conversely, if (i , v i) is sandwiched by a noninversion
⟨k, l⟩ of v, then (i , v i) is in the interior of Γ[v , w0], and Bi ,v i ⊆ Bk ,vk . So, all elements
of S are corners of Γ[v , w0].

The name “bounding boxes” comes from the following lemma.
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1

1

10

10

blue

red

blue

green
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Figure 3: An example of Γ[v , w0], with v = 6 10 4 7 8 9 3 1 2. The bounding boxes are blue, red,
blue, green, and purple, listed in the order of their northmost row. The spanning corners of
Γ[e , v] are (1, 6), (3, 4), (6, 9), (8, 3), (9, 1), and (10, 2).

Lemma 4.11 Let v ∈ Sn . Then,

Γ[v , w0] ⊆ ⋃
(i ,v i)∈S

Bi ,v i .

Proof Let Rk , l denote the rectangle with corners (k, vk), (l , v l), (k, v l), and (l , vk).
If ⟨k, l⟩ is a noninversion of v, then Rk , l consists exactly of the points sandwiched by
⟨k, l⟩. So, by Lemma 3.2, we have that

Γ[e , w] = ⋃
⟨k , l⟩ noninversion of v

Rk , l .

Notice that if (i , w i) is sandwiched by ⟨k, l⟩, then R i , l and Rk , i are contained in
Rk , l . So, to show the desired containment, it suffices to show that Rk , l is contained in
⋃(i ,v i)∈S Bi ,v i for all noninversions ⟨k, l⟩ such that (k, vk) and (l , v l) are both corners
of Γ[v , w0].

So, consider a noninversion ⟨k, l⟩, where (k, vk), (l , v l) are corners. Working
through the possible relative orders of k, l , vk , v l , one can see that Rk , l ⊆ Bk ,vk ∪
Bl ,v l . Because S consists of spanning corners, we have (a, va), (b, vb) ∈ S such that
Ba ,va and Bb ,vb contain Bk ,wk and Bl ,w l , respectively. So, Rk , l ⊆ Ba ,wa ∪ Bb ,wb , as
desired. ∎

We also color the bounding boxes.

Definition 4.2 A bounding box Bi ,v i is said to be red if (i , v i) is below the antidiag-
onal, green if (i , v i) is on the antidiagonal, and blue if (i , v i) is above the antidiagonal.
In the case where Bi ,v i is a bounding box and Bn−v i+1,n−i+1 is also a bounding box,
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then Bi ,v i = Bn−v i+1,n−i+1 is both red and blue, in which case we call it purple. (See
Figure 3 for an example.)

Proposition 4.12 Suppose v ∈ Sn avoids 2143 and w0v is not contained in a maximal
parabolic subgroup of Sn . Order the bounding boxes of Γ[v , w0] by the row of the
northwest corner. If Γ[v , w0] has more than one bounding box, then they alternate
between blue and red and there are no purple bounding boxes.

Example 4.13 If v = 371456, then Γ[v , w0] is the same as the upper right antidiagonal
block of Figure 3. The bounding boxes of v, in the order of Proposition 4.12, are B1,3,
B6,5, and B3,1. The colors are blue, red, and blue, respectively.

For the next proposition, we need some additional notation.
Define δ i ∶ [n]/{i} → [n − 1] as

δ i( j) =
⎧⎪⎪⎨⎪⎪⎩

j, j < i;
j − 1, j > i .

Definition 4.3 For i , k ∈ [n] and P ⊆ [n]2, let Pk
i ⊆ [n − 1] × [n − 1] be P with row i

and column k deleted. That is, Pk
i = {(δ i(r), δk(c)) ∶ (r, c) ∈ P}.

Proposition 4.14 Let v ∈ Sn be 2143- and 1324-avoiding, and choose i ∈ [n]. Let x ∈
Sn−1 be the permutation x ∶ δ i( j) ↦ δv i (v j) (that is, x is obtained from v by deleting v i
from v in one-line notation and shifting the remaining numbers appropriately). If (i , v i)
is not a spanning corner of Γ[v , w0], then Γ[x , w0] = Γ[v , w0]v i

i . Moreover, for all i,

det(M∣Γ[x ,w0]) = det(M∣Γ[v ,w0]
vi
i
).(4.2)

The proofs of these propositions are quite technical and appear below Sections 7
and 8, respectively.

Theorem 4.15 Let v ∈ Sn avoid 1324 and 2143, and let k be the size of the largest square
in Γ[v , w0]. For M k-positive, (−1)�(v) det M∣Γ[v ,w0] > 0.

Proof We proceed by induction on n; the base case n = 2 is clear.
Now, let n > 2. If Γ[v , w0] is a partition or a complement of a partition (that is, it has

a single bounding box), we are done by Corollary 4.6 or 4.7. If it is block-antidiagonal
(that is, w0v is contained in some parabolic subgroup), then we are done by Corollary
4.9. So, we may assume that v has at least two bounding boxes and that adjacent
bounding boxes have nonempty intersection (where bounding boxes are ordered as
usual by the row of their northeast corner). Indeed, if adjacent bounding boxes have
empty intersection, then the fact that Γ[v , w0] is contained in the union of bounding
boxes (Lemma 4.11) implies that Γ[v , w0] is block-antidiagonal.

Because v avoids 1324 and 2143, the final two bounding boxes of Γ[v , w0] are of
opposite color by Proposition 4.12. Without loss of generality, we assume the final box
is red and the second to last box is blue. (Otherwise, we can consider the antidiagonal
transpose of M restricted to Γ[w0v−1w0 , w0], which has the same determinant.)

This means the final box is Bn ,vn , and the second to last box is Ba ,va , for some a < n
with 1 < va < vn . We analyze the sign of det M∣Γ[v ,w0] using Lewis Carroll’s identity on
rows a, b ∶= v−1(1) and columns 1, c ∶= va . Note that a < b and 1 < c.
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1
1

7

7 1 7

1 8

1

8

red

blue

red

Figure 4: At the top, Γ[v , w0] for v = 62785314. On the bottom left, the region Γ[x , w0], where
x = 5674213 is the permutation obtained by deleting 2 from the one-line notation of v and
shifting remaining numbers appropriately. On the bottom right, the region Γ[v , w0]

2
3 . As you

can see, the determinant of M∣Γ[x ,w0] is the same as the determinant of M∣Γ[v ,w0]
2
3

for all 7 × 7
matrices M, illustrating Proposition 4.14.

We will consider the determinants appearing in Lewis Carroll’s identity one by one,
and show that they are of the form det(N ∣Γ[u ,w0]) for some permutation u. Note that
(M∣Γ[v ,w0])

i
j = M i

j ∣Γ[v ,w0]i
j
.

(1) Consider (M∣Γ[v ,w0])
1,c
a ,b . Next, we show that the determinant of this matrix

is equal to det(M1,c
a ,b ∣Γ[x ,w0]), where x is the permutation obtained from v by

deleting 1 and va from v in one-line notation and shifting remaining values
to obtain a permutation of [n − 2]. Indeed, (b, 1) is a corner of Γ[v , w0] but
not a spanning corner. By Proposition 4.14, we have that Γ[v , w0]1

b = Γ[u, w0],
where u is obtained from v by deleting 1 from v in one-line notation and shifting
appropriately. So, we have

(M∣Γ[v ,w0])
1,c
a ,b = ((M∣Γ[v ,w0])

1
b)

c−1
a

= (M1
b ∣Γ[u ,w0])

c−1
a

= M1,c
a ,b ∣Γ[u ,w0]c−1

a
.
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a

c

b

1

Figure 5: An illustration of (2) in the proof of Theorem 4.15. Let v = 62785314; Γ[v , w0] is shown
with bounding boxes at the top of Figure 4. In this case, a = c = 2, b = 7, w = 728963145 and y =
5674123. On the top is Γ[w , w0]. On the bottom left is Γ[v , w0]

1
a , which is equal to Γ[w , w0]

1,c
a ,b .

On the bottom right is Γ[y, w0].

Note that ua = c − 1 and deleting c − 1 from the one-line notation of u gives x.
So, taking determinants and applying Proposition 4.14 gives the desired equality.

