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It is common to assume in empirical research that observables and unobservables are
additively separable, especially when the former are endogenous. This is because
it is widely recognized that identification and estimation challenges arise when
interactions between the two are allowed for. Starting from a nonseparable IV model,
where the instrumental variable is independent of unobservables, we develop a novel
nonparametric test of separability of unobservables. The large-sample distribution
of the test statistics is nonstandard and relies on a Donsker-type central limit
theorem for the empirical distribution of nonparametric IV residuals, which may
be of independent interest. Using a dataset drawn from the 2015 U.S. Consumer
Expenditure Survey, we find that the test rejects the separability in Engel curves for
some commodities.

1. INTRODUCTION

It is common to assume in empirical research that observables and unobservables
are additively separable, especially when the former are endogenous. This is
because it is widely recognized that identification and estimation challenges arise
when interactions between the two are allowed for. However, economic theory
and intuition often lead to nonseparable models. Prominent examples are demand
functions with price or income effects heterogeneous in unobserved preferences;
production functions with elasticities heterogeneous in unobserved input choices;
labor supply functions with heterogeneous wage effects; wage equations with
returns to schooling heterogeneous in unobserved ability.1

In response to these empirical challenges, there is a growing literature study-
ing the nonparametric identification of nonseparable models with endogene-
ity; see Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey
(2007), Florens et al. (2008), Imbens and Newey (2009), Torgovitsky (2015), and
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D’Haultfœuille and Février (2015), among others. It is well understood that a fully
nonparametric estimation of a nonseparable model may lead to a difficult nonlinear
ill-posed inverse problem; see Carrasco, Florens, and Renault (2007), Horowitz
and Lee (2007), Gagliardini and Scaillet (2012), and Dunker et al. (2014).

Despite the significant efforts focused on understanding the identification and
estimation of nonseparable IV models and the widespread use of separable IV
models, little work has been done on developing formal testing procedures that
could discriminate empirically between the two. Lu and White (2014) and Su, Tu,
and Ullah (2015) are two notable exceptions that focus on separability tests under
the conditional independence restriction. The conditional independence restriction
is different from the mean-independence restriction imposed by the separable
nonparametric IV model that we are interested in here. Other recently developed
specification tests include the monotonicity test of Hoderlein et al. (2016), the
endogeneity test of Fève, Florens, and Van Keilegom (2018), and the specification
test for the quantile IV regression of Breunig (2020).

In this paper, we design a novel fully nonparametric separability test. The test is
based on the independence condition of a nonseparable IV model. We build on an
insight that the structural function in the separable IV model can be estimated using
the nonparametric IV approach; see Florens (2003), Newey and Powell (2003),
Hall and Horowitz (2005), Blundell, Chen, and Kristensen (2007), Darolles et al.
(2011), and Chen and Christensen (2018), among others. If the separable model is
correct, then the nonparametric IV residuals should approximate the unobserved
error that should be independent of instrumental variables. This intuition suggests
that it should be possible to detect the separability with the classical Kolmogorov–
Smirnov (KS) or Cramér–von Mises (CvM) test. To the best of our knowledge,
no such test is currently available in the literature, and it is not known whether the
empirical distribution of nonparametric IV residuals satisfies the Donsker property.

Formalizing this intuition is far from trivial because the regression residuals
are different from the true regression errors and the nonparametric IV regression
is an example of a linear ill-posed inverse problem. Moreover, the empirical
distribution function of nonparametric IV residuals is a non-smooth function. The
uniform central limit theorem for the empirical distribution of regression residuals
in the parametric linear case is a classical problem in statistics (e.g., Durbin,
1973; Loynes, 1980; Mammen, 1996). The nonparametric extension is more
challenging, and it is remarkable that the empirical distribution of nonparametric
regression residuals also satisfies the uniform central limit theorem (see Akritas
and Van Keilegom, 2001). The additively separable nonparametric IV regression
differs from the problems discussed above in two important ways. First, its
asymptotic properties depend on both the smoothness of the regression function
and the smoothing properties of the conditional expectation operator. Second, the
regression error is not independent of endogenous regressors.

In this paper, we show that the empirical distribution function of nonparametric
IV residuals satisfies the uniform central limit theorem. To the best of our
knowledge, this is the first result on the distribution of the nonparametric IV
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residuals. The result can be used to develop various residual-based specification
tests and is of independent interest. Building on this result, we obtain a large sample
approximation to the distributions of our test statistics. The distribution is non-
standard, and the critical values can be estimated with resampling techniques.

Our results are based on an insight that the Tikhonov regularization in Sobolev
spaces, considered in Florens, Johannes, and Van Bellegem (2011), Gagliardini
and Scaillet (2012, 2017), and Carrasco et al. (2014), among others, provides a
natural link between the modern empirical process theory and the theory of ill-
posed inverse problems. In contrast to this literature, we obtain new results for the
Tikhonov regularization with a Sobolev penalty.

The paper is organized as follows. In Section 2, we introduce the problem and
discuss the main testable implication. In Section 3, we characterize a large sample
approximation to the distribution of the residual-based KS and CvM independence
tests. In Section 4, we report on a Monte Carlo study which provides insights about
the validity of our asymptotic approximations in finite samples. In Section 5, we
test the separability of Engel curves for a large set of commodities. Conclusions
appear in Section 6. All technical details, auxiliary results, and proofs are collected
in the Appendix.

2. SEPARABILITY OF UNOBSERVABLES

Let (Y,Z,W) be observed random variables satisfying the nonseparable model

Y = �(Z,ε), ε ⊥⊥ W, (1)

where Y ∈ R is an outcome, Z ∈ Rp are regressors, ε ∈ R is an unobservable,
W ∈ Rq is a vector of instrumental variables, and � : Rp × R → R is a struc-
tural function. We assume that W are valid instrumental variables satisfying
the exclusion restriction, ε ⊥⊥ W, and the relevance condition, W �⊥⊥ Z. Note
that the independence restriction is a commonly used identifying condition for
nonseparable models; see Chernozhukov et al. (2020), Blundell, Horowitz, and
Parey (2017), Torgovitsky (2017), Torgovitsky (2015), D’Haultfœuille and Février
(2015), Dunker et al. (2014), Gagliardini and Scaillet (2012), and Horowitz
and Lee (2007) for recent examples and applications, as well as Chernozhukov
and Hansen (2013), Matzkin (2013), and Imbens (2010) for a review of earlier
econometric literature on the identification of nonseparable models.

The independence condition ε ⊥⊥ W does not rule out heteroskedasticity in the
distribution of Y conditionally on Z or W, which is often observed in empirical
practice. It does not rule out heteroskedasticity in the distribution of unobserv-
ables ε conditionally on covariates Z. However, it rules out heteroskedasticity of
unobservables conditionally on the instrumental variable.

Testing separability can be done in several different ways. For instance, one
could fit the nonseparable model and check whether the estimated function is
separable. This approach corresponds to the principle behind the Wald test for para-
metric models. Alternatively, one could estimate the separable model and check the
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independence restriction. This approach corresponds to the principle behind Rao’s
score test in the parametric setting and is the one adopted in this paper.

We say that the model in equation (1) has a separable representation if there
exist measurable functions ψ : Rp → R and g : R → R such that

Y = ψ(Z)+g(ε).

If the model has such representation, then ψ can be estimated consistently using
the nonparametric IV approach; see Darolles et al. (2011), Blundell et al. (2007),
Horowitz and Lee (2007), and Newey and Powell (2003). The nonparametric IV
regression function ϕ : Rp → R solves the functional equation

r(w) � E[Y|W = w]fW(w) =
∫

ϕ(z)fZW(z,w)dz � (Tϕ)(w), (2)

where T : L2(Rp) → L2(Rq) is an integral operator. Let U � Y − ϕ(Z) be the
nonparametric IV regression error. Note that even if the model is nonseparable,
we still have E[U|W] = 0 with U = Y − ϕ(Z) for ϕ solving the functional
equation (2).2 The following result provides a convenient testable implication of
separability, provided that U is unambiguously defined (see the Appendix for a
formal proof).

Proposition 2.1. Suppose that there exists a unique solution to equation (2).
If the model in equation (1) admits a separable representation, then U ⊥⊥ W.

The independence between U and W is only a testable implication of additive
separability of unobservables. However, when the model is nonseparable, we have
U = �(Z,ε)−ϕ(Z)� h(Z,ε), for some non-degenerate function h of (Z,ε), which
in many cases is not independent of W, because Z �⊥⊥ W by the relevance condition.
Therefore, the independence test between U and W will have power against many
interesting deviations from the separability. Note also that Proposition 2.1 relies on
the injectivity of T, which is known as a completeness condition (see Newey and
Powell, 2003; Babii and Florens, 2020), and does not require that the nonseparable
model is identified (e.g., Chernozhukov and Hansen, 2005; Chen et al., 2014).

3. INDEPENDENCE TEST

In this section, we introduce tests of independence (see Proposition 2.1). Formally,
we focus on testing

H0 : U ⊥⊥ W vs. H1 : U �⊥⊥ W.

The null hypothesis H0 is testable, provided that the nuisance parameter ϕ in
U = Y −ϕ(Z) is replaced by a consistent estimator.

