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DIFFERENCES BETWEEN LYAPUNOV EXPONENTS FOR THE SIMPLE
RANDOM WALK IN BERNOULLI POTENTIALS
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Abstract

We consider the simple random walk on the d-dimensional lattice Zd (d ≥ 1), traveling in
potentials which are Bernoulli-distributed. The so-called Lyapunov exponent describes
the cost of traveling for the simple random walk in the potential, and it is known that the
Lyapunov exponent is strictly monotone in the parameter of the Bernoulli distribution.
Hence the aim of this paper is to investigate the effect of the potential on the Lyapunov
exponent more precisely, and we derive some Lipschitz-type estimates for the difference
between the Lyapunov exponents.
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1. Introduction

In this paper we consider the simple random walk in independent and identically distributed
(i.i.d.) non-negative potentials on the d-dimensional lattice Z

d (d ≥ 1). A central object of
its study is the so-called Lyapunov exponent, which measures the cost paid by the simple
random walk for traveling in a landscape of potentials. In [10] we proved that the Lyapunov
exponent strictly increases in the law of potential with some order. Considering this result, a
natural question arises as to how much the change in the law of potential affects the Lyapunov
exponent. Hence the goal of this paper is to investigate this problem in the case where the
potential is Bernoulli-distributed.

1.1. The model

Let S= (Sk)∞k=0 be the simple random walk on Z
d. For x ∈Z

d, we write Px and Ex, respec-
tively, for the law of the simple random walk starting at x and its associated expectation.
Independently of S, let ω= (ω(x))x∈Zd be a family of i.i.d. random variables taking values in
[0,∞), and ω is called the potential. Let P and E, respectively, denote the law of the potential
ω and its associated expectation.

Let us now introduce the Lyapunov exponent, which is the main object of study in the
present article. For any y ∈Z

d, H(y) stands for the hitting time of the simple random walk to
y, that is,

H(y) := inf{k ≥ 0 : Sk = y}.

Received 28 May 2022; revision received 19 April 2023.
∗ Postal address: 24-1, Narashinodai 7-chome, Funabashi-shi, Chiba 274-8501, Japan. Email address:
kubota.naoki08@nihon-u.ac.jp

© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust.

82

https://doi.org/10.1017/jpr.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.35
https://orcid.org/0000-0002-7278-2756
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jpr.2023.35&domain=pdf
https://doi.org/10.1017/jpr.2023.35


Differences between Lyapunov exponents 83

Moreover, for x, y ∈Z
d define

e(x, y, ω) := Ex

⎡⎣exp

⎧⎨⎩−
H(y)−1∑

k=0

ω(Sk)

⎫⎬⎭ 1{H(y)<∞}

⎤⎦ ,
with the convention that e(x, y, ω) := 1 if x = y. Then the following quantities a(x, y, ω) and
b(x, y), respectively, are called the quenched and annealed travel costs from x to y:

a(x, y, ω) := − log e(x, y, ω)

and

b(x, y) := − log E[e(x, y, ω)].

The asymptotic behavior of each travel cost induces a norm on R
d, and it is the Lyapunov

exponent. More precisely, Flury [4, Theorem A], Mourrat [13, Theorem 1.1], and Zerner [18,
Proposition 4] obtained the following result. There exist (non-random) norms α(·) and β(·) on
R

d such that for all x ∈Z
d,

lim
n→∞

1

n
a(0, nx, ω) = lim

n→∞
1

n
E[a(0, nx, ω)]

= inf
n∈N

1

n
E[a(0, nx, ω)] = α(x) P-a.s. and in L1(P)

and

lim
n→∞

1

n
b(0, nx) = inf

n∈N
1

n
b(0, nx) = β(x).

We call α(·) and β(·), respectively, the quenched and annealed Lyapunov exponents.

Remark 1.1. By definition, the annealed travel cost b(x, y) and the Lyapunov exponents α(·)
and β(·) depend on the distribution function of ω(0), say φ. From now on, we basically put a
subscript φ on the above notations: b(x, y) = bφ(x, y), α(·) = αφ(·), and β(·) = βφ(·).

1.2. Main results

First of all, we state the motivation for the present work. Let F and G be distribution func-
tions on [0,∞) such that F ≤ G, F(0)<G(0), and

∫∞
0 t dF(t) is finite. Then Theorems 1.4

and 1.5 of [10] give the following strict comparisons for the quenched and annealed Lyapunov
exponents. There exist constants 0<C,C′ <∞ (which may depend on d, F, and G) such that
for all x ∈R

d \ {0},
αF(x) − αG(x) ≥ C‖x‖1 and βF(x) − βG(x) ≥ C′‖x‖1, (1.1)

where ‖·‖1 is the �1-norm on R
d. The above inequalities do not provide any information on

how much the differences in (1.1) are affected by F and G. Hence the goal of this paper is to
estimate the differences in (1.1) more precisely by focusing on Bernoulli-distributed potentials.
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Let 0 ≤ r ≤ 1 and Pr is the law of the potential ω defined by

Pr(ω(x) = 0) = 1 − Pr(ω(x) = 1) = r, x ∈Z
d.

In this situation, we call ω the Bernoulli potential with parameter r. Moreover, write Fr and
Er, respectively, for the distribution function and the expectation with respect to Pr. To shorten
notation, set

br(x, y) := bFr (x, y), αr(·) := αFr (·), βr(·) := βFr (·).
Then the following two theorems are our main results, which estimate differences between
quenched and annealed Lyapunov exponents.

Theorem 1.1. We have the following lower and upper bounds for differences between
quenched Lyapunov exponents.

(1) For all 0< p< q< 1, we have

inf
x∈Rd\{0}

αp(x) − αq(x)

‖x‖1
≥ (1 − e−1)(q − p).

(2) Let 0< q0 < 1. Then there exists a constant 0<C1 <∞ (which may depend on d and
q0) such that for all 0< p< q ≤ q0,

sup
x∈Rd\{0}

αp(x) − αq(x)

‖x‖1
≤ C1(q − p).

Theorem 1.2. The following results hold for the annealed Lyapunov exponent.

(1) We obtain the statement of part (1) of Theorem 1.1 with αp(·) and αq(·), respectively,
replaced by βp(·) and βq(·).

(2) Let 0< q0 < 1. Then there exists a constant 0<C2 <∞ (which may depend on d and
q0) such that for all 0< p< q ≤ q0,

sup
x∈Rd\{0}

βp(x) − βq(x)

‖x‖1
≤ C2( log q − log p). (1.2)

In particular, if d ≥ 3, then the right-hand side of (1.2) can be replaced by C1(q − p).

Remark 1.2. Le [12] obtained the (ordinary) continuity of the quenched and annealed
Lyapunov exponents in the law of potential. From this point of view, Theorems 1.1 and
1.2 provide stronger results than the (ordinary) continuity in the case where the potential is
Bernoulli-distributed. Moreover, Le [12] sometimes requires that the potential is bounded away
from zero in the low-dimensional case (d = 1, 2). Since the Bernoulli potential is not bounded
away from zero, Theorems 1.1 and 1.2 also exhibit the continuity of the quenched and annealed
Lyapunov exponents not dealt with in [12].