Note that �(x) = �(v) − a − b − c + 4. Indeed, 1 is involved in exactly b − 1
inversions of v. Because there are no ( j, v j) northwest of (a, c), a is involved in
exactly a + c − 2 inversions of v: each of the c − 1 columns to the left of column c
contains a dot ( j, v j) southwest of (a, c), and each of the a − 1 rows above (a, c)
contains a dot ( j, v j) northeast of (a, c). We have counted the inversion ⟨1, a⟩
twice, so deleting 1 and c from v deletes (b − 1) + (a + c − 2) − 1 inversions.

(2) Consider (M∣Γ[v ,w0])
1
a . The determinant of this matrix is equal to the determinant

of M1
a ∣Γ[y ,w0], where y is obtained from v by adding vn + 1 to the end of v in one-

line notation and shifting appropriately to get w, then deleting 1 and va from w
and shifting values to obtain a permutation of [n − 1].

To see this, first note that there are no pairs (i , v i) with n > i > b and v i > vn ;
such a pair would mean that va1v ivn form a 2143 pattern, which is impossible.
There are also no pairs (i , v i) with i < a and v i < vn . Indeed, because (a, va) is
a corner, we would have to have va < v i < vn . This means we would have a red
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bounding box B j,v j following Ba ,va with a < j and vn < v j . Then, v ivavbvn would
form a 2143 pattern. This implies that the number of elements of Γ[v , w0] in row b
and in row n are the same. Similarly, the number of elements of Γ[v , w0] in column
c and in column vn are the same. So, to obtain Γ[w , w0] from Γ[v , w0], add a copy
of row b of Γ[v , w0] below the last row, a copy of column c to the right of the vnth
row, and a dot in position (n + 1, vn+1). It follows that Γ[w , w0]1,c

a ,b = Γ[v , w0]1
a .

One can check that w (and thus y) avoid 2143 and 1324. A similar argument
to (1) shows that the determinant of M∣Γ[w ,w0]1,c

a ,b
is equal to the determinant of

M1
a ∣Γ[y ,w0].
This case is shown in Figure 5. Note that �(y) = �(v) − a − b − c + 4 + n − vn .

(3) Consider (M∣Γ[v ,w0])
c
b . The determinant of this matrix is equal to the determinant

of Mc
b ∣Γ[z ,w0], where z is obtained from v by deleting vn from v in one-line

notation and shifting as necessary. This follows from the fact that Γ[v , w0] has
the same number of dots in rows b and n, and in columns c and vn (proved in
(2)). So, Γ[v , w0]c

b = Γ[v , w0]vn
n . The claim follows from Proposition 4.14 applied

to M∣Γ[v ,w0]
vn
n

.
Note that �(z) = �(v) − (n − vn).

(4) Consider (M∣Γ[v ,w0])
1
b . By Proposition 4.14, the determinant of this matrix is

equal to the determinant of M1
b ∣Γ[p,w0], where p is obtained from v by deleting

1 from v in one-line notation and shifting appropriately.
Note that �(p) = �(v) − b + 1.

(5) Consider (M∣Γ[v ,w0])
c
a . By Proposition 4.14, the determinant of this matrix is

equal to the determinant of Mc
a ∣Γ[q ,w0], where q is obtained from v by deleting

va from v in one-line notation and shifting appropriately.
Note that �(q) = �(v) − c − a + 2.

Notice that the permutations x , y, z, p, q listed above avoid 2143 and 1324. By
induction, the determinant of M J

I ∣Γ[u ,w0] has sign �(u), and, in particular, is nonzero,
so we know the signs of each determinant involved in Lewis Carroll’s identity besides
det M. Dividing both sides of Lewis Carroll’s identity by det(M∣Γ[v ,w0])

1,c
a ,b , we see that

both terms on the right-hand side have sign �(v). Thus, the right-hand side is nonzero
and has sign �(v), which completes the proof. ∎

Taking this theorem with Corollary 3.4, we can now prove Theorem 4.2, and thus
Theorem 1.3.

Proof of Theorem 4.2 By Corollary 3.4,

Immv(M) = (−1)�(v) det M∣Γ[v ,w0].

Let k′ ≤ k be the size of the largest square in Γ[v , w0]. By Theorem 4.15, for M k′-
positive, the right-hand side of this expression is positive. Any k-positive matrix is also
k′-positive, so we are done. ∎

Proof of Theorem 1.3 Let v ∈ Sn is 1324-, 2143-avoiding. If, for all i < j with v i < v j ,
we have j − i ≤ k or v j − v i ≤ k, then by Lemma 4.1, Γ[v , w0] does not contain a square
of size k + 1. Thus, by Theorem 4.2, Immv(M) is k-positive. ∎
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The methods above give an elementary proof of the following, which is a special
case of the results of Rhoades–Skandera on Kazhdan–Lusztig immanants evaluated
on totally nonnegative matrices.

Corollary 4.16 Let v ∈ Sn avoid 1324 and 2143. Then, Immv(M) > 0 for all n-positive
(that is, “totally positive”) n × n matrices M.

Proof If v ∈ Sn then Γ[v , w0] has no square of size n + 1. So, by Theorem 1.3, if v
avoids 1324 and 2143 and M is a totally positive n × n matrix, then Immv(M) > 0. ∎

5 Pattern avoidance conditions

In this section, we investigate the relationship between the assumptions of Theorem
1.3 and pattern avoidance. First, we show that Theorem 1.3 supports Conjecture 1.2;
that is, all permutations satisfying the assumptions of Theorem 1.3 also satisfy the
assumptions of Conjecture 1.2.

Proposition 5.1 If v ∈ Sn and, for all i < j with v i < v j , we have j − i ≤ k or v j − v i ≤ k,
then v avoids 12...(k + 1).

Proof Suppose i1 < i2 < ⋯ < ik+1 and v i1 < v i2 < ⋯ < v ik+1 . In other words,
v i1 , v i2 , ..., v ik+1 is an occurrence of the pattern 12...(k + 1). Let R be the rectangle
with corners at (i1 , v i1), (i1 , v ik+1), (ik+1 , v ik+1), and (ik+1 , v i1). Notice that R is at
least of size (k + 1) × (k + 1). For all (r, c) ∈ R, (r, c) is sandwiched by ⟨i1 , ik+1⟩, a
noninversion. By Lemma 3.2, this means (r, c) is in Γ[v , w0]. So, all of R is in Γ[v , w0]
and there is a square of size k + 1 in Γ[v , w0]. By Lemma 4.1, this means there is some
noninversion ⟨i , j⟩ where j − i > k or v j − v i > k. ∎

Next, we consider pattern avoidance conditions for a permutation v that are equiv-
alent to the condition that Γ[v , w0] has no square of size k + 1, and thus equivalent to
the condition that for all noninversions ⟨i , j⟩, we have j − i ≤ k or v j − v i ≤ k. That is,
we give a way to phrase the assumptions of Theorem 1.3 entirely in terms of pattern
avoidance.

Proposition 5.2 Let v ∈ Sn . Then Γ[v , w0] contains a square of size k + 1 if and only if
for all k + 1 ≤ m ≤ 2k, all patterns u1 . . . um occurring in v satisfy u i+k − u i ≠ k for all i.

Proof By Lemma 4.1, Γ[v , w0] contains a square of size k + 1 if and only if, for some
noninversion ⟨i , j⟩, j − i ≥ k and v j − v i ≥ k. We will show that the existence of such
an inversion is equivalent to the statement about patterns in the proposition.

Suppose for some noninversion ⟨i , j⟩ of v, j − i ≥ k and v j − v i ≥ k. Now, take

L ∶= {v i + 1, . . . , v j − 1} ∩ {v i+1 , . . . , v j−1}.