2Here and later, we assume that r belongs to the range of the operator T, which is a relatively mild restriction on the
regression function.
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3.1. Tikhonov Regularization in Sobolev Spaces

We focus on the Tikhonov regularization in Hilbert scales to estimate the nuisance
parameter ϕ; see Carrasco et al. (2014), Gagliardini and Scaillet (2012), and
Florens et al. (2011). The attractive feature of this estimator is that it does not
suffer from the well-known saturation bias and can achieve a sufficiently fast
convergence rate under sufficient smoothness assumptions and restrictions on the
degree of ill-posedness. This makes it appropriate for our test and more generally
for semiparametric applications (see Corollary A.1.1 in the Appendix).

We first recall the definition of Hilbert scales. A family of Hilbert spaces
(Hs,〈.,.〉s)s∈R is called a Hilbert scale if Ht ⊂ Hs for every t > s and the inclusion
is a continuous embedding, i.e., ‖φ‖s ≤ c‖φ‖t for every φ ∈ Ht. Let (L2(Rp),‖.‖)
be a space of square-integrable functions with respect to the Lebesgue measure,
and let |.| be the euclidean norm on Rp. Let also f̂ (ξ) = (2π)−p/2

∫
Rp e−iz�ξ f (z)dz

be the Fourier transform of f. Then the Sobolev space3

Hs(Rp) =
{

f ∈ L2(Rp) :
∫

Rp
(1+|ξ |2)s|f̂ (ξ)|2dξ < ∞

}

is a Hilbert space with inner product

〈f,g〉s =
∫

Rp
(1+|ξ |2)sf̂ (ξ)ĝ(ξ)dξ

and the induced norm ‖.‖s = √〈.,.〉s. It is known that the inclusion Ht(Rp) ⊂
Hs(Rp) is a continuous embedding for t > s, so that (Hs(Rp))s∈R is a Hilbert scale.
Note that the Hilbert scale (Hs(Rp))s∈R is essentially generated by powers of the
operator Ls = F−1(1 +|.|2)s/2F with the inner product 〈f,g〉s = 〈Lsf,Lsg〉, where
(Ff )(ξ) = f̂ (ξ) denotes the Fourier transform and F−1 its inverse; see Carrasco
et al. (2014), Nair (2015), and Krein and Petunin (1966) for more details and
examples.

Let (T̂, r̂) be the kernel estimators of (T,r) in equation (2) computed as

r̂(w) = 1

nhq
n

n∑
i=1

YiKw
(
h−1

n (Wi −w)
)
, (T̂φ)(w) =

∫
φ(z)f̂ZW(z,w)dz,

f̂ZW(z,w) = 1

nhp+q
n

n∑
i=1

Kz
(
h−1

n (Zi − z)
)

Kw
(
h−1

n (Wi −w)
)
, (3)

where Kz : Rp → R and Kw : Rq → R are kernel functions and hn → 0 is a sequence
of bandwidth parameters.

3The definition of Sobolev spaces via the Fourier transform is equivalent to the one based on weak derivatives (see
Evans, 2010, Sect. 5.8.5 for more details). The Sobolev space is usually defined for s ≥ 0 and can be extended to
s ∈ R using a concept of Gelfand triple (see Nair, 2015 for more details).
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We estimate ϕ using the Tikhonov-regularized estimator penalized by a Sobolev
norm

ϕ̂ = arg min
φ

∥∥∥T̂φ − r̂
∥∥∥2 +αn‖φ‖2

s,

for some s ≥ 0. It is easy to see that this problem has a closed-form solution

ϕ̂ = L−s(αnI + T̂∗
s T̂s)

−1T̂∗
s r̂,

where T̂s = T̂L−s and T̂∗
s is the adjoint operator to T̂s.

3.2. Distribution of Statistics

Let Ûi = Yi − ϕ̂(Zi) be the nonparametric IV residual, and let

F̂ÛW(u,w) = 1

n

n∑
i=1

1{Ûi≤u,Wi≤w}, F̂Û(u) = 1

n

n∑
i=1

1{Ûi≤u}, F̂W(w) = 1

n

n∑
i=1

1{Wi≤w}

(4)

be the empirical distribution functions. We focus on the following residual-based
independence empirical process

Gn(u,w) = √
n
(

F̂ÛW(u,w)− F̂Û(u)F̂W(w)
)

. (5)

Note that this process involves residuals Ûi instead of the true regression errors Ui;
hence, its asymptotic behavior can be significantly different from the asymptotic
behavior of classical independence empirical processes (see van der Vaart and
Wellner, 1996, Chap. 3.8). In particular, the estimation of ϕ may affect the
asymptotic distribution of the independence empirical process.

To understand the behavior of Gn, we introduce several assumptions.

Assumption 3.1. For some a,b > 0:

(i) Operator smoothing: ‖Tφ‖v ∼ ‖φ‖v−a for all φ ∈ L2(Rp) and v ∈ R.
(ii) Parameter smoothness: ϕ ∈ Hb(Rp).

Assumption 3.1(i) describes the smoothing property of T. Roughly speaking,
the action of T increases the Sobolev smoothness by a which is called the degree
of ill-posedness. Intuitively, the more T smooths out the features of ϕ, the harder
it is to recover T from equation (2). Condition (ii) describes the smoothness of
the structural function ϕ and is standard in the nonparametric literature; see Chen
(2007) or Giné and Nickl (2015).

Assumption 3.2. (i) (Yi,Zi,Wi)
n
i=1 are i.i.d. observations of (Y,Z,W) with

E‖W‖ < ∞, E‖Z‖ < ∞, E
[
ϕ2(Z)|W] ≤ C, and E

[
Y2|W] ≤ C for some

C < ∞; (ii) the distribution of (Y,Z,W) is absolutely continuous with respect
to the Lebesgue measure with densities fZ,fW,fZW,fY|Z ∈ L∞ and fZ,fZW ∈ L2;
(iii) fZW ∈ Ht(Rp+q) for some t > 0; (iv) Kz and Kw products of a univariate
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continuous kernel K ∈ L2(R)∩ L∞(R) of bounded variation with
∫

K(u)du = 1,∫ |u|l|K(u)|du < ∞, and
∫

ukK(u)du = 0 for k ∈ {1, . . . ,l} and l ≥ t.

Assumption 3.2 is standard for kernel estimators; see also Darolles et al. (2011,
Appendix B) for a discussion of generalized boundary kernels that can be used
when supports are bounded. We could also allow for discrete regressors provided
that the instrumental variables are continuous following the approach of Das
(2005).

To introduce the next assumption, let ∂u be a partial derivative with respect to
the variable u, let ‖.‖∞ denote the uniform norm, and put x ∨ y = max{x,y} and
x∧ y = min{x,y}.

Assumption 3.3. (i) ‖∂ufUZ‖∞ < ∞ and supu ‖fUZ(u,.)‖κ < ∞ with κ > 2a ∨
(a+q/2); (ii)

∥∥∥∫{v≤.} ∂ufUZW(.,.,v)dv
∥∥∥∞

< ∞ and supu,w

∥∥∫ w
−∞ fUZW(u,.,v)dv

∥∥
κ

<

∞ with κ > 2a∨ (a+q/2).

Note that since fUZW(u,z,w) = fYZW(u + ϕ(z),z,w), Assumption 3.3 imposes
equivalently several mild smoothness restrictions on fYZW and ϕ.

Assumption 3.4. hn → 0 and αn → 0 as n → ∞ are such that (i)
nhq

nα
2(a+c)/(a+b)
n → ∞, nhp+q

n αn → ∞, and h2t
n /αn → 0; (ii)

√
nα

2b/(a+b)
n → 0,√

nhq
nα

2a/(a+b) → ∞, and
√

nh2t
n /α

2a/(a+b)
n → 0; (iii) nα2

n → 0, nh2(b∧2t)
n → 0, and

nhp+2q
n → ∞; where 2s = b − a ≥ 0, b > c, s ≥ c > p/2, t > (p + q)/2, a,b,t,p,q

are as in Assumptions 3.1 and 3.2.

Assumption 3.4(i) provides a set of sufficient conditions for the Sobolev norm
consistency, ‖ϕ̂ − ϕ‖c = oP(1) with c > p/2. Assumption 3.4(ii) ensures that
‖ϕ̂ −ϕ‖ = oP(n−1/4), which is a standard rate requirement in the semiparametric
literature.4 Our proof strategy relies on the consistency in the Sobolev norm and
does not require uniform consistency (cf. Akritas and Van Keilegom, 2001). Lastly,
condition (iii) ensures that a certain uniform asymptotic expansion holds.5

The following result describes a large sample approximation to the residual-
based independence empirical process.

Theorem 3.1. Suppose that Assumptions 3.1–3.4 are satisfied. Then

Gn(u,w) = 1√
n

n∑
i=1

1{Ui≤u,Wi≤w} −1{Ui≤u}FW(w)−1{Wi≤w}FU(u)

+FUW(u,w)+ δu,w(Ui,Wi)+oP(1)

4This condition may be restrictive for the severely ill-posed inverse problems if the structural function is not
sufficiently smooth.
5It is easy to see that when p = q = c = 1, there exist c1,c2 ∈ (0,1) such that Assumption 3.4 holds for hn ∼ n−c1

and αn ∼ n−c2 provided that t and b are sufficiently large.
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uniformly over (u,w) ∈ R×Rq with

δu,w(Ui,Wi) = Ui
(
T(T∗T)−1ρ(u,.,w)

)
(Wi),

ρ(u,z,w) =
∫ w

−∞
fUZW(u,z,w̃)dw̃− fUZ(u,z)FW(w).

