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ON RAMSEY GRAPH NUMBERS 
FOR STARS AND STRIPES 

BY 
E. J. COCKAYNE AND P. J. LORIMER 

1. Introduction. Any term or symbol undefined in this paper is defined in 
[5]. For graphs F and G, G>F means G contains a subgraph isomorphic to F 
and E(G) denotes the edge set of G. lïE^ E(G), (E) is the subgraph of G whose edge 
set is E and whose vertex set is that subset of vertices of G which are incident with 
edges in E. 

Let Gl9... , Gt be given graphs. There exists a smallest integer r(Gl9 GÀ,... , Gt) 
such that for all edge partitions El9.. . ,Et of Kn where n>r(Gl9... , Gt)9 for at 
least one i e {1 , . . . , t}, (£,-)> G> The value of r(Gl9... , Gt) is called the Ramsey 
Number of the sequence of graphs Gl9... , Gt. 

Ramsey graph theory was formulated in [3] from the well-known theorem of 
Ramsey [7]. Some properties of the numbers r(Gl9... , Gt) were mentioned in 
[4]. There has been considerable interest in this topic recently. See Harary [6] and 
Burr [1] for extensive bibliographies. 

In this paper we calculate Ramsey Numbers for certain cases when Gt is either 
a "star"-graph Klt7n or a "stripe"-graph mP2. These are illustrated for m=5 . 
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2. Determination of r(Klimi,..., Kltm _i? sP2). In order to determine these 
Ramsey Numbers, we shall require the following theorem proved by Burr and 
Roberts [2] and independently by the present authors. 

THEOREM 1. Let R=r(Klttni,.. . , Kltfn^ andZ=^i=x (ra^—1). IfZ is even and 
some nii is even, then R=Z+l9 otherwise R=Z+2. 

An acceptable t-colouring of Kn will mean a partition El9.. . , Et of E(Kn) 
such that for each / = 1 , . . . » /— 1, {E^Kltm and (Et)sy^P2. M and]? will denote 
r(Kltm.9... , K1>mti9 sP2) andj^zl (mt-l) respectively. 

THEOREM 2. IfJt<s9 M=2s. 
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Proof. The partition <£,. . . , </>, E(K2s_x) of E(K2s_x) is an acceptable /-colouring. 
Hence M>2s-\. 

Suppose, contrary to the theorem, that K2s has an acceptable /-colouring Ex,... , 
Et. Then for each i * = l , . . . , t—1, the degree of each vertex in <JE'<> is less than mt-. 
Therefore the degree of each vertex in (Et) is greater than or equal to X=2s— 1 — ]£• 
Since the colouring is acceptable, the maximal matching (see [5] page 96) of 
(Et) has k independent edges where k<s. Let P be the set of k pairs of vertices 
incident with these k edges, let V be the set of these 2k vertices and W be the set 
of those vertices not in V. We note that k<s implies | W\>2. No edge incident 
with two vertices in Wis in Et or there would be k+l independent edges in (Et). 
Hence any two vertices wx, w2 are each incident with at least À edges in Et whose 
other vertices are in V. Suppose for each 7 = 1 , . . . , X, [wx, x,] is an edge in Et 

where x$ e V, If yi is the vertex paired with x5 in P, for each 7 = 1, . . . , A the 
edge [yj9 w2] is not in Et. Otherwise the maximal matching in (Et) could be increased 
by deleting [x^y^ and adding [wl9 x5] and [w2, j j . Therefore the set S of vertices 
adjacent to w2 in (Et) is contained in V—{yx,.. . , yÀ} which has 2k—X vertices. 
But \S\>X. Hence X<2k—X from which we deduce X<k. Therefore 

2 s - l - 2 < k 
or 

(5-fc)+(s-l-2) = 0. 

But s—fc>0 and Cs— 1— 2 ) > 0 an(^ we have the required contradiction showing 
that K2s has no acceptable /-colouring. 

THEOREM 3. Let ^>s. 

(i) M=2+«y if 2 ^ e ^ w and some mi is even, 
(ii) A f = 2 + ^ + 1 otherwise. 

Proof. By definition there exists a (/— l)-colouring Zsl5 . . . , i s ^ of the complete 
graph on r(X l fWi , . . . , KXtmti)-l vertices such that ( ^ » i r l f W . for i = 1 , . . . , t-1. 
Take the join (see [5] page 21) of this graph with a distinct Ks_x and let isf be the 
set of edges of the Ks_x together with all joining edges. Ex,.,, , Et is an acceptable 
/-colouring of the complete graph on r(Kltmi> .,, , jRTltTO )—l + (s— 1) vertices. 
Hence 

M > r ( X 1 ( W l , . . . , X 1 , W f _ 1 ) + s ~ 2 . 