If L has at least k − 1 elements, let S = T be any (k − 1)-element subset of L. Otherwise,
let S be any (k − 1)-element subset of {v i + 1, . . . , v j − 1} containing L and let T be
any (k − 1)-element subset of {v i+1 , . . . , v j−1} containing L. Notice that S ∪ T contains
exactly k − 1 numbers between v i and v j and exactly k − 1 numbers that lie to the right
of v i and to the left of v j in v. Now, we consider the pattern formed by S ∪ T ∪ {v i , v j}
in v; say this pattern is u1 . . . um . By construction, m is between k + 1 and 2k. Say ur
corresponds to v i . By construction, ur+k corresponds to v j and ur+k − ur = k.
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Now, let u1 . . . um with k + 1 ≤ m ≤ 2m be a pattern such that ur+k − ur = k for some
r. If this pattern appears in v, let v i correspond to ur and v j correspond to ur+k . Note
that ⟨i , j⟩ is a noninversion of v. To pass from u to v, we insert additional numbers and
increase existing ones, so j − i ≥ k and v j − v i ≥ k. ∎

Proposition 5.3 If v is 1324-, 2143-avoiding and there is a square of size r in Γ[v , w0],
then there is a square of size r that has a spanning corner of Γ[v , w0] as either its most
northwestern or most southeastern box.
Proof Let Q be a square of size r in Γ[v , w0]. Without loss of generality, Q lies on or
above the antidiagonal (the argument is analogous if the northeast corner of Q lies on
or below the antidiagonal). Then, by Lemma 3.2, the northwest corner of Q is either
(i , v i) or it is sandwiched by some noninversion ⟨i , j⟩. In either case, Bi ,v i contains all
of Q. Because Bi ,v i is either a bounding box or contained in a bounding box, Q must
be contained in a single bounding box.

Now, we can assume Q is contained within the bounding box Bi ,v i . If Bi ,v i is blue,
then there is some ( j, v j) ∈ Γ(v) such that either ( j, v j) is the southeast corner Q or
⟨i , j⟩ is a noninversion that sandwiches all of Q. Consider the square of size r with
northwest corner (i , v i). Everything in this square is in Γ(v) or is sandwiched by ⟨i , j⟩.
Thus, by Lemma 3.2, this square is in Γ[v , w0]. Similarly, if the bounding box is red,
then the square of size r with southeast corner (i , v i) is in Γ[v , w0]. ∎

Taking these two propositions together, we can rewrite Theorem 1.3 fully in terms
of pattern avoidance conditions.
Theorem 5.4 Let v ∈ Sn avoid 1324, 2143, and all patterns u of length k + 1 ≤ m ≤ 2k
where u1 = 1 and uk+1 = k + 1 or where um = m and um−k = m − k. Then, Immv is k-
positive.
Proof Suppose v ∈ Sn avoids 1324 and 2143 and Γ[v , w0] contains a square of size k +
1. Then, by Proposition 5.3, Γ[v , w0] contains a square of size k + 1 that has a spanning
corner as either its most northwestern or most southeastern box. From the proof of
Proposition 4.1, this means there is a square of size k + 1 in Γ[v , w0] sandwiched by the
noninversion ⟨i , j⟩with either i or j a spanning corner. Let u = u1 . . . um be the pattern
constructed in Proposition 5.2 with u�+k − u� = k. If i is a spanning corner, then � = 1
and u� = 1, and if j is a spanning corner, then � + k = m and u�+k = m.

Thus, if v avoids 1324 and 2143 as well as all patterns u of length k + 1 ≤ m ≤ 2k
where u1 = 1 and uk+1 = k + 1 or where um = m and um−k = m − k, then Γ[v , w0]
contains no square of size k + 1. By Theorem 4.2, Immv is k-positive. ∎

Remark 5.5 We note that some of the pattern avoidance conditions in Theorem 5.4
are repetitive, as some patterns listed contain others. For example, if k = 2, the patterns
listed include both 123 and 1324. So, one can check that v satisfies the hypotheses of
Theorem 5.4 by checking it avoids a somewhat smaller list of patterns.

We get the following immediate corollary from Theorem 5.4.
Corollary 5.6 Let v ∈ Sn avoid 123, 2143, 1432, and 3214. Then, Immv(M) is 2-positive.

However, analogous statements for k > 2 are difficult to state. The larger k is the
more patterns need to be avoided in order to mandate that Γ[v , w0] has no square of
size k + 1. We illustrate with the following example.
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Example 5.7 Let v be 1324-, 2143-avoiding. Then, Γ[v , w0] does not have a square of
size 4, if and only if v also avoids the following patterns: 1234, 15243, 15342, 12543,
13542, 32415, 42315, 32145, 42135, 165432, 156432, 165423, 156423, 543216, 543216,
453216, 543126, 453126.

Due to the number of patterns to be avoided, statements analogous to Corollary
5.6 for larger k seem unlikely to be useful.

6 Final remarks

In this section, we give some additional motivation and context for Question 1.1.
For an arbitrary reductive group G, Lusztig [L94] defined the totally positive part
G>0 and showed that elements of the dual canonical basis of O(G) are positive on
G>0. Fomin and Zelevinsky [FZ00] later showed that for semisimple groups, G>0 is
characterized by the positivity of generalized minors, which are dual canonical basis
elements corresponding to the fundamental weights of G and their images under Weyl
group action. Note that the generalized minors are a finite subset of the (infinite) dual
canonical basis, but their positivity guarantees the positivity of all other elements of
the basis.

In the case we are considering, G = GLn(C), G>0 consists of the totally positive
matrices and generalized minors are just ordinary minors. Skandera [S08] showed
that Kazhdan–Lusztig immanants are part of the dual canonical basis of O(GLn(C)),
which gives another perspective on their positivity properties. (In fact, Skandera
proved that every dual canonical basis element is, up to a power of det−1, a Kazhdan–
Lusztig immanant evaluated on matrices with repeated rows and columns.) In light of
these facts, Question 1.1 becomes a question of the following kind.

Question 6.1 Suppose some finite subset S of the dual canonical basis is positive
on M ∈ G. Which other elements of the dual canonical basis are positive on M? In
particular, what if S consists of the generalized minors corresponding to the first k
fundamental weights and their images under the Weyl group action?

These questions have a similar flavor to positivity tests arising from cluster algebras,
which is different than the approach we take here. The coordinate ring of GLn is a
cluster algebra, with some clusters given by double wiring diagrams [B05]. The minors
are cluster variables. If we restrict our attention to the minors of size at most k in the
clusters for GLn , we obtain a number of subcluster algebras, investigated by the first
author in [B17]. The cluster monomials in those subalgebras will be positive on k-
positive matrices. Thus, we could ask the following to find more permutations v where
Immv is k-positive.

Question 6.2 When is Immv a cluster monomial in O(GLn(C))? When is Immv a
cluster monomial in a k-positivity cluster subalgebra from [B17]?

Interestingly, the Kazhdan–Lusztig immanants of 123-, 2143-, 1423-, and 3214-
avoiding permutations do appear in subcluster algebras of this kind for k = 2. In
general, however, it is not known if Immv is a cluster variable in the cluster structure on
GLn , or in the subcluster algebras using only minors of size at most k. It is conjectured
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that cluster monomials form a (proper) subset of the dual canonical basis, so the
cluster algebra approach would at best provide a partial answer to Question 6.1.

7 Proof of Proposition 4.12

In order to simplify the proofs in the next two sections, we will consider the graphs of
lower intervals [e , w] rather than upper intervals [v , w0]. As the next lemma shows,
the two are closely related.

Lemma 7.1 Let v ∈ Sn . Then, Γ[v , w0] = {(i , w0( j)) ∶ (i , j) ∈ Γ[e , w0v]}. In other
words, Γ[v , w0] can be obtained from Γ[e , w0v] by reversing the columns of the n × n
grid.

Proof This follows immediately from the fact that left multiplication by w0 is an
antiautomorphism of the Bruhat order. ∎

Because left-multiplication by w0 takes noninversions to inversions, we have an
analogue of Lemma 3.2 for Γ[e , w].

Lemma 7.2 Let w ∈ Sn . Then, Γ[e , w] = Γ(w) ∪ {(i , j) ∈ [n]2 ∶ (i , j) is sandwiched
by an inversion of w}.

Left-multiplication by w0 takes the antidiagonal to the diagonal, so we also have an
analogue of bounding boxes and Lemma 4.11.