Theorem 3.1 does not require U ⊥⊥ W. The proof of this result can be found
in the Appendix and relies on asymptotic equicontinuity arguments. Roughly
speaking, we show that the consistency of the nonparametric IV estimator in
the Sobolev norm together with the Donsker property of Sobolev balls implies
that certain terms associated with residuals are asymptotically negligible. The
estimation of the nuisance component ϕ has a first-order asymptotic effect through
the δu,w(Ui,Wi) term, while the higher-order terms are negligible provided that
‖ϕ̂−ϕ‖ = oP(n−1/4). This rate condition is typically encountered for the semipara-
metric problems; see Chernozhukov et al. (2018) and Chernozhukov et al. (2022)
for recent contributions, Andrews (1994) for earlier treatment, and Babii (2022,
Sect. 3.3) for a related discussion in the setting of ill-posed inverse problems.

Theorem 3.1 can be readily used to construct the residual-based CvM and KS
statistics:

T2,n =
∫∫

|Gn(u,w)|2dF̂ÛW(u,w) and T∞,n = sup
u,w

|Gn(u,w)|. (6)

To understand the behavior of the two statistics under the null and the alternative
hypotheses, consider a centered version of the process in Theorem 3.1

Hn(u,w) = 1√
n

n∑
i=1

hu,w(Ui,Wi)−E[hu,w(Ui,Wi)],

where hu,w(U,W) = 1{U≤u,W≤w} − 1{U≤u}FW(w) − 1{W≤w}FU(u) + FUW(u,w) +
δu,w(U,W). The following Donsker-type central limit theorem holds:

Proposition 3.1. Suppose that assumptions of Theorem 3.1 are satisfied. Then

Hn �H in L∞(R×Rq),

where H is a centered Gaussian process with uniformly continuous sample paths
and the covariance function

(u,w,u′,w′) �→ E
[
(hu,w(U,W)−E[hu,w(U,W)])(hu′,w′(U,W)−E[hu′,w′(U,W)])

]
.

Note that under the null hypothesis H0 : U ⊥⊥ W, we have E[hu,w(U,W)] = 0
and the covariance function of H simplifies to

(u,w,u′,w′) �→E
[(
1{U≤u,W≤w} −1{U≤u}FW(w)−1{W≤w}FU(u)+FUW(u,w)

+ δu,w(U,W)
)×
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× (
1{U≤u′,W≤w′} −1{U≤u′}FW(w′)−1{W≤w′}FU(u′)+FUW(u′,w′)
+ δu′,w′(U,W)

)]
.

For the alternative hypothesis, H1 : U �⊥⊥ W, put

d2 =
∫∫

|FUW(u,w)−FU(u)FW (w)|2dFUW(u,w), d∞ = sup
u,w

|FUW(u,w)−FU(u)FW (w)|.

Consider also a sequence of local alternative hypotheses

H1,n : FUW(u,w) = FU(u)FW(w)+n−1/2H(u,w), ∀u,w,

where the function H is such that FUW is a proper CDF. There exist several
ways to construct such local alternatives with prespecified marginal distributions
FU and FW . For instance, FUW(u,w) = FU(u)FW(w) + aFU(u)FW(w)(1 −
FU(u))(1−FW(w)) with a ∈ [−1,1] (see Devroye, 1986, Chap. XI, Thm. 3.2).

The following corollary describes the behavior of our test under the null and
fixed/local alternative hypotheses.

Corollary 3.1. Suppose that assumptions of Theorem 3.1 are satisfied. Then,
under H0,

T2,n �

∫∫
|H(u,w)|2dFUW(u,w) and T∞,n � sup

u,w
|H(u,w)|,

while under H1, we have T2,n,T∞,n
a.s.−→ ∞, provided that d2,d∞ > 0. Moreover,

under H1,n,

T2,n �

∫∫
|H(u,w)+2H(u,w)|2dFUW(u,w) and T∞,n � sup

u,w
|H(u,w)+2H(u,w)|.

Corollary 3.1 shows that the residual-based independence tests can detect
parametric local alternatives. The asymptotic distributions under H0 are not pivotal,
in contrast to nonparametric regression without endogeneity (cf. Einmahl and Van
Keilegom, 2008). While obtaining the distribution-free statistics is possible in
simpler residual-based testing problems (see Escanciano, Pardo-Fernández, and
Van Keilegom, 2018), these methods do not seem to extend naturally to our setting.
Therefore, we focus on resampling methods to compute the critical values.

We conclude this section with instructions on how to implement the test in
practice:

1. Compute the nonparametric IV regression ϕ̂ based on the kernel estimators
in equation (3). One could use, e.g., the product of sixth-order Epanechnikov
kernels for which the Silverman’s rule of thumb bandwidth choices based on
sample standard deviations are hz = 3.53σ̂zn−1/13 and hw = 3.53σ̂wn−1/13.

2. Compute the nonparametric IV residuals, Ûi = Yi −ϕ(Zi) and the residual-based
independence empirical process Gn in equations (4) and (5).
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3. Compute either the KS or the CvM statistics, denoted T2,n and T∞,n (see
equation (6)). The integrals and suprema are evaluated on a discrete grid of
100 points.

4. Compute the bootstrap critical values as 1 − α empirical quantile of boot-
strapped statistics T∗

2,n or T∗∞,n, denoted q∗
1−α , where the process G is replaced

by its bootstrap counterpart G∗ (see equation (7)). The bootstrap counterparts
are obtained drawing, e.g., 5,000 samples of size n with replacements from
(Yi,Wi,Zi)

n
i=1.

5. Reject separability if the observed statistics exceeds the critical value q∗
1−α .

4. MONTE CARLO EXPERIMENTS

To evaluate the finite-sample performance, we simulate samples as

Y = ϕ(Z)+ θZε + ε,

⎛
⎝Z

W
ε

⎞
⎠ ∼i.i.d. N

⎛
⎝
⎛
⎝0

0
0

⎞
⎠,

⎛
⎝ 1 0.4 0.3

0.4 1 0
0.3 0 1

⎞
⎠
⎞
⎠ .

We set ϕ(x) = cos(x) and consider samples of size n = 500 and n = 1,000
observations (see Appendix A.5 for additional simulation results). Note that the
degree of separability of unobservables is governed by θ ∈ R. The separable model
corresponds to θ = 0, while any θ �= 0 corresponds to the alternative nonseparable
model. Under H1, the nonparametric IV regression does not estimate consistently
the nonseparable structural function (z,e) �→ cos(z) + θze + e, which depends
on unobservables. The nonparametric IV regression estimates instead a function
z �→ φ(z) solving the functional equation E[Y|W] = E[φ(Z)|W]. The difference
between the two functions is precisely what gives the power to the test.

We set the number of Monte Carlo replications and the number of bootstrap
replications to 1,000 through all our experiments. We also discretize all continuous
quantities on the grid of 100 equidistant points in [−4,4]. The estimates r̂ and
T̂ in equation (3) are obtained using the sixth-order Epanechnikov kernel. The
corresponding bandwidth parameters are computed using Silverman’s rule of
thumb: hz = 3.53σ̂zn−1/13 and hw = 3.53σ̂wn−1/13, where σ̂z and σ̂w are sample
standard deviations of observed Z and W. This choice satisfies Assumption 3.4
and requires that the regularization parameter is αn ∼ n−c2 with c2 ∈ (0.5,11/13).
To satisfy this requirement, we set αn = n−4/5.

We look at the distributions of KS and CvM statistics, computed, respectively, as

T∞,n = sup
u,w

|Gn(u,w)| and T2,n =
∫∫

|Gn(u,w)|2dF̂ÛW(u,w),

where Gn(u,w) = √
n(F̂ÛW(u,w)− F̂Û(u)F̂W(w)). Lastly, we compute the critical

values using the nonparametric bootstrap, replacing the empirical process Gn by
the bootstrapped process
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Figure 1. Finite-sample distributions. The figure shows density estimates for the Kolmogorov–
Smirnov and Cramér–von Mises statistics under H0, θ = 0 (solid line), and the two alternative
hypotheses: θ = 0.4 (dashed line) and θ = 1 (dotted line).

G
∗
n(u,w) = √

n
(
(F̂∗

ÛW
(u,w)− F̂∗

Û
(u)F̂∗

W(w)− (F̂ÛW(u,w)− F̂Û(u)F̂W(w))
)
,

(7)

where F̂∗
Û,W

, F̂∗
Û

, and F̂∗
W are computed via resampling (Yi,Zi,Wi)

n
i=1.6

Figure 1 shows the distribution of the test statistics under the null and the two
alternative hypotheses for different sample sizes. The distributions under H0 and
H1 are sufficiently distinct when there is a larger separation as measured by θ .

In Figure 2, we plot the power curves when the level is fixed at 5%. The
power increases once alternative hypotheses become more distant from the null
hypothesis. The Cramér–von Mises test seems to have a higher power for the class
of considered alternatives. The figure also indicates that the tests are consistent.

