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We introduce a novel recursive procedure to a neural-network-based subgrid-scale
(NN-based SGS) model for large eddy simulation (LES) of high-Reynolds-number
turbulent flow. This process is designed to allow an SGS model to be applicable to a
hierarchy of different grid sizes without requiring expensive filtered direct numerical
simulation (DNS) data: (1) train an NN-based SGS model with filtered DNS data at a low
Reynolds number; (2) apply the trained SGS model to LES at a higher Reynolds number;
(3) update this SGS model with training data augmented with filtered LES (fLES) data,
accommodating coarser filter size; (4) apply the updated NN to LES at a further higher
Reynolds number; (5) go back to Step (3) until a target (very coarse) filter size divided
by the Kolmogorov length scale is reached. We also construct an NN-based SGS model
using a dual NN architecture whose outputs are the SGS normal stresses for one NN and
the SGS shear stresses for the other NN. The input is composed of the velocity gradient
tensor and grid size. Furthermore, for the application of an NN-based SGS model trained
with one flow to another flow, we modify the NN by eliminating bias and introducing a
leaky rectified linear unit function as an activation function. The present recursive SGS
model is applied to forced homogeneous isotropic turbulence (FHIT) and successfully
predicts FHIT at high Reynolds numbers. The present model trained from FHIT is also
applied to decaying homogeneous isotropic turbulence and shows an excellent prediction
performance.
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1. Introduction

Large eddy simulation (LES) is an effective tool for predicting turbulent flow because it
does not require significant computational resources towards resolution of smaller eddies.
This resource reduction is realized through modelling of eddy motions at scales smaller
than the grid size (called subgrid scales). The subgrid-scale (SGS) stress from these SGS
motions should be modelled to close the governing equations for LES.

The SGS models have been derived for decades based on turbulence theory and
statistical approximation. A subset of these models that favour simplicity and stability
are represented as linear eddy-viscosity models. Examples include the Smagorinsky
(Smagorinsky 1963) and dynamic Smagorinsky (Germano et al. 1991) models, based on
the theory that the rate of energy transfer to smaller eddies is counterbalanced by the
viscous dissipation within the inertial subrange, WALE model (Nicoud & Ducros 1999),
using square of the velocity gradient tensor and analysing proper near-wall scaling for
the eddy viscosity, and Vreman model (Vreman 2004), rooted in the principle that the
SGS stress should be reduced in near-wall region or vanish in laminar flow. On the other
hand, the scale-similarity model (SSM) (Bardina, Ferziger & Reynolds 1980) assumed
that the interplay between resolved and modelled eddies can be accurately delineated
by the difference between the filtered and doubly filtered velocities. The gradient model
(GM) (Clark, Ferziger & Reynolds 1979) was derived from the Taylor expansion of the
definition of SGS stress. Nevertheless, these models contain some limitations. The linear
eddy-viscosity models, in particular, show very low correlations with true SGS stresses in
a priori tests (Liu, Meneveau & Katz 1994; Salvetti & Banerjee 1995; Park, Yoo & Choi
2005), while they successfully predict turbulence statistics for various flows in a posteriori
tests (i.e. actual simulations) (see, for example, Germano et al. (1991) for turbulent channel
flow, Le Ribault, Sarkar & Stanley (1999) for turbulent jet, Kravchenko & Moin (2000) for
flow over a circular cylinder). In contrast, both SSM and GM exhibit improved results
in a priori tests, but they do not sufficiently dissipate turbulent kinetic energy in actual
simulations, thereby leading to numerical instability (Vreman, Geurts & Kuerten 1996,
1997).

An alternative approach for the derivation of an SGS model involves a direct
employment of direct numerical simulation (DNS) data. For example, the optimal
LES (Langford & Moser 1999; Völker, Moser & Venugopal 2002) adopted stochastic
estimation techniques (Adrian et al. 1989; Adrian 1990) to diminish the discrepancy
between the ideal and simulated flow variables. This approach necessitated the use of
multipoint correlation data as inputs, which in turn required corresponding DNS data.
Moser et al. (2009) presented an optimal LES that did not require DNS data, but the
SGS model was created based on the assumption of isotropic flow. Another example
is an employment of deep learning techniques with a particular emphasis on artificial
neural networks (NNs) (Sarghini, de Felice & Santini 2003; Gamahara & Hattori 2017;
Maulik et al. 2018). Creating an SGS model through NNs requires the accumulation of
extensive data through filtering DNS data. This approach is based on an assumption that
there may be a complex but well-defined relationship between the SGS stress and resolved
flow variables. The pioneering application of NNs in the calculation of SGS stress, to
the best of our knowledge, was implemented by Sarghini et al. (2003). They employed
an NN to find an optimal turbulent viscosity coefficient for a hybrid model (combined
Smagorinsky and similarity models) applied to turbulent channel flow with nine velocity
gradients and six resolved Reynolds stresses as inputs, and demonstrated its ability to
accurately approximate the coefficient.

With the rapid development of deep learning technology, more advanced techniques
have been employed to develop SGS models for diverse applications. NN-based SGS
1000 A76-2
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models may be classified into three categories: closed-form, reassembling and direct
NN-based SGS models, respectively. The closed-form NN-based SGS models, analogous
to the study conducted by Sarghini et al. (2003), postulate that SGS models may be
derived in a closed form from physical, empirical or analytical tools. The coefficients of
these models are adjustable, and are computed using NNs with resolved flow variables
as inputs. Wollblad & Davidson (2008) identified the coefficients pertinent to proper
orthogonal decomposition for turbulent channel flow through an NN. Beck, Flad &
Munz (2019) and Pawar et al. (2020) suggested that calculating eddy viscosity could be
employed as a surrogate to the direct computation of SGS stress and contribute to enhanced
stability. Moreover, Xie et al. (2019a), Xie, Yuan & Wang (2020d) and Wang et al. (2021)
suggested that the SGS stress can be evaluated through a polynomial function including
the strain rate, rotation rate, velocity gradient and grid size, with NNs used to determine
the coefficients of the polynomial. Yu et al. (2022) and Liu et al. (2023) obtained the
coefficients of Smagorinsky and helicity SGS models using NN, respectively.

Reassembling NN-based SGS models extract unfiltered variables from filtered ones,
and subsequently use these extracted variables for the computation of SGS stress. In this
approach, NNs play a prominent role in the unfiltering or filtering process. Maulik et al.
(2018) engaged NNs in the training for unfiltering (Maulik & San 2017) and filtering for
two-dimensional decaying homogeneous isotropic turbulence (DHIT) in LES. The first
NN collected filtered vorticity and stream function data across multiple grids and gauged
the values of unfiltered vorticity and stream function at a single grid. The second NN
was subsequently deployed to approximate the filtered nonlinear term, a crucial element
for the determination of the SGS stress. Aligning with this methodology, Yuan, Xie &
Wang (2020) employed an NN for the estimation of SGS stresses in three-dimensional
forced homogeneous isotropic turbulence (FHIT), specifically using the NN to unfilter the
velocities.

Direct NN-based SGS models derive the SGS stress or force directly from resolved flow
variables through the application of NNs. Gamahara & Hattori (2017) employed NNs to
compute the SGS stress as immediate outputs for turbulent channel flow from four input
groups such as the strain rate, rotation rate, wall distance and velocity gradient. Previous
direct NN-based SGS models have used various techniques and methods to enhance model
performance and stability. These include an ad hoc method such as wall-damping function
or clipping (Gamahara & Hattori 2017; Maulik et al. 2019; Zhou et al. 2019), derivation
of inputs from multiple grids for single or multiple outputs (Beck et al. 2019; Maulik
et al. 2019; Xie et al. 2019b; Zhou et al. 2019; Pawar et al. 2020; Sirignano, MacArt
& Freund 2020; Xie et al. 2020a,b; Xie, Wang & Weinan 2020c; MacArt, Sirignano &
Freund 2021; Stoffer et al. 2021; Cheng et al. 2022; Guan et al. 2022; Liu et al. 2022; Guan
et al. 2023), incorporation of second derivatives of velocities (Wang et al. 2018; Xie et al.
2019b; Pawar et al. 2020; Sirignano et al. 2020; Xie et al. 2020a; MacArt et al. 2021) and
consideration of wall distance or filter size as inputs (Gamahara & Hattori 2017; Zhou et al.
2019; Abekawa et al. 2023). Others (Sirignano et al. 2020; MacArt et al. 2021; Guan et al.
2023; Sirignano & MacArt 2023) defined the training error (or objective function) using
flow variables other than the SGS stresses. Sirignano et al. (2020), MacArt et al. (2021)
and Sirignano & MacArt (2023) trained NNs with adjoint-based, PDE (partial differential
equation)-constrained optimization methods. Other improvements involve retraining NNs
through transfer learning for higher Reynolds number flows (Subel et al. 2021; Guan et al.
2022) and training NNs in complex flows (MacArt et al. 2021; Sirignano & MacArt 2023;
Kim, Park & Choi 2024). On the other hand, other types of techniques to improve the
performance of NN-based SGS models have also been explored, such as the use of a
convolutional neural network (Beck et al. 2019; Pawar et al. 2020; Guan et al. 2022;
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Liu et al. 2022; Guan et al. 2023), reinforcement learning (Novati, de Laroussilhe &
Koumoutsakos 2021; Kim et al. 2022; Kurz, Offenhäuser & Beck 2023) and a graph neural
network (Abekawa et al. 2023).

Park & Choi (2021) developed a direct NN-based SGS model for turbulent channel
flow whose input and output were the velocity gradient or strain rate and the SGS
stress, respectively. They performed a comprehensive analysis of the salient characteristics
inherent to direct NN-based SGS models, and demonstrated from a posteriori test without
introducing ad hoc techniques such as wall-damping function or clipping that SGS models
relying on a single grid input can compute turbulence statistics with a reasonably decent
level of accuracy. In addition, two specific results from this study are noteworthy: first,
when the LES grid size falls within the range of filter sizes for training NN, the SGS model
successfully predicts the flow; second, the SGS model is also successful in predicting the
flow at higher Reynolds number when the grid size in wall units is the same as that trained.
Hence, these observations indicate that the applicability of direct NN-based SGS models
depends on the dimensionless LES grid size relative to the trained grid (or filter) size. For
the development of a general NN-based SGS model for complex flow, it is essential that it
should function properly over a wide range of non-dimensional filter or grid sizes.