Definition 7.1 Let w ∈ Sn . Define B i ,w i ⊆ [n]2 to be the square region with corners
(i , i), (i , w i), (w i , i), (w i , w i). We call B i ,w i a bounding box of Γ[e , w] if it is not
properly contained in any B j,w j . In this situation, we call (i , w i) a spanning corner of
Γ[e , w]. We denote the set of spanning corners of Γ[e , w] by S.

Lemma 7.3 Let w ∈ Sn . Then,

Γ[e , w] ⊆ ⋃
(i ,w i)∈S

B i ,w i .

Definition 7.2 A bounding box B i ,w i is colored red if i > w i , green if i = w i , and blue
if i < w i . If w−1(i) = w i (so that both (i , w i) and (w i , i) are spanning corners), then
the bounding box B i ,w i = Bw i , i is both red and blue. If a bounding box is both red and
blue, we also call it purple.

Remark 7.4 Note that if w = w0v, then Bi ,v i is a bounding box of Γ[v , w0] if and only
if B i ,w i is a bounding box of Γ[e , w]. Furthermore, Bi ,v i = {(r, w0(c)) ∶ (r, c) ∈ B i ,w i}
and Bi ,v i has the same color as B i ,w i .

We introduce one new piece of terminology.

Definition 7.3 Let w ∈ Sn . The span of (i , w i), denoted by σ(i , w i), is [i , w i] if i ≤
w i and is [w i , i] otherwise. We say (i , w i) spans ( j, w j) if σ(i , w i) contains σ( j, w j)
(equivalently, if B i ,w i contains B j,w j ).

Rather than proving Proposition 4.12 directly, we instead prove the following
proposition.
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Proposition 7.5 Suppose w ∈ Sn avoids 3412 and is not contained in a maximal
parabolic subgroup of Sn . Order the bounding boxes of Γ[e , w] by the row of the
northwest corner. If Γ[e , w] has more than one bounding box, then they alternate
between blue and red and there are no purple bounding boxes.

The first step to proving this is analyzing the bounding boxes of Γ[e , w] when w is
a 321- and 3412-avoiding permutation. We will need the following result of [T07] and
a lemma.

Proposition 7.6 [T07, Theorem 5.3] Let w ∈ Sn . Then, w avoids 321 and 3412 if and
only if, for all a ∈ [n − 1], sa appears at most once in every (equivalently, any) reduced
expression for w.

Lemma 7.7 Suppose w ∈ Sn avoids 321 and 3412. If, for some i ∈ [n], w−1(i) = w i , then
∣i −w i ∣ = 1.

Proof Suppose w−1(i) = w i , and let t be the transposition sending i to w i , w i to i,
and fixing everything else. We can assume that i < w i . We compare w and t in the
Bruhat order by comparing w[ j] and t[ j] for j ∈ [n].

For two subsets I = {i1 < ⋅ ⋅ ⋅ < ir}, K = {k1 < ⋅ ⋅ ⋅ < kr}, we say I ≤ J if i j ≤ k j , for all
j ∈ [r]. For two permutations v , w ∈ Sn , we have v ≤ w if and only if for all j ∈ [n],
v[ j] ≤ w[ j] [BB05, Theorem 2.6.1].

For j < i and j ≥ w i , t[ j] = [1, j], and so clearly t[ j] ≤ w[ j]. For i ≤ j < w i , t[ j] =
[1, i − 1] ∪ [i + 1, j] ∪ {w i}. Let t[ j] = {a1 < a2 < ⋯ < a j} and w[ j] = {b1 < b2 < ⋯ <
b j}. Notice that a j = w i and w i ∈ w[ j], so we definitely have that a j ≤ b j . For the other
inequalities, suppose w[ j] ∩ [1, i] = {b1 , . . . , br}. Because i is not in w[ j], r ≤ i − 1.
This implies that bk ≤ ak , for k ≤ r. It also implies that ar+k ≤ i + k and br+k ≥ i + k,
for r + k < j, which establishes the remaining inequalities. Thus, w ≥ t.

Because w ≥ t, every reduced expression for w has a reduced expression for t as
a subexpression. Thus, Proposition 7.6 implies t must have a reduced expression in
which each simple transposition appears once.

Now, t has a reduced expression which is a palindrome; it is length 2c + 1 and
contains at most c + 1 simple transpositions. Every reduced expression of t has the
same length and contains the same set of simple transpositions. So, if c > 0, in each
reduced expression, some simple transposition appears twice. We conclude that �(t) =
1 and ∣i −w i ∣ = 1. ∎

Proposition 7.8 Suppose w ∈ Sn avoids 321 and 3412 and is not contained in any
maximal parabolic subgroup. Order the bounding boxes of Γ[e , w] by the row of their
northwest corner. Then, no bounding boxes of Γ[e , w] are green or purple, and they
alternate between red and blue.

Proof If a bounding box B i ,w i is green, then by definition i = w i . The corner (i , i)
has maximal span, which implies there are no ( j, w j) with j < i and w j > i. In
other words, w[i − 1] = [i − 1], which would contradict the assumption that w is not
contained in a maximal parabolic subgroup.

There are also no spanning corners of the form (i , i + 1). Indeed, if (i , i + 1)were a
spanning corner, then there are no ( j, w j)with j ≤ i − 1 and w j > i + 1 or with j ≥ i + 1
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and w j ≤ i − 1. The latter implies that w i+1 = i, which, together with the first inequality,
implies w[i − 1] = [i − 1], a contradiction. By Lemma 7.7, if a bounding box B i ,w i is
purple, then ∣i −w i ∣ = 1. This implies a spanning chord of the form (k, k + 1), which
is impossible, so there are no purple bounding boxes.

So, all bounding boxes are either blue or red. Suppose the bounding box B i ,w i is
followed by B j,w j in the ordering specified in the proposition. We suppose for the
sake of contradiction that they are the same color. Without loss of generality, we may
assume that they are blue, so i < w i and j < w j . Otherwise, we consider w−1 instead
of w. (By Proposition 7.6, w−1 is also 321- and 3412-avoiding. The span of (i , w i) and
(w i , w−1(w i)) are the same, so the bounding boxes of Γ[e , w−1] are the same as the
bounding boxes of Γ[e , w], but with opposite color.)

Because B j,w j follows B i ,w i , there are no pairs (k, wk) with k < j and w i < wk .
Indeed, such a pair is spanned by neither (i , w i) nor ( j, w j), so its existence would
imply the existence of a bounding box between B i ,w i and B j,w j or enclosing one
of them, both of which are contradictions. In other words, w[ j − 1] ⊆ [w i], so we
must have j − 1 ≤ w i . If j = w i + 1, then w[w i] ⊆ [w i], a contradiction. So, we have
i < j ≤ w i < w j .

Now, consider the reduced expression for w obtained by starting at the identity,
moving w1 to position 1 using right multiplication by sa ’s, then moving w2 to position 2
(if it is not already there) using right multiplication, etc. Note that when wk is moved to
position k, no numbers greater than wk have moved. In addition, once wk is in position
k, it never moves again. Suppose w i−1 has just moved to position i − 1. Because (i , w i)
is a spanning corner, we have not moved any numbers larger than w i . In other words,
k is currently in position k for k ≥ w i ; in particular, w i is in position w i . Now, to move
w i to position i, we must use the transpositions sw i−1 , sw i−2 , . . . , s i+1 , s i in that order.
By Proposition 7.6, each simple transposition can only be used once in this reduced
expression for w. Thus, these simple transpositions have not been used before we move
w i to position i, so in fact k is in position k for k > i before we move w i to position i.

Now, we move w i to position i. Because sw i−1 , . . . , s i will never be used again in
the expression for w, we conclude that w i+1 , . . . , ww i−1 are already in positions i + 1,
. . . , w i − 1. Note also that the number currently in position w i is w i − 1, because ∣i −
w i ∣ > 1.