Remark 1.3. At first, we believed that the right-hand side of (1.2) could easily be replaced
by C2(q − p) in d = 1, 2 by using the same argument taken in the proof of part (2) of
Theorem 1.1. Unfortunately, that argument does not work well, and this may suggest that
in d = 1, 2, the upper and lower bounds stated in Theorem 1.2 are not correct. However, if the
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range of p and q is restricted to a closed interval [p0, q0] ⊂ (0, 1), then the mean value theo-
rem implies that there exists a constant 0<C1

′ <∞ (which may depend on d, p0, and q0) such
that for all p0 ≤ p< q ≤ q0, the right-hand side of (1.2) is bounded from above by C2

′(q − p) in
d = 1, 2. Consequently, even if d = 1, 2, in the case where p0 ≤ p< q ≤ q0, the quantity q − p
dominates the upper and lower bounds between the annealed Lyapunov exponents.

Let us finally comment on earlier works related to the above results. Recently, the coinci-
dence of the quenched and annealed Lyapunov exponents has been studied positively: Flury
[5] and Zygouras [19] proved that the quenched and annealed Lyapunov exponents coincide in
d ≥ 4 and the low-disorder regime. Furthermore, Wang [15,16] and Kosygina et al. [9] studied
the asymptotic behavior of the quenched and annealed Lyapunov exponents as the potential
tends to zero.

On the other hand, this paper treats the comparison between (quenched/annealed) Lyapunov
exponents for different laws of the potential. As mentioned at the beginning of this subsection,
the strict comparison for the Lyapunov exponents is obtained in [10], and the goal of this article
is to estimate more precisely differences between quenched and annealed Lyapunov exponents
when the law of potential is restricted to the Bernoulli distribution. Even if we focus on the
Bernoulli setting, it is not easy to analyze the Lyapunov exponent precisely. In fact, there is not
much research related to our topic. In [1], [2], and [3] the Lipschitz continuity is obtained for
the so-called time constant of the first passage percolation on Z

d and the isoperimetric constant
of the supercritical percolation cluster (which are counterparts of the Lyapunov exponent),
respectively. The aim of [17] is to derive a (non-trivial) lower bound for the difference between
the time constants. This is a similar topic to part (1) of Theorem 1.1, and the key idea for its
proof is actually inspired by [17]. However, the counterpart of the travel cost used there takes
only non-negative integer values, and this is not always true for the travel cost. Hence we have
to take a different approach from that of [17]. Fortunately, this modified approach is also useful
for the proof of part (2) of Theorem 1.1.

1.3. Organization of the paper

Let us describe how the present article is organized. In Section 2 we prove part (1) of
Theorem 1.1, which gives a lower bound for the difference between quenched Lyapunov
exponents. Note that the quenched Lyapunov exponent is described by the expectation of
the quenched travel cost. Hence our main task is to estimate differences between expecta-
tions of quenched travel costs from below. For this purpose, we use Russo’s formula for the
independent Bernoulli site percolation on Z

d. Russo’s formula enables us to differentiate the
expectation for the quenched travel cost with respect to parameter r (see Lemma 2.1 below).
Then a standard calculation shows that the obtained derivative is bounded from above uni-
formly in r. This implies our desired conclusion since the expectation of the quenched travel
cost is decreasing in r.

Section 3 is devoted to the proof of part (2) of Theorem 1.1, which gives an upper bound
for the difference between quenched Lyapunov exponents. Considering the proof of part (1)
of Theorem 1.1, it suffices to estimate the derivative of the expectation for the quenched
travel cost from below uniformly in parameter r. To this end, we divide the proof into two
cases: Sections 3.1 and 3.2, respectively, treat the high-dimensional case (d ≥ 3) and the low-
dimensional case (d = 1, 2). In the high-dimensional case, the transience of the simple random
walk works very effectively, and the derivative of the expectation for the quenched travel cost
is bounded from below uniformly in r. On the other hand, the simple random walk is recurrent
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in the low-dimensional case. This is the reason why the proof is divided into two cases, and
we need some more analysis to estimate the derivative from below uniformly in r. Actually,
in the low-dimensional case, the derivative is related to the range of the simple random walk
equipped with random connected subsets of Zd. Hence our efforts are focused on estimating
this range under the path measure defined as in (2.3). To this end, we rely on the analysis of
lattice animals developed by Fontes and Newman [6] and Scholler [14]. Roughly speaking,
this analysis guarantees that even if d = 1, 2, the potential makes the simple random walk tran-
sient under the path measure. Therefore, similarly to the high-dimensional case, we can also
estimate the derivative from below uniformly in r.

The aim of Section 4 is to prove Theorem 1.2, which gives both lower and upper bounds
for the difference between annealed Lyapunov exponents. Similar to the above, our task here
is to estimate the derivative of the annealed travel cost from above and below. By differenti-
ating under the integral sign, the derivative can be written as the expectation of some random
variable with respect to the path measure defined as in (4.1) (see Lemma 4.1 below). This
random variable consists of the function f (t) := (1 − t)/{r + t(1 − r)}, 0 ≤ t ≤ 1, and the prop-
erty of f (t) implies that the derivative is bounded from above uniformly in r and has a lower
bound of order r−1. In particular, in the high-dimensional case, the derivative can be bounded
from below uniformly in r due to transience of the simple random walk (see Lemma 4.2
below).

In Section 5 we comment on the quenched and annealed large deviation principles for
the simple random walk in the Bernoulli potential. It is known that their rate functions
are described by the Lyapunov exponents for the potentials ω+ λ= (ω(x) + λ)x∈Zd , λ≥ 0.
Furthermore, Theorems 1.1 and 1.2 are also established for these Lyapunov exponents since the
same arguments as in Sections 2–4 work, and we can estimate differences between quenched
and annealed rate functions.

We close this section with some general notation. Write ‖·‖1 and ‖·‖∞ for the �1- and �∞-
norms on R

d. Throughout the paper, c, c′, and Ci, i = 1, 2, . . . , denote some constants with
0< c, c′,Ci <∞.

2. Lower bound for the quenched Lyapunov exponent

The aim of this section is to prove part (1) of Theorem 1.1. The key tool here is Russo’s
formula for the independent Bernoulli site percolation on Z

d. Roughly speaking, by applying
Russo’s formula to some events with respect to the quenched travel cost, we derive a lower
bound for the differences between quenched Lyapunov exponents. However, Russo’s formula
is not directly applicable because the quenched travel cost depends on the states of infinitely
many sites. To overcome this problem, we first introduce a modification of the quenched travel
cost depending only on the states of finitely many sites.