Despite their promising characteristics, previous direct NN-based SGS models have
confronted substantial challenges when aimed for application to untrained flows. These
challenges originate from the difficulty in developing universal non-dimensional input
and output variables for various flows and the nonlinear property (and thus occurrence
of potentially large errors in extrapolation) of NN. To achieve regularized input and output
values, various techniques have been explored, including the min-max method (Xie et al.
2019b; Pawar et al. 2020; Wang et al. 2021), Gaussian normalization method (Stoffer et al.
2021; Cheng et al. 2022; Liu et al. 2022), normalization with root-mean-square (r.m.s.)
values (Xie et al. 2020a,b,c; Guan et al. 2022, 2023), non-dimensionalization in wall units
(Park & Choi 2021; Kim et al. 2022), and prescribed velocity and length scales (MacArt
et al. 2021). However, each method has its own limitations: e.g. it requires an equilibrium
state or homogeneous direction(s), does not show generalizability when switched to other
flows, or proves to be infeasible as it requires DNS results. Consequently, a plausible
approach towards general direct NN-based SGS models would be to employ only local
variables for non-dimensionalization, like those described by Prakash, Jansen & Evans
(2022) and Abekawa et al. (2023). On the other hand, two strategies may be proposed for
the issue of extrapolation errors of NN. The first strategy is to discover normalized flow
variables and SGS stresses that are bounded within a certain range for various flows. The
second strategy is to incorporate all accessible data to cover an exhaustive range of flow
fields. The former presents considerable challenges, because it requires a formidable task
of pinpointing normalized flow variables that remain invariant with respect to factors like
the Reynolds number, filter size and flow topology. The latter may demand DNS data of
various flows at fairly high Reynolds numbers and thus imposes a huge computational
burden.

Therefore, the objective of the present study is to devise a new NN-based SGS model
designed to overcome the limitations of existing direct NN-based SGS models. We modify
the structure of an NN and formulate a recursive procedure to generate an SGS model
valid for a wide range of grid sizes. Here, an NN is trained using fDNS data at low
Reynolds number and then updated by data at higher Reynolds number collected through
filtered LES data. To validate the performance of the present recursive NN-based SGS
model, several SGS models are employed to simulate FHIT at various Reynolds numbers.
In addition, two DHIT cases are simulated using the NN trained with FHIT. Section 2
provides the LES framework, NN-based SGS models under consideration, FHIT, and
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filtering method employed. Section 3 describes the recursive algorithm for constructing
recursive NN-based SGS models, and provides the results of a priori and a posteriori
tests. In § 4, the present SGS models are applied to FHIT at high Reynolds numbers and
DHIT, and the results are discussed, followed by conclusions in § 5.

2. Numerical details

2.1. Large eddy simulation
In LES, the flow variables are filtered using the following operation (Pope 2000):

φ̄(x, t) =
∫

Ḡ(r)φ(x − r, t) dr, (2.1)∫
Ḡ(r) dr = 1, (2.2)

where φ̄ is a filtered flow variable, Ḡ is a filter function, x and r denote position vectors, and
t is time. The spatially filtered continuity and Navier–Stokes equations for incompressible
flows are

∂ ūi

∂xi
= 0, (2.3)

∂ ūi

∂t
+ ∂ ūiūj

∂xj
= − 1

ρ

∂ p̄∗

∂xi
+ ν

∂2ūi

∂xj∂xj
−

∂τ r
ij

∂xj
, (2.4)

where xi are the coordinates (x, y, z), ui are the corresponding velocities (u, v, w), and ρ

and ν are the fluid density and kinematic viscosity, respectively (Pope 2000). The effect of
the SGS eddy motions is modelled as the anisotropic part of SGS stress, τ r

ij:

τij = uiuj − ūiūj, (2.5)

τ r
ij = τij − 1

3τkkδij, (2.6)

where δij is the Kronecker delta. The filtered pressure p̄∗ includes the isotropic components
of SGS stress:

p̄∗ = p̄ + 1
3ρτkk. (2.7)

In the case of HIT, the filtered continuity and Navier–Stokes equations can be transformed
in a spectral space. The pseudo-spectral method is used for spatial discretization, and the
zero-padding method, augmented with the 3/2 rule, is applied to control aliasing errors.
For temporal integration, a third-order Runge–Kutta method is used for the convection
term, and the second-order Crank–Nicolson method is applied to the diffusion term.

To evaluate the performance of an NN-based SGS model relative to those of traditional
SGS models, LESs with the constant Smagorinsky model (CSM, Smagorinsky 1963),
dynamic Smagorinsky model (DSM, Germano et al. 1991; Lilly 1992), gradient model
(GM, Clark et al. 1979) and dynamic mixed model (DMM, Anderson & Meneveau 1999)
are carried out. The Smagorinsky models determine the anisotropic component of SGS
stress from

τ r
ij = −2(CsΔ̄)2|S̄|S̄ij, (2.8)

where Cs is the Smagorinsky model coefficient, Δ̄ is the grid size, S̄ij = (1/2)(∂ ūi/∂xj +
∂ ūj/∂xi) and |S̄| =

√
2S̄ijS̄ij. For CSM, Cs is a fixed value of 0.17 (Pope 2000). For DSM,
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the Smagorinsky model coefficient is obtained as

C2
s = max[〈Lr

ijMij〉h/〈MijMij〉h, 0], (2.9)

Lij = ˜̄uiūj −˜̄uĩūj, (2.10)

Lr
ij = Lij − 1

3 Lkkδij, (2.11)

Mij = −2Δ̃2| ˜̄S| ˜̄Sij + 2Δ̄
2
˜|S̄|S̄ij, (2.12)

where �(·) and (̃·) correspond to the grid- and test-filtering operations, respectively,
and Δ̃ = 2Δ̄. The notation 〈·〉h denotes an instantaneous averaging over homogeneous
directions. The SGS stress in GM is derived through the application of Taylor expansions
of the filtered velocity (Clark et al. 1979; Vreman et al. 1996) as

τ r
ij = 1

12

(
βij − 1

3
βkkδij

)
, (2.13)

βij =
∑

l

Δ̄2
l
∂ ūi

∂xl

∂ ūj

∂xl
, (2.14)

where Δ̄l is the grid size in the xl direction. The DMM (Anderson & Meneveau 1999) is a
combination of CSM and GM with the model coefficients Cs and Cg that are dynamically
determined:

τ r
ij = −2(CsΔ̄)2|S̄|S̄ij + Cg(βij − 1

3βkkδij), (2.15)

where

C2
s = max

[ 〈Lr
ijMij〉h〈NijNij〉h − 〈Lr

ijNij〉h〈MijNij〉h

〈MijMij〉h〈NijNij〉h − 〈MijNij〉h〈MijNij〉h
, 0

]
, (2.16)

Cg =
〈Lr

ijNij〉h〈MijMij〉h − 〈Lr
ijMij〉h〈MijNij〉h

〈MijMij〉h〈NijNij〉h − 〈MijNij〉h〈MijNij〉h
, (2.17)

Nij =
(

Bij − 1
3

Bkkδij

)
−
(

β̃ij − 1
3
β̃kkδij

)
, (2.18)

Bij =
∑

l

Δ̃2
l
∂˜̄ui

∂xl

∂˜̄uj

∂xl
. (2.19)

2.2. NN-based SGS model
So far, most NN-based SGS models have optimized the weights and biases of the NNs,
despite using different deep learning techniques (see § 1). For example, Park & Choi (2021)
implemented an NN consisting of two hidden layers and 128 neurons per hidden layer to
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compute six components of the SGS stress:

h(1)
i = q̄i (i = 1, 2, . . . , Nq),

h(2)
j = max

⎡⎣0, γ
(2)
j

⎛⎝ Nq∑
i=1

W(1)(2)
ij h(1)

i + b(2)
j − μ

(2)
j

⎞⎠ /σ
(2)
j + β

(2)
j

⎤⎦ ( j = 1, 2, . . . , 128),

h(3)
k = max

⎡⎣0, γ
(3)
k

⎛⎝ 128∑
j=1

W(2)(3)
jk h(2)

j + b(3)
k − μ

(3)
k

⎞⎠ /σ
(3)
k + β

(3)
k

⎤⎦ (k = 1, 2, . . . , 128),

h(4)
l = sl =

128∑
k=1

W(3)(4)
kl h(3)

k + b(4)
l (l = 1, 2, . . . , 6).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.20)

Here, q̄ is the grid-filtered input, Nq is the number of the input components, W (m)(m+1)

is the weight matrix between mth and (m + 1)th layers, b(m) is the bias vector of the mth
layer, s is the output (six components of the SGS stress), and γ (m), μ(m), σ (m) and β(m) are
the parameters for batch normalization (Ioffe & Szegedy 2015). During an NN training
process, the parameters (W (m)(m+1), b(m), γ (m), μ(m), σ (m) and β(m)) are optimized to
minimize the training error.

In the present study, we construct an NN-based SGS model using a dual NN architecture
(figure 1), where the output of one NN (NNN) is the SGS normal stresses (τ r

11, τ
r
22, τ

r
33)

and that of the other (NNS) is the SGS shear stresses (τ r
12, τ

r
13, τ

r
23). The reason for using

two NNs is that the ranges of the normal and shear SGS stresses are quite different from
each other, and thus separate treatments of these SGS stresses increase the prediction
capability of the present NN-based SGS model. Each of the present NNs consists of two
hidden layers and 64 neurons per hidden layer, and the output of the mth layer, h(m), is
computed as

h(1)
i = q̄i (i = 1, 2, . . . , 9),

h(2)
j = max[0.02r(2)

j , r(2)
j ], r(2)

j =
9∑

i=1

W(1)(2)
ij h(1)

i ( j = 1, 2, . . . , 64),

h(3)
k = max[0.02r(3)

k , r(3)
k ], r(3)

k =
64∑

j=1

W(2)(3)
jk h(2)

j (k = 1, 2, . . . , 64),

h(4)
l = sl =

64∑
k=1

W(3)(4)
kl h(3)

k (l = 1, 2, 3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.21)

Note that we remove the bias (b) and batch normalization parameters (γ , μ, σ and β).
Also, we use the leaky rectified linear unit function (leaky ReLU) as an activation function:
f (x) = max[ax, x], which was proposed by Maas, Hannun & Ng (2013) to overcome the
vanishing gradient problem (Bengio, Simard & Frasconi 1994). The negative slope is
determined to be 0.01 ≤ a ≤ 0.2 (Xu et al. 2015), and we choose a = 0.02. Note that one
of the reasons for introducing the bias b is to produce non-zero output even if the input is
zero (Goodfellow, Bengio & Courville 2016). For the present flow problem, the bias is not
necessarily needed because the output should be zero when the input is zero. The effects
of removing the bias and batch normalization parameters and replacing ReLU with leaky
ReLU on the results of a priori and a posteriori tests are discussed in Appendix A, where
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τ r
11

τ r
22

τ r
33

τ r
12

τ r
23

τ r
31

NNN

NNS

Δ
–2|α–|α–ij

Δ
–2|α–|α–ij

Figure 1. Schematic diagram of the present NN-based SGS model that consists of a dual NN: NNN and NNS
predict the SGS normal and shear stresses, respectively.

we show that setting b = μ = β = 0, γ = σ = 1 and replacing ReLU with leaky ReLU
do not deteriorate the numerical solutions for the present flow.