Because w j > w i , w j is not yet in position j. This implies that j ≥ w i . We already
had that j ≤ w i , so in fact they are equal. So, after w i has moved to position i, w j
is the next number not yet in the correct position. Recall that for k > w i , k is still
in position k. So, to move w j to position w i , we use sw j , sw j−1 , . . . , s j in that order
(because ∣ j −w j ∣ > 1, s j+1 is on this list of transpositions). Notice that the number in
position j, which is w i − 1, moves to position j + 1. We cannot use s j or s j+1 again, so
w i − 1 must be w j+1. However, the pair ( j + 1, w i − 1) satisfies j + 1 > j and w i − 1 <
w i , so it is spanned by neither (i , w i) nor ( j, w j). Say ( j + 1, w i − 1) is spanned by
the spanning corner (a, wa). Then, (a, wa) spans neither of (i , w i), ( j, w j), which
implies i < min(a, wa) < j < max(a, wa) < w j . This means exactly that the bounding
box order is B i ,w i , Ba ,wa , B j,w j , a contradiction. ∎

The next proposition allows us to extend Proposition 7.8 to all permutations
avoiding 3412.

https://doi.org/10.4153/S0008414X21000262 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000262


1324- and 2143-avoiding Kazhdan-Lusztig immanants and k-positivity 73

Recall that δ i ∶ [n]/{i} → [n − 1] is defined as

δ i( j) =
⎧⎪⎪⎨⎪⎪⎩

j j < i ,
j − 1 j > i .

Proposition 7.9 Suppose w ∈ Sn avoids 3412, and let (i , w i) be a noncorner of Γ[e , w].
Let u ∈ Sn−1 be the permutation δ i( j) ↦ δw i (w j). Let Sw and Su denote the spanning
corners of Γ[e , w] and Γ[e , u], respectively.
(1) The pair ( j, w j) ∈ Sw if and only if (δ i( j), δw i (w j)) ∈ Su .
(2) The map β ∶ {B j,w j ∶ ( j, w j) ∈ Sw} → {Bk ,uk ∶ (k, uk) ∈ Su} defined by B j,w j ↦

Bδ i( j),δwi (w j) is a color-preserving bijection.
(3) Order the bounding boxes of Γ[e , w] according to the row of their northwest corner.

Then, β also preserves this ordering.

Proof Let αa denote the inverse of δa , so that w sends α i( j) to αu i (w j) (because
(i , w i) is a noncorner, i , w i ≠ n and this is well defined). Note that δa and αa are order-
preserving. Let δ ∶= δ i × δw i and α ∶= α i × αw i .

We first show that δ is a bijection from the noncorner pairs ( j, w j) of Γ[e , w] with
j ≠ i to the noncorner pairs (k, uk) of Γ[e , u]. Recall that ( j, w j) is a noncorner of
Γ[e , w] if and only if ( j, w j) is sandwiched by an inversion of w. Moreover, every
noncorner pair ( j, w j) is sandwiched by an inversion ⟨k, l⟩where (k, wk) and (l , w l)
are corners of Γ[e , w]. Indeed, choose the smallest k such that ⟨k, j⟩ is an inversion
and the largest l such that ⟨ j, l⟩ is an inversion. Then, (k, wk) and (l , w l) are both
corners.

Let j ≠ i and suppose ( j, w j) is sandwiched by an inversion ⟨k, l⟩ of w. We can
choose k, l , so that (k, wk) and (l , w l) are corners of Γ[e , w]; in particular, neither
is equal to i. Because δa is order-preserving, ⟨δ i(k), δ i(l)⟩ is an inversion of u and
sandwiches δ( j, w j). Similarly, if ( j, u j) is sandwiched by an inversion ⟨k, l⟩ of u, then
α( j, u j) is sandwiched by the inversion ⟨α i(k), α i(l)⟩ of w. As δ and α are inverses,
we are done.

This also implies that δ is a bijection from the corner pairs ( j, w j) of Γ[e , w] to the
corner pairs (k, uk) of Γ[e , u].

Next, we show that δ respects containment of spans for corner pairs of w.
Suppose σ(k, wk) is contained in σ( j, w j) and both pairs are corners of Γ[e , w].

We may assume that k ≠ j (otherwise, δ clearly respects containment of spans) and
that j < w j (otherwise, we can consider instead w−1, which avoids 3412 also, and u−1).
By assumption, k, wk ∈ [ j, w j], so δ i(k) and δw i (wk) are in [ j − 1, w j]. We have

σ(δ i( j), δw i (w j)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ j, w j] if j < i , w j < w i , (Case I)
[ j, w j − 1] if j < i , w j > w i , (Case II)
[ j − 1, w j] if j > i , w j < w i , (Case III)
[ j − 1, w j − 1] if j > i , w j > w i . (Case IV)

Case I: The only way σ(δ( j, w j)) could fail to contain σ(δ(k, wk)) here is if j −
1 ∈ {δ i(k), δw i (wk)}. If j − 1 = δ i(k), then k = j, a contradiction. If j − 1 = δw i (wk),
then wk = j and wk > w i . But wk < w j and w j < w i by assumption, so we reach a
contradiction.
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Case II: The only way σ(δ( j, w j)) could fail to contain σ(δ(k, wk)) here is if j −
1 or w j is in {δ i(k), δw i (wk)}. We will show that w j is not in {δ i(k), δw i (wk)} by
contradiction; the other case is similar.

Suppose w j ∈ {δ i(k), δw i (wk)}. Because wk < w j , we must have w j = δ i(k), which
means k = w j and k < i. Notice that ⟨ j, k⟩ is an inversion of w, as is ⟨ j, i⟩. Because
(k, wk) is not sandwiched by any inversions of w, we must have wk < w i . To summa-
rize, j < k < i and wk < w i < w j . This means w jwkw i form a 312 pattern in w.

Note that w cannot have any inversions ⟨a, j⟩ or ⟨k, a⟩, because this would result in
( j, w j) or (k, wk), respectively, being sandwiched by an inversion. We further claim
that if a forms an inversion with k and i, then it must also form an inversion with j.
Indeed, if a forms an inversion with k and i, then a < k < i and wa > w i > wk . If j < a
and w j < wa , then w jwawkw i form a 3412 pattern; similarly if j > a and w j > wa .

Consider a < j. From above, we know that ⟨a, j⟩ is not an inversion. If wa >
w i , then ⟨a, i⟩ and ⟨a, k⟩ are both inversions. This combination is impossible, so
w[ j − 1] ⊆ [w i − 1]. In addition, any a ∈ [ j + 1, k − 1] with wa > k forms an inversion
with k and i but not j, which is impossible. So, w[ j + 1, k − 1] ⊆ [k]. Because w j = k
and wk < w i < k, we conclude w[k] = [k]. But i > k and w i < k, a contradiction.

Case III: The span of δ(k, wk) is contained in [ j − 1, w j] by assumption.
Case IV: The only way σ(δ( j, w j)) could fail to contain σ(δ(k, wk)) here is if w j ∈

{δ i(k), δw i (wk)}. The argument that this cannot happen is similar to Case I; we leave
it to the reader.

Finally, we will show that α respects span containment for corner pairs of u.
This completes the proof of (1): suppose ( j, w j) is a spanning corner of Γ[e , w]
and σ(δ( j, w j)) ⊆ σ((a, ua)) for a spanning corner (a, ua). Note that δ( j, w j) is a
corner. Because α respects span containment for corners, σ( j, w j) ⊆ σ(α(a, ua)). By
maximality of σ( j, w j), we have σ( j, w j) = σ(α(a, ua)). In particular, σ(α(a, ua)) ⊆
σ( j, w j), so because δ preserves span containment for corners, the span of (a, ua)
is contained in the span of δ( j, w j). So, δ( j, w j) is a spanning corner of Γ[e , u].
Reversing the roles of w and u in the above argument shows that α( j, u j) is a spanning
corner of Γ[e , w] if ( j, u j) is a spanning corner of Γ[e , u]. So, δ is a bijection between
the spanning corners of Γ[e , w] and the spanning corners of Γ[e , u].