We now apply theorem 1 and establish that M is greater than or equal to the 
numbers asserted in this theorem. 

The proof of part (ii) of the theorem may now be completed by assuming an 
acceptable /-colouring of Kx+S+X and obtaining a contradiction by reasoning 
identical to that used in the proof of theorem 2. We omit the details. 
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Part (i) seems to be more difficult. Suppose there is an acceptable ^-colouring 
El9... , Et of Kx+s- Let V={xl9yl9 x2,y29... , xk9 yk} be the set of 2k vertices 
incident with the k edges {[xi9y{]9 z= l , . . . ,&} in a maximal matching in (Et) 
where k<s— 1 and let Wbe the set of vertices not in V. We note |J^|=2+4y"~ 
2k>2. The degree of each vertex (J<lî (£*•) *s n o more than £> hence the degree 
of each vertex in (Et) is at least (£+s—l)—y£=s—l. 

Let M>!, w2 be in fiK Since there are no edges in Et which are incident with two 
vertices in W there are at least 2(̂ —1) edges in Et from {wl9 w2} to V. The reasoning 
used in theorem 2 establishes (we omit the details) : 

(a) k=s-l. 
(b) For each w eW9 the degree of w in (Et) is exactly ^—1. 
(c) For each z = l , . . . ,.y—1 there are precisely two edges in Et which join 

{wl9 w2} to {xi9 j j , and the subgraph of (Et) induced by {wl9 w29 xi9y^ is of type 
A or B depicted in Fig. 2. 

w1
 # w2 W l - w2 

TYPE A TYPE B 

FIGURE 2 

Suppose that for all wl9 w2eW and all /, the induced subgraph of {wl9 w29 
xi>yù °f (Et) *

s °f Type .6. Then for each /, one of the vertices xi9 yi9 say x{ is 
adjacent in (Et) to every vertex in W while yt is adjacent to no vertex of W. Further, 
no edge [ya,yp] is in Et for otherwise the maximal matching in (Et) could be in­
creased by deletion of [xa9ya]9 [xp, xp] and the addition of [ya9yp]9 [xa9 wx]9 

[xp, w2]. Therefore the graph induced by {W U {yl9... ,ys_x}} is a complete 
graph on 2 + * vertices whose edges are in \jlz\Ei9 i.e. we have constructed a 
partition Fl9. . . , i^_i of JE'(JÇ'2:+1) such that for each /, (F^yt-K^. But this is 
impossible by Theorem 1. 

Suppose for some wl9 w2 e Wand some / e { 1 , . . . , s— 1} the subgraph induced 
by {wl9 w29 xi9 j J in (Et) is type A. If w3 is a third point of W then of the subgraphs 
of (2Q induced by {w1? w3, xi9 y{}9 {w29 w39 xi9y^9 one is type B9 since otherwise 
the maximal matching in (Et) could be increased. On the other hand, if \W\=29 

then ^=s. In ^ s c a s e s^nce •y""l *s oc*d, f° r some y e { 1 , . . . , *y— 1} the induced 
subgraph of {wl9 w29 xj9 yô) in (Et) is type B. Thus, in either case, for some wl9 

w2 e W we may re-index the edges in the maximal matching in (Et) so that the 
subgraph of (Et) induced by {wl9 w29 xj9 j j is type A f o r y = l , . . . , X and type 
B for y = 2 + 1 , . . . 9s—l9 where 1<A<5,~2. Suppose the vertices are labelled so 
that j , - is adjacent to neither wx nor w2 in (Et) fory=A+l , . . . , s—l. Reasoning 
as in the preceding paragraph shows that no [ya9 yp] where a, /? e {A+1, . . . , s— 1} 
is in Et. Moreover for each y e { 1 , . . . , X}9 neither [xj9y8_x] nor [yj9 ys_x] is in Et. 
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For suppose [xj9 j ^ J e Et where [xj9 wx], [yj9 wx] are also in Et. Then the maximal 
matching in (Et) may be increased by deletion of [x^y^], [xX-i9ys-i] and addition 
of fo,jV-iL [yi9wH and [xs_1? w>2]. Hence the edges [*„jv_i], [yj9ys^] for 
7 = 1 , . . • , A, [ya, js_x] for a = / l + l , . . . , s—2 and [w, js_x] for each w e W %xt in 
U£î -£* and the degree of ys_x in (JÎIÎ (^) is at least 

2A+{(s -2) -a+l ) + l } + ( 2 - s + 2 ) = £+A > 2 + 1 -

Hence for some i e { 1 , . . . , £—1},JS_I has degree >mi—l in (jE^),i.e., (£,
i)>JK1§m . 
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