Without the bias and batch normalization parameters and with the use of leaky ReLU,
the present NN complies with the following conditions:

NN(cA) = cNN(A) only if c ≥ 0, (2.22)

NN(A + B) /= NN(A) + NN(B), (2.23)

where c is a positive scalar, and A and B are arbitrary tensors (A /= B). For example, for
c = 2 and B = 2A, NN(cA) = cNN(A) and NN(A + B) = NN(A) + NN(B), but for
c = 2 and B = −2A, NN(cA) = cNN(A) and NN(A + B) /= NN(A) + NN(B) due to
the leaky ReLU used. Thus, the present NN still retains its nonlinearity, making it suitable
for nonlinear regression between the SGS stresses and local flow variables. Equation (2.22)
allows us to apply an NN trained from one flow to another flow. Let us show an example for
turbulent channel flow and flow over a circular cylinder. Assume that the input and output
variables are Δ̄2|ᾱ|ᾱij and τ r

ij for these two flows, where Δ̄ = (Δ̄xΔ̄yΔ̄z)
1/3, ᾱij = ∂ ūi/∂xj

and |ᾱ| = √
ᾱijᾱij. An NN is constructed from turbulent channel flow with input and output

variables normalized by the wall-shear velocity uτ : i.e. τ r
ij/u2

τ = NN(Δ̄2|ᾱ|ᾱij/u2
τ ). Then,

this trained NN can be used for flow over a circular cylinder with input and output variables
normalized by the free-stream velocity u∞ from the following relation:

τ r
ij

u2∞
= u2

τ

u2∞

τ r
ij

u2
τ

= u2
τ

u2∞
NN

(
Δ̄2|ᾱ|ᾱij

u2
τ

)
= NN

(
u2
τ

u2∞

Δ̄2|ᾱ|ᾱij

u2
τ

)
= NN

(
Δ̄2|ᾱ|ᾱij

u2∞

)
.

(2.24)

During the training process, the weight parameters W (m)(m+1) are optimized to
minimize the mean square error (loss) given by

L = 1
3

1
Nb

3∑
l=1

Nb∑
n=1

(sfDNS
l,n − sl,n)

2, (2.25)
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Recursive NN-based SGS model for LES

where Nb denotes the minibatch size of 256, and sfDNS
l,n corresponds to the anisotropic

components τ r
ij obtained from fDNS. Here, the loss of each minibatch is calculated and

then the weights are updated for every minibatch.
We apply the Adam algorithm (a type of gradient descent, Kingma & Ba 2014) and

learning rate annealing method (Simonyan & Zisserman 2014; He et al. 2016) to optimize
the weights and enhance the training speed, respectively. Early stopping (Goodfellow et al.
2016) is employed in the training process to avoid overfitting. The learning rate is initially
0.025, and is subsequently reduced by a factor of 10 if no improvement in the training error
is observed over five epochs. If the learning rate is decreased three times but there is no
reduction in the training error over five epochs, training is stopped. The training requires
150 to 300 epochs. The entire process to train and execute the present NN is carried out
with the PyTorch open-source library in the Python programming environment.

We develop an NN-based SGS model whose input and output are Δ̄2|ᾱ|ᾱij and τ r
ij ,

respectively (NN-based velocity gradient model, called NNVGM hereafter). Note that
the dimensions of input and output are matched to be the same. The velocity gradient
tensor as an input has been used by many previous studies (Gamahara & Hattori 2017;
Wang et al. 2018; Xie et al. 2019b; Zhou et al. 2019; Pawar et al. 2020; Prat, Sautory
& Navarro-Martinez 2020; Xie et al. 2020a,b,c; Park & Choi 2021; Kim et al. 2022;
Abekawa et al. 2023; Kim et al. 2024), and the same form of input was considered by
Jamaat & Hattori (2022) for one-dimensional Burgers turbulence. The NNVGM obtains
inputs from each grid point and computes corresponding SGS stresses.

2.3. Forced homogeneous isotropic turbulence (FHIT) and filtering method
FHIT involves an additional forcing term in the Navier–Stokes equations at low
wavenumbers (Ghosal et al. 1995; Rosales & Meneveau 2005; Park et al. 2006):

fi = εt
ui∑

0<|k|<2 |ûj(k)|2 , (2.26)

where fi is the forcing term, ûi is the Fourier coefficient of ui, εt is the prescribed mean
total dissipation rate determining the turbulent energy injection rate, |k| =

√
k2

x + k2
y + k2

z ,

and ki is the wavenumber in the i direction. Note that εt encompasses both the resolved and
modelled dissipation.

In FHIT, two distinct Reynolds numbers, Reλ = urmsλ/ν and ReL = UL/ν, can be
defined. Here, urms is the r.m.s. velocity fluctuations, λ(= √

15u2
rmsν/εt) is the Taylor

microscale, L is associated with the computational domain size of 2πL × 2πL × 2πL, and
U is the characteristics velocity such that U = (εtL)1/3. The Taylor microscale Reynolds
number Reλ has been widely used in turbulence studies. Nevertheless, the extraction of
urms requires intricate experimental data or DNS. In contrast, ReL does not require such
preliminary outcomes, and can be deduced from εtL/U3 = 1, ηkmax,DNS and NDNS, where
η is the Kolmogorov length scale, and kmax,DNS and NDNS are the largest wavenumber and
number of grid points in each direction in DNS, respectively. According to Pope (2000),
ηkmax,DNS = 3/2 or ΔDNS/η = 2π/3 is set to achieve sufficiently high resolution in DNS,
where ΔDNS is the grid size in DNS. Then, L = ΔDNSNDNS/(2π) = ηNDNS/3. With these
relations together with η = (ν3/εt)

1/4, one can obtain ReL = (NDNS/3)4/3. Table 1 lists
the cases of DNS at various Reynolds numbers by changing the number of grid points for
FHIT, where each case is named as DNSNDNS. Note that the cases listed in table 1 do not
necessarily require actual DNS except for the case of DNS128 (the recursive procedure
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Case NDNS ReL Reλ

DNS128 128 149.09 93.03
DNS256 256 375.69 154.17
DNS512 512 946.67 —
DNS1024 1024 2385.46 —
DNS2048 2048 6010.98 —
DNS4096 4096 15146.71 —
DNS8192 8192 38167.31 —
DNS16384 16 384 96175.60 —
DNS32768 32 768 242347.33 —

Table 1. Cases of DNS at various Reynolds numbers for FHIT. Here, ReL = (NDNS/3)4/3 and ΔDNS/η =
2π/3 (NDNSΔDNS = 2πL). DNSs are performed for DNS128 and DNS256, and the corresponding Reλ values
are given in this table. Here, ΔDNS and NDNS are the size and number of grid points in each direction in DNS,
respectively.

Case Nc ReL Δ̄/η

fDNS32/128 or LES32/128 32 149.09 8.38
fDNS64/128 64 149.09 4.19
fDNS32/256 or LES32/256 32 375.69 16.76
fDNS64/256 or LES64/256 64 375.69 8.38
fDNS128/256 128 375.69 4.19

LES64/512 64 946.67 16.76
LES64/1024 64 2385.46 33.51

Table 2. Cases of fDNS and LES at various Reynolds numbers for FHIT. Here, Nc is the number of grid points
in each direction for fDNS or LES, and Δ̄ denotes the filter size for fDNS (Δ̄fDNS) or the grid size for LES
(Δ̄LES). The name of each case indicates fDNSNc/NDNS or LESNc/NDNS. Note that ΔDNS/η = 2π/3.

introduced below requires DNS only at a low Reynolds number), and LESs are conducted
for higher Reynolds number cases through the recursive procedure.

Table 2 shows the cases considered for fDNS and LES of FHIT. The fDNS data are
obtained by applying a transfer function Ĝ(k) to the Fourier-transformed DNS data ûi(k):

ˆ̄ui(k) = ûi(k) ˆ̄G(k), (2.27)

ˆ̄G(k) =
∫

exp(ik·r)Ḡ(r) dr. (2.28)

The fDNS data can be obtained by applying a spectral cutoff filter or Gaussian filter in the
spectral space. However, these filterings have limitations when the filtered variables are
compared with LES results. The spectral cutoff filtering removes the Fourier coefficients
ûi at k > kc, and allows filtered variables to be placed on coarser grids of LES, where kc(=
π/Δ̄) is the cutoff wavenumber. However, this filtering fails to satisfy the realizability
condition due to negative weights in the physical space (Vreman, Geurts & Kuerten 1994).
Additionally, the spectral cutoff filtering may exhibit non-local oscillations (Meneveau
& Katz 2000; Pope 2000). On the other hand, the Gaussian filtering is free from these
drawbacks, and requires filtering even when the wavenumber exceeds the LES limit (i.e.
k > π/Δ̄LES). Although the filter size may coincide with the LES grid size, the Gaussian
filtered data are allocated at DNS grids, not at LES grids.
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Recursive NN-based SGS model for LES

Filter ˆ̄G(k) Largest wavenumber of filtered variables

Spectral cutoff H(kc − k) kc
Gaussian exp(−k2Δ̄2/24) kDNS(= π/ΔDNS)

Cut-Gaussian exp(−k2Δ̄2/24) kc

Table 3. Comparison of three filters. Here, H is the Heaviside step function.