Let V be a subset of Rd and let T(V) denote the exit time of the simple random walk from
V , that is,

T(V) := inf{k ≥ 0 : Sk �∈ V}. (2.1)

Then, for any x, y ∈Z
d and N ∈N, we define the quenched travel cost aN(x, y, ω) from x to y

restricted to the simple random walk before exiting [−N,N]d as follows:

aN(x, y, ω) := − log eN(x, y, ω),
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where

eN(x, y, ω) := Ex

[
exp

{
−

H(y)−1∑
k=0

ω(Sk)

}
1{H(y)<T([−N,N]d)}

]

if x �= y, and eN(x, y, ω) := 1 otherwise. Note that aN(x, y, ω) depends only on the states of
finitely many sites, and the monotone convergence theorem shows that for each 0 ≤ r ≤ 1,

lim
N→∞ Er[aN(x, y, ω)] =Er[a(x, y, ω)]. (2.2)

We need some preparation before applying Russo’s formula to the restricted quenched travel
cost. For any y ∈Z

d, the path measure P̃0,y
N,ω is defined by

dP̃0,y
N,ω

dP0
= eN(0, y, ω)−1 exp

{
−

H(y)−1∑
k=0

ω(Sk)

}
1{H(y)<T([−N,N]d)}, (2.3)

and let Ẽ0,y
N,ω denote the expectation with respect to P̃0,y

N,ω. Next, for any z ∈Z
d and m ∈N, let

�z(m) be the number of visits to z by the simple random walk up to time m − 1, that is,

�z(m) := #{0 ≤ k<m : Sk = z}.
The following proposition is a consequence of Russo’s formula for the restricted quenched

travel cost, which is also useful to derive an upper bound for differences between quenched
Lyapunov exponents.

Lemma 2.1. For all 0< r< 1, y ∈Z
d \ {0}, and N ∈N with N ≥ ‖y‖∞, we have

− d

dr
Er[aN(0, y, ω)] =

∑
z∈Zd∩[−N,N]d

{
Er
[
1{ω(z)=1} log Ẽ0,y

N,ω

[
e�z(H(y))]]

+Er
[
1{ω(z)=0}

(− log Ẽ0,y
N,ω

[
e−�z(H(y))])]}.

Proof. Fix y ∈Z
d \ {0} and N ∈N with N ≥ ‖y‖∞. Since the random variable aN(0, y, ω)

depends only on the states of sites in [ − N,N]d, Russo’s formula (see e.g. [7, Theorem 2.32])
gives that for any 0< r< 1,

− d

dr
Er[aN(0, y, ω)] =

∑
z∈Zd∩[−N,N]d

Er
[
aN
(
0, y, ω1

z

)− aN
(
0, y, ω0

z

)]
, (2.4)

where

ω1
z (x) :=

{
1 if x = z,

ω(x) if x �= z,
ω0

z (x) :=
{

0 if x = z,

ω(x) if x �= z.

Note that if ω(z) = 1 holds, then

aN
(
0, y, ω1

z

)− aN
(
0, y, ω0

z

)= log Ẽ0,y
N,ω

[
e�z(H(y))].
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Furthermore, in the case where ω(z) = 0,

aN
(
0, y, ω1

z

)− aN
(
0, y, ω0

z

)= − log Ẽ0,y
N,ω

[
e−�z(H(y))].

This implies that the right-hand side of (2.4) is equal to∑
z∈Zd∩[−N,N]d

{
Er
[
1{ω(z)=1} log Ẽ0,y

N,ω

[
e�z(H(y))]]+Er

[
1{ω(z)=0}

(− log Ẽ0,y
N,ω

[
e−�z(H(y))])]},

and the proposition follows. �

We are now in a position to show part (1) of Theorem 1.1.

Proof of part (1) of Theorem 1.1. Let y ∈Z
d \ {0} and N ∈N with N ≥ ‖y‖∞. Jensen’s

inequality and the fact that − log (1 − t) ≥ t holds for 0 ≤ t< 1 imply that for any z ∈Z
d ∩

[ − N,N]d,

log Ẽ0,y
N,ω

[
e�z(H(y))]≥ − log Ẽ0,y

N,ω

[
e−�z(H(y))]

≥ − log
{
1 − (1 − e−1)̃P0,y

N,ω(�z(H(y)) ≥ 1)
}

≥ (1 − e−1)̃P0,y
N,ω(�z(H(y)) ≥ 1).

Hence Lemma 2.1 yields that for all 0< r< 1,

− d

dr
Er[aN(0, y, ω)] ≥

∑
z∈Zd∩[−N,N]d

Er
[
(1 − e−1)̃P0,y

N,ω(�z(H(y)) ≥ 1)
]

= (1 − e−1) Er

[
Ẽ0,y

N,ω

[ ∑
z∈Zd∩[−N,N]d

1{�z(H(y))≥1}

]]
≥ (1 − e−1)‖y‖1.

Here the last inequality follows from the fact that P̃0,y
N,ω-a.s., the simple random walk must

visit at least ‖y‖1 sites before hitting y. Thus, for all 0< r< 1, y ∈Z
d \ {0}, and N ∈N with

N ≥ ‖y‖∞,

d

dr

{
Er[aN(0, y, ω)] + (1 − e−1)r‖y‖1

}≤ 0,

which implies that the function in the above braces is decreasing in r. Therefore, for all 0<
p< q< 1, y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞,

Ep[aN(0, y, ω)] −Eq[aN(0, y, ω)] ≥ (1 − e−1)(q − p)‖y‖1.

It follows by (2.2) and the definition of the quenched Lyapunov exponent that for all 0< p<
q< 1 and x ∈Z

d \ {0},
αp(x) − αq(x)

‖x‖1
≥ (1 − e−1)(q − p).

Note that the right-hand side above does not depend on x, and αp(·) and αq(·) are norms on R
d.

Consequently, the above inequality can be easily extended to all x ∈R
d \ {0}, and the proof is

complete. �
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3. Upper bound for the quenched Lyapunov exponent

In this section, for a fixed q0 ∈ (0, 1), we prove part (2) of Theorem 1.1. The proof is not so
long once a proposition is established (see Proposition 3.1 below).

Proof of part (2) of Theorem 1.1. Considering the proof of part (1) of Theorem 1.1, our task
is to show that there exists a constant c (which depends only on d and q0) such that for all
0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞,

− d

dr
Er[aN(0, y, ω)] ≤ c‖y‖1. (3.1)

To this end, note that for each z ∈Z
d and the potential ω,

eN(0, y, ωz)

eN(0, y, ω)
=
⎧⎨⎩Ẽ0,y

N,ω

[
e�z(H(y))

]
if ω(z) = 1,

Ẽ0,y
N,ω

[
e−�z(H(y))

]
if ω(z) = 0,

where ωz is the potential which agrees with ω on all sites except for z, that is, for x ∈Z
d,

ωz(x) :=
{

1 −ω(z) if x = z,

ω(x) if x �= z.

Combining this and Lemma 2.1, we have

− d

dr
Er[aN(0, y, ω)] ≤

∑
z∈Zd∩[−N,N]d

Er

[∣∣∣∣log
eN(0, y, ωz)

eN(0, y, ω)

∣∣∣∣], (3.2)

and the following proposition is the key to estimating the above sum.