Suppose σ(k, uk) is contained in σ( j, u j) and both pairs are corners of Γ[e , u].
Again, we may assume that k ≠ j (otherwise, δ clearly respects containment of spans)
and that j < u j (otherwise, consider instead w−1, which avoids 3412, and u−1). By
assumption, k, uk ∈ [ j, u j], so α i(k) and αw i (uk) are in [ j, u j + 1]. We have

σ(α i( j), αw i (u j)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[ j, u j] if j < i , u j < w i , (Case I’)
[ j, u j + 1] if j < i , u j ≥ w i , (Case II’)
[ j + 1, u j] if j ≥ i , u j < w i , (Case III’)
[ j + 1, u j + 1] if j ≥ i , u j ≥ w i . (Case IV’)

Case I’: The only way σ(α(k, uk)) could fail to be contained in σ(α( j, u j)) is if
u j + 1 ∈ {α i(k), αw i (uk)}. Suppose that this occurs. Because uk < u j , we must have
k = u j and k ≥ i. In addition, uk < u j < w i . So, α(k, uk) = (k + 1, uk) and α( j, u j) =
( j, u j). To summarize, we have j < i < k + 1 and wk+1 < w j < w i . So, w jw iwk+1 form a
231 pattern.
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Because (k + 1, wk) and ( j, w j) are corners and are not sandwiched by any inver-
sions, w has no inversions of the form ⟨a, j⟩ or ⟨k + 1, a⟩. In addition, any a forming
an inversion with i and k + 1 but not j would give rise to a 3412 pattern, so no such a
exist.

Consider a > k + 1. If wa < w j , then a would either form an inversion with k + 1,
which is impossible, or a would form an inversion with both i and j but not k + 1,
which is also impossible. So, w[k + 2, n] ⊆ [w j , n]. Because j < k + 2 and w j = k, in
fact, w[k + 2, n] ⊆ [k + 1, n]. Notice that w i ≥ k + 1 and i < k + 1, so we can refine this
further to w[k + 2, n] = [k + 1, n]/{w i}. But (i , w i) is sandwiched by some inversion
⟨a, b⟩, so a < i < k + 1 and wa > w i ≥ k + 1. This is clearly a contradiction.

Case II’: By assumption, σ(α(k, uk)) ⊆ [ j, u j + 1], so the claim is true.
Case III’: The only way σ(α(k, uk)) could fail to be contained in σ(α( j, u j)) is

if j or u j + 1 were in {α i(k), αw i (uk)}. Suppose that j ∈ {α i(k), αw i (uk)}. Because
k > j, this means uk = j = αw i (uk) and w i > uk . So, α(k, uk) = (k + 1, uk) and we have
i < j + 1 < k + 1 and wk+1 < w j+1 < w i . This means that ( j + 1, w j+1) is sandwiched by
the inversion ⟨i , k + 1⟩, a contradiction. The other case is similar.

Case IV’: The only way σ(α(k, uk)) could fail to be contained in σ(α( j, u j)) is if
j ∈ {α i(k), αw i (uk)}. This is similar to Case I’, so we leave it to the reader.

For (2): The map

β ∶ {B j,w j ∶ ( j, w j) ∈ Sw} → {Bk ,uk ∶ k = 1, . . . , n}
B j,w j ↦ Bδ i( j),δwi (w j)

is well defined and injective, because α and δ preserve span containment (for corners)
and thus also preserve equality of spans (for corners). So, Bδ i( j),δwi (w j) = Bδ i(k),δwi (wk)

if and only if B j,w j = Bk ,wk . Its image is the bounding boxes of Γ[e , u], because δ is a
bijection between spanning corners of Γ[e , w] and spanning corners of Γ[e , u].

We will show β preserves the colors of the boxes by contradiction. Suppose the
color of β(B j,w j) differs from the color of B j,w j . This situation means that the relative
order of j, w j must be different from that of δ i( j), δw i (w j). This can only happen if
min( j, w j) is not shifted down by δa (for the appropriate a ∈ {i , w i}), max( j, w j) is
shifted down by δb (for b ∈ {i , w i}/{a}) and ∣ j −w j ∣ ≤ 1. That is, min( j, w j) < a and
max( j, w j) > b. If j = w j , this implies ( j, w j) is spanned by (i , w i), a contradiction.
Otherwise, this implies (i , w i) is spanned by ( j, w j). Because ∣ j −w j ∣ = 1, the only
possibility for this is that i = w j and w i = j, so the spans are equal. But ( j, w j) is a
corner and (i , w i) is not, a contradiction.

This means β sends green bounding boxes to green bounding boxes, blue to blue,
and red to red. It also sends purple to purple: suppose ( j, w j) is a spanning corner
and B j,w j is purple. Then, (w j , j) is also a spanning corner of Γ[e , w] and is not equal
to ( j, w j). Because the span of ( j, w j) and (w j , j) are the same, the span of δ( j, w j)
and δ(w j , j) are the same; because δ is a bijection on spanning corners, δ( j, w j) ≠
δ(w j , j). So, Bδ( j,w j) = Bδ(w j , j), and this bounding box is both red and blue.

For (3): Suppose B j,w j and Bk ,wk are two bounding boxes of Γ[e , w] and B j,w j

precedes Bk ,wk in the order given. That is, min( j, w j) < min(k, wk). Suppose for the
sake of contradiction that min(δ i( j), δw i ( j)) ≥ min(δ i(k), δw i (k)). In fact, because
δa shifts numbers by at most 1, the only possibility is that min(δ i( j), δw i ( j)) =
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min(δ i(k), δw i (k)). Because δ( j, w j) and δ(k, wk) are both spanning corners of
Γ[e , u] and thus have maximal span, this implies that the span of δ( j, w j) is equal
to the span of δ(k, wk). So, Bδ( j,w j) = Bδ(k ,wk). Because β is a bijection, this implies
B j,w j = Bk ,wk , a contradiction. ∎

Proposition 7.5 follows as a corollary.

Proof of Proposition 7.5 Note that no bounding boxes of Γ[e , w] are green, because
this would imply w is contained in some maximal parabolic subgroup.

Repeatedly apply the operation of Proposition 7.9 to w until you arrive at a
permutation u with no noncorner pairs.

The permutation u will avoid 3412. Indeed, one-line notation for u can be obtained
from w by repeatedly deleting some number a and applying δa to the remaining
numbers. Because δa preserves order, any occurrence of 3412 in u would imply an
occurrence of 3412 in w. It will also avoid 321, because if u i u juk form a 321 pattern,
( j, w j) is sandwiched by the inversion ⟨i , k⟩ and thus is a noncorner pair.

By Proposition 7.8, no bounding boxes of Γ[e , u] are purple and they alternate
between red and blue (when ordered by the row of the northwest corner). Proposition
7.9 implies that the bounding boxes of Γ[e , w] are in bijection with the bounding boxes
of Γ[e , u] and that this bijection preserves the coloring and ordering of the bounding
boxes. So, no bounding boxes of Γ[e , w] are purple, and they alternate between red
and blue. ∎

We now are ready to prove Proposition 4.12.

Proof of Proposition 4.12 Because v avoids 2143, w0v avoids 3412. By assumption,
w0v is not contained in a maximal parabolic subgroup, so, by Proposition 7.5, the
bounding boxes of Γ[e , w0v] alternate in color between red and blue (and none are
purple) when ordered by the row of their northeast corner. By Remark 7.4, reversing
the columns of these bounding boxes gives the bounding boxes of Γ[v , w0], now
ordered according to the row of their northwest color. Because the bounding boxes
of Γ[v , w0] have the same color as the corresponding bounding boxes of Γ[e , w0v],
the proposition follows. ∎

8 Proof of Proposition 4.14

We apply a similar technique as in the above section. Rather than proving Proposition
4.14 directly, we instead prove the following proposition.

Proposition 8.1 Let w ∈ Sn be 4231- and 3412-avoiding, and choose i ∈ [n]. Let u ∈
Sn−1 be the permutation obtained from w by deleting wi from w in one-line notation and
shifting appropriately (that is, u ∶ δ i( j) ↦ δw i (w j)). If (i , v i) is not a spanning corner
of Γ[e , w], then Γ[e , u] = Γ[e , w]w i

i . Furthermore, for all i,

det(M∣Γ[e ,u]) = det(M∣Γ[e ,w]wi
i
).(8.1)

We prove this using a sequence of lemmas.