10–6

100 101 102

10–5

10–4

10–3

10–2

10–1

100

101

kL

E(
k)

/U
2
L

Figure 2. Three-dimensional energy spectra: black line, DNS128 (ReL = 149.09; Reλ = 93.03); red line,
fDNS32/128 with cut-Gaussian filtering; blue line, fDNS32/128 with Gaussian filtering; green line,
fDNS32/128 with spectral cutoff filtering; blue ◦, LES32/128 with DSM; green ◦, LES32/128 with GM.

In the present study, we use the cut-Gaussian filtering (Zanna & Bolton 2020; Guan et al.
2022, 2023; Pawar et al. 2023) which retains the transfer function of Gaussian filtering but
truncates the filtered variables at the wavenumbers exceeding the cutoff wavenumber kc.
Table 3 shows three different filters in the spectral space, corresponding transfer functions
and largest wavenumbers of filtered variables, respectively. Figure 2 shows the energy
spectra from DNS128, fDNS32/128 using cut-Gaussian, Gaussian and spectral cutoff
filters, and LES32/128 with DSM and GM, respectively. The energy spectrum with GM
is in excellent agreement with that of fDNS using the spectral cutoff filter. In contrast, the
energy spectrum with DSM is closer to that of fDNS using the cut-Gaussian filter. Given
the increased adaptability of DSM over GM, we measure the prediction capability of the
SGS models based on the cut-Gaussian filtered DNS data.

3. A recursive NN-based SGS model (NNVGM)

3.1. A recursive algorithm
The present study employs a recursive procedure to construct an NNVGM adapted to
various grid sizes normalized by the Kolmogorov length scale from the following steps:
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(i) obtain training data (fDNS data) by filtering DNS data at a low Reynolds number
(ReL);

(ii) train an NNVGM with the fDNS data;
(iii) apply the NNVGM to LES at a higher Reynolds number, where the ratio of LES

grid size to the Kolmogorov length scale (Δ̄LES/η) is equal to that of filter size to
the Kolmogorov length scale (Δ̄fDNS/η) (see Appendix B for the effect of different
filter to grid ratios);

(iv) filter the LES data and include the filtered LES (fLES) data in the training dataset,
where the new filter size is twice the LES grid size;

(v) train the NNVGM using the augmented training data;
(vi) apply the updated NNVGM to LES at even higher Reynolds number, where the LES

grid size is equal to the filter size defined in Step (iv);
(vii) repeat steps (iv)–(vi) for LES at higher Reynolds numbers.

Steps (i) and (ii) are similar to those used in constructing previous NN-based SGS models.
The present recursive procedure aims at improving the performance of an NNVGM at a
wider range of non-dimensional grid sizes by recursively performing LES and training it
using fLES data.

3.2. NNVGM trained with fDNS data: a priori and a posteriori tests
First, fDNS data are used to train an NN. The Reynolds number and number of grid
points in each direction for DNS are ReL = 149.09 and NDNS = 128, respectively (table 1).
The filter sizes considered are Δ̄fDNS/η = 8.39 and 4.19, corresponding to the cases of
fDNS32/128 and fDNS64/128, respectively (table 2). Including two different filter sizes in
constructing fDNS data helps to improve the prediction capability of NNVGMs (see, for
example, Park & Choi 2021) by broadening the ranges of the input and output, when they
are appropriately normalized. In the present study, we train a dual NN (NNN and NNS
in figure 1) with the training data (input and output) normalized by r.m.s. SGS normal
(τ r

11,rms) and shear (τ r
12,rms) stress fluctuations, respectively. Note that τ r

11,rms(= τ r
22,rms =

τ r
33,rms) and τ r

12,rms(= τ r
13,rms = τ r

23,rms) are obtained from (2.5) and (2.6) with DNS data.
During actual LES, however, the SGS normal and shear stress fluctuations are a priori
unknown, and thus providing normalized input data to the NN is not possible. Hence, in
actual LES, we can only provide the input normalized by the characteristic velocity scale
(Δ̄2|ᾱ|ᾱij/U2

LES). Thanks to the important property of the present NN, (2.22), we obtain
the following relation (no summation on i and j):

τ r
ij

U2
LES

=
τ r

ij,rms

U2
LES

τ r
ij

τ r
ij,rms

=
τ r

ij,rms

U2
LES

NN

(
Δ̄2|ᾱ|ᾱij

τ r
ij,rms

)
= NN

(
Δ̄2|ᾱ|ᾱij

U2
LES

)
. (3.1)

This relation indicates that, during actual LES, one can provide the input normalized by
ULES to the NN trained with the input normalized by the r.m.s. SGS stresses.

However, the SGS stresses obtained from DNS data have a problem of imbalanced
distribution because they tend to be mainly distributed around zero. So, we choose the
normalized output and corresponding input through the process known as undersampling
(Drummond & Holte 2003; Liu, Wu & Zhou 2008). During this process, we do not use all
the filtered data as the training one, but choose data such that the possibility of choosing
data as the training one decreases when its magnitude is near to zero: i.e. the probability
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Figure 3. Probability density function (p.d.f.) of normalized τ r
12 before (blue) and after (red) undersampling.

(P) to choose an SGS shear stress and corresponding inputs as training data is

P =
{

sin2 θ if 0 ≤ θ < π/2
1 if θ ≥ π/2

, (3.2)

θ = π

8

√
{(τ r

12)
2 + (τ r

23)
2 + (τ r

13)
2}/3

τ r
12,rms

. (3.3)

Figure 3 illustrates the effect of undersampling on the probability density function (p.d.f.)
of training data. This undersampling reduces the probability of zero SGS stresses and
enhances the occurrence of strong SGS stresses, leading to generate high SGS dissipation
and thus improving the performance of an NNVGM. The SGS normal stresses are also
similarly processed. For each fDNS dataset, approximately 600 000 pairs of Δ̄2|ᾱ|ᾱij and
τ r

ij are used for training. Other types of the probability P for undersampling are also
considered and the results from different choices of P are discussed in Appendix C.

We perform a priori tests with the present NNVGMs and traditional models
using fDNS32/128 (ReL = 149.09) and fDNS64/256 (ReL = 375.69), respectively.
Table 4 provides the correlations of the SGS normal and shear stresses and SGS
dissipation, and the magnitude of the SGS dissipation from various SGS models.
Here, NNVGM(32+64)/128 is trained using fDNS32/128 and fDNS64/128 datasets, and
NNVGM(64+128)/256 is done using fDNS64/256 and fDNS128/256 datasets. For both
Reynolds numbers, NNVGMs provide the highest correlations of the SGS stresses and
SGS dissipation, and the magnitudes of the SGS dissipation closest to those of fDNS data.
It is notable that NNVGM(32+64)/128 trained at ReL = 149.09 successfully predicts the
correlations and SGS dissipation even when it is applied to a higher Reynolds number of
ReL = 375.69.

Figure 4(a,b) shows the p.d.f.s of εSGS, τ r
11 and τ r

12 from various SGS models for
ReL = 149.09 and 375.69, respectively. As shown, the p.d.f.s of εSGS from NNVGM
and GM agree very well with fDNS data. The p.d.f.s from both CSM and DSM appear
only at positive SGS dissipation, but do not agree well with fDNS data. However, DMM
provides large positive SGS dissipation (its curves nearly fall on those of CSM), leading
to overestimated SGS dissipation (see table 4). Similarly, NNVGM and GM predict
SGS stresses better than other models. It should be noted that NNVGM(32+64)/128
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ReL SGS model R(τ r
11) R(τ r

12) R(εSGS) εSGS

149.09 fDNS32/128 — — — 0.430
NNVGM(32+64)/128 0.661 0.692 0.647 0.447
CSM32/128 0.191 0.204 0.569 1.077
DSM32/128 0.191 0.204 0.569 0.859
GM32/128 0.653 0.682 0.633 0.315
DMM32/128 0.649 0.681 0.637 0.958

375.69 fDNS64/256 — — — 0.439
NNVGM(32+64)/128 0.664 0.695 0.662 0.461
NNVGM(64+128)/256 0.664 0.695 0.662 0.452
CSM64/256 0.186 0.201 0.578 1.118
DSM64/256 0.186 0.201 0.577 0.892
GM64/256 0.656 0.686 0.647 0.324
DMM64/256 0.654 0.686 0.653 0.965

Table 4. Statistics from a priori tests at ReL = 149.09 and 375.69 with Δ̄fDNS/η = 8.38: Pearson correlation
coefficients (R) of τ r

ij and SGS dissipation εSGS(= −τ r
ij S̄ij), and magnitude of εSGS.

trained at ReL = 149.09 predicts the p.d.f.s accurately at ReL = 375.69 as much as
NNVGM(64+128)/256 does.

Now, we perform a posteriori tests (actual LES) with the present NNVGMs and
traditional models for ReL = 149.09 and 375.69, and compare the results with fDNS32/128
and fDNS64/256 data, respectively. Figures 5 and 6 show the three-dimensional energy
spectra, and p.d.f.s of the SGS dissipation, SGS stresses, strain rates (S̄11 and S̄12) and
rotation rate (Ω̄23 = 0.5(∂ ū3/∂x2 − ∂ ū2/∂x3)), respectively. The energy spectra from
NNVGM and GM agree well with fDNS data, whereas CSM, DSM and DMM provide
rapid fall-off at high wavenumbers (figure 5). For p.d.f.s of the SGS dissipation and
stresses, NNVGM, GM and DMM provide accurate predictions, whereas CSM and DSM
do not. For the strain and rotation rates, NNVGM and GM provide the most accurate
results (figure 6). These results indicate that LES with NNVGM trained at a Reynolds
number predicts turbulence statistics very well for a different (higher) Reynolds number
flow if Δ̄LES/η = Δ̄fDNS/η. A similar conclusion was also made by Park & Choi (2021),
where the grid size was non-dimensionalized in wall units rather than by the Kolmogorov
length scale.