Proposition 3.1. There exists a constant C3 (which depends only on d and q0) such that for all
0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞,∑
z∈Zd∩[−N,N]d

Er

[∣∣∣∣log
eN(0, y, ωz)

eN(0, y, ω)

∣∣∣∣]≤ C3 Er
[
Ẽ0,y

N,ω[#A(0, y)]
]
,

where A(0, y) := {Sk : 0 ≤ k<H(y)}.
Since the proof of the above proposition is fairly long, for now let us complete the proof of

part (2) of Theorem 1.1. The same argument as in the proof of [18, Lemma 3] implies that for
any 0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞,

Er
[
Ẽ0,y

N,ω[#A(0, y)]
]≤ 1 + log (2d)

− log{e−1 + (1 − e−1)q0}‖y‖1. (3.3)

From (3.2), (3.3), and Proposition 3.1, we conclude that for all 0< r ≤ q0, y ∈Z
d \ {0}, and

N ∈N with N ≥ ‖y‖∞,

− d

dr
Er[aN(0, y, ω)] ≤ C3(1 + log (2d))

− log{e−1 + (1 − e−1)q0}‖y‖1,

and (3.1) follows. �

It remains to prove Proposition 3.1. We divide the proof into two cases: Sections 3.1 and 3.2,
respectively, treat the high-dimensional case (d ≥ 3) and the low-dimensional case (d = 1, 2).
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3.1. High-dimensional case

This subsection is devoted to the proof of Proposition 3.1 for d ≥ 3. First of all, we state
the following lemma, which is useful to show Proposition 3.1 not only for d ≥ 3 but also for
d = 1, 2.

Lemma 3.1. Let d ≥ 1, y ∈Z
d \ {0}, and N ∈N with N ≥ ‖y‖∞. Moreover, for any z ∈Z

d,
define

ψd(z, ω) :=
(

1 − Ez

[
exp

{
−

H+(z)−1∑
k=1

ω(Sk)

}
1{H+(z)<∞}

])−1

,

where H+(z) := inf{k> 0 : Sk = z}. Then, for all z ∈Z
d ∩ [ − N,N]d,∣∣∣∣ log

eN(0, y, ωz)

eN(0, y, ω)

∣∣∣∣≤ 4ψd(z, ω)̃P0,y
N,ω(H(z)<H(y)). (3.4)

Proof. We first treat the case where z ∈Z
d ∩ [−N,N]d satisfies ω(z) = 1. The definition of

ωz and the strong Markov property show that

1 ≤ eN(0, y, ωz)

eN(0, y, ω)
≤ 1 + eN(z, y, ωz)

eN(z, y, ω)
P̃0,y

N,ω(H(z)<H(y)).

We use the strong Markov property again to obtain that

eN(z, y, ωz) ≤ψd(z, ω)Ez

[
exp

{
−

H(y)−1∑
k=0

ωz(Sk)

}
1{H(y)≤H+(z),H(y)<T([−N,N]d)}

]
≤ eψd(z, ω)eN(z, y, ω).

With these observations,

0 ≤ log
eN(0, y, ωz)

eN(0, y, ω)
≤ log

{
1 + eψd(z, ω)̃P0,y

N,ω(H(z)<H(y))
}
.

Since t ≥ log (1 + t) holds for t ≥ 0, the right-hand side above is not greater than

eψd(z)̃P0,y
N,ω(H(z)<H(y)),

and (3.4) follows.
We next consider the case where z ∈Z

d ∩ [ − N,N]d satisfies ω(z) = 0. Then the same
argument as in the proof of [18, Lemma 12] shows that

0 ≤ − log
eN(0, y, ωz)

eN(0, y, ω)

= aN(0, y, ωz) − aN(0, y, ω)

≤ min
{− log P̃0,y

N,ω(H(y) ≤ H(z)), 1 + logψd(z, ω)
}
. (3.5)

Note that the fact that − log t ≤ 2(1 − t) holds for 1/2 ≤ t ≤ 1 implies that on the event{
P̃0,y

N,ω(H(y) ≤ H(z)) ≥ 1/2
}
,

− log P̃0,y
N,ω(H(y) ≤ H(z)) ≤ 2P̃0,y

N,ω(H(z)<H(y)).
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This, together with ψd(z, ω) ≥ 1, shows that the right-hand side of (3.5) is smaller than or
equal to

2P̃0,y
N,ω(H(z)<H(y))1{̃P0,y

N,ω(H(y)≤H(z))≥1/2}
+ 2(1 + logψd(z, ω))̃P0,y

N,ω(H(z)<H(y))1{̃P0,y
N,ω(H(y)≤H(z))<1/2}

≤ 2(ψd(z, ω) + logψd(z, ω))̃P0,y
N,ω(H(z)<H(y)).

Therefore (3.4) immediately follows from the fact that log t ≤ t for t ≥ 1. �

We are now in a position to prove Proposition 3.1 for d ≥ 3.

Proof of Proposition 3.1 for d ≥ 3. Since the simple random walk is transient for d ≥ 3, we
have P0(H+(0) = ∞)> 0. Hence, for all z ∈Z

d,

ψd(z, ω) ≤ P0(H+(0) = ∞)−1 <∞.

This together with Lemma 3.1 yields that for all 0< r ≤ q0, y ∈Z
d \ {0}, and N ∈N with

N ≥ ‖y‖∞,∑
z∈Zd∩[−N,N]d

Er

[∣∣∣∣log
eN(0, y, ωz)

eN(0, y, ω)

∣∣∣∣]≤
∑

z∈Zd∩[−N,N]d

Er
[
4ψd(z, ω)̃P0,y

N,ω(H(z)<H(y))
]

≤ 4P0(H+(0) = ∞)−1
Er
[
Ẽ0,y

N,ω[#A(0, y)]
]
.

Thus the proof is complete by taking C3 := 4P0(H+(0) = ∞)−1. �

3.2. Low-dimensional case

The aim of this section is to prove Proposition 3.1 for d = 1, 2. In this case, the strategy
taken in the previous subsection does not work because the simple random walk is recurrent.
Hence we have to estimate ψd(z, ω) in another way.

Let pc = pc(d) ∈ (0, 1) be the critical probability for independent Bernoulli site percolation
on Z

d, and fix R ∈ 2N such that

qRd

0 + qRd−1
0 (1 − q0)Rd < pc. (3.6)

(This is possible since 0< q0 < 1.) We now consider the boxes 	(v) := Rv + [ − R/2, R/2)d,
v ∈Z

d. These boxes form a partition of Rd, and we let z denote the (unique) index v such that
z ∈	(v). Furthermore, a site v is said to be open if	(v) has at most one site x such that ω(x) =
1, and closed otherwise. Note that under Pr, the family (1{v is open})v∈Zd is the independent

Bernoulli site percolation on Z
d with parameter rRd + rRd−1(1 − r)Rd. This site percolation

induces open clusters, which are connected components of open sites. In particular, for each
v ∈Z

d, we let Cv denote the open cluster containing v.
Although ψd(z, ω) is bounded for d ≥ 3, the following lemma says that for d = 1, 2,

ψd(z, ω) is dominated by the size of the open cluster containing z.