6The validity of the bootstrap could be justified in light of Neumeyer (2009) and Neumeyer and Van Keilegom
(2019) (see also Chen, Linton, and Van Keilegom, 2003). For the empirical distribution function (EDF) of regression
residuals, the arguments reduce to the following decomposition:

√
n(F̂∗

Û
− F̂Û) = √

n(F̃∗
Û

− F̃Û)+√
n(F̂∗

Û
− F̃∗

Û
)+

√
n(F̃Û − F̂Û), where F̃∗

Û
is the EDF of a sample bootstrapped from a smoothed EDF, denoted F̃Û . Neumeyer (2009)

shows that the first term estimates consistently the asymptotic distribution, while Neumeyer and Van Keilegom (2019)
show that the last two terms are asymptotically negligible.
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12 ANDRII BABII AND JEAN-PIERRE FLORENS

Figure 2. Power curves. The figure shows the empirical rejection probabilities as a function of the
separability parameter θ for samples of size n = 500 (solid line) and n = 1,000 (dashed line). The value
θ = 0 corresponds to the separable model, while θ �= 0 are deviations from separability. The nominal
level is set at 5%.

Figure 3. Bootstrapped and simulated distributions. The figure shows density estimates of simulated
and bootstrapped Kolmogorov–Smirnov and Cramér–von Mises statistics under H0. Based on 1,000
bootstrap replications.

In Figure 3, we explore the bootstrap performance. We plot the exact finite-
sample distribution of both test statistics and the distribution of bootstrapped
statistics under H0. The bootstrap seems to mimic the finite-sample distribution
relatively well.

5. ARE ENGEL CURVES SEPARABLE?

Engel curves are fundamental for the analysis of consumers’ behavior and have
implications for aggregate economic outcomes. The Engel curve describes the
relationship between demand for a particular commodity and a household’s
budget. Interesting applications of Engel curve estimations include measurement
of welfare losses associated with tax distortions in Banks, Blundell, and Lewbel
(1997), estimation of growth and inflation in Nakamura, Steinsson, and Liu
(2016), or estimation of income inequality across countries in Almås (2012).
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Table 1. Testing separability of Engel curves. The table shows the
bootstrap p-values of Kolmogorov–Smirnov and Cramér–von Mises
tests for 13 commodities

Commodity KS CvM Commodity KS CvM

Food home 0.00 0.00 Gas and oil 0.35 0.33

Food away 0.11 0.02 Personal care 0.45 0.34

Clothing 0.20 0.17 Health 0.38 0.31

Tobacco 0.14 0.01 Insurance 0.38 0.20

Alcohol 0.36 0.36 Reading 0.39 0.41

Trips 0.20 0.02 Transportation 0.00 0.00

Entertainment 0.22 0.00

The nonparametric IV approach to Engel curves is pioneered in the seminal paper
of Blundell et al. (2007), who focus on the estimation of Engel curves for the
United Kingdom.

We draw a dataset from the 2015 U.S. Consumer Expenditure Survey; see Babii
(2020) for the estimated Engel curves with the uniform confidence bands using this
dataset. We restrict our attention to married couples with a positive income during
the last 12 months, yielding 10,055 observations. The dependent variable is a share
of expenditures on a particular commodity, while the endogenous regressor is a nat-
ural logarithm of the total expenditures. We instrument the expenditures using the
gross income. In particular, Blundell et al. (2007) point out that the gross income
will be exogenous for consumption expenditures assuming that heterogeneity in
earnings is not related to unobserved preferences over consumption.

In Table 1, we report the bootstrap p-values for the KS and CvM tests for 13
different commodities. Our test provides some evidence that the Engel curves
for Food, Transportation, and possibly Tobacco may be non-separable, and hence
heterogeneous in unobservables.

6. CONCLUSIONS

This paper offers a new perspective on the separability of unobservables in
econometric models with endogeneity. Starting from a nonseparable model where
the instrumental variable is independent of unobservables, our first contribution
is to develop a novel fully nonparametric separability test. The test is based on
the estimation of a separable nonparametric IV regression and the verification of
the independence restriction imposed by the nonseparable IV model. To obtain a
large sample approximation to the distribution of our test statistics, we develop
a novel uniform asymptotic expansion of the empirical distribution function of
nonparametric IV residuals and obtain new results for the Tikhonov regulariza-
tion in Sobolev spaces. We show that despite the uncertainty coming from an
ill-posed inverse nonparametric IV regression, the empirical distribution function
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14 ANDRII BABII AND JEAN-PIERRE FLORENS

of residuals and the residual-based independence empirical process satisfy the
Donsker central limit theorem. In contrast to nonparametric regression without
endogeneity, we find that parameter uncertainty affects the asymptotic distribution
of the residual-based independence tests, which are highly nonstandard.

Using the 2015 U.S. Consumer Expenditure Survey data, we find some evidence
for non-separable Engel curves for some commodities. This indicates that some
Engel curves may be heterogeneous in unobservables and that the nonseparable
modeling of Engel curves may be useful (see, e.g., Blundell et al., 2017 for
the estimation of nonseparable demand functions).

The paper offers several directions for future research. First, it might be inter-
esting to test the separability of unobservables in other structural relations that are
commonly estimated using the additively separable models in empirical practice,
such as a production function, a labor supply function, a demand function, or a
wage equation. Second, given the plethora of residual-based specification tests for
regression models without endogeneity, our results could also be used to develop
similar tests for econometric models with endogeneity (see Pardo-Fernández, Van
Keilegom, and González-Manteiga, 2007; Escanciano et al., 2018).

APPENDIX

Notation. For two sequences (an)n∈N and (bn)n∈N, we denote an � bn if an = O(bn) and
an ∼ bn if both an � bn and bn � an. For two sequences of random variables (Xn)n∈N and
(Yn)n∈N, we denote Xn �P Yn for Xn = OP(Yn). For a bounded linear operator T : X → Y
on normed spaces, we use ‖T‖op = inf{c ≥ 0 : ‖Tx‖ ≤ c‖x‖,∀x ∈X } to denote its operator
norm, where with some abuse of notation, we use ‖.‖ to denote the norm of both spaces.

A.1. Tikhonov Regularization in Hilbert Scales

This section discusses convergence rates for the Tikhonov-regularized estimator in Sobolev
spaces. The following result extends Proposition 3.1 of Carrasco et al. (2014) to the case of
the unknown operator.

Theorem A.1.1. Suppose that Assumption 3.1 is satisfied, ‖T̂ − T‖2
op �P αn, and

2s ≥ b−a. Then, for every c ∈ [0,s],

∥∥ϕ̂ −ϕ
∥∥2

c �P α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ

∥∥∥2 +α
b−c
a+s
n .

Proof. Decompose

ϕ̂ −ϕ = In + IIn + IIIn + IVn +Vn,

with

In = L−s(αnI +T∗
s Ts)

−1T∗
s (r̂ − T̂ϕ),

IIn = L−s(αnI +T∗
s Ts)

−1(T̂∗
s −T∗

s )(r̂ − T̂ϕ),

IIIn = L−s
[
(αnI + T̂∗

s T̂s)
−1 − (αnI +T∗

s Ts)
−1

]
T̂∗

s (r̂ − T̂ϕ),
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IVn = L−s(αnI + T̂∗
s T̂s)

−1T̂∗
s T̂sLsϕ −L−s(αnI +T∗

s Ts)
−1T∗

s TsLsϕ,

Vn = L−s(αnI +T∗
s Ts)

−1T∗
s TsLsϕ −ϕ.

For the first term,

‖In‖2
c =

∥∥∥(αnI +T∗
s Ts)

−1T∗
s (r̂ − T̂ϕ)

∥∥∥2

c−s

�
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1T∗
s (r̂ − T̂ϕ)

∥∥∥∥2

≤
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1T∗
s

∥∥∥∥2

op

∥∥∥r̂ − T̂ϕ

∥∥∥2

≤ sup
λ

∣∣∣∣∣∣
λ

2s+a−c
2(a+s)

αn +λ

∣∣∣∣∣∣2
∥∥∥(r̂ − T̂ϕ)

∥∥∥2

� α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ

∥∥∥2
,

where the second line follows by Engl, Hanke, and Neubauer (2000, Cor. 8.22) with
ν = (s − c)/(a + s) ≤ 1; the third line by the definition of operator norm; the fourth line
by the isometry of functional calculus (see Cavalier, 2011, Thm. 1.3); and the last since
supλ |λd/(αn +λ)| � αd−1

n for all d ∈ [0,1].
Similarly, since for bounded linear operators A and B, ‖AB‖op ≤ ‖A‖op‖B‖op,

‖IIn‖2
c =

∥∥∥(αnI +T∗
s Ts)

−1(T̂∗
s −T∗

s )(r̂ − T̂ϕ)

∥∥∥2

c−s

�
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1
∥∥∥∥2

op
‖T̂∗ −T∗‖2

op

∥∥∥r̂ − T̂ϕ

∥∥∥2

�P α
− 2a+s+c

a+s
n αn

∥∥∥r̂ − T̂ϕ

∥∥∥2

� α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ

∥∥∥2
.