3.3. NNVGM trained with fDNS and fLES data: a priori and a posteriori tests
As mentioned before, we train the NN with fLES data as well as fDNS data. The theoretical
basis for filtering LES data can be attributed to the test filter introduced by Germano et al.
(1991):

φ̃(x, t) =
∫

φ(x − r, t)G̃(r) dr, (3.4)

where G̃ is a filter function and ˜̄G = G̃Ḡ. The test-filtered SGS stresses are written as

Tij = ũiuj − ˜̄ui ˜̄uj, (3.5)

Tr
ij = Tij − 1

3 Tkkδij, (3.6)
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Figure 4. Probability density functions of the SGS dissipation and SGS normal and shear stresses (a priori
test with Δ̄fDNS/η = 8.38): (a) ReL = 149.09; (b) ReL = 375.69. In panel (a), �, fDNS32/128; red line,
NNVGM(32+64)/128; blue line, CSM32/128; blue dashed line, DSM32/128; blue dotted line, GM32/128;
blue dash-dotted line, DMM32/128. In panel (b), �, fDNS64/256; red ◦, NNVGM(64+128)/256; red line,
NNVGM(32+64)/128; blue line, CSM64/256; blue dashed line, DSM64/256; blue dotted line, GM64/256;
blue dash-dotted line, DMM64/256.

and Tr
ij is obtained by the following relation:

Tr
ij = τ̃ r

ij + Lr
ij, (3.7)

where

Lij = ˜̄uiūj − ˜̄ui ˜̄uj, (3.8)

Lr
ij = Lij − 1

3 Lkkδij. (3.9)

The present NNVGM is updated through the accumulation of new datasets with the
input of Δ̃2| ˜̄α| ˜̄αij and the output of Tr

ij. The test filter size is twice the LES grid size,
i.e. Δ̃ = 2Δ̄LES. The filtered LES data, referred to as fLES32/256, are obtained by
filtering LES64/256 data. The fLES data are selected using the same normalization
and undersampling techniques described in § 3.2. The fLES32/512, fLES32/1024,
. . ., fLES32/32768 data can be created by filtering LES64/512, LES64/1024, . . .,
LES64/32768, respectively, during the recursive procedure. Table 5 summarizes the
present NNVGMs considered and corresponding training data.

Let us conduct a priori and a posteriori tests for ReL = 375.69 with Δ̄/η =
16.76 (twice that of LES64/256 and LES32/128). During the training process,
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Figure 5. Three-dimensional energy spectra (a posteriori test; LES32/128 and LES64/256 for ReL = 149.09
and 375.69, respectively, with Δ̄LES/η = 8.38): (a) ReL = 149.09; (b) ReL = 375.69. In panel (a), �, DNS128;
�, fDNS32/128; red line, NNVGM(32+64)/128; blue line, CSM32/128; blue dashed line, DSM32/128; blue
dotted line, GM32/128; blue dash-dotted line, DMM32/128. In panel (b), �, DNS256; �, fDNS64/256; red ◦,
NNVGM(64+128)/256; red line, NNVGM(32+64)/128; blue line, CSM64/256; blue dashed line, DSM64/256;
blue dotted line, GM64/256; blue dash-dotted line, DMM64/256. Here, uη is the Kolmogorov velocity scale.

SGS model Training data

NNVGM128D fDNS32/128, fDNS64/128
NNVGM256DD fDNS64/256, fDNS128/256
NNVGM(128D+256D) fDNS32/128, fDNS64/128, fDNS32/256
NNVGM(128D+256L) fDNS32/128, fDNS64/128, fLES32/256
NNVGM(128D+512L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512
NNVGM(128D+1024L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512, fLES32/1024
NNVGM(128D+2048L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512, fLES32/1024,

fLES32/2048
NNVGM(128D+4096L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512, fLES32/1024,

fLES32/2048, fLES32/4096
NNVGM(128D+8192L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512, fLES32/1024,

fLES32/2048, fLES32/4096, fLES32/8192
NNVGM(128D+16384L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512, fLES32/1024,

fLES32/2048, fLES32/4096, fLES32/8192, fLES32/16384
NNVGM(128D+32768L) fDNS32/128, fDNS64/128, fLES32/256, fLES32/512, fLES32/1024,

fLES32/2048, fLES32/4096, fLES32/8192, fLES32/16384, fLES32/32768

Table 5. NNVGMs and corresponding training data. Here, NNVGM128D and NNVGM256DD are the
same as NNVGM(32+64)/128 and NNVGM(64+128)/256 discussed in § 3.2, respectively. A directory
with the NNs (NNVGM128D, NNVGM(128D+256L), NNVMG(128D+512L), . . ., NNVMG(128D+32768L))
and a customizable Jupyter notebook can be accessed at https://www.cambridge.org/S0022112024009923/
JFM-Notebooks/files/Table_5/Table_5.ipynb. Here, the weights W(1)(2)

ij , W(2)(3)
jk and W(3)(4)

kl in (2.21) are also
accessible for NNVGM128D to NNVGM(128D+32768L). The SGS stresses τ r

ij/U2 from NNVGMs are
calculated with user’s input values of ᾱijL/U.

NNVGM(128D+256D) employs fDNS data only (fDNS32/128, fDNS64/128 and
fDNS32/256), but NNVGM(128D+256L) uses a combination of fDNS and fLES data
(fDNS32/128, fDNS64/128 and fLES32/256). Table 6 and figure 7 show the results
of a priori tests. For the correlation coefficients, the performances of NNVGMs are
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Figure 6. Probability density functions of the SGS dissipation, SGS stresses, strain rates and rotation rate (a
posteriori test; LES32/128 and LES64/256 for ReL = 149.09 and 375.69, respectively, with Δ̄LES/η = 8.38):
(a) ReL = 149.09; (b) ReL = 375.69. In panel (a), �, fDNS32/128; red line, NNVGM(32+64)/128; blue line,
CSM32/128; blue dashed line, DSM32/128; blue dotted line, GM32/128; blue dash-dotted line, DMM32/128.
In panel (b), �, fDNS64/256; red ◦, NNVGM(64+128)/256; red line, NNVGM(32+64)/128; blue line,
CSM64/256; blue dashed line, DSM64/256; blue dotted line, GM64/256; blue dash-dotted line, DMM64/256.
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SGS model R(τ r
11) R(τ r

12) R(εSGS) εSGS

fDNS32/256 — — — 0.734
NNVGM(128D+256D) 0.528 0.563 0.540 0.653
NNVGM(128D+256L) 0.527 0.563 0.539 0.706
CSM32/256 0.196 0.221 0.489 1.397
DSM32/256 0.196 0.221 0.489 1.316
GM32/256 0.511 0.544 0.507 0.378
DMM32/256 0.506 0.543 0.524 1.683

Table 6. Statistics from a priori test at ReL = 375.69 with Δ̄/η = 16.76: Pearson correlation coefficients (R)

of τ r
ij and εSGS, and magnitude of εSGS.
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Figure 7. Probability density functions of the SGS dissipation and stresses (a priori test at ReL = 375.69 with
Δ̄/η = 16.76): �, fDNS32/256; red ◦, NNVGM(128D+256D); red line, NNVGM(128D+256L); blue line,
CSM32/256; blue dashed line, DSM32/256; blue dotted line, GM32/256; blue dash-dotted line, DMM32/256.

similar to those of GM and DMM, and are much better than those of CSM and DSM,
whereas the SGS dissipation is best predicted by NNVGMs (table 6). For p.d.f.s (figure 7),
similar predictions as discussed in figure 4 are observed, and thus we do not repeat here.
A notable observation is that the results of NNVGM(128D+256L) are nearly identical to
those obtained from NNVGM(128D+256D), implying that fLES data can replace fDNS
data in constructing NNVGMs. Currently, we reach this conclusion only from numerical
simulation, but a more mathematical analysis may be required to confirm the usefulness
of fLES data in constructing the NN.

Figures 8 and 9 show the results of energy spectra and p.d.f.s from a posteriori
tests, where the result from GM32/256 is not shown because the simulation diverged.
Again, NNVGM(128D+256D) and NNVGM(128D+256L) perform well among the
SGS models considered, but show underpredictions at intermediate wavenumbers. The
DMM predicts p.d.f.s very well, but its energy spectrum rapidly decreases at high
wavenumbers. Thus, we perform additional LES with NNVGM(128D+1024L) whose
trained filter sizes are 4.19 ≤ Δ̄fDNS/η and Δ̄fLES/η ≤ 67.02 (note that the filter sizes for
NNVGM(128D+256L) are 4.19 ≤ Δ̄fDNS/η and Δ̄fLES/η ≤ 16.76). The energy spectrum
with NNVGM(128D+1024L) is in excellent agreement with fDNS32/256, suggesting that
one should expect successful LES when Δ̄LES/η is within the range of trained filter sizes
(see § 4.2 for further discussion). It is also important to note that the present NNVGMs
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Figure 8. Three-dimensional energy spectra (a posteriori test at ReL = 375.69 with Δ̄LES/η = 16.76; N3 =
323): �, DNS256; �, fDNS32/256; red ◦, NNVGM(128D+256D); red line, NNVGM(128D+256L); red dotted
line, NNVGM(128D+1024L); blue line, CSM32/256; blue dashed line, DSM32/256; blue dash-dotted line,
DMM32/256.

10–3

10–2

10–1

100

–1.0 –0.5 0 0.5 1.0 –1.0 –0.5 0 0.5 1.0–10 –5 0 5 10

–10 –5 0 5 10 –10 –5 0 5 10 –10 –5 0 5 10

10–4

10–3

10–2

10–1

100

101

p
.d

.f
.

p
.d

.f
.

(b)

(a)

10–3

10–3

10–2

10–2

10–1

10–1

100

100

10–3

10–2

10–1

100

101

102

10–3

10–2

10–1

100

101

102

ESGSL/U3 τ r
11/U2 τ r

12/U2

S–11L/U S–12L/U Ω
–

23L/U

Figure 9. Probability density functions (a posteriori test at ReL = 375.69 with Δ̄LES/η = 16.76; N3 = 323):
(a) SGS dissipation and stresses; (b) strain and rotation rates. �, fDNS32/256; red ◦, NNVGM(128D+256D);
red line, NNVGM(128D+256L); red dotted line, NNVGM(128D+1024L); blue line, CSM32/256; blue dashed
line, DSM32/256; blue dash-dotted line, DMM32/256.
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Figure 10. Three-dimensional energy spectra (a posteriori test at ReL = 375.69 using CD2 and box filter):
(a) DNS256 (black line, spectral method; �, CD2) and fDNS64/256 (dashed line, spectral method and
cut-Gaussian filter; �, CD2 and box filter); (b) a posteriori test with N3 = 323; (c) a posteriori test with
N3 = 643. In panels (b) and (c), �, fDNS; red line, NNVGM(128D+32765L); blue line, CSM; blue dashed
line, DSM; blue dash-dotted line, DMM; dashed line, no SGS model (diverge with N3 = 323).

do not show the inconsistency between a priori and a posteriori tests observed from the
traditional SGS models (Park et al. 2005).