Lemma 3.2. Let d = 1, 2. Then there exists a constant C4 (which depends only on d and q0)
such that for all z ∈Z

d,

ψd(z, ω) ≤ C4(1 + #Cz).
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Proof. Since the simple random walk is recurrent for d = 1, 2, we have for any z ∈Z
d,

ψd(z, ω) =
(

1 − Ez

[
exp

{
−

H+(z)−1∑
k=1

ω(Sk)

}])−1

.

Let us first treat the case where z is closed. Then the box	(z) contains at least two sites x with
ω(x) = 1. Hence we can find a site x0 ∈	(z) such that x0 �= z and ω(x0) = 1. It follows that

1 − Ez

[
exp

{
−

H+(z)−1∑
k=1

ω(Sk)

}]
≥ 1 − Pz(H+(z) ≤ H(x0)) − e−1Pz(H+(z)>H(x0))

= (1 − e−1)Pz(H+(z)>H(x0))

≥ (1 − e−1)

(
1

2d

)dR

.

Thus, since #Cz = 0 in the case where z is closed, we have

ψd(z, ω) ≤ (2d)dR

1 − e−1
= (2d)dR

1 − e−1
(1 + #Cz).

We next treat the case where z is open. Then the same argument as above does not work since
the box 	(z) may not contain any site x with x �= z and ω(x) = 1 (this situation actually occurs
when ω(z) = 1 and ω(x) = 0 for x ∈	(z) \ {z}). To overcome this problem, let us introduce the
region Oz := ⋃v∈Cz

	(v) and the stopping time

σ := inf{k ≥ T(Oz) :ω(Sk) = 1},
where T(Oz) is the exit time of the simple random walk from Oz (see (2.1)). The same
computation as in the first case gives

1 − Ez

[
exp

{
−

H+(z)−1∑
k=1

ω(Sk)

}]
≥ (1 − e−1)Pz(σ <H+(z)). (3.7)

Noting that the site v := ST(Oz) is closed and z �∈	(v), the event {σ <H+(z)} occurs if the
simple random walk follows a shortest path from v to a site x ∈	(v) with ω(x) = 1 after exiting
Oz. Hence the strong Markov property shows that

Pz(σ <H+(z)) ≥
(

1

2d

)dR

Pz(T(Oz)<H+(z)). (3.8)

For the last probability, we use the following estimate on the probability that the simple ran-
dom walk exits an �1-ball before revisiting its starting point (see e.g. [11, (1.20), (1.38), and
Theorem 1.6.6]): There exists a constant c ≥ 1 (which depends only on d) such that

P0(τ <H+(0))−1 ≤ c ×
{

#Oz if d = 1,

log (#Oz) if d = 2,
(3.9)
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where τ is the exit time for the simple random walk from the �1-ball of radius #Oz and center
0, that is,

τ := inf{k ≥ 0 : ‖Sk‖1 > #Oz}.
Noting that P0(τ <H+(0)) ≤ Pz(T(Oz)<H+(z)) and #Oz = Rd(#Cz), we have from (3.7),
(3.8), and (3.9),

ψd(z, ω) ≤ c(2d)dR

1 − e−1
(#Oz) ≤ c(2d)dRRd

1 − e−1
(1 + #Cz).

Consequently, the lemma follows by taking C4 := c(2d)dRRd/(1 − e−1). �

We now turn to the proof of Proposition 3.1 for d = 1, 2.

Proof of Proposition 3.1 for d = 1, 2. Lemmata 3.1 and 3.2 imply that for all 0< r ≤ q0,
y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞,∑
z∈Zd∩[−N,N]d

Er

[∣∣∣∣log
eN(0, y, ωz)

eN(0, y, ω)

∣∣∣∣]
≤ 4C4

∑
z∈Zd∩[−N,N]d

Er
[
(1 + #Cz)̃P

0,y
N,ω(H(z)<H(y))

]
= 4C4

(
Er
[
Ẽ0,y

N,ω[#A(0, y)]
]+Er

[
Ẽ0,y

N,ω

[ ∑
z∈A(0,y)

#Cz

]])
.

Hence it suffices to prove that there exists a constant C5 (which depends only on d and q0)
such that for all 0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞,

Er

[
Ẽ0,y

N,ω

[ ∑
z∈A(0,y)

#Cz

]]
≤ C5Er

[
Ẽ0,y

N,ω[#A(0, y)]
]
. (3.10)

To show (3.10), we state some results for lattice animals on Z
d (which are finite connected

subsets of Z
d). For n ≥ 1, let An denote the set of all lattice animals, of size n, containing

0. Moreover, let (�̃v)v∈Zd be i.i.d. random lattice animals with the common law Pq0 (C0 ∈ ·)
(we write P for the probability measure governing (�̃v)v∈Zd ). Then, due to (3.6), the following
lemma is an immediate consequence of [6, (2.6) and (2.7)] and [14, page 183].

Lemma 3.3. The following results hold.

(1) For all n ≥ 1 and t ≥ 0, we have

Pq0

(
sup
�∈An

1

#�

∑
v∈�

#Cv ≥ t

)
≤ P

(
sup

�∈⋃∞
m=n Am

1

#�

∑
v∈�

(#�̃v)2 ≥ t

2

)
.

(2) There exist constants C6 and C7 (which depend only on d and q0) such that for all n ≥ 1,

P

(
sup
�∈An

1

#�

∑
v∈�

(#�̃v)2 ≥ C6

)
≤ C6 exp{−C9n1/5}.
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For any lattice animal � on Z
d, define

E(�) :=
{

1

#�

∑
v∈�

#Cv > 2C6

}
.

Moreover, for each y ∈Z
d \ {0}, set

A(0, y) := {z : z ∈A(0, y)},

which is a lattice animal on Z
d containing 0. Then, for all 0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N

with N ≥ ‖y‖∞, the left-hand side of (3.10) is smaller than or equal to

Rd
Er

[
Ẽ0,y

N,ω

[ ∑
v∈A(0,y)

#Cv

]]

≤ Rd

{
2C6Er

[
Ẽ0,y

N,ω[#A(0, y)]
]+Er

[
Ẽ0,y

N,ω

[( ∑
v∈A(0,y)

#Cv

)
1E(A(0,y))

]]}
.

Since #A(0, y) ≤ #A(0, y), our task is now to prove that there exists a constant c (which
depends only on d and q0) such that for all 0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N with
N ≥ ‖y‖∞,

Er

[
Ẽ0,y

N,ω

[( ∑
v∈A(0,y)

#Cv

)
1E(A(0,y))

]]
≤ c. (3.11)

Indeed, once (3.11) is proved, the left-hand side of (3.10) is bounded from above by

(2C6 + c)Rd
Er
[
Ẽ0,y

N,ω[#A(0, y)]
]
,

and (3.10) follows by taking C5 := (2C6 + c)Rd.
For any 0< r ≤ q0, y ∈Z

d \ {0}, and N ∈N with N ≥ ‖y‖∞, the left-hand side of (3.11) is
equal to

∞∑
n=1

Er

[
Ẽ0,y

N,ω

[( ∑
v∈A(0,y)

#Cv

)
1E(A(0,y))1{#A(0,y)=n}

]]
≤

∞∑
n=1

∑
v∈[−n,n]d

Er
[
#Cv1⋃

�∈An E(�)
]
.