Next, since Lsϕ ∈ Hb−s and s ≥ (b − a)/2, by Engl et al. (2000, Cor. 8.22), there exists

ψ ∈ L2 such that Lsϕ = (T∗
s Ts)

b−s
2(a+s) ψ . Therefore,

‖Vn‖2
c =

∥∥∥(αnI +T∗
s Ts)

−1T∗
s TsLsϕ −Lsϕ

∥∥∥
c−s

=
∥∥∥αn(αnI +T∗

s Ts)
−1Lsϕ

∥∥∥2

c−s

�
∥∥∥∥αn(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1(T∗
s Ts)

b−s
2(a+s) ψ

∥∥∥∥2

�
∥∥∥∥αn(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1(T∗
s Ts)

b−s
2(a+s)

∥∥∥∥2

op

≤ sup
λ

∣∣∣∣∣∣
αnλ

b−c
2(a+s)

αn +λ

∣∣∣∣∣∣2 � α
b−c
a+s
n .
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Next, decompose

‖IIIn‖2
c =

∥∥∥[(αnI +T∗
s Ts)

−1 − (αnI + T̂∗
s T̂s)

−1
]

T̂∗
s (r̂ − T̂ϕ)

∥∥∥2

c−s

=
∥∥∥(αnI +T∗

s Ts)
−1(T̂∗

s T̂s −T∗
s Ts)(αnI + T̂∗

s T̂s)
−1T̂∗

s (r̂ − T̂ϕ)

∥∥∥2

c−s

≤ 2R1n +2R2n

with

R1n =
∥∥∥(αnI +T∗

s Ts)
−1T∗

s (T̂s −Ts)(αnI + T̂∗
s T̂s)

−1T̂∗
s (r̂ − T̂ϕ)

∥∥∥2

s−c

�
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1T∗
s

∥∥∥∥2

op
‖T̂s −Ts‖2

op‖(αnI + T̂∗
s T̂s)

−1T̂∗
s ‖2

op

∥∥∥r̂ − T̂ϕ

∥∥∥2

≤
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1T∗
s

∥∥∥∥2

op
αn

1

αn

∥∥∥r̂ − T̂ϕ

∥∥∥2

�P α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ

∥∥∥2

and

R2n =
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1(T̂∗
s −T∗

s )T̂s(αnI + T̂∗
s T̂s)

−1T̂∗
s (r̂ − T̂ϕ)

∥∥∥∥2

≤
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1
∥∥∥∥2

op
‖T̂∗

s −T∗
s ‖2

op

∥∥∥T̂s(αnI + T̂∗
s T̂s)

−1T̂∗
s

∥∥∥2

op

∥∥∥r̂ − T̂ϕ

∥∥∥2

≤
∥∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI +T∗
s Ts)

−1
∥∥∥∥2

op
αn

∥∥∥r̂ − T̂ϕ

∥∥∥2

�P α
− 2a+c+s

a+s
n αn

∥∥∥r̂ − T̂ϕ

∥∥∥2

�P α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ

∥∥∥2
.

Similarly, decompose

‖IVn‖2
c =

∥∥∥αn

[
(αnI + T̂∗

s T̂s)
−1 − (αnI + T̂∗

s T̂s)
−1

]
Lsϕ

∥∥∥2

c−s

�
∥∥∥(αnI + T̂∗

s T̂s)
−1

(
T̂∗

s T̂s −T∗
s Ts

)
αn(αnI +T∗

s Ts)
−1Lsϕ

∥∥∥2

c−s

≤ 2S1n +2S2n

with S1n and S2n defined below. In particular,

S1n =
∥∥∥(αnI + T̂∗

s T̂s)
−1T̂∗

s

(
T̂s −Ts

)
αn(αnI +T∗

s Ts)
−1Lsϕ

∥∥∥2

c−s

�
∥∥∥(αnI + T̂∗

s T̂s)
−1T̂∗

s

(
T̂s −Ts

)
αn(αnI +T∗

s Ts)
−1Lsϕ

∥∥∥2
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�
∥∥∥(αnI + T̂∗

s T̂s)
−1T̂∗

s

∥∥∥2

op
‖T̂ −T‖2

op

∥∥∥L−sαn(αnI +T∗
s Ts)

−1Lsϕ
∥∥∥2

≤
∥∥∥αn(αnI +T∗

s Ts)
−1Lsϕ

∥∥∥2

−s

�
∥∥∥∥αn(T∗

s Ts)
s

2(a+s) (αnI +T∗
s Ts)

−1(T∗
s Ts)

b−s
2(a+s) ψ

∥∥∥∥2

� sup
λ

∣∣∣∣∣∣
αnλ

b
2(a+s)

αn +λ

∣∣∣∣∣∣2 � α
b

a+s
n ,

where the last two lines follow by Engl et al. (2000, Cor. 8.22) with ν = s/(a+ s) ≤ 1 and
previous computations. Similarly,

S2n =
∥∥∥(αnI + T̂∗

s T̂s)
−1

(
T̂∗

s −T∗
s

)
αnTs(αnI +T∗

s Ts)
−1Lsϕ

∥∥∥2

c−s

≤
∥∥∥(T∗

s Ts)
s−c

2(a+s) (αnI + T̂∗
s T̂s)

−1
∥∥∥2

op
‖T̂∗

s −T∗
s ‖2

op

∥∥∥αnTs(αnI +T∗
s Ts)

−1(T∗
s Ts)

b−s
2(a+s) ψ

∥∥∥2

�P α
− 2a+s+c

a+s
n ‖T̂ −T‖2

opα
b+a
a+s

n

�P α
b−c
a+s
n .

The result follows from combining all estimates. �

This result is not specific to the nonparametric IV regression and can be applied to a
generic ill-posed inverse problem Tϕ = r, where (T,r) is estimated with (T̂, r̂). Moreover, in
the case of nonparametric IV regression, it can be easily applied to nonparametric/machine
learning estimators (T̂, r̂) other than the kernel smoothing. Next, we specialize the generic
result of Theorem A.1.1 to the nonparametric IV regression with (T,r) estimated via kernel
smoothing (see equation (3)).

Corollary A.1.1. Suppose that Assumptions 3.1 and 3.2 are satisfied, 1
nhp+q

n
∨ h2t

n =
O(αn), and 2s ≥ b−a. Then, for every c ∈ [0,s],

‖ϕ̂ −ϕ‖2
c = OP

(
α

− a+c
a+s

n

(
1

nhq
n

+h2t
n

)
+α

b−c
a+s
n

)
.

Proof. By the Cauchy–Schwartz inequality,

‖T̂ −T‖2
op ≤

∥∥∥f̂ZW − fZW

∥∥∥2

= OP

(
1

nhp+q
n

+h2t
n

)
,

where the second line follows from the well-known risk bound (see, e.g., Giné and Nickl,
2015, pp. 403–404 under Assumption 3.2). Therefore, by Theorem A.1.1,

∥∥ϕ̂ −ϕ
∥∥2

c �P α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ

∥∥∥2 +α
b−c
a+s
n .
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Lastly, by Babii and Florens (2020, Prop. A.1.1),

∥∥∥r̂ − T̂ϕ

∥∥∥2 = OP

(
1

nhq
n

+h2t
n

)

under Assumption 3.2. �

A.2. Distribution of Nonparametric IV Residuals

In this section, we present results on the weak convergence of the empirical distribution of
nonparametric IV residuals. These results are used to obtain the large sample approximation
to the distribution of independence tests and are of independent interest. For instance, they
may ensure that we can estimate the structural quantile function �(z,e) = ϕ(z)+F−1

U (e) in
the separable IV model

Y = ϕ(Z)+F−1
U (ε),

where ε ∼ U(0,1) without loss of generality (see Chernozhukov et al., 2020).

Theorem A.2.1. Suppose that Assumptions 3.1, 3.2, and 3.3(i), and 3.4 are satisfied.
Then

√
n(F̂Û(u)−FU(u)) = 1√

n

n∑
i=1

{
1{Ui≤u} −FU(u)+Ui

[
T(T∗T)−1fUZ(u,.)

]
(Wi)

}
+oP(1)

uniformly over u ∈ R.

Proof. By Lemma A.4.1, the following expansion holds uniformly in u ∈ R:

√
n(F̂Û(u)−FU(u)) = √

n(F̂U(u)−FU(u))+√
n
(

Pr
(

U ≤ u+ �̂(Z)|X
)

−FU(u)
)

+oP(1).

By Taylor’s theorem, there exists some τ ∈ [0,1] such that

√
n
(

Pr
(

U ≤ u+ �̂(Z)|X
)

−Pr(U ≤ u)
)

= √
n
∫ {∫ u+�̂(z)

−∞
fUZ(v,z)dv−

∫ u

−∞
fUZ(v,z)dv

}
dz

= √
n
∫ {

fUZ(u,z)�̂(z)+ 1

2
∂ufUZ(u+ τ�̂(z),z)�̂2(z)

}
dz

= √
n〈ϕ̂ −ϕ,fUZ(u,.)〉+√

n
1

2

∫
∂ufUZ(u+ τ�̂(z),z)�̂2(z)dz

� T1n(u)+T2n(u).

By Lemma A.4.3 in Appendix A.4,

T1n(u) = 1√
n

n∑
i=1

Ui

[
T(T∗T)−1fUZ(u,.)

]
(Wi)+oP(1),
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while under Assumptions 3.3(i) and 3.4,

‖T2n‖∞ ≤ ‖∂ufUZ‖∞
√

n‖ϕ̂ −ϕ‖2 = oP(1).

Combining all estimates, we obtain uniformly in u ∈ R

√
n(F̂Û(u)−FU(u)) = √

n(F̂U(u)−FU(u))+ 1√
n

n∑
i=1

Ui[T(T∗T)−1fUZ(u,.)](Wi)+oP(1).