3.4. A posteriori test using a finite difference method with a box filter
In this subsection, we apply a trained NNVGM (from a spectral method with the
cut-Gaussian filter) to FHIT using the second-order central difference method (CD2) with
a box filter, to see if the NNVGM trained from one numerical method can be successfully
applied to LES using a different numerical method. All the spatial derivative terms in
the filtered continuity and Navier–Stokes equations (2.3) and (2.4) are discretized using
CD2 in staggered grids, and the filtered flow variable is obtained using a box filter in the
physical space as

φ̄(x, t) =
∫ ∞

−∞
Ḡ(r)φ(x − r, t) dr, (3.10)

Ḡ(r) =
{

1/Δ̄3 if |r| ≤ Δ̄/2
0 if |r| > Δ̄/2

. (3.11)

We perform DNS of FHIT at ReL = 375.69 with N3 = 2563 and LESs with N3 = 323

and 643 using NNVGM(128D+32768L) and traditional SGS models, respectively. The
results are given in figure 10. The energy spectra from DNS and fDNS using the CD2
and box filter are in excellent agreements with those using the spectral method and
cut-Gaussian filter (figure 10a). The predictions of the energy spectrum by SGS models
with N3 = 323 are quite similar among themselves but show some deviations from the
fDNS data (figure 10b). On the other hand, with N3 = 643, the predictions are much better
than those with N3 = 323, and reasonably agree with the fDNS data (figure 10c). Hence,
the prediction using the NNVGM trained from the spectral method is quite accurate, even
though LES is performed with the CD2 and box filter, which may indicate the potential of
the present recursive procedure to flow over/inside a complex geometry.
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4. Applications to FHIT at high Reynolds numbers and DHIT

To assess the applicability of the present NNVGMs (table 5), we conduct LESs of FHIT at
high Reynolds numbers and of DHIT. During simulation, a clipping is applied to the model
coefficients of DSM and DMM when they are negative (see (2.9) and (2.16)), whereas
NNVGMs do not use any clipping.

4.1. Forced homogeneous isotropic turbulence at high Reynolds numbers
LESs of FHIT with the number of grid points of 643 (LES64/256, LES64/512,
LES64/1024, LES64/2048, LES64/4096, LES64/8192, LES64/16384 and LES64/32768)
are conducted at eight different Reynolds numbers (ReL = 375.69–242347.33) using nine
different SGS models (NNVGM128D, NNVGM(128D+512L), NNVGM(128D+2048L),
NNVGM(128D+8192L), NNVGM(128D+32768L), CSM, DSM, GM and DMM). The
computational time step is set at �tU/L = 0.0025, at which the Courant–Friedrichs–Lewy
(CFL) numbers are below 0.3.

Figure 11 shows the three-dimensional energy spectra at ReL = 946.67, 6010.98,
38167.31 and 242347.33 using NNVGM128D, NNVGM(128D+512L), NNVGM(128D+
2048L), NNVGM(128D+8192L) and NNVGM(128D+32768L), respectively. The energy
spectra predicted from NNVGMs trained with low-Reynolds-number data such as
NNVGM128D and NNVGM(128D+512L) show energy pile-up at high wavenumbers for
high-Reynolds-number simulations. This energy pile-up at high wavenumbers decreases
significantly by NNVGMs trained with higher-Reynolds-number data. The results from
NNVGM128D indicate an inherent limitation of the non-recursive NN-based SGS model,
when the LES grid size is bigger than the filter sizes of fDNS employed for training the
NN. It is interesting to note that the energy spectrum for the case of ReL = 242347.33
can be reasonably predicted by NNVGM(128D+2048L) and NNVGM(128D+8192L) that
includes the training data up to ReL = 6010.98 and 38167.31, respectively. This result
indicates that, when the training data contain the length scales in the inertial range
large enough compared with the dissipation scale, the present SGS model should predict
isotropic turbulence even at the Reynolds number higher than that trained.

Figure 12 shows the three-dimensional energy spectra at eight Reynolds numbers
from various SGS models including traditional ones. First, LESs with GM reveal
instability at high Reynolds numbers (see also Vollant, Balarac & Corre 2016).
LESs without SGS model exhibit non-physical energy pile up at high wavenumbers
(figure 12f ) due to insufficient dissipation, as observed from LESs with NNVGM128D
and NNVGM(128D+512L) in figure 11. NNVGM(128D+32768L) suitably calculates the
energy spectra that are quite similar to those of CSM, DSM and DMM. The predicted
energy spectra from NNVGM, CSM, DSM and DMM follow the Kolmogorov energy
spectrum at low and intermediate wavenumbers.

In §§ 3.2 and 3.3, we observed that GM and NNVGM performed similarly in a priori
tests for small filter sizes, whereas, in actual LES, GM diverged but NNVGM performed
stably for large grid sizes. One of the reasons for these different results is that the two
models compute the SGS dissipation differently. As shown in table 6, for a large filter size,
GM predicts the SGS dissipation significantly smaller than fDNS data, while NNVGM
computes it accurately. Another reason may be that the error of the SGS stress prediction
by GM grows exponentially with increasing grid size (Vreman et al. 1996), since GM is
derived from Taylor expansion. However, NNVGM is trained with the SGS stresses from
small to large filter sizes, and thus the error of the SGS stress prediction by NNVGM does
not increase with increasing grid size.

1000 A76-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.992


C. Cho, J. Park and H. Choi

40302010 40302010

40302010 40302010

10–3

E(
k)

/L
U

2

10–2

10–1

100

10–3

E(
k)

/L
U

2

10–2

10–1

100

10–3

10–2

10–1

100

10–3

10–2

10–1

100

kL kL

(b)(a)

(d )(c)

Figure 11. Three-dimensional energy spectra from various NNVGMs (N3 = 643): (a) ReL = 946.67;
(b) 6010.98; (c) 38167.31; (d) 242347.33. �, filtered Kolmogorov energy spectrum, E(k) = 3

2 ε2/3k−5/3 exp
(−k2Δ̄2/12); red dotted line, NNVGM128D; red dash-dot-dotted line, NNVGM(128D+512L); red
dash-dotted line, NNVGM(128D+2048L); red dashed line, NNVGM(128D+8192L); red line, NNVGM(128D+
32768L).

4.2. Decaying homogeneous isotropic turbulence
The present approach is based on a hypothesis that the NN-based SGS models in LES
successfully predict the turbulence statistics when the LES grid size normalized by the
Kolmogorov length scale is within the range of filter sizes used for training (see also Park
& Choi 2021). In figure 13, we indicate the filter sizes (normalized by the Kolmogorov
length scale) used for fDNSs and fLESs of FHIT with NNVGMs and the normalized grid
sizes used for LESs of two DHITs. This figure should be understood as follows: for DHIT
of Comte-Bellot & Corrsin (1971), NNVGM(128D+1024L) or NNVGM(128D+32768L)
can be used for successful LES, but not NNVGM128D and NNVGM(128D+256L); for
DHIT of Kang, Chester & Meneveau (2003), only NNVGM(128D+32768L) can be used
for successful LES. To examine this hypothesis, LESs are performed for two DHITs
(untrained flows) of Comte-Bellot & Corrsin (1971) and Kang et al. (2003) with the present
NNVGMs trained only with FHIT data. This task should be a notable challenge due to the
transient nature of DHIT as opposed to FHIT.

The first DHIT to simulate is the experiment by Comte-Bellot & Corrsin (1971)
(called CBC hereafter). In CBC, turbulence data were experimentally generated through
grid turbulence using a mesh size of M = 5.08 cm and free-stream velocity of U0 =
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Figure 12. Three-dimensional energy spectra at ReL = 375.69–242347.33 from various SGS models (N3 =
643): (a) NNVGM(128D+32768L); (b) CSM; (c) DSM; (d) GM; (e) DMM; ( f ) no SGS model. The black
dashed line denotes the Kolmogorov energy spectrum, E(k) = 3

2 ε2/3k−5/3.

10 m s−1. The Reynolds number based on the Taylor microscale was Reλ = 71.6 at
tU0/M = 42. For LES, flow variables are non-dimensionalized by L = 11M/(2π) and
U = √

3/2urms|tU0/M=42 (Lee, Choi & Park 2010). The numbers of grid points tested are
N3 = 323 and 643, respectively. A divergence-free initial field is obtained using the logistic
polynomial approximation method (Knight et al. 1998) and rescaling method (Kang et al.
2003). LESs are performed 50 times by varying initial fields to obtain ensemble averages.
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Figure 13. Illustration of the filter-size ranges of fDNS and fLES used to generate each NNVGM (FHIT), and
the grid-size ranges required for the simulations of DHITs (Comte-Bellot & Corrsin 1971; Kang et al. 2003).
On the top of this figure (FHIT), each solid circle (•) denotes the filter size of fDNS or fLES used for generating
training data. For each NNVGM, the line connecting the first and last solid circles indicates the range of grid
sizes for successful LES. On the bottom of this figure (DHIT), each solid square (�) indicates the grid size
normalized by the initial Kolmogorov length scale. As time goes by, the Kolmogorov length scale increases
and thus Δ̄LES/η decreases denoted as a thick dashed line.

The computational time step is fixed to be �tU/L = 0.01. As turbulence decays in time,
the Kolmogorov length scale η increases in time, and thus Δ̄LES/η = 60.2 and 26.5
(N3 = 323), and 30.1 and 13.2 (N3 = 643) at tU0/M = 42 and 171, respectively. Each
LES starts from large Δ̄LES/η (denoted as a solid square in figure 13) and moves to smaller
Δ̄LES/η due to increased η in time (denoted as a thick dashed line).