Note that Er
[
#Cv1⋃

�∈An E(�)
]

is increasing in r. This combined with the Cauchy–Schwarz

inequality implies that for all n ≥ 1 and v ∈ [ − n, n]d,

Er
[
#Cv1⋃

�∈An E(�)
]≤Eq0

[
#Cv1⋃

�∈An E(�)
]

≤Eq0

[
#C2

0

]1/2
Pq0

(
sup
�∈An

1

#�

∑
v′∈�

#Cv′ > 2C6

)1/2

.
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Lemma 3.3 says that there exists a constant c′ (which depends only on d and q0) such that for
all n ≥ 1,

Pq0

(
sup
�∈An

1

#�

∑
v′∈�

#Cv′ > 2C6

)
≤ P

(
sup

�∈⋃∞
m=n Am

1

#�

∑
v′∈�

(#�̃v′)
2 >C6

)

≤
∞∑

m=n

P

(
sup
�∈Am

1

#�

∑
v∈�

(#�̃v)2 ≥ C6

)

≤ c′ exp

{
−C7

2
n1/5
}

.

With these observations, we can derive (3.11) as follows:

Er

[
Ẽ0,y

N,ω

[( ∑
v∈A(0,y)

#Cv

)
1E(A(0,y))

]]
≤ (c′

Eq0

[
#C2

0

])1/2 ∞∑
n=1

(2n + 1)d exp

{
−C7

4
n1/5
}
<∞.

Therefore the proof of Proposition 3.1 is complete for d = 1, 2. �

4. Bounds for the annealed Lyapunov exponent

This section is devoted to the proof of Theorem 1.2. We fix q0 with 0< q0 < 1. For each
0 ≤ r ≤ 1, the path measure P̃

0,y
r is defined by

dP̃0,y
r

dP0
=Er[e(0, y, ω)]−1

Er

[
exp

{
−

H(y)−1∑
k=0

ω(Sk)

}]
1{H(y)<∞}, (4.1)

and Ẽ
0,y
r is the expectation with respect to P̃

0,y
r . Then the following two lemmata are the key to

proving Theorem 1.2.

Lemma 4.1. For all 0< r< 1 and y ∈Z
d \ {0}, we have

− d

dr
br(0, y) = Ẽ

0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦.

Lemma 4.2. If d ≥ 3, then there exists a constant C8 (which depends only on d and q0) such
that for all 0< r ≤ q0 and y ∈Z

d \ {0},

Ẽ
0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦≤ C8‖y‖1.

Lemma 4.1 gives the derivative of br(0, y) at r by using the path measure P̃
0,y
r . Moreover,

Lemma 4.2 guarantees that in the case d ≥ 3, the derivative of br(0, y) at r can be bounded from
below uniformly in r ∈ (0, q0]. Let us show Theorem 1.2 before proving the lemmata above.

Proof of Theorem 1.2. We first prove part (1) of Theorem 1.2, which gives lower bounds for
differences between annealed Lyapunov exponents. Note that for each 0< r< 1, the function
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f (t) := (1 − t)/{r + t(1 − r)} is decreasing in t ∈ [0, 1]. Hence Lemma 4.1 and the fact that
#A(0, y) ≥ ‖y‖1 holds P̃0,y

r -a.s. yield that for all 0< r< 1 and y ∈Z
d \ {0},

− d

dr
br(0, y) = Ẽ

0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦
≥ 1 − e−1

r + e−1(1 − r)
Ẽ

0,y
r [#A(0, y)]

≥ (1 − e−1)‖y‖1.

Thus, similarly to the proof of part (1) of Theorem 1.1, we have for all 0< p< q< 1

inf
x∈Rd\{0}

βp(x) − βq(x)

‖x‖1
≥ (1 − e−1)(q − p),

which is the desired lower bound for the difference between annealed Lyapunov exponents.
Let us next show part (2) of Theorem 1.2, which gives upper bounds for differences between

annealed Lyapunov exponents. Lemma 4.1 and the monotonicity of the function f (t) = (1 −
t)/{r + t(1 − r)}, 0 ≤ t ≤ 1, tell us that for all 0< r ≤ q0 and y ∈Z

d \ {0},

− d

dr
br(0, y) = Ẽ

0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦≤ r−1
Ẽ

0,y
r [#A(0, y)]. (4.2)

Moreover, by the same arguments as in [18, Lemma 3], it holds that for all 0< r< 1 and
y ∈Z

d \ {0},
Ẽ

0,y
r [#A(0, y)] ≤ 1 + log (2d)

− log{e−1 + (1 − e−1)r}‖y‖1. (4.3)

Hence (4.2) and (4.3) imply that for all 0< r ≤ q0 and y ∈Z
d \ {0},

− d

dr
br(0, y) ≤ 1 + log (2d)

− log{e−1 + (1 − e−1)q0} r−1‖y‖1.

Therefore, by taking

C2 := 1 + log (2d)

− log{e−1 + (1 − e−1)q0} ,

one sees immediately that for all 0< p< q ≤ q0,

sup
x∈Rd\{0}

βp(x) − βq(x)

‖x‖1
≤ C2( log q − log p).

In particular, if d ≥ 3, then Lemma 4.2 allows us to obtain the following bound for the
derivative of br(0, y) at r instead of (4.2): for all 0< r ≤ q0 and y ∈Z

d \ {0},

− d

dr
br(0, y) = Ẽ

0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦≤ C8‖y‖1.
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It follows immediately that

sup
x∈Rd\{0}

βp(x) − βq(x)

‖x‖1
≤ C8(q − p),

and the proof of part (2) of Theorem 1.2 is complete. �

We close this section with the proofs of Lemmata 4.1 and 4.2.

Proof of Lemma 4.1. First of all, we often add S to the notation of H(y) and �z(N) to clarify
the dependence of the trajectory S of the simple random walk: H(y) = H(y, S) and �z(N) =
�z(N, S). Fix y ∈Z

d \ {0}, and define for 0< r< 1 and the trajectory S of the simple random
walk,

φ(r, S) := Er

[
exp

{
−

H(y,S)−1∑
k=0

ω(Sk)

}]
1{H(y,S)<∞}

=
∏
z∈Zd

�z(H(y,S),S)≥1

Er
[
e−�z(H(y,S),S)ω(0)]1{H(y,S)<∞}.