�

As a consequence of Theorem A.2.1, we obtain the following Donsker-type central limit
theorem for the empirical distribution of nonparametric IV residuals.

Corollary A.2.1. Suppose that assumptions of Theorem A.2.1 are satisfied. Then
√

n(F̂Û −FU) �G in L∞(R),

where G is a centered Gaussian process with uniformly continuous sample paths and
covariance

(u,u′) �→ FU(u∧u′)−FU(u)FU(u′)

+E
[
U2

[
T(T∗T)−1fUZ(u,.)

]
(W)

[
T(T∗T)−1fUZ(u′,.)

]
(W)

]
+E

[
1{U≤u}U

[
T(T∗T)−1fUZ(u′,.)

]
(W)+1{U≤u′}U

[
T(T∗T)−1fUZ(u,.)

]
(W)

]
.

Proof. The process given in Theorem A.2.1 is an empirical process indexed by the

following class of functions F =
{
(v,w) �→ 1{v≤u} + v

(
T(T∗T)−1fUZ(u,.)

)
(w), u ∈ R

}
,

which is a sum of a Donsker class and H =
{
(v,w) �→ v

(
T(T∗T)−1fUZ(u,.)

)
(w), u ∈ R

}
.

By van der Vaart and Wellner (1996, Exam. 2.10.5), it is enough to show that H is Donsker.
The former statement follows from the fact that under Assumption 3.1 by Engl et al. (2000),
since for κ −a > q/2,

sup
u∈R

‖T(T∗T)−1fUZ(u,.)‖κ−a � sup
u∈R

‖fUZ(u,.)‖κ ≤ M < ∞,

where the last inequality follows under Assumption 3.3(i). Therefore,H⊂ {(v,w) �→ vg(w) :
g ∈ Hκ−a

M }, where Hκ−a
M is a Sobolev ball of radius M. Since κ > a + q/2, this shows that

the class H is Donsker (see Nickl and Pötscher (2007, Cors. 4 and 5)). The covariance
simplifies since E[U|W] = 0. �

A.3. Proofs of the Main Results

In this section, we provide proofs of the main results of the paper.

Proof of Proposition 2.1. Since ϕ is unique by assumption, U = Y − ϕ(Z) is a
well-defined unique random variable. If the model in equation (1) admits a separable
representation, then since ε ⊥⊥ W,

E[Y|W] = E[ψ(Z)+g(ε)|W]

= E [ψ(Z)+Eg(ε)|W] .
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Therefore, ϕ(Z) = ψ(Z)+Eg(ε) by the injectivity of T, and thus U = g(ε)−Eg(ε). This
shows that U ⊥⊥ W because ε ⊥⊥ W. �

Proof of Theorem 3.1. By Lemma A.4.2, uniformly in (u,w),

Gn(u,w) = T1n(u,w)+T2n(u,w)−T3n(u,w)+oP(1),

where

T1n(u,w) = √
n
(

F̂UW (u,w)− F̂U(u)F̂W (w)
)
,

T2n(u,w) = √
n
(

Pr
(

U ≤ u+ �̂(Z),W ≤ w|X
)

−FUW (u,w)
)
,

T3n(u,w) = √
n
(

Pr
(

U ≤ u+ �̂(Z)|X
)

−FU(u)
)

FW (w).

The first term is a classical independence empirical process

T1n(u,w) = 1√
n

n∑
i=1

{
1{Ui≤u,Wi≤w} −1{Ui≤u}FW (w)−1{Wi≤w}FU(u)+FU(u)FW (w)

}

− 1√
n

n∑
i=1

{
1{Wi≤w} −FW (w)

} 1

n

n∑
i=1

{
1{Ui≤u} −FU(u)

}

= 1√
n

n∑
i=1

{
1{Ui≤u,Wi≤w} −1{Ui≤u}FW (w)−1{Wi≤w}FU(u)+FU(u)FW (w)

}
+oP(1),

where the second line follows by the maximal inequality.
Next, under Assumption 3.3(i), by Taylor’s theorem, for some τ ∈ [0,1],

T2n(u,w) = √
n
∫∫ w

−∞

{∫ u+�̂(z)

−∞
fUZW(ũ,z,w̃)dũ−

∫ u

−∞
fUZW(ũ,z,w̃)dũ

}
dw̃dz

= √
n
∫∫ w

−∞

{
fUZW(u,z,w̃)�̂(z)+ 1

2
∂ufUZW(u+ τ�̂(z),z,w̃)�̂2(z)

}
dw̃dz

= √
n

〈
ϕ̂ −ϕ,

∫ w

−∞
fUZW(u,.,w̃)dw̃

〉
+

√
n

2

∫∫ w

−∞
∂ufUZW(u+ τ�̂(z),z,w̃)dw̃�̂2(z)dz

� S1n(u,w)+S2n(u,w).

Under Assumptions 3.3 by Corollary A.1.1,

‖S2n‖∞ ≤ sup
w,u,z

∣∣∣∣
∫ w

−∞
∂ufUZW (u,z,w̃)dw̃

∣∣∣∣√n
∥∥ϕ̂ −ϕ

∥∥2 = oP(1).

Similarly, we have, uniformly in (u,w),

T3n(u,w) = √
n〈ϕ̂ −ϕ,fUZ(u,.)〉FW (w)+oP(1).

Therefore, uniformly in (u,w) ∈ R×Rq,
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T2n(u,w)−T3n(u,w)

= √
n
∫

(ϕ̂(z)−ϕ(z))

{∫ w

−∞
fUZW (u,z,w̃)dw̃− fUZ(u,z)FW (w)

}
dz+oP(1)

= √
n
∫

(ϕ̂(z)−ϕ(z))ρ(u,z,w)dz+oP(1)

= 1√
n

n∑
i=1

Ui

(
T(T∗T)−1ρ(u,.,w)

)
(Wi)+oP(1),

where the last line follows by the same argument as in the proof of Theorem A.2.1 under
Assumption 3.3(i). �

Proof of Proposition 3.1. Hn is an empirical process indexed by the class of functions

F =
{
(v,w) �→ 1{v≤ṽ,w≤w̃} −1{v≤ṽ}FW (w̃)−1{w≤w̃}FU(ṽ)+FUW (ṽ,w̃)

+ δṽ,w̃(v,w) : (ṽ,w̃) ∈ R1+q
}

.

By van der Vaart and Wellner (1996, Exam. 2.10.7), it suffices to show that each of the
functions in the sum constitutes a Donsker class. To that end, recall first that the indicator
functions are classical examples of Donsker classes. Therefore, all terms in F but the
last one are either Donsker or can be factored as Donsker classes and a deterministic
bounded function not depending on the argument of the indicator function. Lastly, under
Assumptions 3.1(i) by Engl et al. (2000, Cor. 8.22),

‖T(T∗T)−1g(v,w,.)‖κ−a � sup
(v,w)∈R1+q

‖g(v,w,.)‖κ ≤ M < ∞,

where the latter follows under Assumption 3.3(ii). Therefore, we obtain that {(v,w) �→
v(T(T∗T)−1g(ṽ,w̃,.))(w) : ṽ ∈ R,w̃ ∈ Rq} ⊂ {(v,w) �→ vg(w) : g ∈ Hκ−a

M }, where Hκ−a
M is

a Sobolev ball of radius M. Since κ > a+q/2, this shows that F is Donsker (see Nickl and
Pötscher (2007, Cors. 4 and 5)). �

Proof of Corollary 3.1. Since under H0, Gn � H by Proposition 3.1, the asymptotic
distribution of T∞,n under H0 is readily obtained by the continuous mapping theorem (see
van der Vaart and Wellner (1996, Thm. 1.3.6)). For the CvM statistics, write

T2,n =
∫∫

H
2(u,w)dFUW (u,w)+R1n +R2n

with

R1n =
∫∫ {

G
2
n(u,w)−H

2(u,w)
}

dF̂ÛW (u,w),

R2n =
∫∫

H
2(u,w)d[F̂ÛW (u,w)−FUW (u,w)].

By Proposition 3.1, under H0, Gn � H and
√

n(F̂ÛW (u,w)− FUW (u,w)) also converges
weakly by Proposition 3.1 and Theorem A.2.1; thus, by the Skorokhod construction,

n−1/2 sup
u,w

|Gn(u,w)| a.s.−−→ 0 and sup
u,w

∣∣∣F̂ÛW (u,w)−FUW (u,w)

∣∣∣ a.s.−−→ 0. (A.1)
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The first expression in equation (A.1) implies that R1n
a.s.−−→ 0. Since H has a.s. bounded

and continuous trajectories, the second expression in equation (A.1) in conjunction with

the Helly–Bray theorem shows that R2n
a.s.−−→ 0. Therefore, the asymptotic distribution of

the CvM test follows by the continuous mapping theorem.
Under the fixed alternative hypothesis, since E[U|W] = 0, by Theorem 3.1, the

Glivenko–Cantelli theorem, and a similar argument, we obtain

n−1/2T2,n =
∫∫

|n−1/2
Gn(u,w)|2dF̂ÛW (u,w)

a.s.−−→ 2d2 > 0,

n−1/2T∞,n = sup
u,w

|n−1/2
Gn(u,w)| a.s.−−→ 2d∞ > 0.