The LES results on CBC DHIT with N3 = 323 (starting from Δ̄LES/η = 60.2) are
given in figure 14. Without SGS model, the turbulent kinetic energy decays very slowly
and energy pile up occurs at high wavenumbers. With GM, resolved kinetic energy
first decreases and increases later in time, and simulation finally diverges, as shown
by Vreman et al. (1996). DSM and CSM are relatively good at predicting turbulence
decay and energy spectra, but they overestimate the energy spectra at intermediate
wavenumbers within the inertial range. However, NNVGM(128D+32768L) performs best
in predicting energy spectra, while NNVGM(128D+1024L) and DMM also perform better
than other types of SGS models (DMM shows energy fall-off at high wavenumbers),
whereas NNVGM(128D+1024L) shows energy pile up at high wavenumbers, possibly
because Δ̄LES/η (≤ 60.2) is only slightly smaller than Δ̄fLES/η = 67.02 (fLES32/1024).
Note also that the prediction with NNVGM128D (Δ̄LES/η � Δ̄fDNS/η = 8.38) is not
good at all and worse than CSM and DSM, validating our conjecture on the choice of
NNVGM for successful LES (figure 13). With N3 = 643 (starting from Δ̄LES/η = 30.1),
NNVGM(128D+1024L) also performs very good as much as NNVGM(128D+32768L)
does (figure 15), because Δ̄LES/η (≤ 30.1) is sufficiently smaller than Δ̄fLES/η = 67.02,
while other SGS models (except DMM) still show some deviations from experimental
data.

The second DHIT to simulate is the experimental one by Kang et al. (2003). The
Reynolds number is much higher (Reλ = 716 at tU0/M = 20) than that of CBC DHIT,
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Figure 14. LES of CBC DHIT with N3 = 323: (a) resolved turbulent kinetic energy; (b) E(k) at tU0/M = 42,
98 and 171. �, filtered CBC data; red dotted line, NNVGM128D; red dashed line, NNVGM(128D+1024L); red
line, NNVGM(128D+32768L); blue line, CSM; blue dashed line, DSM; blue dotted line, GM; blue dash-dotted
line, DMM; dashed line, no SGS model.
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Figure 15. LES of CBC DHIT with N3 = 643: (a) resolved turbulent kinetic energy; (b) E(k) at tU0/M = 42,
98 and 171. �, filtered CBC data; red dotted line, NNVGM128D; red dashed line, NNVGM(128D+1024L); red
line, NNVGM(128D+32768L); blue line, CSM; blue dashed line, DSM; blue dotted line, GM; blue dash-dotted
line, DMM; dashed line, no SGS model.

where U0 = 11.2 m s−1 and M = 0.152 m. We consider the present NNVGMs and
traditional SGS models. LESs are performed 50 times by varying initial fields to obtain
ensemble averages. The flow variables are non-dimensionalized by L = 33.68M/(2π)

and U = √
3/2urms|tU0/M=20. The numbers of grid points tested are N3 = 323 and 643.

The flows are initiated using the energy spectrum and rescaling method as done by
Kang et al. (2003). For N3 = 323, Δ̄LES/η = 1454.5 and 888.9 at tU0/M = 20 and
48, respectively. The trained grid sizes of NNVGM(128D+32768L) (4.19 ≤ Δ̄fDNS/η

and Δ̄fLES/η ≤ 2144.66) include this range of Δ̄LES/η, whereas those of NNVGM128D
(4.19 ≤ Δ̄fDNS/η ≤ 8.38) do not (see figure 13), suggesting that NNVGM(128D+32768L)
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Figure 16. LES of DHIT by Kang et al. (2003) with N3 = 323: (a) resolved turbulent kinetic energy;
(b) E(k) at tU0/M = 20, 30, 40 and 48. �, filtered experimental data; red dotted line, NNVGM128D; red line,
NNVGM(128D+32768L); blue line, CSM; blue dashed line, DSM; blue dotted line, GM; blue dash-dotted line,
DMM; dashed line, no SGS model.

should properly predict turbulence decay and variation of the energy spectra of DHIT by
Kang et al. (2003).

The LES results on DHIT by Kang et al. (2003) with N3 = 323 are shown in figure 16.
While CSM and DSM overpredict the energy spectra even at intermediate wavenumbers
and thus overestimate turbulent kinetic energy, DMM predicts the resolved kinetic energy
and energy spectra most accurately. NNVGM(128D+32768L) slightly overestimates the
resolved turbulent kinetic energy due to its slight overprediction of energy at high
wavenumbers. This may be because Δ̄fLES/η = 2144.66 (fLES32/32768) is only slightly
larger than Δ̄LES/η (≤ 1454.5). By increasing the number of grid points (N3 = 643), the
predictions by NNVGM(128D+32768L) become much better (figure 17). It is interesting
to see that the level of kinetic energy without SGS model is almost constant in time due to
the energy pile up at high wavenumbers. This is because the LES grid size (Δ̄LES/η ≈ 103)
is so large that the corresponding eddies do not properly dissipate energy at these length
scales, and thus total kinetic energy is nearly conserved without SGS model.

Finally, the effects of the present NNVGMs on the prediction of the resolved kinetic
energy and spectrum of DHIT of Kang et al. (2003) are shown in figure 18. As
shown before, NNVGM128D does not provide an accurate energy spectrum, because
it is trained with the data from 4.19 ≤ Δ̄fDNS/η ≤ 8.38 and does not have sufficient
information on 8.38 < Δ̄LES/η ≤ 727.3 (see figure 13 for the grid size range suggested
for LES of DHIT of Kang et al. 2003). As the NNVGM is recursively updated (from
NNVGM128D to NNVGM(128D+32768L)), its prediction becomes increasingly accurate.
NNVGM(128D+2048L) provides quite an accurate energy spectrum albeit showing
energy pile up at high wavenumbers. This is because NNVGM(128D+2048L) is trained
with the data from 4.19 ≤ Δ̄fDNS/η and Δ̄fLES/η ≤ 134.04 and contains large length scales
in the inertial range. As expected, NNVGM(128D+32768L) provides accurate energy
spectra at all wavenumbers.
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Figure 17. LES of DHIT (Kang et al. 2003) with N3 = 643: (a) resolved turbulent kinetic energy;
(b) E(k) at tU0/M = 20, 30, 40 and 48. �, filtered experimental data; red dotted line, NNVGM128D; red line,
NNVGM(128D+32768L); blue line, CSM; blue dashed line, DSM; blue dotted line, GM; blue dash-dotted line,
DMM; dashed line, no SGS model.
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Figure 18. Effects of NNVGMs on the prediction of DHIT (Kang et al. 2003) with N3 = 643:
(a) resolved turbulent kinetic energy; (b) E(k) at tU0/M = 48. �, filtered experimental data; red dotted
line, NNVGM128D; red dash-dot-dotted line, NNVGM(128D+512L); red dash-dotted line, NNVGM(128D+
2048L); red dashed line, NNVGM(128D+8192L); red line, NNVGM(128D+32768L).

4.3. Computational cost
The amounts of CPU time required for estimating the SGS stresses and advancing one
computational time step for the traditional and NN-based SGS models are given in table 7.
With the same number of grids (N3 = 643), the amounts of CPU time required to obtain
the SGS stresses by DSM, DMM and NNVGM are approximately 3.3, 5.1 and 2.8 times
that by CSM, respectively. Therefore, the computational cost of NNVGM is higher than
CSM but lower than those of DSM and DMM, which is consistent with the report of Kang,
Jeon & You (2023) studying a similar HIT. Note, however, that the total amounts of CPU
time for advancing one computational time step are relatively similar among themselves.
The reason that the CPU time of DSM or DMM for determining the SGS stresses is higher
than that of NNVGM is because DSM and DMM require Fourier and inverse Fourier
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SGS model FHIT DHIT DHIT
(ReL = 149.09) (CBC) (Kang et al. 2003)

Number of grid points — 643 643 643

SGS stresses CSM 0.042 0.043 0.042
DSM 0.138 0.140 0.140
DMM 0.217 0.214 0.214
NNVGM 0.123 0.116 0.115
(128D+32768L)

One computational time step CSM 0.386 0.393 0.381
DSM 0.483 0.479 0.484
DMM 0.560 0.560 0.553
NNVGM 0.474 0.455 0.453
(128D+32768L)

Table 7. Amounts of CPU time (second) required for estimating the SGS stresses and advancing one
computational time step, respectively. Simulations are performed using eight CPU cores (Intel(R) Core(TM)
i9-11900KF CPU @ 3.50 GHz), and the amounts of CPU time are obtained by averaging over 50
computational time steps. In the present simulation, τij was obtained using one GPU (GeForce RTX 3060)
for NNVGM(128D+32768L), but, for comparison with traditional models, the amounts of CPU time using
eight CPU cores are provided in this table.

transforms to determine the dynamic coefficient(s). However, for flow over a complex
geometry, such transforms are not required based on a finite difference method. In that
case, an NN-based SGS model may require more CPU time than DSM or DMM (see Kim
et al. 2024 as an example).

5. Conclusions

In the present study, we developed an NN-based SGS model (NN-based velocity gradient
model; NNVGM) using a dual NN architecture (the output of one NN is the SGS normal
stresses and that of the other is the SGS shear stresses) with the input of Δ̄2|ᾱ|ᾱij, where
αij is the velocity gradient tensor. We aimed at overcoming the difficulties encountered
during the SGS model development, i.e. how to obtain high-Reynolds-number data for
training and how to apply a trained NN to untrained flow. By eliminating bias and batch
normalization, and employing the leaky ReLU function as an activation function within
the NNs, the present NN retains its nonlinearity but satisfies NN(cA) = cNN(A) for a
positive scalar c. This important property of NN allows us to apply the NN to a flow
different from the trained one, because the parameters used for non-dimensionalization
can be included in the scalar c. To generate training data, we adopted a cut-Gaussian filter
rather than the Gaussian or spectral cutoff filter, considering its application to LES with
coarser grids and realizability condition. We also designed a recursive procedure which
consisted of the following steps: (1) conducting DNS; (2) training an NN with fDNS data;
(3) conducting LES at a higher Reynolds number; (4) training the NN with augmented
data including fLES data; (5) going to Step (3) for higher Reynolds number flows. For the
present FHIT, the grid and filter sizes were normalized by the Kolmogorov length scale,
and these normalized sizes became double at every recursive procedure. The NN trained
through this recursive procedure contained a wide range of filter sizes normalized by the
Kolmogorov length scale such that the LES grid size required could be located within this
range of filter sizes. Testing NNVGMs on FHIT showed that fLES data can be a practical
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alternative to fDNS data for training an NN, and one can avoid using costly DNS to extract
training data.