It follows from Fubini’s theorem that br(0, y) = − log E0[φ(r, S)]. Hence our task is to show
that

d

dr
E0[φ(r, S)] = E0

⎡⎢⎣φ(r, S)
∑
z∈Zd

�z(H(y,S),S)≥1

1 − e−�z(H(y,S),S)

r + e−�z(H(y,S),S)(1 − r)

⎤⎥⎦. (4.4)

Indeed, once (4.4) is proved, we have

d

dr
br(0, y) = −E0[φ(r, S)]−1E0

⎡⎢⎣φ(r, S)
∑
z∈Zd

�z(H(y,S),S)≥1

1 − e−�z(H(y,S),S)

r + e−�z(H(y,S),S)(1 − r)

⎤⎥⎦

= −Ẽ
0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦,
which is the desired conclusion.

To prove (4.4), note that for the trajectory S of the simple random walk,

Er
[
e−�z(H(y,S),S)ω(0)]= r + e−�z(H(y,S),S)(1 − r).

This tells us that φ(r, S) is differentiable at r ∈ (0, 1) and

d

dr
φ(r, S) = φ(r, S)

∑
z∈Zd

�z(H(y,S),S)≥1

1 − e−�z(H(y,S),S)

r + e−�z(H(y,S),S)(1 − r)
. (4.5)

https://doi.org/10.1017/jpr.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.35


98 N. KUBOTA

Therefore, differentiating under the integral sign (the possibility of this operation will be
checked in Appendix A), we have for 0< r< 1

d

dr
E0[φ(r, S)] = E0

[
d

dr
φ(r, S)

]
= E0

⎡⎢⎣φ(r, S)
∑
z∈Zd

�z(H(y,S),S)≥1

1 − e−�z(H(y,S),S)

r + e−�z(H(y,S),S)(1 − r)

⎤⎥⎦,
and (4.4) follows. �

Proof of Lemma 4.2. Let d ≥ 3 and fix 0< r< 1 and y ∈Z
d \ {0}. Furthermore, for each

z ∈Z
d, set H1(z) := H(z) and define inductively

H�+1(z) := inf{k>H�(z) : Sk = z}, �≥ 1.

Then we have

Ẽ
0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦
=
∑

z∈Zd\{y}
Er[e(0, y, ω)]−1

∞∑
�=1

1 − e−�

r + e−�(1 − r)
Er[ρ�(z, ω)], (4.6)

where

ρ�(z, ω) := E0

[
exp

{
−

H(y)−1∑
k=0

ω(Sk)

}
1{H�(z)<H(y)<H�+1(z)}

]
.

The strong Markov property gives that

ρ�(z, ω) ≤ Ez

⎡⎣exp

⎧⎨⎩−
H+(z)−1∑

k=0

ω(Sk)

⎫⎬⎭ 1{H+(z)<∞}

⎤⎦�−1

× E0

⎡⎣exp

⎧⎨⎩−
H(y)−1∑

k=0

ω(Sk)

⎫⎬⎭ 1{H(z)<H(y)<H2(z)}

⎤⎦
(see the statement of Lemma 3.1 for the notation H+(z)). Hence, in the case where ω(z) = 0,
ρ�(z, ω) is bounded from above by

P0(H+(0)<∞)�−1 E0

⎡⎢⎣exp

⎧⎨⎩−
∑

0≤k<H(y)
Sk �=z

ω(Sk)

⎫⎬⎭1{H(z)<H(y)<H2(z)}

⎤⎥⎦. (4.7)

On the other hand, in the case where ω(z) = 1, ρ�(z, ω) is smaller than or equal to

e−�P0(H+(0)<∞)�−1 E0

⎡⎢⎣exp

⎧⎨⎩−
∑

0≤k<H(y)
Sk �=z

ω(Sk)

⎫⎬⎭1{H(z)<H(y)<H2(z)}

⎤⎥⎦. (4.8)
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Note that both (4.7) and (4.8) are independent of ω(z), and the simple random walk visits only
one time before hitting y on the event {H(z)<H(y)<H2(z)}. It follows that

Er[ρ�(z, ω)] ≤ e{r + e−�(1 − r)}P0(H+(0)<∞)�−1

×Er

[
E0

[
exp

{
−

H(y)−1∑
k=0

ω(Sk)

}
1{H(z)<H(y)<H2(z)}

]]
.

Therefore (4.3), (4.6) and the fact that P0(H+(0)<∞)< 1 holds for d ≥ 3 yield that for all
0< r ≤ q0 and y ∈Z

d \ {0},

Ẽ
0,y
r

⎡⎢⎣ ∑
z∈Zd

�z(H(y))≥1

1 − e−�z(H(y))

r + e−�z(H(y))(1 − r)

⎤⎥⎦≤ e
∞∑
�=1

P0(H+(0)<∞)�−1
Ẽ

0,y
r [#A(0, y)]

≤ eP0(H+(0) = ∞)−1 1 + log (2d)

− log{e−1 + (1 − e−1)q0}‖y‖1,

which is the desired conclusion. �

5. Comment on the large deviation principle

In this section we discuss the large deviation principle for the simple random walk in
the Bernoulli potential. Let 0 ≤ r ≤ 1 and let ω be the Bernoulli potential with parameter r.
Consider the path measures Qqu

n,ω and Qan
n,r defined as follows:

dQqu
n,ω

dP0
= 1

Zqu
n,ω

exp

{
−

n−1∑
k=0

ω(Sk)

}
and

dQan
n,r

dP0
= 1

Zan
n,r

Er

[
exp

{
−

n−1∑
k=0

ω(Sk)

}]
,

where Zqu
n,ω and Zan

n,r are the corresponding normalizing constants. Moreover, for λ≥ 0, write
αr(λ, ·) and βr(λ, ·), respectively, for the quenched and annealed Lyapunov exponents for the
potential ω+ λ= (ω(x) + λ)x∈Zd . Note that αr(λ, x) and βr(λ, x) are continuous in (λ, x) ∈
[0,∞) ×R

d and concave increasing in λ (see [4, Theorem A], [13, Theorem 1.1], and [18,
Proposition 4]). Then, for x ∈R

d, set

Ir(x) := sup
λ≥0

{αr(λ, x) − λ}

and

Jr(x) := sup
λ≥0

{βr(λ, x) − λ}.

The following proposition states the large deviation principles for the simple random walk
in the Bernoulli potential, which is a direct application of [4, Theorem B], [13, Theorem 1.10],
and [18, Theorem 19].
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Proposition 5.1. Let 0< r ≤ 1. Then the law of Sn/n obeys the following quenched and
annealed large deviation principles with the rate functions Ir and Jr, respectively.

• (Quenched case.) Pr-a.s., for any Borel set � in R
d,

− inf
x∈�o

Ir(x) ≤ lim inf
n→∞

1

n
log Qqu

n,ω(Sn ∈ n�)

≤ lim sup
n→∞

1

n
log Qqu

n,ω(Sn ∈ n�)

≤ − inf
x∈�

Ir(x).

• (Annealed case.) For any Borel set � in R
d,

− inf
x∈�o

Jr(x) ≤ lim inf
n→∞

1

n
log Qan

n,r(Sn ∈ n�)

≤ lim sup
n→∞

1

n
log Qan

n,r(Sn ∈ n�)

≤ − inf
x∈�

Jr(x).