Therefore, by Slutsky’s theorem, T2,n
a.s.−−→ ∞ and T∞,n

a.s.−−→ ∞, which proves the second
statement. For the local alternatives, note that

E[hu,w(U,W)] = 2(FUW (u,w)−FU(u)FW (w)) = 2n−1/2H(u,w).

Therefore, by Corollary 3.1 and the continuous mapping theorem,

T∞,n = sup
u,w

|Gn(u,w)|

= sup
u,w

|Gn(u,w)−√
nE[hu,w(U,W)]+2H(u,w)|

� sup
u,w

|H(u,w)+2H(u,w)|.

For the CvM statistics, write

T2,n =
∫∫

|H(u,w)+2H(u,w)|2dFUW (u,w)+S1n +S2n,

where

S1n =
∫∫ {∣∣Gn(u,w)−√

nE[hu,w(U,W)]+2H(u,w)
∣∣2 −|H(u,w)+2H(u,w)|2

}
dF̂ÛW (u,w),

S2n =
∫∫

|H(u,w)+2H(u,w)|2d
[
F̂ÛW (u,w)−FUW (u,w)

]
.

Therefore, the result follows by Proposition 3.1 and the same argument as under H0 with
the only difference that now we have the bias 2H in the limiting distribution. �

A.4. Additional Technical Results and Proofs

In this section, we provide several auxiliary technical results.

Lemma A.4.1. Suppose that Assumptions 3.1–3.4 are satisfied. Then

sup
u

∣∣∣F̂Û(u)− F̂U(u)−Pr(U ≤ u+ �̂(Z)|X )+FU(u)

∣∣∣ = oP

(
n−1/2

)
, (A.2)

where �̂ = ϕ̂ −ϕ and X = (Yi,Zi,Wi)
∞
i=1.

Proof. The main idea of the proof is to embed the process inside the supremum into an
empirical process indexed by u and a Sobolev ball containing �̂ with a probability tending
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to one. We first show that the process is Donsker; thus, the supremum in equation (A.2) is
OP(n−1/2). Finally, the required oP(n−1/2) order will follow from the fact that the process
is degenerate.

Let Hc
M be a ball of radius M < ∞ in the Sobolev space Hc(Rp). For u ∈ R and

� ∈ Hc
M , define fu,�(U,Z) = 1(−∞,u+�(Z)](U), G1 = {

fu,� : u ∈ R,� ∈ Hc
M(Rp)

}
, G2 ={

fu,0 : u ∈ R
}
, and G = G1 − G2. Note that G2 is a classical Donsker class of indicator

functions. If we can show that G1 is Donsker, then G will be Donsker by van der Vaart and
Wellner (1996, Thm. 2.10.6). To this end, we check that the bracketing entropy condition
is satisfied for G1.

By Nickl and Pötscher (2007, Cor. 4), the bracketing number of Hc
M satisfies

logN[ ](ε,H
c
M,‖.‖L2

Z
) � ε−p/c, where (L2

Z,‖.‖L2
Z
) denotes the space of functions, square-

integrable with respect to fZ . Put Mε = N[ ](ε,H
c
M,‖.‖L2

Z
) and fix u ∈ R. Let

[
�j,�j

]Mε

j=1
be a collection of ε-brackets for Hc

M , i.e., for any � ∈ Hc
M , there exists 1 ≤ j ≤ Mε such that

�j ≤ � ≤ �j and
∥∥∥�j −�j

∥∥∥
L2

Z

≤ ε, and thus 1(
−∞,u+�j

] ≤ 1(−∞,u+�] ≤ 1(−∞,u+�j
].

Now, for each 1 ≤ j ≤ Mε , partition the real line into intervals defined by grids of points
−∞ = uj,1 < uj,2 < · · · < uj,M1ε

= ∞ and −∞ = uj,1 < uj,2 < · · · < uj,M2ε
= ∞, so that

each segment has probabilities

Pr
(

U −�j(Z) ≤ uj,k

)
−Pr

(
U −�j(Z) ≤ uj,k−1

)
≤ ε2/2, 2 ≤ k ≤ 2

ε2
� M1ε,

Pr
(
U −�j(Z) ≤ uj,k

)−Pr
(
U −�j(Z) ≤ uj,k−1

) ≤ ε2/2, 2 ≤ k ≤ 2

ε2
� M2ε .

Denote the largest uj,k such that uj,k ≤ u by u∗
j and the smallest uj,k such that u ≤ ujk by

u∗
j . Consider the following family of brackets

[
1(

−∞,u∗
j +�j

],1(
−∞,u∗

j +�j

]]Mε

j=1
. Under

Assumption 3.2(ii),

∥∥∥∥∥1(
−∞,u∗

j +�j

] −1(
−∞,u∗

j +�j

]
∥∥∥∥∥

2

L2
Z

= Pr
(

u∗
j +�j(Z) ≤ U ≤ u∗

j +�j(Z)
)

≤ Pr
(

u+�j(Z) ≤ U ≤ u+�j(Z)
)

+ ε2

=
∫ {∫ u+�j(z)

u+�j(z)
fU|Z(u|z)du

}
fZ(z)dz+ ε2

≤
∥∥∥�j −�j

∥∥∥
L2

Z

‖fU|Z‖∞ + ε2 = O
(
ε2

)
.

Therefore, we constructed brackets of size O(ε), covering G1, and we have used at most

O
(
ε−2Mε

)
such brackets. Since c > p/2, we have

∫ 1
0

√
logN[ ](ε,G,‖.‖L2

Z
)dε < ∞. This

shows that the empirical process
√

n(Pn − P)g,g ∈ G is Donsker, hence asymptotically
equicontinuous (see van der Vaart and Wellner, 1996, Thm. 1.5.7). Then, for any ε > 0,
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lim
δ↓0

limsup
n→∞

Pr∗
(

sup
f,g∈G: ρ(f −g)<δ

|√n(Pn −P)(f −g)| > ε

)
= 0, (A.3)

where Pr∗ denotes the outer probability measure.
Next, we show that for every u ∈ R, ρ2(f̂u) = E[f̂ 2

u ] − (E[f̂u])2 = oP(1) with f̂u =
1

(−∞,u+�̂(Z)](U)−1(−∞,u](U), where the expectation is computed with respect to (U,Z)

only. Indeed,

E[f̂u] = Pr(u ≤ U ≤ u+ �̂(Z)|X )

=
∫∫ u+�̂(z)

u
fU|Z(v|z)dvfZ(z)dz

≤ ‖fU|Z‖∞‖fZ‖‖�̂‖ = oP(1),

where the third line follows by the Cauchy–Schwartz inequality and Corollary A.1.1 under
Assumptions 3.1, 3.2, and 3.4. Similarly,

E[f̂ 2
u ] = Pr(U ≤ u+ �̂(Z)|X )+Pr(U ≤ u)−2Pr(U ≤ (u+ �̂(Z))∧u|X )

≤
∫∫ u+�̂(z)

u
fU|Z(v|z)dvfZ(z)dz � ‖�̂‖ = oP(1).

Lastly, let ‖ν̂n‖∞ denote the supremum in equation (A.2). Then

Pr∗(
√

n‖ν̂n‖∞ > ε) ≤ Pr∗
(√

n‖ν̂n‖∞ > ε,ρ(f̂u) < δ,�̂ ∈ Hc
M

)
+Pr∗

(
ρ(f̂u) ≥ δ

)
+Pr∗

(
�̂ �∈ Hc

M

)
,

where the second probability tends to zero as we have just shown and the last probability
tends to zero since under the maintained assumptions, by Corollary A.1.1, ‖ϕ̂ − ϕ‖c =
oP(1). Therefore, it follows from the asymptotic equicontinuity in equation (A.3) that
limsupn→∞ Pr∗(

√
n‖ν̂n‖∞ > ε) = 0, which concludes the proof. �

Lemma A.4.2. Suppose that Assumptions 3.1–3.4 are satisfied. Then, uniformly over
(u,w) ∈ R×Rq,

(F̂Û(u)− F̂U(u))F̂W (w)−
(

Pr(U ≤ u+ �̂(Z)|X )+FU(u)
)

FW (w) = oP

(
n−1/2

)
and

F̂ÛW (u,w)− F̂UW (u,w)−Pr(U ≤ u+ �̂(Z),W ≤ w|X )+FUW (u,w) = oP

(
n−1/2

)
,

where �̂ = ϕ̂ −ϕ and X = (Yi,Zi,Wi)
∞
i=1.

Proof. Note that the first expression and the expression in the statement of Lemma A.4.1
multiplied by FW differ only by

(F̂Û(u)−F(u))(F̂W (w)−FW (w)),

which is OP(n−1) by Corollary A.2.1 and the classical Donsker central limit theorem. By
Lemma A.4.1, we obtain the first statement since FW is uniformly bounded by one.
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The proof of the second statement is similar to the proof of Lemma A.4.1 and is
omitted. �

Lemma A.4.3. Suppose that Assumptions 3.1–3.4 are satisfied. Then

〈ϕ̂ −ϕ,fUZ(u,.)〉 = 1√
n

n∑
i=1

Ui

[
T(T∗T)−1fUZ(u,.)

]
(Wi)+oP(1).