We conducted LESs of forced and decaying homogeneous isotropic turbulence (FHIT
and DHIT) with NNVGMs and traditional SGS models, respectively. In FHIT, the same
number of grid points was used for different Reynolds numbers. Among the SGS models
considered, NNVGM constructed through the recursive procedure performed very well
for FHIT. In contrast, NNVGM trained only with fDNS data at a low Reynolds number
showed energy pile up at high wavenumbers. We considered two different DHIT, one
by Comte-Bellot & Corrsin (1971) and the other at much higher Reynolds number by
Kang et al. (2003). In both DHIT, the recursive NNVGM predicted the decay of resolved
turbulent kinetic energy and its energy spectra in time most accurately among the SGS
models considered, while most other SGS models provided excessive energy spectra at
intermediate or high wavenumbers.

In the present study, we applied the NNVGM to FHIT and DHIT, but this procedure
may not be applicable to laminar and inhomogeneous turbulent flows. Hence, the next step
is to extend the present approach to those flows by employing the dynamic approach used
in DSM or training NN with more flows having different topology. This work is being
carried out in our group (Cho & Choi 2023; Kim & Choi 2023).

Supplementary material. Computational Notebook files are available as supplementary material at https://
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Appendix A. Effect of the bias, batch normalization and activation function on
numerical solutions

The effects of excluding the bias and batch normalization and modifying the activation
function (from ReLU to leaky ReLU) on the results of a priori and a posteriori tests are
examined. Table 8 shows four other cases together with the present case for this purpose.
The five cases share same NN structure, training data (extracted from fDNS32/128) and
undersampling method. However, the training data are normalized with U2 instead of
τ r

ij,rms, because the cases of ReLUOO, leReLUOO and leReLUOX do not satisfy (3.1)
and τ r

ij,rms is a priori unknown in the a posteriori test (see § 3.2 for the details).
We perform a priori and a posteriori tests for five cases and compare the results with

fDNS32/128 data. Table 9 shows the statistics from a priori tests at ReL = 149.09. Except
for the case of XXX, the four other cases provide very similar statistics and overpredict the
SGS dissipation. Note that the case of leReLUXX is same as that of NNVGM32/128, and
its correlation coefficients are similar to those of NNVGM(32+64)/128 but its predicted
SGS dissipation is less accurate than that of NNVGM(32+64)/128 (εSGS = 0.447; see
table 4), indicating that combining more databases is indeed more beneficial. Figures 19
and 20 show the results (p.d.f. and energy spectrum) from both a priori and a posteriori
tests for the five cases. As shown, four cases except XXX provide nearly the same
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Case Activation function Bias (b) Batch normalization (γ , μ, σ , β)

ReLUOO ReLU O O
leReLUOO leaky ReLU O O
leReLUOX leaky ReLU O X
leReLUXX (present) leaky ReLU X X
XXX X X X

Table 8. Cases with different activation functions and with/without the bias and batch normalization. In this
table, the case of leReLUXX is the same as NNVGM32/128, ReLU and leaky ReLU correspond to f (x) =
max[0, x] and max[0.02x, x], respectively, and O and X indicate with and without using corresponding function
(or parameters), respectively.

Case R(τ r
11) R(τ r

12) R(εSGS) εSGS

fDNS32/128 — — — 0.430
ReLUOO 0.654 0.686 0.634 0.602
leReLUOO 0.655 0.681 0.630 0.609
leReLUOX 0.654 0.687 0.637 0.616
leReLUXX 0.661 0.691 0.642 0.536
XXX 0.197 0.210 0.586 0.642

Table 9. Statistics from a priori tests at ReL = 149.09 with Δ̄fDNS/η = 8.38: Pearson correlation coefficients
(R) of τ r

ij and SGS dissipation εSGS(= −τ r
ij S̄ij), and magnitude of εSGS.

results. These results indicate that the use of bias and batch normalization is unnecessary
to accurately predict the current flow, but the introduction of ReLU or leaky ReLU is
necessary. However, as discussed in § 3.2, the use of bias and batch normalization in the
NN structure prevents the trained NN from being applied to untrained flows.

Appendix B. Effect of the filter to grid ratio

In the present study, the filter to grid ratio (FGR) of 1 (i.e. Δ̄LES = Δ̄filter) is used to
develop NNVGMs. However, some previous studies (Ghosal 1996; Chow & Moin 2003;
Meyers, Geurts & Baelmans 2003) suggested to use a filter size larger than the LES grid
size to decrease the discretization and aliasing errors when LES is performed with a finite
difference method. Although the present LESs are conducted with a spectral method, we
analyse in this appendix how the performance of NNVGM changes when FGR is 2 (i.e.
2Δ̄LES = Δ̄filter). The recursive procedure introduced in § 3.1 is changed as follows (Steps
(i), (ii), (v) and (vii) are the same):

(iii) apply the NNVGM to LES at a higher Reynolds number, where the ratio of LES grid
size to the Kolmogorov length scale (Δ̄LES/η) is half that of filter size to the Kolmogorov
length scale (Δ̄fDNS/η);

(iv) filter the LES data and include the filtered LES (fLES) data in the training dataset,
where the new filter size is four times the LES grid size;

(vi) apply the updated NNVGM to LES at even higher Reynolds number, where the LES
grid size is half the filter size defined in Step (iv).

First, fDNS32/128 and fDNS64/128 are used for training NNVGM(32+64)/128. Now,
LES128/256 (instead of LES64/256) is conducted with this NNVGM. The test filter is
applied to the results of LES128/256 with Δ̃ = 4Δ̄LES: the resulting filtered data are
called fLES32/128-FGR2. Then, the NN is trained again with the augmented training
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Figure 19. Probability density functions of the SGS dissipation and SGS stresses; (a) a priori test with
fDNS32/128; (b) a posteriori test with LES32/128. �, fDNS32/128; blue dash-dotted line, ReLUOO; blue
dashed line, leReLUOO; blue line, leReLUOX; red line, leReLUXX; green line, XXX.
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Figure 20. Three-dimensional energy spectra (a posteriori test at ReL = 149.09; LES32/128) �, fDNS32/128;
blue dash-dotted line, ReLUOO; blue dashed line, leReLUOO; blue line, leReLUOX; red line, leReLUXX;
green line, XXX.
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Figure 21. Three-dimensional energy spectra (a posteriori test; LES64/32768): (a) FHIT (ReL = 242347.33;
N3 = 643); (b) DHIT at tU0/M = 42, 98 and 171 (CBC; N3 = 323); (c) DHIT at tU0/M = 20, 30, 40 and 48
(Kang et al. 2003; N3 = 323). �, filtered Kolmogorov energy spectrum (in panel a) or filtered experimental
data (in panels b and c); blue line, FGR = 1; red line, FGR = 2.

data of fDNS64/128, fDNS32/128 and fLES32/128-FGR2. The trained NN is applied
to LES128/512. This recursive procedure is continued until the NN is trained with
fLES32/32768-FGR2.

Two NNVGMs for FGR = 1 and 2 are applied to LES of FHIT at ReL = 242347.33,
and to DHITs of Comte-Bellot & Corrsin (1971) and Kang et al. (2003), respectively. As
shown in figure 21, the FGRs of 1 and 2 provide very similar results.

Appendix C. Choice of the probability P for undersampling

For the purpose of undersampling of training data, we introduce the probability P to the
training data such that the possibility of choosing data as the training one decreases when
its magnitude is near to zero. We further consider the following probability functions (P):

P =
{

g(θ) if 0 ≤ θ < π/2
1 if θ ≥ π/2

, (C1)

θ = π

8

√
{(τ r

12)
2 + (τ r

23)
2 + (τ r

13)
2}/3

τ r
12,rms

. (C2)

We consider six different functions for g(θ) and they are listed in table 10. Here, case
Pc does not use undersampling, and four other cases (Ps1, Ps2, Ps3 and Ps4) use sine
functions, because sine function rapidly decays to 0 when θ approaches zero and reaches
1 at θ = π/2. The last case Pl uses a linear function for 0 ≤ θ < π/2. For all the cases,
the numbers of original training data are the same (4 900 000), but the numbers of training
data resulting from undersampling become significantly different, as shown in table 10.

These six different probability functions are applied to LESs of FHIT at ReL =
242347.33, and of DHITs of Comte-Bellot & Corrsin (1971) and Kang et al. (2003),
and their results are given in figure 22. It is noticeable that undersampling affects
the energy spectra at high wavenumbers. Without undersampling (case Pc), the energy
spectrum is overpredicted at high wavenumbers. However, the prediction performance
improves when undersampling is applied, while five probability functions provide similar
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Recursive NN-based SGS model for LES

Case g(θ)

Approximate
number of training

data
(undersampling)

Pc 1 4 900 000
Ps1 sin θ 1 500 000
Ps2 sin2 θ 600 000
Ps3 sin3 θ 300 000
Ps4 sin4 θ 200 000
Pl 2θ/π 1 000 000

Table 10. Probability functions for undersampling and corresponding numbers of each fDNS or fLES training
data (i.e. fDNS64/128, fDNS32/128, fLES32/256, fLES32/512, etc.) during the recursive procedure. Here,
NNVGM(128D+32768L) is used for the SGS model.

10–4 10–3 10–2

104

105

106

107

5 10 1520

10–3

10–2

10–1

5 10 1520

10–3

10–2

10–1

kη kL kL

tU0/M tU0/M

E(
k)

/
LU

2

E(
k)

/
η

u η2

(b) (c)(a)

Figure 22. Three-dimensional energy spectra (a posteriori test with NNVGM(128D+32768L)): (a) FHIT
(ReL = 242347.33; N3 = 643); (b) DHIT at tU0/M = 42, 98 and 171 (CBC; N3 = 323); (c) DHIT at tU0/M =
20, 30, 40 and 48 (Kang et al. 2003; N3 = 323). �, filtered Kolmogorov energy spectrum (in panel a) or filtered
experimental data (in panels b and c); dotted line, Pc; blue line, Ps1; blue purple line, Ps2; red purple line, Ps3;
red line, Ps4; green line, Pl.

results, indicating that the probability function itself has little influence on the prediction
performance, once it is well designed to provide balanced distribution of training data.
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