Lemma 8.2 Let w ∈ Sn be 3412-avoiding. Let (i , w i) be a spanning corner,
and let q = min(i , w i). Let N ∶= { j ∈ [n] ∶ j, i form an inversion of w} ∪ {i}. Say
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1 7

1

7

1 6

1

6

red

blue

red

blue

Figure 6: On the left, Γ[e , w], where w = 3472165. On the right, Γ[e , u], where u = 236154. The
permutation u is obtained from w by deleting 2 from the one-line notation of w and shifting the
other numbers appropriately. As Proposition 7.9 asserts, the spanning corners and bounding
boxes of Γ[e , w] are in bijection with the spanning corners and bounding boxes of Γ[e , u],
respectively, and this bijection is color-preserving.

N = {k1 , . . . , km}, and let ρ ∶ w(N) → [m] be the unique order-preserving bijec-
tion between the two sets. Let u be the permutation of [m] whose one line
notation is ρ(wk1)ρ(wk2)⋯ρ(wkm). Then, B i ,w i ∩ Γ[e , w] = {(r, c) ∶ (r, c) − (q − 1,
q − 1) ∈ Γ[e , u]}.

Example 8.3 Let w = 3472165 (see Figure 6 for a picture of Γ[e , w]). Choose the
spanning corner (3, 7). Then, N = {3, 4, 5, 6, 7} and u = 52143. The graph Γ[e , u] is
pictured below.

1 5

1

5

The part of Γ[e , w] that lies in B3,7 is identical to Γ[e , u] (up to translation along
the diagonal).

Proof of Lemma 8.2 We may assume i < w i , so B i ,w i is blue; otherwise, we can
consider w−1, which will still avoid 3412, u−1, which can be obtained from w−1 by the
same procedure as u is obtained from w, and the bounding box Bw i , i , which is blue.
The intersection Γ[e , w−1] ∩ Bw i , i is simply the transpose of B i ,w i ∩ Γ[e , w].
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We may also assume that w is not contained in a maximal parabolic subgroup of Sn .
(If it were, we could consider just the block of Γ[e , w] containing (i , w i) and argue just
about that block.) We may further assume that Γ[e , w] has more than one bounding
box. By Proposition 7.5, the bounding boxes of Γ[e , w] alternate between blue and red,
and none are green or purple.

Notice that N is contained in [i , n], because if ⟨ j, i⟩ were an inversion of w, ( j, w j)
would span (i , w i). So, k1 = i, and u1 = ρ(w i). Because ρ is order-preserving, ⟨1, k⟩ is
an inversion of u, for all k ∈ [m], which implies ρ(w i) = m.

We have j ∈ N precisely when ( j, w j) lies southwest of (i , w i) in the plane, because
there are no ( j, w j) to the northeast. To obtain Γ(u) from Γ(w), delete all rows and
columns of the n × n grid which have a cross to the north or east of B i ,w i (that is, a
cross ( j, w j) with j < i or w j > w i) and renumber remaining rows and columns with
[m]. Note that ∣i −w i ∣ = ∣1 − m∣, because for every row above i that is deleted, a column
to the left of w i is deleted. So, B i ,w i is an m × m square, which we can identify with the
m × m square containing Γ[e , u] by relabeling rows and columns. In addition, these
deletions take the corners (resp., noncorners) of Γ[e , w] with j ∈ N to corners (resp.,
noncorners) of Γ[e , u].

Thus, it suffices to check the following: if (r, c) ∈ B i ,w i is sandwiched by an
inversion ⟨i , j⟩, where ( j, w j) is a corner of Γ[e , w], then the corresponding square
of Γ[e , u] is sandwiched by an inversion of u.

First, let Ba ,wa and Bb ,wb be the red bounding boxes immediately preceding and
following B i ,w i , respectively, in the usual order on bounding boxes. If ⟨i , j⟩ is an
inversion of w, then ( j, w j) ∈ Ba ,wa ∪ B i ,w i ∪ Bb ,wb . Indeed, suppose ( j, w j) is a corner
such that ⟨i , j⟩ is an inversion, and ( j, w j) ∉ Ba ,wa ∪ B i ,w i ∪ Bb ,wb . Then, either w j <
wa or j > b; otherwise, ( j, w j) would not be in the union of bounding boxes for
w, a contradiction of Lemma 7.3. If j > b, then there is a blue bounding box Bd ,wd

immediately following Bb ,wb in the usual order of bounding boxes. One can check that
i < d < b < j and w iwdwbw j forms a 3412 pattern. If w j < wa , there is a blue bounding
box Bd ,wd immediately preceding Ba ,wa , and one can check that d < i < j < a and
wdw iw jwa forms a 3412 pattern. If ( j, w j) is not a corner but ⟨i , j⟩ is an inversion,
then ( j, w j) is sandwiched by an inversion ⟨i , k⟩, where k is a corner, so ( j, w j) is also
in the union of the three bounding boxes.

This implies that if ⟨i , j⟩ is an inversion of w such that ( j, w j) is a corner, then either
( j, w j) ∈ B i ,w i or j ∈ {a, b}. So, either w i ≥ j or i ≤ w j .

Suppose w i ≥ j (so ( j, w j) is either in B i ,w i or j = a). We claim no rows between i
and j are deleted. Indeed, a row between i and j is deleted only if there is a dot (k, wk) to
the east of B i ,w i with i < k < j. Necessarily, wk > w i . If there is a dot to the east of B i ,w i ,
then B i ,w i is not the last bounding box. By Proposition 7.5, the following bounding
box Bs ,ws is red. One can check that w iwkw jws is a 3412 pattern, a contradiction. By
a similar argument, if ( j, w j) is a corner such that ⟨i , j⟩ is an inversion of w, and
i ≤ w j (so ( j, w j) is either in B i ,w i or j = b), then no column between w j and w i is
deleted.

Now, if a corner ( j, w j) is in B i ,w i , then i ≤ w j and w i ≥ j, so the relative position
of (i , w i) and ( j, w j) is the same as the relative position of the images of (i , w i) and
( j, w j) after deletion. So, if (a, b) ∈ B i ,w i is sandwiched by ⟨i , j⟩, the corresponding
square in Γ[e , u] is sandwiched by the image of ⟨i , j⟩.
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If j = a (resp., j = b), then ρ(w j) = 1 (resp., j = km). That is, the image of ( j, w j)
after deletion is ( j, 1) (resp., (m, w j)). This is because ( j, w j) is the westmost (resp.,
southmost) cross forming an inversion with (i , w i). So, if (a, b) ∈ B i ,w i is sand-
wiched by ⟨i , j⟩, the corresponding square in Γ[e , u] is sandwiched by the image of
⟨i , j⟩. ∎

From Lemma 8.2, we can derive the following.

Lemma 8.4 Let w ∈ Sn be 3412-avoiding, and let (i , w i) be a spanning corner. Suppose
(r, c) ∉ B i ,w i is sandwiched by an inversion involving i. Then, (r, c) is also sandwiched
by some inversion ⟨a, b⟩ where neither (a, wa) nor (b, wb) are in B i ,w i .
Proof We will assume that B i ,w i is blue; otherwise, we consider w−1 instead. We also
assume that w ∈ Sn is not contained in any parabolic subgroup; if it were, Γ[e , w] is
block-diagonal and we can argue for each block individually. The lemma is vacuously
true if Γ[e , w] has a single box, so we may assume it does not. By Proposition 7.5, the
bounding boxes of Γ[e , w] alternate between red and blue, and none are purple.

Suppose Ba ,wa and Bb ,wb are the (red) bounding boxes immediately preceding and
following B i ,w i , respectively. As in Lemma 8.2, if j forms an inversion with i, then
( j, w j) ∈ Ba ,wa ∪ B i ,w i ∪ Bb ,wb .