Proof. Similarly to the proof of Theorem A.1.1, decompose
√

n〈ϕ̂ −ϕ,fUZ(u,.)〉 � In(u)+ IIn(u)+ IIIn(u)+ IVn(u)+Vn(u)

with

In(u) = √
n
〈
L−s(αnI +T∗

s Ts)
−1T∗

s (r̂ − T̂ϕ),fUZ(u,.)
〉
,

IIn(u) = √
n
〈
L−s(αnI +T∗

s Ts)
−1(T̂∗

s −T∗
s )(r̂ − T̂ϕ),fUZ(u,.)

〉
,

IIIn(u) = √
n
〈
L−s

[
(αnI + T̂∗

s T̂s)
−1 − (αnI +T∗

s Ts)
−1

]
T̂∗

s (r̂ − T̂ϕ),fUZ(u,.)
〉
,

IVn(u) = √
n
〈
L−s(αnI + T̂∗

s T̂s)
−1T̂∗

s T̂sLsϕ −L−s(αnI +T∗
s Ts)

−1T∗
s TsLsϕ,fUZ(u,.)

〉
,

Vn(u) = √
n
〈
L−s(αnI +T∗

s Ts)
−1T∗

s TsLsϕ −ϕ,fUZ(u,.)
〉
.

We show below that ‖IIn + IIIn + IVn +Vn‖∞ = oP(1). To that end, first since Ts = TL−s,

‖IIn‖∞ = √
nsup

u

〈
(αnI +T∗T)−1(T̂∗ −T∗)(r̂ − T̂ϕ),fUZ(u,.)

〉
≤ √

n
∥∥∥(T̂∗ −T∗)(r̂ − T̂ϕ)

∥∥∥sup
u

∥∥∥(αnI +T∗T)−1fUZ(u,.)
∥∥∥

�
√

n‖T̂∗ −T∗‖op

∥∥∥r̂ − T̂ϕ

∥∥∥∥∥∥(αnI +T∗T)−1T∗T
∥∥∥

op

�P
√

n

⎛
⎝ 1√

nhp+q
n

+ht
n

⎞
⎠

⎛
⎝ 1√

nhq
n

+ht
n

⎞
⎠ = oP(1),

where the third line follows under Assumptions 3.1(i) and 3.3(i); and the fourth by
arguments as in the proof of Corollary A.1.1 under Assumptions 3.2 and 3.4(ii).

Second,

‖Vn‖∞ = √
nsup

u
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s Ts)
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]
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= √
nsup

λ

∣∣∣∣ αnλ

αn +λ

∣∣∣∣
�

√
nαn = o(1),

where the first equality follows since L is self-adjoint; the second line by the
Cauchy–Schwartz inequality since supu ‖LafUZ(u,.)‖ < ∞ under Assumption 3.3(i) and

by Assumption 3.1(i); the third since Lsϕ = (T∗
s Ts)

b−s
2(a+s) ψ for some ψ ∈ L2 by Engl et al.

(2000, Cor. 8.22); the fourth by the isometry of the functional calculus (see Cavalier, 2011,
Thm. 1.3); and the last since 2s = b−a and since nα2

n → 0 under Assumption 3.4(iii).
Next, decompose IIIn(u) = R1n(u)+R2n(u) with

R1n(u) = √
n
〈
r̂ − T̂ϕ,T̂(αnI + T̂∗T̂)−1T̂∗(T − T̂)(αnI +T∗T)−1fUZ(u,.)

〉
,

R2n(u) = √
n
〈
r̂ − T̂ϕ,T̂(αnI + T̂∗T̂)−1(T∗ − T̂∗)T(αnI +T∗T)−1fUZ(u,.)

〉
.

By the Cauchy–Schwartz inequality and previous computations
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n
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Therefore, under Assumption 3.4, since κ > 2a,

‖IIIn‖∞ �
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⎞
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Similarly, decompose IVn(u) = S1n(u)+S2n(u) with

S1n(u) = √
n
〈
L−s(αnI + T̂∗

s T̂s)
−1T̂∗
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〉
,

S2n(u) = √
n
〈
L−s(αnI + T̂∗

s T̂s)
−1(T̂∗
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〉
.

Likewise, by the Cauchy–Schwartz inequality and previous computations
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and

‖S2n‖∞ �
√

n
∥∥∥Ts(αnI + T̂∗

s T̂s)
−1

(
T̂∗

s −T∗
s

)
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s Ts)
−1Lsϕ

∥∥∥
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√
n
∥∥∥αnTs(αnI +T∗

s Ts)
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∥∥∥�P
√
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where we use ‖T̂ − T‖op �P α
1/2
n and 2s = b − a (see also the proof of Theorem A.1.1).

Therefore, ‖IVn‖∞ = oP(1).
Combining all estimates, we obtain, uniformly over u ∈ R,

In(u) = √
n
〈
T∗(r̂ − T̂ϕ),(αnI +T∗T)−1fUZ(u,.)

〉
+oP(1). (A.4)

Next, note that

(r̂ − T̂ϕ)(w) = 1

n

n∑
i=1

(Yi − [ϕ ∗Kz](Zi))h
−q
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dv; thus,
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dv. Using this observation, decom-

pose equation (A.4) further
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By the Cauchy–Schwartz inequality,
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where the second line follows by the triangle inequality and Assumption 3.3(i); the third
by Assumption 3.2(i), Cauchy–Schwartz inequality, and since fZ and fW are uniformly
bounded under Assumption 3.2(ii); and the last by the standard bias computations under
Assumptions 3.1(ii) and 3.2, and Young’s inequality under Assumption 3.2(ii) and (iv).

Similarly, by the Cauchy–Schwartz inequality and Assumption 3.1(i),

E‖Q2n‖2∞ �E

∥∥∥∥∥∥
1√
n

n∑
i=1

Ui {[fZW ∗Kw](.,Wi)− fZW (.,Wi)}
∥∥∥∥∥∥

2

= E‖U {[fZW ∗Kw](.,W)− fZW (.,W)}‖2

�E‖[fZW − fZW ∗Kw](.,W)‖2

� ‖fZW − fZW ∗Kw‖2

� h2t
n ,

where the second line follows under the i.i.d. assumption; the third sinceE[U|W] ≤ C under
Assumption 3.2(i); the fourth since fW is uniformly bounded under Assumption 3.2(ii); and
the last by the standard bias computations under Assumptions 3.1(ii) and 3.2(iv).

Lastly, by the Cauchy–Schwartz inequality,

E‖Q3n‖2∞ = E

∥∥∥∥∥∥
1√
n

n∑
i=1

UifZW (.,Wi)
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2

sup
u

∥∥∥[(αnI +T∗T)−1 − (T∗T)−1
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= E‖UifZW (.,Wi)‖2 sup
u
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�
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λ

∣∣∣∣∣αnλκ/2a−1

αn +λ

∣∣∣∣∣� α
(κ/2a−1)∧1
n ,

where the second inequality follows under Assumptions 3.2(i); the third line under Assump-
tions 3.1, 3.2(i) and (ii), and 3.3(i); and the last by the isometry of functional calculus (see
Cavalier, 2011, Thm. 1.3).

Combining these estimates under Assumptions 3.3(i) and 3.4, we obtain the result

IIn(u) = 1√
n

n∑
i=1

Ui

〈
fZW(.,Wi),(T

∗T)−1fUZ(u,.)
〉
+OP

(√
nhb

n +ht
n +α(κ/2a−1)∧1

n

)
+oP(1)

= 1√
n

n∑
i=1

Ui[T(T∗T)−1fUZ(u,.)](Wi)+oP(1). �

A.5. Additional Monte Carlo Experiments

In this section, we report results of additional Monte Carlo experiments when the structural
function is ϕ(x) = exp(−x2/4). The rest of the data-generating process is the same as in the
main part of the paper.

Figure A1 shows the distribution of the test statistics under the null hypothesis and
the two alternative hypotheses for different sample sizes. The two distributions are
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Figure A1. Finite-sample distribution of the test—density estimates of the distribution of
Kolmogorov–Smirnov and Cramér–von Mises statistics under H0, θ = 0 (solid line), and two
alternative hypotheses, θ = 0.4 (dashed line) and θ = 1 (dotted line).

Figure A2. Power curves. The figure shows empirical rejection probabilities as a function of degree
of separability θ for samples of size n = 500 (solid line) and n = 1,000 (dashed line). The value θ = 0
corresponds to the separable model, while θ �= 0 are deviations from separability. The nominal level
of the test is set at 5%.

sufficiently distinct once the alternative hypothesis becomes more separated from the null
hypothesis.

We plot in Figure A2 the power curves when the level of the test is fixed at 5%. The
power of the test increases once alternative hypotheses become more distant from the null
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Figure A3. Scatter plot of residuals and instruments. The value θ = 0 corresponds to the separable
model and θ = 1 to the nonseparable model. Sample size: n = 1,000.

hypothesis and when the sample size is larger. The CvM test seems to have a higher power
for the class of considered alternatives.

Overall, the findings are largely similar to the findings of experiments presented in the
main part of the paper.

Lastly, Figure A3 plots the values of the instrumental variable, Wi, and the fitted
nonparametric IV residuals, Ûi, under the null hypothesis, H0 (θ = 0), and under the
alternative hypothesis, H1 (θ = 1). The figure hints that the two are indeed independent
under the null and dependent under the alternative.
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