Here �o and �, respectively, are the interior and closure of �. Furthermore, the rate functions
Ir and Jr are continuous and convex on their effective domains, which are equal to the closed
�1-unit ball.

Since exactly the same arguments used in the previous sections work for αr(λ, ·) and
βr(λ, ·), we can replace αr(·) and βr(·) with αr(λ, ·) and βr(λ, ·) in Theorems 1.1 and 1.2,
respectively. In particular, the constants C1 and C2 can be chosen independently of λ≥ 0
because for any a, b ∈R with a< b, the function f (λ) := (λ+ b)/(λ+ a) is decreasing in
λ≥ 0, and the factor e−λ�z(H(y,S),S) appears in the denominator and numerator of the expres-
sions above and can be canceled out. This derives the following differences between quenched
and annealed rate functions.

Corollary 5.1. Let d ≥ 1 and 0< q0 < 1. Then there exist constants C9 and C10 (which depend
only on d and q0) such that the following results hold.

• (Quenched case.) For all 0< p< q< 1,

inf
0<‖x‖1≤1

Ip(x) − Iq(x)

‖x‖1
≥ (1 − e−1)(q − p), (5.1)

and for all 0< p< q ≤ q0,

sup
0<‖x‖1≤1

Ip(x) − Iq(x)

‖x‖1
≤ C9(q − p).

• (Annealed case.) For all 0< p< q< 1, we have (5.1) with Ip(·) and Iq(·), replaced by
Jp(·) and Jq(·), respectively. Moreover, for all 0< p< q ≤ q0,

sup
0<‖x‖1≤1

Jp(x) − Jq(x)

‖x‖1
≤ C10( log q − log p).

In particular, if d ≥ 3 or p0 ≤ p< q ≤ q0, then the right-hand side above can be replaced
by C10(q − p) (here, C10 also depends on p0 in the latter case).
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Proof. We treat only the upper bound for the quenched case since the same argument works
for the other cases. For any 0< r< 1 and x ∈R

d, set

λqu
r (x) := inf{λ> 0 : ∂−αr(λ, x) ≤ 1},

where ∂−αr(λ, x) is the left derivative of αr(λ, x) with respect to λ (note that λqu
r (x) exists in

the case where ‖x‖1 ≤ 1 although it may be equal to ∞). Clearly, λqu
r (x) attains the supremum

in the definition of Ir(x). Hence Theorem 1.1 with αr(·) replaced by αr(λ, ·) implies that for
any 0< p< q< 1, t ≥ 0, and x ∈R

d with 0< ‖x‖1 ≤ 1,

Ip(x) − {αq(λqu
q (x) ∧ t, x) − (λqu

q (x) ∧ t)}
‖x‖1

≥ αp(λqu
q (x) ∧ t, x) − αq(λqu

q (x) ∧ t, x)

‖x‖1

≥ (1 − e−1)(q − p).

Since αq(λ, x) is continuous in λ, letting t → ∞ proves (5.1). �

Appendix A. Differentiation under the integral sign

The aim of this section is to discuss differentiation under the integral sign in the proof of
Lemma 4.1. We first mention differentiation under the integral sign in measure theory (see e.g.
[8, Theorem 6.28]).

Lemma A.1. Let I be a non-empty open interval of R and let � be a measure space equipped
with a measure μ. Suppose that f : I ×�→R is a function satisfying the following conditions.

(1) For any r ∈ I, the function σ �→ f (r, σ ) is μ-integrable.

(2) For μ-a.e. σ ∈�, the function r �→ f (r, σ ) is differentiable at r ∈ I with derivative
fr(r, σ ).

(3) There exists a μ-integrable function g :�→R such that |fr(r, σ )| ≤ g(σ ) holds for all
r ∈ I and for μ-a.e. σ ∈�.

Then fr(r, ·) is μ-integrable for each r ∈ I, and the function F : r �→ ∫
�

f (r, σ )μ(dσ ) is
differentiable at r ∈ I with derivative

d

dr
F(r) =

∫
�

fr(r, σ )μ(dσ ).

The following proposition enables us to differentiate under the integral sign in the proof of
Lemma 4.1.

Proposition A.1. Fix y ∈Z
d \ {0} and define for 0< r< 1 and the trajectory S of the simple

random walk,

φ(r, S) :=
∏
z∈Zd

�z(H(y,S),S)≥1

Er
[
e−�z(H(y,S),S)ω(0)]1{H(y,S)<∞}.

Then, for all 0< r< 1, we have

d

dr
E0[φ(r, S)] = E0

[
d

dr
φ(r, S)

]
. (A.1)
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Proof. Fix y ∈Z
d \ {0} and let 0< r0 < 1. It suffices to prove (A.1) for all 0< r< r0. To

this end, set I := (0, r0), � := (Zd)N0 (equipped with the probability measure μ := P0(S ∈ ·))
and

f (r, σ ) := φ(r, σ ), r ∈ I, σ ∈�.

Then we can rewrite E0[φ(r, S)] as

E0[φ(r, S)] =
∫
�

f (r, σ )μ(dσ ).

Hence, for (A.1), let us check conditions (1)–(3) in Lemma A.1.
Condition (1) is clearly satisfied since 0 ≤ f (r, σ ) ≤ 1 holds for each r ∈ I and σ ∈�.

Furthermore, by (4.5), for any σ ∈�,

fr(r, σ ) = φ(r, σ )
∑
z∈Zd

�z(H(y,σ ),σ )≥1

1 − e−�z(H(y,σ ),σ )

r + e−�z(H(y,σ ),σ )(1 − r)
,

and condition (2) is valid. It remains to check condition (3). To this end, let us observe that for
fixed σ ∈� and z ∈Z

d with �z(H(y, σ ), σ ) ≥ 1, the function

h(r) := φ(r, σ )

r + e−�z(H(y,σ ),σ )(1 − r)

is increasing in r ∈ (0, 1). A standard calculation shows that for each z ∈Z
d,

d

dr
h(r) = φ(r, σ )

r + e−�z(H(y,σ ),σ )(1 − r)

∑
w∈Zd\{z}

�w(H(y,σ ),σ )≥1

1 − e−�w(H(y,σ ),σ )

r + e−�w(H(y,σ ),σ )(1 − r)
≥ 0,

which implies that h(r) is increasing in r ∈ (0, 1). Hence, for all r ∈ I and σ ∈�, we have

|fr(r, σ )| ≤
∑
z∈Zd

�z(H(y,σ ),σ )≥1

φ(r0, σ )

r0 + e−�z(H(y,σ ),σ )(1 − r0)

≤ r−1
0 φ(r0, σ ) × #{z ∈Z

d : �z(H(y, σ ), σ ) ≥ 1}
=: g(σ ).

Note that ∫
�

g(σ ) dμ≤ r−1
0 Ẽ

0,y
r0

[#A(0, y)].

By (4.3), we have

Ẽ
0,y
r0

[#A(0, y)] ≤ 1 + log (2d)

− log{e−1 + (1 − e−1)r0} <∞,

and the integrability of g(σ ) follows. Therefore condition (3) is also satisfied. �
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