This implies that the positions (r, c) satisfying the conditions of the lemma are
contained Ba ,wa ∪ Bb ,wb . The positions (r, c) ⊆ Ba ,wa satisfying the conditions of the
lemma are exactly those with wa ≤ c < i and i ≤ r ≤ a. By Lemma 8.2, Γ[e , w] ∩ Ba ,wa

is the graph of another interval [e , u]where u ∈ Sm ; because Ba ,wa is red, u sends m to
1. This means that u is greater than the permutation 23⋯m1. In particular, this means
that positions (q, q + 1), for q = 1, . . . , m − 1, are in Γ[e , u], so the upper off-diagonal
of Ba ,wa is in Γ[e , w]. Thus, (i − 1, i) is sandwiched by some inversion of w, implying
there is a dot ( j, w j) northeast of (i − 1, i). This dot is necessarily not in B i ,w i , and the
inversion ( j, a) sandwiches all of the positions (r, c) ⊆ Ba ,wa satisfying the conditions
of the lemma.

The argument for the positions (r, c) ⊆ Bb ,wb satisfying the conditions of the
lemma is essentially the same. ∎

We can now prove Proposition 8.1.

Proof of Proposition 8.1 Let D = Γ[e , w]w i
i .

Consider Γ[e , w] drawn in an n × n grid with the positions ( j, w j) marked with
crosses and all others marked with dots. Recall that D is the collection of crosses and
dots obtained from Γ[e , w] by deleting row i and column w i and renumbering rows
by δ i and columns by δw i . Note that the crosses of D are in positions ( j, u j).

If (i , w i) was an internal dot of Γ[e , w], then all dots in D are sandwiched by an
inversion of u, so D = Γ[e , u]. In this case, M∣D = M∣Γ[e ,u], so the determinants are
equal.

If (i , w i) is a corner but not a spanning corner of Γ[e , w], we claim we again
have D = Γ[e , u]. Suppose (i , w i) is contained in a blue bounding box Bk ,wk (if it
is only contained in a red bounding box, we can consider w−1 and the transpose of
M instead). Notice that because (i , w i) is a corner, we only have inversions ⟨r, i⟩ with
r < i. Furthermore, there are no inversions ⟨r, i⟩where r < k or wr > wk ; otherwise, we
can find an occurrence of 3412. For example, if there were an inversion ⟨r, i⟩with r < k,
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then there must be a red bounding box Ba ,wa immediately preceding Bk ,wk which
overlaps with it. One can check that r < k < a < i and wrwkwaw i is an occurrence of
3412. A similar argument works for the wr > wk case. Thus, if ⟨r, i⟩ is an inversion,
⟨k, r⟩ is an inversion as well, so every dot sandwiched by an inversion (r, i) is also
sandwiched by the inversion (k, i).

In particular, there are no crosses above or to the right of the rectangle with corners
(k, wk) and (i , w i), because any such cross would be inversions ⟨r, i⟩ where ⟨k, r⟩ is
not an inversion. There are also no crosses northeast of (k, wk), because such a cross
would span (k, wk). This means there are no dots above or to the right of the rectangle
with corners (k, wk) and (i , w i). So, in fact, it suffices to show that all dots in the
rectangle with corners (k, wk) and (i − 1, w i + 1) are sandwiched by an inversion of v
that does not involve i; that inversion will correspond to an inversion in u. If w i−1 < w i
or if w−1(w i + 1) > i, this is true. Otherwise, we have that (i − 1, w i−1) and (w−1(w i +
1), w i + 1) both lie in the rectangle with corners (k, wk) and (i − 1, w i + 1). If these
points are distinct, then w i−1 > w i + 1, so wk w i + 1 w i−1 w i form a 4231 pattern, which
is impossible. So, we must have w i−1w i + 1, which means all points in the rectangle
with corners (k, wk), (i − 1, w i + 1) are sandwiched by the inversion ⟨k, i − 1⟩.

Now, suppose (i , w i) is a spanning corner and B i ,w i is blue (if it is red, we
can consider w−1 and the transpose of M instead). If w i+1 = w i − 1, we again
have A = B. If not, then the D is not equal to Γ[e , u]; D = Γ[e , u] ⊔ {(r, c) ∶
(r, c) sandwiched only by inversions involving i}. We will show that if (r, c) is sand-
wiched only by inversions involving i, then mr ,c will not appear in det(M∣D). This will
imply that det(M∣D) agrees with det(M∣Γ[e ,u]) for all (n − 1) × (n − 1) matrices M.

Let I ∶= {(r, c) ∶ (r, c) sandwiched only by inversions involving i}. By Lemma 8.4,
I ⊆ B i ,w i . We would like to show that D is block-upper triangular, and that all (r, c) ∈ I
are in blocks that are not on the main diagonal. This would imply that det(M∣D), as
claimed, does not contain mr ,c , as it is the product of the determinants of the blocks
on the diagonal. To verify this, we just need to show that D ∩ B i ,w i is block-upper
triangular and for all (r, c) ∈ I ∩ B i ,w i , (r, c) is in a block that is not on the main
diagonal. By Lemma 8.2, Γ[e , w] ∩ B i ,w i is another Γ[e , x]. So, D ∩ B i ,w i is simply
Γ[e , x] with the first row and last column removed. Thus, it suffices to prove the
following lemma.

Lemma Let x ∈ Sm be 4231 avoiding. Suppose x1 = m and x2 ≠ m − 1. Let Q be the
region obtained by removing the first row and last column of Γ[e , x]. Then, Q is block-
upper triangular, and for all positions (r, c) sandwiched only by inversions involving 1,
(r, c) is in a block not on the main diagonal.

Proof First, recall that Γ[e , x] contains the lower off-diagonal {( j, j − 1) ∶ j = 2,
. . . , m}, because x > m123⋯(m − 1).

Call a dot (i , x i) leading if it is not southwest of any ( j, x j) besides (1, m). (For
example, in Example 8.3, the leading dots of Γ[e , u] are (2, 2) and (4, 4).) We claim
that for each leading dot (i , x i), position (x i + 2, x i) is not sandwiched by an inversion
of x.

We show this first for the northmost leading dot (2, w2). Notice that there cannot be
any ( j, x j)with 2 < j ≤ x2 + 1 and x j > x2; in this case, avoiding 4231 would imply that
( j, x2) is not sandwiched by any inversion, which would in turn imply that (x2 + 1, x2)
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is not sandwiched by any inversion. But the lower off-diagonal is contained in Γ[e , x],
so this is a contradiction. This means that for all 2 < j ≤ x2 + 1, ( j, x j) is contained in
the square with opposing corners (2, 1) and (x2 + 1, x2). In particular, there is a dot
( j, x j) in every row and every column of this square. So, for j > x2 + 1, we have x j > x2,
which implies (x2 + 2, x2) is not sandwiched by an inversion of x. In other words, there
are no elements of Γ[e , x] in columns 1, . . . , x2 and rows x2 + 2, . . . , m. This implies
that Q is block-upper triangular, and the first diagonal block has northwest corner
(2, w2).

Note that the next leading dot is in row i2 ∶= x2 + 2. We can repeat the above
argument with this dot to reach the analogous conclusion: the second block of Q has
northwest corner (i2 , x i2). We can continue with the remaining leading dots to see
that Q is block-upper triangular with northwest corners of each diagonal block given
by the leading dots.

Notice that the union of the diagonal blocks contains every position (r, c) sand-
wiched by an inversion not involving 1. Thus, the complement of the union of diagonal
blocks in Q is exactly the positions (r, c) which are sandwiched only by an inversion
involving 1. This finishes the proof of the lemma. ∎

Finally, we can prove Proposition 4.14.

Proof of Proposition 4.14 Let w ∶= w0v and u ∶= w0x. Notice that u ∶ δ i( j) ↦
δw i (w j) and that w avoids 3412 and 4231.

It follows from Lemma 7.1 that restricting M to Γ[x , w0] is the same as reversing
the columns of M, restricting to Γ[e , u], and then reversing the columns again. That
is, letting A denote the matrix with 1’s on the antidiagonal and 0’s elsewhere,

M∣Γ[x ,w0] = [(MA)∣Γ[e ,u]]A.

In addition, note that reversing the columns of Γ[v , w0]v i
i gives Γ[e , w]w i

i . This
means that

M∣Γ[v ,w0]
vi
i
= [(MA)∣Γ[e ,w]wi

i
]A.

Thus, the proposition follows from taking determinants of both sides of (4.2) and
applying Proposition 8.1. ∎
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